
P
os
te
d
on

3
A
u
g
20
23

—
C
C
-B

Y
-N

C
-N

D
4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
69
10
95
67
.7
88
39
94
9/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Revisiting Machine Learning Approaches for Short- and Longwave

Radiation Inference in Weather and Climate Models, Part I: Offline

Performance

Guillaume Bertoli1, Firat Ozdemir2, Sebastian Schemm2, and Fernando Perez-Cruz3

1ETHZ
2ETH Zurich
3Swiss Data Science Center, ETH Zurich

March 31, 2024

Abstract

As climate modellers prepare their code for kilometre-scale global simulations, the computationally demanding radiative transfer

parameterization is a prime candidate for machine learning (ML) emulation. Because of the computational demands, many

weather centres use a reduced spatial grid and reduced temporal frequency for radiative transfer calculations in their forecast

models. This strategy is known to affect forecast quality, which further motivates the use of ML-based radiative transfer param-

eterizations. This paper contributes to the discussion on how to incorporate physical constraints into an ML-based radiative

parameterization, and how different neural network (NN) designs and output normalisation affect prediction performance. A

random forest (RF) is used as a baseline method, with the European Centre for Medium-Range Weather Forecasts (ECMWF)

model ecRad, the operational radiation scheme in the Icosahedral Nonhydrostatic Weather and Climate Model (ICON), used

for training. Surprisingly, the RF is not affected by the top-of-atmosphere (TOA) bias found in all NNs tested (e.g., MLP, CNN,

UNet, RNN) in this and previously published studies. At lower atmospheric levels, the RF is able to compete with all NNs

tested, but its memory requirements quickly become prohibitive. For a fixed memory size, most NNs outperform the RF except

at TOA. For the best emulator, we use a recurrent neural network architecture which closely imitates the physical process it

emulates. We additionally normalize the shortwave and longwave fluxes to reduce their dependence from the solar angle and

surface temperature respectively. Finally, we train the model with an additional heating rates penalty in the loss function.
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Abstract16

As climate modellers prepare their code for kilometre-scale global simulations, the com-17

putationally demanding radiative transfer parameterization is a prime candidate for ma-18

chine learning (ML) emulation. Because of the computational demands, many weather19

centres use a reduced spatial grid and reduced temporal frequency for radiative trans-20

fer calculations in their forecast models. This strategy is known to affect forecast qual-21

ity, which further motivates the use of ML-based radiative transfer parameterizations.22

This paper contributes to the discussion on how to incorporate physical constraints into23

an ML-based radiative parameterization, and how different neural network (NN) designs24

and output normalisation affect prediction performance. A random forest (RF) is used25

as a baseline method, with the European Centre for Medium-Range Weather Forecasts26

(ECMWF) model ecRad, the operational radiation scheme in the Icosahedral Nonhy-27

drostatic Weather and Climate Model (ICON), used for training. Surprisingly, the RF28

is not affected by the top-of-atmosphere (TOA) bias found in all NNs tested (e.g., MLP,29

CNN, UNet, RNN) in this and previously published studies. At lower atmospheric lev-30

els, the RF is able to compete with all NNs tested, but its memory requirements quickly31

become prohibitive. For a fixed memory size, most NNs outperform the RF except at32

TOA. For the best emulator, we use a recurrent neural network architecture which closely33

imitates the physical process it emulates. We additionally normalize the shortwave and34

longwave fluxes to reduce their dependence from the solar angle and surface tempera-35

ture respectively. Finally, we train the model with an additional heating rates penalty36

in the loss function.37

Plain Language Summary38

Atmospheric radiation is an essential component of atmospheric modelling, which39

describes the amount of solar energy absorbed by the atmosphere and surface, and the40

thermal energy emitted as a response. The current radiation solver in the climate model41

named ICON is accurate but the complexity of the radiation process makes it compu-42

tationally slow. Therefore the radiation solver cannot be called frequently in space and43

time by the model, which reduces the quality of the climate prediction. A possible ap-44

proach to accelerate the computation of the radiation is to use machine learning meth-45

ods. Machine learning methods can speed up the computation of the radiation substan-46

tially. However they are known to cause the climate predictions to drive away from a phys-47

ically correct solution since they do not necessarily satisfy essential physical properties.48

In this paper we study neural networks, an increasingly popular deep learning approach.49

We explore various architectures, loss functions and output normalizations. We compare50

the results with a random forest emulation of radiation, which is easier to train than the51

neural network but as a prohibitive memory cost.52

1 Introduction53

The computation of atmospheric radiation is a central part of each Earth System54

Model (ESM). It models the solar energy absorbed by the Earth, the complex interac-55

tions between radiation and greenhouse gases, clouds and aerosols, scattering, and the56

energy radiated back as thermal (longwave) radiation. The operational radiation solver57

in the Icosahedral Nonhydrostatic Weather and Climate model (ICON) (Prill et al., 2020)58

is ecRad (Hogan & Bozzo, 2018), which is the new operational weather forecasting model59

of the Swiss (MeteoSwiss) and German weather services. EcRad is actively developed60

at European Centre for Medium-Range Weather Forecasts (ECMWF) where a GPU port61

is under development. The general outline of ecRad is that it first computes the gas, aerosols62

and clouds optics and passes those to a solver which predicts the atmospheric radiation63

fluxes based on which the driving model computes the fluxes convergence to obtain the64

corresponding heating rates. In ICON, the atmospheric radiation is operationally not65
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solved on the same spatial grid as the rest of the model. For computational reasons, the66

radiation fluxes are only computed on a coarser horizontal grid. Furthermore, the time67

interval between two calls of ecRad is large to further reduce the computational time.68

This is known to reduce the quality of the prediction (Hogan & Bozzo, 2018). Reduc-69

ing the computational time required to predict the radiation fluxes would allow to solve70

the radiation with a smaller time step and on a finer spatial grid, which has the poten-71

tial to improve the accuracy of the weather forecast. A promising approach to acceler-72

ate the computation of the radiation fluxes and to improve its energy efficiency is to use73

machine learning (ML) methods. There has been a wealth of research in recent years to74

replace physical parameterizations in weather and climate models with data-driven pa-75

rameterizations (Brenowitz & Bretherton, 2019, 2018; Gentine et al., 2018; O'Gorman76

& Dwyer, 2018; Yuval et al., 2021; Kashinath et al., 2021) and in the following, we re-77

view recently published radiation emulating strategies before we outline the contribu-78

tion by this study.79

1.1 State of research in ML-based radiation parameterizations80

The two central questions for data-driven radiative transfer parameterizations are81

which ML architecture to use and how to account for known physical relationships. In82

short, how to get the physics into the statistics? Two influential papers on machine learning-83

based parameterizations of atmospheric radiation, which are preludes to the above for-84

mulated questions, are Chevallier et al. (1998) and Krasnopolsky et al. (2005).85

The prelude: Chevallier et al. (1998) and Chevallier et al. (2000), who extend the86

research started in Chéruy et al. (1996), emulate the ECMWF wideband scheme described87

in Morcrette (1991) and the line-by-line model described in Scott and Chedin (1981).88

They only consider the longwave fluxes. To increase the generalization capability of the89

emulator, the authors add several steps to the ML pipeline to enforce known physical90

relations. First, the emulator predicts (longwave) radiation fluxes but not the correspond-91

ing heating rates. The latter are instead computed based on the predicted fluxes. This92

strategy preserves the physical relation between the emulated fluxes and the heating rates.93

Then, to enforce cloud-radiation interactions, the emulator does not predict directly the94

fluxes. Instead it first predicts with one NN the radiation for a cloud-free atmosphere.95

Next the scheme computes the radiation for an atmosphere with a single blackbody cloud96

at a given height level. This computation is performed one time per atmospheric level,97

by varying the position of the blackbody cloud. The net fluxes are then a combination98

of the clear sky radiation and the radiation fluxes obtained for an atmosphere with a sin-99

gle blackbody cloud. The cost of these intermediate steps is a lower speedup of the ma-100

chine learning parameterization.101

Krasnopolsky et al. (2005), whose work is extended in Krasnopolsky et al. (2008)102

and Krasnopolsky et al. (2010), emulate radiation through purely data-driven param-103

eterization. They do not decompose the problem into smaller subproblems but instead104

compute directly the final outputs, which allows a maximal speed up. Furthermore, the105

proposed method directly computes the heating rates and skips the emulation of the ra-106

diation fluxes. From a numerical point of view, this is attractive because such an approach107

does not require any additional derivation to calculate the heating rates from the radi-108

ation fluxes. However, when emulating the heating rates, they can only be compared against109

heating rates derived from the observed radiation fluxes (e.g., satellite data), making them110

a more suboptimal metric for validation. Further, as already stated, computing heating111

rates from the radiative fluxes guarantees physical consistency and radiative fluxes are112

required as inputs, for example, to the land model in an ESM.113

A key question is thus to whether emulate fluxes, heating rates or both and how114

to ensure their consistency. The radiative fluxes can be observed by instruments, they115

serve as input to the land component of an ESM and are also relevant for impact mod-116
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elers, for example, to compute electricity production by solar panels. The disadvantage117

of emulating the radiative fluxes is the additional computational cost and numerical er-118

ror that results from the required vertical derivative needed to obtain the correspond-119

ing heating rates that drive the evolution of atmospheric temperature. Even if the fluxes120

are predicted accurately, the heating rate error may be large if the vertical profiles of the121

fluxes are not smooth. In Krasnopolsky et al. (2005) the surface and top of atmosphere122

(TOA) fluxes are predicted by the ML emulation in addition to the heating rates. From123

the heating rates and net fluxes at the top or surface, one can recover the net fluxes at124

each atmospheric level. However, the individual contribution of upward and downward125

longwave and shortwave radiation fluxes cannot be recovered. In the next two sections,126

we first provide an overview of the various ML model architectures that were recently127

explored in the field of radiation emulation:128

Fully-connected feedforward NNs: Fully-connected feedforward NNs are studied129

in Pal et al. (2019), Roh and Song (2020) and Belochitski and Krasnopolsky (2021). Pal130

et al. (2019) propose a radiation emulator based on fully connected feedforward NNs com-131

posed of three hidden layers for the Super-Parameterized Energy Exascale Earth Sys-132

tem Model (SP-E3SM) and reports an error smaller than the internal variability of the133

climate model. Roh and Song (2020) emulate the radiation fluxes and the correspond-134

ing heating rates of the Korea Local Analysis and Prediction System (KLAPS) based135

on the single-layer feedforward NN following the scheme provided by Krasnopolsky (2014).136

They assess the quality of the emulation by comparing simulations where the radiation137

is computed at every time step using the machine learning emulation, against simula-138

tions where the original solver is used at larger time interval. Testing a similar compu-139

tational burden by running emulator more frequent; the prediction of heating rates, cloud140

fraction, radiation fluxes, surface temperature and precipitation was shown to be more141

accurate for simulations where the emulation is run every time step (every 3 seconds)142

compared to simulations where the original parameterization is called every 20 time steps143

(every 60 seconds). In Meyer et al. (2022), the authors use feedforward NNs to emulate144

the 3D effects of clouds for the radiative transfer. They take as input the radiation fluxes145

computed by ecRad with a one dimensional cloud solver and as training target the dif-146

ference between the fluxes computed by ecRad with a one dimensional cloud solver and147

a three dimensional cloud solver. This strategy substantially increases the speed at which148

fluxes are computed for the three dimensional cloud solver at the cost of an acceptable149

reduction in accuracy.150

Convolutional and recurrent NNs: More complex deep learning architectures, such151

as convolutional NNs (CNNs) (LeCun et al., 1998) or recurrent NNs (RNNs) (Rumelhart152

et al., 1986), have also been recently explored for radiation parameterizations. In a feed-153

forward CNN, fixed length kernel(s) are convolved over activations at a given layer as154

opposed to densely connecting each neuron with each neuron of the subsequent layer as155

in fully-connected feedforward NNs. RNNs on the other hand consist of an inner loop156

that reuses a set of neurons over a given dimension of input vectors, e.g., typically time-157

axis. In Liu et al. (2020), numerical experiments with CNNs exploiting the correlation158

between horizontally adjacent atmospheric columns are performed, but the authors re-159

port that CNNs reduce the computational speed substantially for a marginal increase160

in accuracy. In Lagerquist et al. (2021), the authors experiment with the UNet++ ar-161

chitecture developped in Zhou et al. (2020). The authors observ that the UNet++ ar-162

chitecture allows them to outperform existing fully-connected feedforward network pa-163

rameterization, in particular the model developed in Krasnopolsky et al. (2010). Ukkonen164

(2022) employs RNNs to exploit the correlation between vertically stacked atmospheric165

levels. The design of this strategy is justified by the observation that the radiation fluxes166

at one height level result of the interaction of the radiation fluxes with, for example hu-167

midity, in the atmospheric levels above and below. An RNN approach, which can learn168

prediction as a function of previous atmospheric levels appears as a natural choice. In169

their work, the RNN predicts shortwave fluxes and derived heating rates more accurately170
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than the fully connected NNs at the cost of a smaller speed-up. The RNN experiences171

however large heating rate errors near the surface and model top. To avoid this issue,172

the authors suggest to normalize the output by dividing the shortwave fluxes at each height173

level by the TOA incoming radiation flux.174

Decision trees: Finally, random forests (RF), and more generally tree approxi-175

mation methods to predict the radiation fluxes, are - to our knowledge - rarely explored176

for radiation emulation. Belochitski et al. (2011) compare NNs, nearest neighbors ap-177

proximation, regression trees, RFs and sparse occupancy trees. They conclude that al-178

though the tree approximations provide accurate results that compete with NNs, they179

require a large amount of memory compared to NN which make them difficult to use for180

parallel computing. Nevertheless, as observed in O'Gorman and Dwyer (2018), their sta-181

bility and energy conservation properties make them good candidate ML methods within182

weather forecasting, where the need to generalisation is much less pressing than in longterm183

climate simulations where the ML model will receive data far outside its training space.184

Including the physics into the statistics: In addition to the choice and design of185

the network architectures, another key strategy to build reliable and accurate weather186

and climate emulators is to incorporate physical knowledge into the data-driven radi-187

ation emulator. One way to do so is to design custom loss functions which penalize the188

NNs if they do not satisfy relevant physical relations. For example, in Lagerquist et al.189

(2021), the authors modify the loss function by increasing the penalty if large heating190

rates are not well predicted. In a similar spirit, Ukkonen (2022) adds a constraint to the191

objective function that penalizes errors in heating rates. Thus, both the radiation fluxes192

and the heating rates are incorporated in the loss function to ensure physical consistency193

at each pressure level. A second way is to build hybrid models which continue to use part194

of the original parameterization. Veerman et al. (2021) and Ukkonen et al. (2020) do not195

emulate the full radiation parameterization scheme but only the gas optics, i.e., the most196

expensive part of the physics-based radiation parameterization ecRad (Hogan & Bozzo,197

2018), is emulated. Since the gas optics is less understood than the radiative transfer equa-198

tion, its emulation is particularly well-suited for a data-driven parameterization while199

the remaining parts are computed by the physics-based radiative transfer model. It re-200

mains to be shown if hybrid models generalize better than loss-function constrained mod-201

els, which makes them a relevant research topic.202

1.2 Contributions of this paper203

Based on the above review of the state of the art, we aim to first deliver a system-204

atic review of the performance of different classes of ML methods (e.g. fully-connected,205

convolutional, recurrent networks and RFs) and discuss how physical knowledge can be206

incorporated in their training and change their performance. We investigate and discuss207

specific data preprocessing approaches and architectural design choices. For the system-208

atic review we choose an idealized aquaplanet simulation for the training as it appears209

reasonable for such a comparison to perform it in a controlled and simple environment.210

In part one of this study, main focus is on the offline accuracy of the different methods,211

which refers to performance independent of a driving numerical model. In part two of212

this study, we will then investigate the online performance using the seamless weather213

and climate prediction model ICON.214

2 Methods to emulate radiation215

2.1 Framework and notations216

In this paper, we study machine learning methods to emulate the radiation solver217

ecRad. The solver ecRad takes as inputs the temperature, the pressure, the cloud cover,218

the specific humidity, the specific cloud ice and liquid water content and the mixing ra-219
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tio of other gases and aerosols, at each atmospheric level of the model, in addition to the220

cosine of solar zenith angle, the surface pressure and temperature, the longwave emis-221

sivity and the albedos for chosen spectral bands. It then predicts the longwave and short-222

wave upward and downward fluxes at each atmospheric level. The ecRad solver has a223

modular architecture which allows one to change the gas, aerosol and cloud optics com-224

putation. We focus our research on the default optics computation used in the ICON225

climate model. In ICON, the usual plane parallel approximation is chosen for the com-226

putation of the radiation. When predicting the radiation for a given atmospheric col-227

umn, we therefore omit the contribution of the features in neighboring columns. Math-228

ematically, we represent ecRad as a function f : Rd1 → Rd2 , where d1 is the number229

of inputs and d2 is the number of outputs. We construct a machine learning approxima-230

tion fML : Rd1 → Rd2 of f . Note that in practice, the machine learning approxima-231

tion fML could use less or more inputs than the function f .232

In this work, we consider two machine learning models: RFs and NNs. RFs are en-233

sembles of decision trees. Each tree provides a rough estimate of the function f . The RF234

approximation is then given by the average of the different trees. A NN is a composi-235

tion of simple non linear functions. Both methods are described in more details in sec-236

tion 2.2 and section 2.3. The neural networks optimization methodology is as follows.237

We consider a set of inputs xi, i = 1, . . . , N for which we compute the target f(xi) with238

ecRad. The NN model is then optimized to achieve these targets through an iterative239

process in order to minimize a given loss function. Typically, the loss function is defined240

as the mean squared error between the target f(xi) and predicted fML(xi). More terms241

can be added to the loss function to penalize the NN model for violating physical prop-242

erties. Through minimizing for empirical risk, the goal is to achieve an approximation243

model fML that has a small error for all x in a sufficiently large subspace of the input244

space.245

In this paper, our data are generated by an aquaplanet simulation performed by246

the ICON climate model, where the radiation fluxes are computed by the ecRad solver.247

We simulate one year of data with a physics time step interval of 3 minutes (and a dy-248

namical core time step interval of 36 seconds) on a 80km spatial grid (ICON grid R02B05).249

We store samples with a frequency of three hours. For each stored atmospheric column,250

we therefore have access to input (in Rd1) and output variables (in Rd2) to optimize our251

ML emulator of ecRad. More details on the data set is given is section 3.252

2.2 Neural networks253

In this section, we describe the NN architectures and various loss functions we in-254

vestigate in this paper.255

Neural Networks Architectures256

In this paper, we consider multilayers perceptrons (MLP), one dimensional con-257

volutional neural networks (CNN), in particular UNet, and recurrent neural networks258

(RNN). We describe here the different architectures considered in this paper.259

An MLP is a feedforward and fully connected neural network. An MLP fNN is a
composition of simple nonlinear functions gm : Rcm → Rcm+1

fNN (x) =

(
P∏

m=0

gm

)
(x), (1)

where
∏

represents composition of functions. The functions gm are of the form

gm(x) = σk(Amx+Bm),

–6–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

where Am ∈ Rcm+1×cm is a matrix, Bm ∈ Rcm+1 is a vector and σm : Rcm+1 → Rcm+1

is a typically nonlinear function, also called activation function. The number P is the
number of hidden layers and the dimensions cm for m = 1, . . . , P are the number of neu-
rons in each hidden layer. The dimensions c0 = d1 and cP+1 = d2 are the input and
output dimensions of the NN. A standard choice for the activation functions σk is the
rectified linear unit (ReLU) function:

σ(x) =

{
x if x ≥ 0
0 if x < 0

In this paper, all activation functions are ReLU functions. Note, that the standard choice260

for the last activation function σP is the identity, σP (x) = x for all x. While our NNs261

also adopt this, we include a post-processing step via an additional ReLU function (un-262

less mentioned otherwise) since the radiation fluxes are always positive.263

CNN were developed in the context of image recognition. The idea is to re-
place fully connected layers with discrete convolution layers where only neighboring
pixels are connected to a given layer. In our one dimensional context, this means
that in (1), gm : RHm×cm → RHm+1×cm+1 is defined as

gm(x) = σm(Am ∗ x+Bm),

where Am ∈ Rs×cm×cm+1 are matrices and Bm ∈ Rcm+1 a vectors. The dimension ck
is, in the CNN context, called the number of channels while Hm is the dimension of
the mth latent space. The constant s is the size of the convolution. For s = 3, the
discrete convolution is defined for all j = 0, . . . , cm+1 and h = 1, . . . ,Hm by

(Am ∗ x+Bm)h,j =

cm∑
i=0

(a1,i,jxh−1,i + a2,i,jxh,i + a3,i,jxh+1,j) + bj .

where, x0,i = 0 and xHm+1,i = 0. Note that other options exist for the bound-264

ary points instead of zero padding like only applying the convolution for outputs265

at h = 2, . . . ,Hm − 1 and thus allowing the latent space dimension to diminish. In266

this work, we pad boundary values of the input vector to achieve smoother outputs,267

i.e., x0,i = x1,i and xHm+1,i = xHm,i. The discrete convolution is defined similarly268

for higher values of s. To control the dimension of the latent space, average pooling269

layers are used. The average pooling reduces the latent space dimension by replacing270

pairs of neighboring levels by their average.271

In this paper, we consider the Unet architecture. It is a specific kind of NN using272

convolutional layers developed initially for medical imagery. A UNet is composed of two273

parts. The UNet starts with the encoding part, where a succession of convolutional, pool-274

ing and fully connected layers are used to reduce progressively the latent space dimen-275

sion. Then starts the decoding part where the encoding process is reversed by increas-276

ing progressively the latent space dimension to recover the output y. At each stage of277

a UNet decoder, latent features from the encoder with corresponding space dimension278

are stacked with the decoder input. This allows exploiting finer features extracted at the279

encoding stages, allowing for higher resolution predictions.280

RNN is a neural network architecture developed for natural language processing.281

Assuming the input and the output have the same dimension, an RNN layer gm : Rd0 →282

Rd0 is defined as follows. First, given the first element x1 of the input vector x, a hid-283

den state gm(x1) for the first output element y1 is computed. Depending on the exact284

RNN type, this can already be the approximation for ŷ1 or there can be additional path-285

ways within the RNN layer that estimate ŷ1, e.g., long short term memory (LSTM) net-286

works. At a next recurrent step, RNN approximates ŷ2 given gm(x1) and x2. The pro-287

cess is iterated to predict ŷh+1 from gm(xh) and xh+1. It is worth noting that gm(xh)288

can embed information from all inputs xi for i = 1, ..., h. We hence obtain a vector ŷ289
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constructed from the vector x. In this work we use long short-term memory (LSTM) lay-290

ers. Note that an RNN layer can also iterate the input vector in reverse. By stacking two291

independent LSTM layers, one starting from the TOA and the second one starting from292

the surface, we construct a bidirectional LSTM layer (BiLSTM) which allows the net-293

work to make predictions at each height level based on observations from the levels above294

and below.295

Physics-informed normalization strategy for neural networks296

Due to the nature of different units of observed features, we normalize all inputs297

for each height level to have zero mean and uni-variance, calculated based on the obser-298

vations used for training. We refer to this as statistical normalization strategy and is com-299

mon in ML training. Although this is the standard pre-processing also for the target fea-300

tures, recent works suggest feature specific means to normalize fluxes, which we refer to301

as physics-informed normalization strategy. In particular, Ukkonen (2022) normalizes302

each column of shortwave flux values using the value at the TOA. Since, shortwave fluxes303

can be roughly decomposed as the product between incoming flux, cosine of solar zenith304

angle (cos(θ)) and interaction with the atmosphere and surface, this corresponds to di-305

viding shortwave flux values by cos(θ)·1400, where 1400 Wm−2 is an upper bound for306

the approximated incoming shortwave radiation. We apply the same strategy, which scales307

all shortwave flux values into the range of [0, 1] and make them invariant to their hor-308

izontal positions. For values of cos(θ) smaller than 10−4, the predictions are swapped309

with 0 at each height level for both shortwave up and down.310

For the longwave fluxes there exists no simple decomposition because the atmo-311

sphere itself emits in the longwave at each height level. However from the Stefan-Boltzmann312

law for the emission of a black body, we know that the surface emission in the longwave313

is bounded by T 4
s · σ, where Ts is the surface temperature, σ is the Stefan-Boltzmann314

constant (≈ 5.67 · 10−8Wm−2K−4). We therefore scale the target longwave fluxes by315

T 4
s · σ. Note that for simulations with topography, it could be advantageous to divide316

by T 4
s ·σ · ϵs instead where ϵs is the surface emissivity. After normalization, all target317

features are scaled to the range of [0, 1]. Accordingly, all NNs trained with this normal-318

ization strategy have sigmoid layer as their final activation function as opposed to ReLU.319

Physics-constrained loss function320

We describe here the loss functions that we consider in this paper. A paired train-
ing set Xtr = {xk, f(xk)} is first created. A loss function L of the form

L(Xtr) =
1

K

K∑
k=1

∥∥∥fNN (xk)− f(xk)
∥∥∥2
2

(2)

is then computed iteratively for mini-batches of size K for a random subset drawn from321

the training set. The parameters of the NN are updated using a gradient-based optimizer322

for minimizing L. This process is repeated until L is sufficiently small, e.g. ML model323

has converged.324

In climate simulations, there may be trends and shifts of the data, as is the case325

for climate warming. Those trends and shifts could make ML models less accurate over326

time as the new data move away from the training set. To mitigate the reduction in ac-327

curacy of the NN over time, additional terms can be added to the loss function (2) to328

account for scientific prior knowledge about the observation space. For example, the ra-329

diation fluxes play a central role in the energy balance for atmospheric columns. One330

can thus add a new term in the loss function to better guide the optimization of the NN331

parameters by penalizing flux predictions that do not respect the energy balance equa-332

tion.333
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The time evolution of the energy in an atmospheric column is described by the fol-
lowing equation (Kato et al., 2016):

1

g

∂

∂t

∫ ps

0

(cpT +Φs + k + Lq) dp

+
1

g
∇p ·

∫ ps

0

U (cpT +Φ+ k + Lq) dp

= (Rt −Rs)− Fsh − Flh,

(3)

with the following variables: gravitational acceleration g, pressure p, pressure at surface334

ps, specific heat of air at constant pressure cp, temperature T , geopotential Φ, geopo-335

tential at the surface Φs, kinetic energy k, horizontal wind vector U, the net radiative336

flux at the top of atmosphere Rt, the net radiative flux at the surface Rs (both short-337

wave and longwave fluxes contribute to Rt and Rs), latent heat of vaporization L, spe-338

cific humidity q, and surface sensible and latent heat fluxes Fsh and Flh, respectively.339

From (3), we observe that in addition to exchanges with neighbouring columns, the en-340

ergy in a column depends on precipitation, the heat exchange with the surface and the341

air above, and on the amount of shortwave and longwave fluxes absorbed by the atmo-342

sphere. The net irradiance, that is the amount of energy per square meter absorbed by343

the atmospheric column, I := Rt −Rs, is thus of particular importance since it plays a344

central role in the energy balance of an atmospheric column. If the net irradiance I is345

not predicted correctly, the climate model may, for example, compensate with an increase346

or decrease in precipitation, which could lead to a significant climate drift and hence a347

poor climate prediction.348

A first idea would be to add an additional penalty term to the loss function (2) of
the NN to increase the accuracy of the net irradiance Inet prediction:

LI(Xtr) =
1

K

K∑
k=1

∥fNN (xk)− f(xk)∥22 + λ
1

K

K∑
k=1

(
Ik − Îk

)2
, (4)

where λ ≥ 0 is the weight of the new irradiance penalty, where K denotes the number349

of data samples in the mini-batch, and where Ik ∈ R and Îk ∈ R are the exact and350

approximated net irradiance for the k-th training sample. The net irradiance term in (4)351

only affects the surface and top height levels, and in the adverse case the NN minimizes352

the penalty by adding at the surface and top levels radiative fluxes to overcompensate353

for potentially inaccurate predictions in the middle of the atmosphere. This results in354

large heating rates at the top and bottom for a given column.355

An alternative to the loss function (4) is to penalize the NN if the energy absorbed
at each height level is not well predicted. For example, the shortwave energy absorbed
at height level h, where h = 0 is the top of atmosphere, is given by

Esw
h = fsw

h−1 − fsw
h ,

where fsw is the net shortwave radiation at height level h. The absorbed energy term
Esw

h is directly related to the shortwave heating rates. Indeed, the heating rate equa-
tion for shortwave at height level h is defined by,

HRsw
h = − g

cp

fsw
h−1 − fsw

h

ph−1 − ph
≈ − g

cp

∂fsw(ph)

∂h
. (5)

The longwave energy absorbed by level h and longwave heating rates are defined sim-
ilarly. We hence consider the following loss function for λ ≥ 0:

LHR(Xtr) =
1

K

K∑
k=1

∥fNN (xk)− f(xk)∥22 +
1

K

K∑
k=1

1

H

H∑
h=1

λ(h)
∥∥∥Ek,h − Êk,h

∥∥∥2
2
, (6)
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where H is the number of height levels per columns and Ek,h, Êk,h are the exact and ap-356

proximated energy absorbed by the sample k at height level h, computed for both short-357

wave and longwave. Note that we allow here the weight λ(h) to depend on the height358

level h.359

2.3 Random forest360

In this section, we discuss the emulation of ecRad using RF. The RF model will361

serve as the baseline emulator. An RF is an ensemble method based on decision trees.362

Each tree is constructed as follows. For a given tree, we construct a specific training set363

constructed by bootstrapping the main training set, i.e. random elements of the train-364

ing set are picked with possible repetitions. A random subset of the input features of size365 √
d0 is then picked, where d0 is the input space dimension. Amongst this feature sub-366

set, the feature n1 and the associated scalar α1 are picked such that n1 and α1 give the367

best way to separate the input space into the two parts HS1,< = {x ∈ Rd0 ;xn1
≤368

α1} and HS1,> = {x ∈ Rd0 ;xn1
> α1}. To evaluate the quality of the cut, the out-369

put average of all vectors from the bootstrapped training set belonging to HS1,< and370

HS1,> is computed. This average value is the output prediction for all vector in HS1,<371

and HS1,> respectively. From there, the MAE of the predictions is computed. The di-372

vision of the input space continues as follows. A random subset of the input features space373

of size
√
d0 is picked. Then the feature n2, the scalar α2 and the subspace amongst HS1,<374

and HS2,> that reduces the MAE the most amongst all possible way of cutting HS1,∗375

along the hyperplane {x ∈ HS1,∗|xn2
= α2} is picked. The procedure continues until376

all subspaces contain sufficiently few elements, in this case at most 0.01% of the train-377

ing set size. Note that subspaces which contain sufficiently few elements are no longer378

eligible for a cut. The process is repeated until 10 different trees are constructed. The379

random forest prediction is given by the average prediction of all trees in the forest. The380

random forest is hence a piecewise constant function. Another distinctive property of381

RFs is that they never predict values larger or smaller than what was observed in the382

training set. This will prove to be an advantage for the prediction of the fluxes at the383

upper levels of the atmosphere where the fluxes vary less due to the absence of clouds384

and humidity. At the same time, this property of the RF prevents it from generalizing385

well if larger or smaller values of the fluxes appear in the test set due for example to an386

increase in the global temperature. The same output normalization as the one introduced387

in Section 2.2 for the neural networks is used. The inputs are not normalized since RF388

are invariant by linear transformations of the input features.389

2.4 Specific model architectures390

Random forest391

Each RF is composed of 10 trees. The size of the RF is constrained by imposing392

a minimum leaf equal to 10−2% of the training set size. This results in an RF with mem-393

ory footprint comparable to the NNs we consider. Such a constraint is necessary to pre-394

vent computationally prohibitive RF parameterizations, despite their improved predic-395

tive performance. From a memory consumption viewpoint, NN are more efficient com-396

pared to RFs – more details are provided in the result section (see Figure 5). Two sep-397

arate RFs are constructed; one to predict the shortwave fluxes and one for the longwave398

fluxes. We normalize the outputs as described in Section 2.2.399

Neural networks400

For predicting both the shortwave and longwave upward and downward fluxes, we401

consider several NN architectures. The trained models predict all four target variables402

at all height levels and the models are trained for shortwave and longwave radiation in-403

dependently. We adopt a notation to depict models with loss components consisting of404
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(i) only squared error as ()2, (ii) squared error in addition with height independent heat-405

ing rate constraints as ()∂T ; (iii) squared error in addition with height dependent heat-406

ing rate constraints as ()∂T (h) (iv) models with physics-informed output normalization407

()norm:408

• MLP2: MLP emulating radiative fluxes with standard squared loss function:409

The loss function of this NN is given by Eq. (2). We provide a scheme of our MLP410

architecture in Figure 1. First a different set of embeddings for both surface fea-411

tures as well as each height of height-dependent features (e.g., humidity) are ex-412

tracted using different MLPs, each with two hidden layers of 128 and 256 nodes.413

Subsequently, the embeddings computed at each height level (H = 60) are flat-414

tened to have a size of 256×60 = 15360, which are later concatenated with the415

embeddings of the surface variables, creating a 15360+256 = 15616 dimensional416

vector. Then another MLP with three hidden layers of 1024 nodes each is applied,417

finalized by another fully connected layer of size 240 which is then reshaped to 60×418

4 (full column of each target variable).419

• MLP∂T : MLP with additional level-wise heating rate penalty:420

The loss function of this NN is given by Eq. (6) with λh = 1 for each height level421

h. Other details are identical to MLP2.422

• MLP2
norm: MLP with output normalization and squared loss:423

This MLP is identical to MLP2 except that the output are normalized. Employed424

normalization approach is explained in Section 2 Physics-informed normalization425

strategy for neural networks.426

• UNet2: UNet with squared loss:427

We adopt the architectural scheme of UNet, shown in Figure 2. Namely, we first428

broadcast surface features to match the same height axis of height dependent fea-429

tures and concatenate them with the height dependent features. We then apply430

a 1D UNet along height axis, starting with 64 feature channels and convolutional431

kernels of size 3. We use border value padding to preserve height length follow-432

ing convolutional operators. To account for the number of height levels (H = 60),433

we coarsen the height axis 4 times using maxpooling with sizes of 2, 3, 5, 2, re-434

spectively. We use attention gates (Oktay et al., 2018) at skip connections. The435

loss function of this NN is given by Eq. (2).436

• UNet∂T (h): UNet with additional level-wise heating rate penalty:437

The loss function of this NN is given by Eq. (6) with λ(h) equal to

λ(h) = exp

(
ln (1000)− 1

H − 1
· (H − 1− h) + 1

)
, (7)

where h = 0 is the TOA and h = H − 1 is the height level closest to the sur-438

face. The weight λ is then equal to 1 at the surface and smoothly increases to 1000439

at the TOA. The motivation for a height dependent weight of the heating rates440

penalty stems from the observation that the NNs perform weaker near the TOA.441

• UNet2norm: UNet with squared loss and output normalization:442

This UNet is identical to UNet2 except that the outputs are normalized similarly443

to MLP2
norm.444

• RNN2
norm: RNN with standard squared loss and output normalization:445

The loss function of this NN is given in Eq. (2). As shown in Figure 3, we use bidi-446

rectional (Bi-) LSTMs as the RNN cell type. Similar to UNet, we first broadcast447

surface features to match height axis of height dependent features and concate-448

nate them. This is followed by an independent MLP at each height level with two449

hidden layers of 128 and 256 nodes. MLP outputs are then concatenated along450
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Figure 1: Schematic of the MLP used in this work. x 3d and x 2d correspond to 3d and
2d inputs described in Table 1.

Figure 2: Schematic of the UNet used in this work. x 3d and x 2d correspond to 3d and
2d inputs described in Table 1.

Figure 3: Schematic of the RNN used in this work. x 3d and x 2d correspond to 3d and
2d inputs described in Table 1.

height axis once again. We then apply three Bi-LSTM cells, each with 1024 chan-451

nels, along the height axis. A fully connected layer at each height then maps the452

embeddings onto 4 channels.453

• RNN∂T (h): RNN with additional level-wise heating rates penalty:454

The loss function of this NN is given by Eq. (6) with λh given by Equation 7. All455

other details remain identical to RNN2.456

• RNN
∂T (h)
norm : RNN with additional level-wise heating rates penalty and output nor-457

malization:458

This RNN is similar to RNN∂T (h), however with output normalization similar to459

MLP2
norm.460

3 Data461

In this work, we focus on aquaplanet simulations. We assume the mixing ratio of462

all gases to be constant except for the water vapor. Furthermore, we do not consider any463

aerosols. There are neither topography nor seasonality in our simulations. The sun al-464
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Inputs Outputs

2d 3d 3d

surface temperature temperature shortwave down
surface pressure pressure shortwave up
specific humidity at surface specific humidity longwave down
cosine of solar zenith angle cloud cover longwave up
direct albedo, near infrared water content
diffuse albedo, near infrared ice content
direct albedo, UV-visible
diffuse albedo, UV-visible

Table 1: Inputs and outputs for the machine learning emulation. The 3d variables are
stored for 60 atmospheric levels.

warm-up

70%

test setgapval.val. training set

24.5%

Figure 4: Data split for the 12 month aquaplanet. Warm-up, gap, and each block of
validation sets (val.) are 20 days. Warm-up and gap are not used.

ways faces the equator. The simulation is run on the ICON grid R02B05 with a grid spac-465

ing of approximately 80 km. The ICON grid is constructed as follows. The sphere is first466

approximated with an icosahedron. Each vertex of each twenty triangle is divided into467

2 such that we obtain in total 120 triangles. Finally, the procedure iteratively divides468

each vertex in two 5 times and we obtain finally 81′920 triangles. The NN and RF are469

trained on this icosahedrical grid. We run the ICON simulation with 60 atmospheric lev-470

els. The model time step is 180 seconds and we store the data every 3 hours. The sim-471

ulation runs for one year with a 360 days calendar. We hence have 2′880 stored time steps.472

The stored input and output features are given in Table 1. We have in total 8+473

6× 60 = 368 input variables and 4× 60 = 240 output variables. We dedicate the first474

70% of the data to be used throughout training of the emulator and the last 30% to test475

and report the accuracy of the emulator. The first 20 days of the training set are removed476

to account for warming up period of ICON at the start of the simulation. The first 20477

days of the test set are removed to ensure a gap between the train and test data. This478

ensures that the test data set is slightly out of distribution. The days 20 to 39 and the479

last 20 days of the training set are omitted from training and are used as a validation480

set. The aforementioned data split is summarized in Figure 4. After training NNs for481

a fixed number of steps, the validation set score is used to pick the training step with482

optimal NN parameters (e.g., early stopping criteria). In total, this yields a training set483

with 1’534 time-steps (∼192 days) and a validation set with 321 time-steps (∼40 days).484

In ICON, the fluxes are given at half levels ( 12 , . . . , 60+
1
2 ) and the heating rates485

at full levels (1, . . . , 60). The flux fh at atmospheric level h is at the interface between486

the level h and the level h−1. There is one more half level than full levels because each487

full level needs to be enclosed by two half levels. The half level 60 + 1
2 corresponding488

to h = 60 is the surface and the half level 1
2 corresponding to h = 1 is the model top489

of atmosphere.490
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Figure 5: Size of the random forest in megabytes versus its MAE.

4 Results: Radiation emulation491

Evaluation metrics: We evaluate the machine learning emulators on the test set492

using mean absolute error (MAE). At each time point t ∈ {1, . . . , 321}, for each atmo-493

spheric column c ∈ {1, . . . , 81920} and at each height level h ∈ {1, . . . , 60}, we have494

ground truth flux values computed by ecRad and predicted flux values computed by our495

proposed methods. Aggregating MAE over different pairs of variables allows us to ob-496

serve different performance properties such as over time, horizontal space, and vertical497

space.498

4.1 Random Forest499

In general, RF model achieves the worst performance among the compared mod-500

els for fluxes prediction (see Figures 6, 7 and 8). It outperforms, however, all compared501

NNs for the shortwave downward prediction near the top levels. The superior performance502

of RF near the TOA can be also observed for calculated shortwave heating rates. The503

success of RF near the TOA could be attributed to (i) the fact that RFs have a desir-504

able property of being invariant to different scales of target variables as well as (ii) their505

property of averaging multiple decision trees that overfit to training data for their pre-506

dictions. This implies that the smoothly varying vertical profile observed in training data507

directly reflects to predictions of the RF for the test data.508

The random forest error: As our baseline RF model, we construct two RFs, one509

to predict the shortwave fluxes and one for the longwave fluxes. The RF model is con-510

strained to a minimum leaf size of 0.01% of the training set. In our experiments, this re-511

sulted in an RF with a memory footprint of about 142MB. In Figure 5, we compare the512

MAE against the memory size of the RF responsible of computing the shortwave fluxes.513

As a reference, we also include MLP2 in the plot. We observe that the accuracy of the514

RF can get close to the accuracy of NNs when its complexity increases. However the size515

of the RF quickly becomes too large to be of practical use. We observe that even for an516

RF of size close to 100GB, the MLP2 remains more accurate. The random forest out-517

puts are normalized as explained in 2.3 This improves the accuracy at no additional cost518

(see Table 2).519

–14–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Random forest MAE Without normalization With normalization

Shortwave down 6.81 Wm−2 4.61 Wm−2

Shortwave up 9.09 Wm−2 8.06 Wm−2

Longwave down 5.22 Wm−2 5.11 Wm−2

Longwave up 5.52 Wm−2 5.32 Wm−2

Table 2: Effect of normalization on the random forest error.

4.2 Neural networks520

We discuss the performance of three NN architectures, MLP, UNet and RNN de-521

scribed in Section 2.4. For each architecture, we investigate the effect of the output nor-522

malization described in Section 2.4 and the effect of the physics informed loss function (6)523

on the accuracy.524

4.2.1 MLP525

In Figure 6, we show the error of the MLPs described in Section 2 for the fluxes526

and heating rates predictions. For downward directed fluxes, the error of all the MLPs527

(and also UNets and RNNs, see Figures 7 and 8) tends to increase towards the surface528

with peak error values at the cloud bottom height level typically located at around 1 km529

altitude. For upward directed fluxes, the MAE tends to increase with altitude and peak530

values are reached at the TOA, although the error exhibits its strongest increase in the531

1–4 km levels, while it remains constant above. The error hence increases in the direc-532

tion of the fluxes. Because prediction from one height level do not affect the next height533

level, the increase is not an accumulation of errors into the fluxes direction. The error534

increases in the fluxes direction because as the fluxes cross height levels, they interact535

with atmospheric constituents which thus increases the complexity of the prediction.536

For the downward longwave fluxes and the longwave heating rates prediction, the537

MLP has an error jump around 18km (MLP2, green dashed line in Figure 6). For the538

heating rates, the error jump is one order of magnitude large. It may be caused by a nu-539

merical discontinuity in the longwave downward prediction at that height. At the TOA,540

the MLP2 is significantly less accurate than the RF for the shortwave downward fluxes541

prediction.542

When trained with an additional heating rates penalty (MLP∂T , blue dotted line543

in Figure 6), an error jump appears for the shortwave downward fluxes, the longwave544

upward fluxes and shortwave heating rates around 10km height. The longwave error jump545

already present for the MLP2 appears at 10km height instead of 18km. Overall, the loss546

function (6) does not improve the accuracy of the MLP except for the shortwave heat-547

ing rates above 15km. Furthermore, it adds sudden error jump that are absent for the548

square loss function (2). We’ve tested two additional loss functions that are not shown549

in Figure 6. We first considered a height dependent heating rates penalty similar to UNet∂T (h).550

With this loss functions, the MLP becomes inaccurate at all heights for both fluxes and551

heating rates (see Appendix Appendix B). We also considered the loss function 4. For552

this loss, the MLP learns to add energy at the top and bottom to satisfy the new penalty553

which significantly degrades the accuracy of the solution at those heights (see Appendix Ap-554

pendix B). For those reasons, we do not discuss those loss functions further.555

The output normalization increases the accuracy of the model at all heights except556

for the shortwave heating rates below 4km height where the accuracy is slightly reduced557

(MLP 2
norm, red line in Figure 6). Furthermore the error jumps that we observe for MLP2

558
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Figure 6: MAE of the MLPs and of the RF emulator for the shortwave and longwave
downward fluxes, upward fluxes and heating rates. Legend: RF; random forest, MLP 2;
MLP trained with squared error loss, MLP 2

norm; MLP 2 with normalized output, MLP ∂T ;
MLP 2 with an additional penalty for the inferred heating rates. The models are described
in Section 2.4.
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Figure 7: MAE of the UNets and of the RF emulator for the shortwave and longwave
downward fluxes, upward fluxes and heating rates. MLP 2

norm is included as a reference.
Legend: RF; random forest, MLP 2

norm; MLP trained with squared error loss and nor-
malized output, UNet2; UNet trained with squared error loss, UNet2norm; UNet2 with
normalized output and UNet∂T (h); UNet2 trained with an additional height dependent
heating rates penalty. The models are described in Section 2.4.
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Figure 8: MAE of the RNNs and of the RF emulator for the shortwave and longwave
downward fluxes, upward fluxes and heating rates. MLP MLP 2

norm is included as a ref-
erence. Legend: RF; random forest, MLP 2

norm; MLP trained with squared error loss
and normalized output, RNN2

norm; RNN trained with squared error loss and output nor-
malization, RNN∂T (h); RNN trained with an additional height dependent heating rates

penalty, RNN
∂T (h)
norm ; RNN∂T (h) with output normalization. The models are described in

Section 2.4. )
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around 18km disappears. For the shortwave downward fluxes, the MLP 2
norm becomes559

close to the RF error at the TOA.560

For shortwave heating rates, the MLPs are outperformed by the RF above 15km561

by a large margin. This is likely because the RF predicts fluxes profiles that are smooth562

with height, while the NNs do not. The notable increase of the prediction error at the563

TOA is observed for all NNs and also reported in previous studies (Lagerquist et al., 2021;564

Ukkonen, 2022). For the derived longwave heating rates, the MLP is more accurate than565

the RF at most levels and especially in the troposphere. At the TOA however, the pre-566

diction error increases and the MLP is less accurate compared to the RF. As a compar-567

ison with the next NN architecture, we draw the MLP 2
norm error in Figures 7 and 8.568

4.2.2 UNet569

In Figure 7, we investigate the UNet architecture. We observe that the MLP 2
norm570

outperforms the UNet2 (dashed green line in Figure 7) for the fluxes and heating rates571

predictions except for the longwave downward fluxes between 4km and 20km. The er-572

ror difference is particularly large at the upper layers for the downward fluxes and heat-573

ing rates. The UNet2 doesn’t have error peaks similar to the ones observed for the MLP 2
574

and MLP ∂T .575

When training the UNet with an additional heating rates penalty (UNet∂T (h), blue576

dotted line in Figure 7), the model performance increases substantially for the heating577

rates prediction. Note that we consider here a heating rates penalty with height depen-578

dent weights (larger weights towards TOA). With this new penalty, UNet∂T (h) outper-579

forms MLP 2
norm at most heights for the heating rates predictions except at the top for580

the longwave. For the fluxes, the additional penalty also improves the accuracy for the581

downward fluxes at the upper layers except near the TOA for the longwave. Further-582

more, contrary to what was observed for the MLP ∂T , the additional penalty does not583

introduce error jumps.584

The output normalization also increases the accuracy of the UNet (UNet2norm, or-585

ange line in Figure 7). In particular, between 15km and 25 km, the UNet2norm is signif-586

icantly more accurate than the UNet2. Above 25km longwave downward flux error of587

the UNet2norm starts to increase and it becomes the least accurate among other com-588

pared UNets at the TOA. The accuracy improvement from the output normalization is589

less important than the one obtained when adding a heating rates term in the loss func-590

tion.591

4.2.3 RNN592

In Figure 8, we investigate the RNNs described in Section 2. The model RNN2
norm593

(orange line in Figure 8) is everywhere more accurate than the MLP 2
norm except near594

the TOA for the longwave heating rates prediction.595

If the RNN is trained with an additional heating rates penalty (RNN∂T (h), blue596

dotted line in Figure 8) but no output normalization, error peaks appear at 15km height597

for the downward fluxes and heating rates prediction. Note that these error jumps are598

not at the same height as the ones observed for MLP 2 and MLP ∂T
599

If we both normalize the outputs and trained the RNN with height dependent heat-600

ing rates (RNN
∂T (h)
norm , purple dashed-dotted line in Figure 8), the error peak disappear601

and the model we obtain becomes the best model at all heights for both the fluxes and602

heating rates prediction. We therefore investigate the model RNN
∂T (h)
norm further by look-603

ing at the zonal climatology (Figure 9), the zonal MAE (Figure 10), the top climatol-604

ogy (Figure 11), the top MAE (Figure 12), the surface climatology (Figure 13), the sur-605
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Figure 9: Zonal climatology of the model RNN
∂T (h)
norm and of the solver ecRad. The mean

is taken over all time steps and all columns in one degree latitude intervals.

face MAE (Figure 14) and a pointwise comparison of ecRad and RNN
∂T (h)
norm predictions606

(Figure 15).607

Zonal MAE and climatology: In Figure 9, we compare the zonal mean of RNN
∂T (h)
norm608

and ecRad’s prediction. The mean is taken over all time steps and all columns in one609

degree latitude intervals. The zonal mean of the emulator RNN
∂T (h)
norm is similar, for both610

fluxes and heating rates, to the zonal mean of ecRad prediction.611

In Figure 10, we plot the zonal MAE of RNN
∂T (h)
norm . Similar to Figure 9, the mean612

is taken over all time steps and all columns in one degree latitude intervals. We observe613

that the shortwave error is concentrated at the lower height levels for the downward fluxes614

and on the upper levels for upward fluxes. This corroborates findings previously in Fig-615

ure 8. Most of the flux prediction error appears in the tropical region. It is particularly616

large for the shortwave fluxes were the error reaches 10 W/m2. In contrast, the zonal617

MAE for the longwave fluxes never exceeds 4.5 W/m2. We can observe the error related618

to the clouds at 1km height where large errors occur below that height for the downward619

fluxes and above that height for the upward fluxes.620

The error for longwave heating rates is significantly larger than the shortwave er-621

ror. The most significant longwave heating rates errors are located between 500m and622

3km height where the error reaches 0.9 K/day. We observe that the large errors in the623

longwave heating rates prediction corresponds to the height where the mean longwave624

heating rates is the highest.625
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∂T (h)
norm . The mean is taken over all time steps

and all columns in one degree latitude intervals.

Top MAE and climatology: In Figure 11, we plot the time average prediction of626

RNN
∂T (h)
norm and of ecRad at the TOA. For the fluxes, RNN

∂T (h)
norm time average predic-627

tion is close to ecRad’s.628

For the heating rates, RNN
∂T (h)
norm and ecRad produce two different climatology. In629

particular RNN
∂T (h)
norm heating rates are too large (in absolute value) almost everywhere,630

except around -50, 50 degrees latitude where the heating rates are underestimated (in631

absolute value). For the shortwave heating rates, RNN
∂T (h)
norm underestimates the heat-632

ing rates near the 8 positions which can face the sun in our dataset (recall that the data633

are stored every 3 hours), and overestimates the 9 positions in-between (observe that the634

9 positions where the RNN
∂T (h)
norm heating rates are large are shifted compared to the 8635

positions where ecRad predicts large heating rates.)636

In Figure 12, we show the MAE of the RNN
∂T (h)
norm at the TOA. The mean is taken637

over time. The error is large for the upward fluxes and small for the downward fluxes.638

This is to be expected because the shortwave downward flux is straighforward to com-639

pute at the TOA and the longwave downward flux is essentially zero at the TOA. Most640

of the upward fluxes error is concentrated in two bands near the equator. Note that we641

also observe these error bands in the zonal MAE (Figure 10). We remark that the two642

bands we observe for the longwave upward flux in the climatology (Figure 11) are fur-643

ther away from the equator compared to the two error bands in Figure 12. This suggests644

that the RNN
∂T (h)
norm predicts the poleward side of the bands accurately but has large er-645

ror on the equatorward side. For the heating rates, large error bands also appear around646
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Figure 11: TOA climatology of the model RNN
∂T (h)
norm and of the solver ecRad. The mean

is taken over all time steps.

-50 and 50 degree latitude. For the heating rates, the error is larger for the longwave and647

for the fluxes the error is largely dominated by the shortwave upward fluxes.648

Surface MAE and climatology: In Figure 13, we plot the time average prediction649

of RNN
∂T (h)
norm and of ecRad at the surface. The averaged fluxes of RNN

∂T (h)
norm and ecRad650

as well as the heating rates appear fairly similar. Therefore a more detailed analysis of651

the MAE is necessary.652

The heating rates time average prediction of RNN
∂T (h)
norm is close to ecRad predic-653

tion in contrast to what was observed at the TOA. For the longwave heating rates, we654

observe in the climatology several locations where the mean longwave heating rates is655

positive. Those locations probably correspond to stationary weather events. For a longer656

dataset, the heating rates climatology should tend to become zonally uniform, while for657

a one year training data set zonal asymmetries are to be expected.658
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Figure 12: Top MAE of the model RNN
∂T (h)
norm . The mean is taken over all time steps.

In Figure 14, we show the MAE of RNN
∂T (h)
norm at the surface. We observe that the659

fluxes error is largely dominated by the shortwave downward fluxes error. It is surpris-660

ing that the upward shortwave flux error is so small compared to the downward flux er-661

ror. Indeed the shortwave upward flux should be more complex to compute since it re-662

sult from the interaction of the shortwave downward flux with the surface and the at-663

mospheric layer closest to the surface.664

In contrast to the fluxes error, the heating rates error is largely dominated by the665

longwave heating rates. The longwave heating rates error is mostly concentrated in the666

subtropics. Contrary to the TOA, the error near the equator is small. The error is con-667

centrated in several locations at -50 and 50 degree latitude. At the same latitudes, we668

observed in the surface climatology positive longwave heating rates. As already discussed,669

for a larger test set, uniform error bands located at -50,50 degree latitude should appear670

instead.671

Scatter plot: In Figure 15, for each flux and heating rate, we choose an interval672

that contains all predicted values (e.g. [0, 1400] for shortwave down). We then divide the673
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Figure 13: Surface climatology of the model RNN
∂T (h)
norm and of the solver ecRad. The

mean is taken over all time steps.

interval into 100 smaller intervals (e.g. [14 · k, 14 · (k+1)], k = 0, . . . , 99 for shortwave674

down). Each prediction of ecRad and of RNN
∂T (h)
norm falls into one of the 100 intervals.675

Comparing ecRad and RNN
∂T (h)
norm predictions, we can assign each point of our test set676

(time, column and height) to one of the 100×100 squares. We then count the number677

of predicted values falling into each square. Ideally, the only squares with a nonzero count678

would be the one on the diagonal (i.e. ecRad and RNN
∂T (h)
norm predictions are close). The679

size of the squares is 14 W/m2, 11.1 W/m2, 4.4 W/m2, 4.1 W/m2 for respectively the680

shortwave downward and upward fluxes and for the longwave downward and upward fluxes.681

The size of the squares is 1.5 K/day and 2 K/day for respectively the shortwave and long-682

wave heating rates.683

The fluxes scatter plots are roughly symmetrical to the x = y line with highest684

deviation from the x = y line happening at different x coordinates (≈ 700W/m2 for685

shortwave down, ≈ 500W/m2 for shortwave up, ≈ 200W/m2 for longwave down and686

≈ 300W/m2 for longwave up.) For the shortwave heating rates, we observe that some687

predictions are negative when the exact solution is always positive. Furthermore for both688
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Figure 14: Surface MAE of the model RNN
∂T (h)
norm . The mean is taken over all time steps.

longwave and shortwave heating, there are deviation of the prediction when the exact689

solution is zero, which points to some difficulties of the NNs predicting the rate of change690

of the corresponding flux along the day time or near the TOA where the heating rates691

drop to zero from one level to the next. Here, some fine tuning to the specifics of the un-692

derlying Numerical Weather Prediction (i.e., ICON) model might solve this issue. We693

also observe a few significant outliers for the shortwave heating rates, where the NN pre-694

diction reached 60 K/day while ecRad predicted 0 K/day.695

5 Discussions696

In the previous section, we investigated the performance of three NN architectures697

(MLP, UNet, RNN) with and without output normalization trained with the usual squared698

loss (Eq. 2), or with an additional heating rates penalty (Eq. 6), inspired by the column-699

integrated energy equation in an atmospheric column. Output normalization greatly im-700

proved our results. It is beneficial for each tested architecture and lead to improved ac-701

curacy for both fluxes and heating rates. Adding a heating rates penalty to the train-702
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ing loss allowed us to improve the performance of RNN and UNet substantially. How-703

ever, for MLPs, the additional heating rates penalty accentuated the error discontinu-704

ities already present in the MLP trained with squared loss, MLP 2. Similarly, we observed705

discontinuities in the error profile for the RNN without output normalization, RNN∂T (h).706

However, together with the output normalization, the additional penalty term gives the707

most accurate RNN. For the UNet, the additional penalty, even without normalization,708

was highly beneficial. Note that amongst the models tested, the UNet is the only one709

for which we did not encounter discontinuities in the error profile. For both the UNet710

and RNN, height dependent weight for the heating rates penalty improved the results.711

For the MLPs it was reducing the accuracy and we only considered a height indepen-712

dent heating rates penalty.713

Our best model is the RNN with physics-informed input and output normalization714

and heating rate loss (Eq. 6). From a physical point of view, it is not surprising that the715

RNN outperforms the other models. Indeed, physically the fluxes are crossing the at-716

mospheric levels one after the other in the direction of the fluxes. The fluxes at a given717

height level h are then function of the fluxes in the height level h−1 above (downward718

fluxes), h + 1 below (upward fluxes) and of the atmospheric composition in the given719

level h. This justifies the adopted bidirectional architecture. Although the RNN
∂T (h)
norm720

outperforms the other NNs at all heights, it does not outperform the RF for the heat-721

ing rates prediction at the TOA, particularly for the shortwave. As already discussed,722

this may be due to the smoother profiles produced by the RF.723

6 Summary724

In this first of two studies, we provide a systematic overview of different ML meth-725

ods to emulate the radiative transfer in the atmosphere. We tested ML architectures of726

varying complexity used in previous studies, including MLP (Chevallier et al., 1998; Ukko-727

nen et al., 2020), UNet (Lagerquist et al., 2021), RNN (Ukkonen, 2022), and RF (Belochitski728

et al., 2011) and different variants of physics-constraints in the loss function to obtain729

a holistic picture of the performance of these ML methods before testing them online in730

a state-of-the-art weather and climate model.731

We can conclude that achieving higher accuracy near TOA is more trivial through732

RFs without the cost of fine engineering needed with NNs. At TOA, the increase in MAE733

can be reduced by making the heating rates penalty term in the loss function height de-734

pendent. In general, however, it seems to be challenging for all tested architectures ex-735

cept for the RF to fit smoothly to near-zero values at the TOA. For the best perform-736

ing NN model, the MAE is larger for shortwave than for longwave radiation fluxes but737

longwave heating rates exhibit larger errors compared to shortwave heating rates. Short-738

wave downward fluxes errors increase towards the surface as humidity content increases739

and is in particular pronounced around the equator where surface precipitation indicates740

the existence of deep convective clouds. Shortwave upward fluxes error increases towards741

the TOA with a local maximum at tropical cloud tops. For longwave fluxes, the error742

patterns are fairly similar but smaller in magnitude everywhere. In general, the error pat-743

terns point to cloud top and cloud bottom regions as the main source of error. While744

shortwave heating rates are well predicted, the derived longwave heating rates exhibit745

larger MAEs around 1 km height at most latitudes. The error hence seems to be asso-746

ciated with the top of the planetary boundary layer (PBL) and its strong humidity gra-747

dient and shallow clouds on its top. A way forward could be to train different models748

for different heights in the atmosphere or make the importance of input features during749

training height dependent.750

For the design of ML-based radiation emulators, we propose to predict the corre-751

sponding fluxes and penalize training with the associated heating rates with height-depending752

weights. TOA and surface fluxes are important to predict because these are observabal753
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and hence used to constrain the energy balance of a climate model. The latter also serves754

as input to other model components in an ESM, such as the land model. Within the at-755

mosphere however, the heating rates are of relevance to move the temperature state for-756

ward in time. In theory one could directly predict the heating rates and derive the flux757

through integration albeit losing information on its direction. Nevertheless, we opt for758

the presented compromise to predict the fluxes and penalize by the heating rates.759

We recommend normalizing target features with respect to the largest value, e.g.,760

found at the model top (proportional to the solar constant) and surface (according to761

Boltzmann’s law) for shortwave and longwave radiation respectively. A recurrent net-762

work architecture running in both directions along height levels, suggested also by Ukkonen763

(2022), seems to be a natural choice because of the direction of radiative fluxes, however764

it remains to be seen how emerging ML architectures, such as transformers, will perform.765

Our preliminary experiments with transformers (not shown in this work) achieved good766

performance, yet far from the level of the RNN. Additional work required to make the767

transformer architecture competitive is left for future work.768

In other preliminary studies, we also trained an RF to predict the Fourier coeffi-769

cients of the radiation fluxes field using similar input variables as described above. Based770

on the predicted coefficients, the emulated radiation field can be reconstructed by Fourier771

synthesis. While that experiment produced reasonable results for the clear-sky flux, it772

proved to be more challenging to predict Fourier coefficients of the total flux field due773

to the high-frequency components associated with cloud-radiation interactions.774

In an upcoming study, we will report on the online performance of the various mod-775

els discussed here. To this end, the offline trained ML models will be coupled to ICON.776

This will also allow for alternating between ecRad and ML-based emulator(s) in a closed777

loop during runtime forming a potential hybrid model, which potential could be an at-778

tractive possibility for simulation beyond the weather scale.779
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Chevallier, F., Chéruy, F., Scott, N. A., & Chédin, A. (1998, November). A neural817

network approach for a fast and accurate computation of a longwave radiative818

budget. Journal of Applied Meteorology , 37 (11), 1385–1397. Retrieved from819

https://doi.org/10.1175/1520-0450(1998)037<1385:annafa>2.0.co;2820

doi: 10.1175/1520-0450(1998)037⟨1385:annafa⟩2.0.co;2821
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Appendix A Random forest output normalization943

944

In Figure A1, we compare the random forest MAE on the test set with and with-945

out normalization of the outputs presented in Section 2.2. The normalization procedure946

increases significantly the accuracy of the random forest for the shortwave fluxes predic-947

tion. For the longwave downward flux, the normalization has essentially no effect on the948

error. For the longwave upward flux, the normalization increases the accuracy below 1 km.949

Between 1 km and 10 km, the accuracy is slightly reduced and above 10km the normal-950

ization has no effect on the accuracy. We still recommend the longwave output normal-951

ization as it increases the longwave upward flux significantly near the surface.952

Appendix B MLP additional loss functions953

We discuss the following MLPs:954

1. MLP
∫
E: MLP with additional column-integrated energy penalty955

The loss function of this NN is given by Eq. (4). All architectural details remain956

identical to MLP2.957

2. MLP ∂T (h) MLP with height dependent heating rates penalty958

The loss function of this NN is similar to UNet∂T (h). All architectural details re-959

main identical to MLP2.960

MLP
∫
E is penalized if column integrated energy, defined as the difference between the961

net radiation at the top and surface without distinction between shortwave and longwave,962

is not accurately predicted Eq. (4). The idea is, that this MLP preserves energy in the963

climate model. The MLP tries to satisfy the new penalty by modifying the TOA and964

surface fluxes. This completely breaks the models at those heights. Furthermore it adds965

oscillation in the longwave fluxes and heating rates.966

MLP ∂T (h) has a height dependent heating rates penalty. With the penalty, the MLP967

becomes inaccurate at all heights for both the fluxes and heating rates.968
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Figure A1: Effect of the normalization described in Section 2.2 for the random forest.
The outputs are not normalized for the RF error drawn in blue and they are normalized
for the RF drawn in red.
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MLP 2 with an additional penalty for the inferred heating rates, MLP
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penalty. The models are described in Section 2.4.
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Abstract16

As climate modellers prepare their code for kilometre-scale global simulations, the com-17

putationally demanding radiative transfer parameterization is a prime candidate for ma-18

chine learning (ML) emulation. Because of the computational demands, many weather19

centres use a reduced spatial grid and reduced temporal frequency for radiative trans-20

fer calculations in their forecast models. This strategy is known to affect forecast qual-21

ity, which further motivates the use of ML-based radiative transfer parameterizations.22

This paper contributes to the discussion on how to incorporate physical constraints into23

an ML-based radiative parameterization, and how different neural network (NN) designs24

and output normalisation affect prediction performance. A random forest (RF) is used25

as a baseline method, with the European Centre for Medium-Range Weather Forecasts26

(ECMWF) model ecRad, the operational radiation scheme in the Icosahedral Nonhy-27

drostatic Weather and Climate Model (ICON), used for training. Surprisingly, the RF28

is not affected by the top-of-atmosphere (TOA) bias found in all NNs tested (e.g., MLP,29

CNN, UNet, RNN) in this and previously published studies. At lower atmospheric lev-30

els, the RF is able to compete with all NNs tested, but its memory requirements quickly31

become prohibitive. For a fixed memory size, most NNs outperform the RF except at32

TOA. For the best emulator, we use a recurrent neural network architecture which closely33

imitates the physical process it emulates. We additionally normalize the shortwave and34

longwave fluxes to reduce their dependence from the solar angle and surface tempera-35

ture respectively. Finally, we train the model with an additional heating rates penalty36

in the loss function.37

Plain Language Summary38

Atmospheric radiation is an essential component of atmospheric modelling, which39

describes the amount of solar energy absorbed by the atmosphere and surface, and the40

thermal energy emitted as a response. The current radiation solver in the climate model41

named ICON is accurate but the complexity of the radiation process makes it compu-42

tationally slow. Therefore the radiation solver cannot be called frequently in space and43

time by the model, which reduces the quality of the climate prediction. A possible ap-44

proach to accelerate the computation of the radiation is to use machine learning meth-45

ods. Machine learning methods can speed up the computation of the radiation substan-46

tially. However they are known to cause the climate predictions to drive away from a phys-47

ically correct solution since they do not necessarily satisfy essential physical properties.48

In this paper we study neural networks, an increasingly popular deep learning approach.49

We explore various architectures, loss functions and output normalizations. We compare50

the results with a random forest emulation of radiation, which is easier to train than the51

neural network but as a prohibitive memory cost.52

1 Introduction53

The computation of atmospheric radiation is a central part of each Earth System54

Model (ESM). It models the solar energy absorbed by the Earth, the complex interac-55

tions between radiation and greenhouse gases, clouds and aerosols, scattering, and the56

energy radiated back as thermal (longwave) radiation. The operational radiation solver57

in the Icosahedral Nonhydrostatic Weather and Climate model (ICON) (Prill et al., 2020)58

is ecRad (Hogan & Bozzo, 2018), which is the new operational weather forecasting model59

of the Swiss (MeteoSwiss) and German weather services. EcRad is actively developed60

at European Centre for Medium-Range Weather Forecasts (ECMWF) where a GPU port61

is under development. The general outline of ecRad is that it first computes the gas, aerosols62

and clouds optics and passes those to a solver which predicts the atmospheric radiation63

fluxes based on which the driving model computes the fluxes convergence to obtain the64

corresponding heating rates. In ICON, the atmospheric radiation is operationally not65
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solved on the same spatial grid as the rest of the model. For computational reasons, the66

radiation fluxes are only computed on a coarser horizontal grid. Furthermore, the time67

interval between two calls of ecRad is large to further reduce the computational time.68

This is known to reduce the quality of the prediction (Hogan & Bozzo, 2018). Reduc-69

ing the computational time required to predict the radiation fluxes would allow to solve70

the radiation with a smaller time step and on a finer spatial grid, which has the poten-71

tial to improve the accuracy of the weather forecast. A promising approach to acceler-72

ate the computation of the radiation fluxes and to improve its energy efficiency is to use73

machine learning (ML) methods. There has been a wealth of research in recent years to74

replace physical parameterizations in weather and climate models with data-driven pa-75

rameterizations (Brenowitz & Bretherton, 2019, 2018; Gentine et al., 2018; O'Gorman76

& Dwyer, 2018; Yuval et al., 2021; Kashinath et al., 2021) and in the following, we re-77

view recently published radiation emulating strategies before we outline the contribu-78

tion by this study.79

1.1 State of research in ML-based radiation parameterizations80

The two central questions for data-driven radiative transfer parameterizations are81

which ML architecture to use and how to account for known physical relationships. In82

short, how to get the physics into the statistics? Two influential papers on machine learning-83

based parameterizations of atmospheric radiation, which are preludes to the above for-84

mulated questions, are Chevallier et al. (1998) and Krasnopolsky et al. (2005).85

The prelude: Chevallier et al. (1998) and Chevallier et al. (2000), who extend the86

research started in Chéruy et al. (1996), emulate the ECMWF wideband scheme described87

in Morcrette (1991) and the line-by-line model described in Scott and Chedin (1981).88

They only consider the longwave fluxes. To increase the generalization capability of the89

emulator, the authors add several steps to the ML pipeline to enforce known physical90

relations. First, the emulator predicts (longwave) radiation fluxes but not the correspond-91

ing heating rates. The latter are instead computed based on the predicted fluxes. This92

strategy preserves the physical relation between the emulated fluxes and the heating rates.93

Then, to enforce cloud-radiation interactions, the emulator does not predict directly the94

fluxes. Instead it first predicts with one NN the radiation for a cloud-free atmosphere.95

Next the scheme computes the radiation for an atmosphere with a single blackbody cloud96

at a given height level. This computation is performed one time per atmospheric level,97

by varying the position of the blackbody cloud. The net fluxes are then a combination98

of the clear sky radiation and the radiation fluxes obtained for an atmosphere with a sin-99

gle blackbody cloud. The cost of these intermediate steps is a lower speedup of the ma-100

chine learning parameterization.101

Krasnopolsky et al. (2005), whose work is extended in Krasnopolsky et al. (2008)102

and Krasnopolsky et al. (2010), emulate radiation through purely data-driven param-103

eterization. They do not decompose the problem into smaller subproblems but instead104

compute directly the final outputs, which allows a maximal speed up. Furthermore, the105

proposed method directly computes the heating rates and skips the emulation of the ra-106

diation fluxes. From a numerical point of view, this is attractive because such an approach107

does not require any additional derivation to calculate the heating rates from the radi-108

ation fluxes. However, when emulating the heating rates, they can only be compared against109

heating rates derived from the observed radiation fluxes (e.g., satellite data), making them110

a more suboptimal metric for validation. Further, as already stated, computing heating111

rates from the radiative fluxes guarantees physical consistency and radiative fluxes are112

required as inputs, for example, to the land model in an ESM.113

A key question is thus to whether emulate fluxes, heating rates or both and how114

to ensure their consistency. The radiative fluxes can be observed by instruments, they115

serve as input to the land component of an ESM and are also relevant for impact mod-116
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elers, for example, to compute electricity production by solar panels. The disadvantage117

of emulating the radiative fluxes is the additional computational cost and numerical er-118

ror that results from the required vertical derivative needed to obtain the correspond-119

ing heating rates that drive the evolution of atmospheric temperature. Even if the fluxes120

are predicted accurately, the heating rate error may be large if the vertical profiles of the121

fluxes are not smooth. In Krasnopolsky et al. (2005) the surface and top of atmosphere122

(TOA) fluxes are predicted by the ML emulation in addition to the heating rates. From123

the heating rates and net fluxes at the top or surface, one can recover the net fluxes at124

each atmospheric level. However, the individual contribution of upward and downward125

longwave and shortwave radiation fluxes cannot be recovered. In the next two sections,126

we first provide an overview of the various ML model architectures that were recently127

explored in the field of radiation emulation:128

Fully-connected feedforward NNs: Fully-connected feedforward NNs are studied129

in Pal et al. (2019), Roh and Song (2020) and Belochitski and Krasnopolsky (2021). Pal130

et al. (2019) propose a radiation emulator based on fully connected feedforward NNs com-131

posed of three hidden layers for the Super-Parameterized Energy Exascale Earth Sys-132

tem Model (SP-E3SM) and reports an error smaller than the internal variability of the133

climate model. Roh and Song (2020) emulate the radiation fluxes and the correspond-134

ing heating rates of the Korea Local Analysis and Prediction System (KLAPS) based135

on the single-layer feedforward NN following the scheme provided by Krasnopolsky (2014).136

They assess the quality of the emulation by comparing simulations where the radiation137

is computed at every time step using the machine learning emulation, against simula-138

tions where the original solver is used at larger time interval. Testing a similar compu-139

tational burden by running emulator more frequent; the prediction of heating rates, cloud140

fraction, radiation fluxes, surface temperature and precipitation was shown to be more141

accurate for simulations where the emulation is run every time step (every 3 seconds)142

compared to simulations where the original parameterization is called every 20 time steps143

(every 60 seconds). In Meyer et al. (2022), the authors use feedforward NNs to emulate144

the 3D effects of clouds for the radiative transfer. They take as input the radiation fluxes145

computed by ecRad with a one dimensional cloud solver and as training target the dif-146

ference between the fluxes computed by ecRad with a one dimensional cloud solver and147

a three dimensional cloud solver. This strategy substantially increases the speed at which148

fluxes are computed for the three dimensional cloud solver at the cost of an acceptable149

reduction in accuracy.150

Convolutional and recurrent NNs: More complex deep learning architectures, such151

as convolutional NNs (CNNs) (LeCun et al., 1998) or recurrent NNs (RNNs) (Rumelhart152

et al., 1986), have also been recently explored for radiation parameterizations. In a feed-153

forward CNN, fixed length kernel(s) are convolved over activations at a given layer as154

opposed to densely connecting each neuron with each neuron of the subsequent layer as155

in fully-connected feedforward NNs. RNNs on the other hand consist of an inner loop156

that reuses a set of neurons over a given dimension of input vectors, e.g., typically time-157

axis. In Liu et al. (2020), numerical experiments with CNNs exploiting the correlation158

between horizontally adjacent atmospheric columns are performed, but the authors re-159

port that CNNs reduce the computational speed substantially for a marginal increase160

in accuracy. In Lagerquist et al. (2021), the authors experiment with the UNet++ ar-161

chitecture developped in Zhou et al. (2020). The authors observ that the UNet++ ar-162

chitecture allows them to outperform existing fully-connected feedforward network pa-163

rameterization, in particular the model developed in Krasnopolsky et al. (2010). Ukkonen164

(2022) employs RNNs to exploit the correlation between vertically stacked atmospheric165

levels. The design of this strategy is justified by the observation that the radiation fluxes166

at one height level result of the interaction of the radiation fluxes with, for example hu-167

midity, in the atmospheric levels above and below. An RNN approach, which can learn168

prediction as a function of previous atmospheric levels appears as a natural choice. In169

their work, the RNN predicts shortwave fluxes and derived heating rates more accurately170
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than the fully connected NNs at the cost of a smaller speed-up. The RNN experiences171

however large heating rate errors near the surface and model top. To avoid this issue,172

the authors suggest to normalize the output by dividing the shortwave fluxes at each height173

level by the TOA incoming radiation flux.174

Decision trees: Finally, random forests (RF), and more generally tree approxi-175

mation methods to predict the radiation fluxes, are - to our knowledge - rarely explored176

for radiation emulation. Belochitski et al. (2011) compare NNs, nearest neighbors ap-177

proximation, regression trees, RFs and sparse occupancy trees. They conclude that al-178

though the tree approximations provide accurate results that compete with NNs, they179

require a large amount of memory compared to NN which make them difficult to use for180

parallel computing. Nevertheless, as observed in O'Gorman and Dwyer (2018), their sta-181

bility and energy conservation properties make them good candidate ML methods within182

weather forecasting, where the need to generalisation is much less pressing than in longterm183

climate simulations where the ML model will receive data far outside its training space.184

Including the physics into the statistics: In addition to the choice and design of185

the network architectures, another key strategy to build reliable and accurate weather186

and climate emulators is to incorporate physical knowledge into the data-driven radi-187

ation emulator. One way to do so is to design custom loss functions which penalize the188

NNs if they do not satisfy relevant physical relations. For example, in Lagerquist et al.189

(2021), the authors modify the loss function by increasing the penalty if large heating190

rates are not well predicted. In a similar spirit, Ukkonen (2022) adds a constraint to the191

objective function that penalizes errors in heating rates. Thus, both the radiation fluxes192

and the heating rates are incorporated in the loss function to ensure physical consistency193

at each pressure level. A second way is to build hybrid models which continue to use part194

of the original parameterization. Veerman et al. (2021) and Ukkonen et al. (2020) do not195

emulate the full radiation parameterization scheme but only the gas optics, i.e., the most196

expensive part of the physics-based radiation parameterization ecRad (Hogan & Bozzo,197

2018), is emulated. Since the gas optics is less understood than the radiative transfer equa-198

tion, its emulation is particularly well-suited for a data-driven parameterization while199

the remaining parts are computed by the physics-based radiative transfer model. It re-200

mains to be shown if hybrid models generalize better than loss-function constrained mod-201

els, which makes them a relevant research topic.202

1.2 Contributions of this paper203

Based on the above review of the state of the art, we aim to first deliver a system-204

atic review of the performance of different classes of ML methods (e.g. fully-connected,205

convolutional, recurrent networks and RFs) and discuss how physical knowledge can be206

incorporated in their training and change their performance. We investigate and discuss207

specific data preprocessing approaches and architectural design choices. For the system-208

atic review we choose an idealized aquaplanet simulation for the training as it appears209

reasonable for such a comparison to perform it in a controlled and simple environment.210

In part one of this study, main focus is on the offline accuracy of the different methods,211

which refers to performance independent of a driving numerical model. In part two of212

this study, we will then investigate the online performance using the seamless weather213

and climate prediction model ICON.214

2 Methods to emulate radiation215

2.1 Framework and notations216

In this paper, we study machine learning methods to emulate the radiation solver217

ecRad. The solver ecRad takes as inputs the temperature, the pressure, the cloud cover,218

the specific humidity, the specific cloud ice and liquid water content and the mixing ra-219
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tio of other gases and aerosols, at each atmospheric level of the model, in addition to the220

cosine of solar zenith angle, the surface pressure and temperature, the longwave emis-221

sivity and the albedos for chosen spectral bands. It then predicts the longwave and short-222

wave upward and downward fluxes at each atmospheric level. The ecRad solver has a223

modular architecture which allows one to change the gas, aerosol and cloud optics com-224

putation. We focus our research on the default optics computation used in the ICON225

climate model. In ICON, the usual plane parallel approximation is chosen for the com-226

putation of the radiation. When predicting the radiation for a given atmospheric col-227

umn, we therefore omit the contribution of the features in neighboring columns. Math-228

ematically, we represent ecRad as a function f : Rd1 → Rd2 , where d1 is the number229

of inputs and d2 is the number of outputs. We construct a machine learning approxima-230

tion fML : Rd1 → Rd2 of f . Note that in practice, the machine learning approxima-231

tion fML could use less or more inputs than the function f .232

In this work, we consider two machine learning models: RFs and NNs. RFs are en-233

sembles of decision trees. Each tree provides a rough estimate of the function f . The RF234

approximation is then given by the average of the different trees. A NN is a composi-235

tion of simple non linear functions. Both methods are described in more details in sec-236

tion 2.2 and section 2.3. The neural networks optimization methodology is as follows.237

We consider a set of inputs xi, i = 1, . . . , N for which we compute the target f(xi) with238

ecRad. The NN model is then optimized to achieve these targets through an iterative239

process in order to minimize a given loss function. Typically, the loss function is defined240

as the mean squared error between the target f(xi) and predicted fML(xi). More terms241

can be added to the loss function to penalize the NN model for violating physical prop-242

erties. Through minimizing for empirical risk, the goal is to achieve an approximation243

model fML that has a small error for all x in a sufficiently large subspace of the input244

space.245

In this paper, our data are generated by an aquaplanet simulation performed by246

the ICON climate model, where the radiation fluxes are computed by the ecRad solver.247

We simulate one year of data with a physics time step interval of 3 minutes (and a dy-248

namical core time step interval of 36 seconds) on a 80km spatial grid (ICON grid R02B05).249

We store samples with a frequency of three hours. For each stored atmospheric column,250

we therefore have access to input (in Rd1) and output variables (in Rd2) to optimize our251

ML emulator of ecRad. More details on the data set is given is section 3.252

2.2 Neural networks253

In this section, we describe the NN architectures and various loss functions we in-254

vestigate in this paper.255

Neural Networks Architectures256

In this paper, we consider multilayers perceptrons (MLP), one dimensional con-257

volutional neural networks (CNN), in particular UNet, and recurrent neural networks258

(RNN). We describe here the different architectures considered in this paper.259

An MLP is a feedforward and fully connected neural network. An MLP fNN is a
composition of simple nonlinear functions gm : Rcm → Rcm+1

fNN (x) =

(
P∏

m=0

gm

)
(x), (1)

where
∏

represents composition of functions. The functions gm are of the form

gm(x) = σk(Amx+Bm),
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where Am ∈ Rcm+1×cm is a matrix, Bm ∈ Rcm+1 is a vector and σm : Rcm+1 → Rcm+1

is a typically nonlinear function, also called activation function. The number P is the
number of hidden layers and the dimensions cm for m = 1, . . . , P are the number of neu-
rons in each hidden layer. The dimensions c0 = d1 and cP+1 = d2 are the input and
output dimensions of the NN. A standard choice for the activation functions σk is the
rectified linear unit (ReLU) function:

σ(x) =

{
x if x ≥ 0
0 if x < 0

In this paper, all activation functions are ReLU functions. Note, that the standard choice260

for the last activation function σP is the identity, σP (x) = x for all x. While our NNs261

also adopt this, we include a post-processing step via an additional ReLU function (un-262

less mentioned otherwise) since the radiation fluxes are always positive.263

CNN were developed in the context of image recognition. The idea is to re-
place fully connected layers with discrete convolution layers where only neighboring
pixels are connected to a given layer. In our one dimensional context, this means
that in (1), gm : RHm×cm → RHm+1×cm+1 is defined as

gm(x) = σm(Am ∗ x+Bm),

where Am ∈ Rs×cm×cm+1 are matrices and Bm ∈ Rcm+1 a vectors. The dimension ck
is, in the CNN context, called the number of channels while Hm is the dimension of
the mth latent space. The constant s is the size of the convolution. For s = 3, the
discrete convolution is defined for all j = 0, . . . , cm+1 and h = 1, . . . ,Hm by

(Am ∗ x+Bm)h,j =

cm∑
i=0

(a1,i,jxh−1,i + a2,i,jxh,i + a3,i,jxh+1,j) + bj .

where, x0,i = 0 and xHm+1,i = 0. Note that other options exist for the bound-264

ary points instead of zero padding like only applying the convolution for outputs265

at h = 2, . . . ,Hm − 1 and thus allowing the latent space dimension to diminish. In266

this work, we pad boundary values of the input vector to achieve smoother outputs,267

i.e., x0,i = x1,i and xHm+1,i = xHm,i. The discrete convolution is defined similarly268

for higher values of s. To control the dimension of the latent space, average pooling269

layers are used. The average pooling reduces the latent space dimension by replacing270

pairs of neighboring levels by their average.271

In this paper, we consider the Unet architecture. It is a specific kind of NN using272

convolutional layers developed initially for medical imagery. A UNet is composed of two273

parts. The UNet starts with the encoding part, where a succession of convolutional, pool-274

ing and fully connected layers are used to reduce progressively the latent space dimen-275

sion. Then starts the decoding part where the encoding process is reversed by increas-276

ing progressively the latent space dimension to recover the output y. At each stage of277

a UNet decoder, latent features from the encoder with corresponding space dimension278

are stacked with the decoder input. This allows exploiting finer features extracted at the279

encoding stages, allowing for higher resolution predictions.280

RNN is a neural network architecture developed for natural language processing.281

Assuming the input and the output have the same dimension, an RNN layer gm : Rd0 →282

Rd0 is defined as follows. First, given the first element x1 of the input vector x, a hid-283

den state gm(x1) for the first output element y1 is computed. Depending on the exact284

RNN type, this can already be the approximation for ŷ1 or there can be additional path-285

ways within the RNN layer that estimate ŷ1, e.g., long short term memory (LSTM) net-286

works. At a next recurrent step, RNN approximates ŷ2 given gm(x1) and x2. The pro-287

cess is iterated to predict ŷh+1 from gm(xh) and xh+1. It is worth noting that gm(xh)288

can embed information from all inputs xi for i = 1, ..., h. We hence obtain a vector ŷ289
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constructed from the vector x. In this work we use long short-term memory (LSTM) lay-290

ers. Note that an RNN layer can also iterate the input vector in reverse. By stacking two291

independent LSTM layers, one starting from the TOA and the second one starting from292

the surface, we construct a bidirectional LSTM layer (BiLSTM) which allows the net-293

work to make predictions at each height level based on observations from the levels above294

and below.295

Physics-informed normalization strategy for neural networks296

Due to the nature of different units of observed features, we normalize all inputs297

for each height level to have zero mean and uni-variance, calculated based on the obser-298

vations used for training. We refer to this as statistical normalization strategy and is com-299

mon in ML training. Although this is the standard pre-processing also for the target fea-300

tures, recent works suggest feature specific means to normalize fluxes, which we refer to301

as physics-informed normalization strategy. In particular, Ukkonen (2022) normalizes302

each column of shortwave flux values using the value at the TOA. Since, shortwave fluxes303

can be roughly decomposed as the product between incoming flux, cosine of solar zenith304

angle (cos(θ)) and interaction with the atmosphere and surface, this corresponds to di-305

viding shortwave flux values by cos(θ)·1400, where 1400 Wm−2 is an upper bound for306

the approximated incoming shortwave radiation. We apply the same strategy, which scales307

all shortwave flux values into the range of [0, 1] and make them invariant to their hor-308

izontal positions. For values of cos(θ) smaller than 10−4, the predictions are swapped309

with 0 at each height level for both shortwave up and down.310

For the longwave fluxes there exists no simple decomposition because the atmo-311

sphere itself emits in the longwave at each height level. However from the Stefan-Boltzmann312

law for the emission of a black body, we know that the surface emission in the longwave313

is bounded by T 4
s · σ, where Ts is the surface temperature, σ is the Stefan-Boltzmann314

constant (≈ 5.67 · 10−8Wm−2K−4). We therefore scale the target longwave fluxes by315

T 4
s · σ. Note that for simulations with topography, it could be advantageous to divide316

by T 4
s ·σ · ϵs instead where ϵs is the surface emissivity. After normalization, all target317

features are scaled to the range of [0, 1]. Accordingly, all NNs trained with this normal-318

ization strategy have sigmoid layer as their final activation function as opposed to ReLU.319

Physics-constrained loss function320

We describe here the loss functions that we consider in this paper. A paired train-
ing set Xtr = {xk, f(xk)} is first created. A loss function L of the form

L(Xtr) =
1

K

K∑
k=1

∥∥∥fNN (xk)− f(xk)
∥∥∥2
2

(2)

is then computed iteratively for mini-batches of size K for a random subset drawn from321

the training set. The parameters of the NN are updated using a gradient-based optimizer322

for minimizing L. This process is repeated until L is sufficiently small, e.g. ML model323

has converged.324

In climate simulations, there may be trends and shifts of the data, as is the case325

for climate warming. Those trends and shifts could make ML models less accurate over326

time as the new data move away from the training set. To mitigate the reduction in ac-327

curacy of the NN over time, additional terms can be added to the loss function (2) to328

account for scientific prior knowledge about the observation space. For example, the ra-329

diation fluxes play a central role in the energy balance for atmospheric columns. One330

can thus add a new term in the loss function to better guide the optimization of the NN331

parameters by penalizing flux predictions that do not respect the energy balance equa-332

tion.333
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The time evolution of the energy in an atmospheric column is described by the fol-
lowing equation (Kato et al., 2016):

1

g

∂

∂t

∫ ps

0

(cpT +Φs + k + Lq) dp

+
1

g
∇p ·

∫ ps

0

U (cpT +Φ+ k + Lq) dp

= (Rt −Rs)− Fsh − Flh,

(3)

with the following variables: gravitational acceleration g, pressure p, pressure at surface334

ps, specific heat of air at constant pressure cp, temperature T , geopotential Φ, geopo-335

tential at the surface Φs, kinetic energy k, horizontal wind vector U, the net radiative336

flux at the top of atmosphere Rt, the net radiative flux at the surface Rs (both short-337

wave and longwave fluxes contribute to Rt and Rs), latent heat of vaporization L, spe-338

cific humidity q, and surface sensible and latent heat fluxes Fsh and Flh, respectively.339

From (3), we observe that in addition to exchanges with neighbouring columns, the en-340

ergy in a column depends on precipitation, the heat exchange with the surface and the341

air above, and on the amount of shortwave and longwave fluxes absorbed by the atmo-342

sphere. The net irradiance, that is the amount of energy per square meter absorbed by343

the atmospheric column, I := Rt −Rs, is thus of particular importance since it plays a344

central role in the energy balance of an atmospheric column. If the net irradiance I is345

not predicted correctly, the climate model may, for example, compensate with an increase346

or decrease in precipitation, which could lead to a significant climate drift and hence a347

poor climate prediction.348

A first idea would be to add an additional penalty term to the loss function (2) of
the NN to increase the accuracy of the net irradiance Inet prediction:

LI(Xtr) =
1

K

K∑
k=1

∥fNN (xk)− f(xk)∥22 + λ
1

K

K∑
k=1

(
Ik − Îk

)2
, (4)

where λ ≥ 0 is the weight of the new irradiance penalty, where K denotes the number349

of data samples in the mini-batch, and where Ik ∈ R and Îk ∈ R are the exact and350

approximated net irradiance for the k-th training sample. The net irradiance term in (4)351

only affects the surface and top height levels, and in the adverse case the NN minimizes352

the penalty by adding at the surface and top levels radiative fluxes to overcompensate353

for potentially inaccurate predictions in the middle of the atmosphere. This results in354

large heating rates at the top and bottom for a given column.355

An alternative to the loss function (4) is to penalize the NN if the energy absorbed
at each height level is not well predicted. For example, the shortwave energy absorbed
at height level h, where h = 0 is the top of atmosphere, is given by

Esw
h = fsw

h−1 − fsw
h ,

where fsw is the net shortwave radiation at height level h. The absorbed energy term
Esw

h is directly related to the shortwave heating rates. Indeed, the heating rate equa-
tion for shortwave at height level h is defined by,

HRsw
h = − g

cp

fsw
h−1 − fsw

h

ph−1 − ph
≈ − g

cp

∂fsw(ph)

∂h
. (5)

The longwave energy absorbed by level h and longwave heating rates are defined sim-
ilarly. We hence consider the following loss function for λ ≥ 0:

LHR(Xtr) =
1

K

K∑
k=1

∥fNN (xk)− f(xk)∥22 +
1

K

K∑
k=1

1

H

H∑
h=1

λ(h)
∥∥∥Ek,h − Êk,h

∥∥∥2
2
, (6)

–9–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

where H is the number of height levels per columns and Ek,h, Êk,h are the exact and ap-356

proximated energy absorbed by the sample k at height level h, computed for both short-357

wave and longwave. Note that we allow here the weight λ(h) to depend on the height358

level h.359

2.3 Random forest360

In this section, we discuss the emulation of ecRad using RF. The RF model will361

serve as the baseline emulator. An RF is an ensemble method based on decision trees.362

Each tree is constructed as follows. For a given tree, we construct a specific training set363

constructed by bootstrapping the main training set, i.e. random elements of the train-364

ing set are picked with possible repetitions. A random subset of the input features of size365 √
d0 is then picked, where d0 is the input space dimension. Amongst this feature sub-366

set, the feature n1 and the associated scalar α1 are picked such that n1 and α1 give the367

best way to separate the input space into the two parts HS1,< = {x ∈ Rd0 ;xn1
≤368

α1} and HS1,> = {x ∈ Rd0 ;xn1
> α1}. To evaluate the quality of the cut, the out-369

put average of all vectors from the bootstrapped training set belonging to HS1,< and370

HS1,> is computed. This average value is the output prediction for all vector in HS1,<371

and HS1,> respectively. From there, the MAE of the predictions is computed. The di-372

vision of the input space continues as follows. A random subset of the input features space373

of size
√
d0 is picked. Then the feature n2, the scalar α2 and the subspace amongst HS1,<374

and HS2,> that reduces the MAE the most amongst all possible way of cutting HS1,∗375

along the hyperplane {x ∈ HS1,∗|xn2
= α2} is picked. The procedure continues until376

all subspaces contain sufficiently few elements, in this case at most 0.01% of the train-377

ing set size. Note that subspaces which contain sufficiently few elements are no longer378

eligible for a cut. The process is repeated until 10 different trees are constructed. The379

random forest prediction is given by the average prediction of all trees in the forest. The380

random forest is hence a piecewise constant function. Another distinctive property of381

RFs is that they never predict values larger or smaller than what was observed in the382

training set. This will prove to be an advantage for the prediction of the fluxes at the383

upper levels of the atmosphere where the fluxes vary less due to the absence of clouds384

and humidity. At the same time, this property of the RF prevents it from generalizing385

well if larger or smaller values of the fluxes appear in the test set due for example to an386

increase in the global temperature. The same output normalization as the one introduced387

in Section 2.2 for the neural networks is used. The inputs are not normalized since RF388

are invariant by linear transformations of the input features.389

2.4 Specific model architectures390

Random forest391

Each RF is composed of 10 trees. The size of the RF is constrained by imposing392

a minimum leaf equal to 10−2% of the training set size. This results in an RF with mem-393

ory footprint comparable to the NNs we consider. Such a constraint is necessary to pre-394

vent computationally prohibitive RF parameterizations, despite their improved predic-395

tive performance. From a memory consumption viewpoint, NN are more efficient com-396

pared to RFs – more details are provided in the result section (see Figure 5). Two sep-397

arate RFs are constructed; one to predict the shortwave fluxes and one for the longwave398

fluxes. We normalize the outputs as described in Section 2.2.399

Neural networks400

For predicting both the shortwave and longwave upward and downward fluxes, we401

consider several NN architectures. The trained models predict all four target variables402

at all height levels and the models are trained for shortwave and longwave radiation in-403

dependently. We adopt a notation to depict models with loss components consisting of404
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(i) only squared error as ()2, (ii) squared error in addition with height independent heat-405

ing rate constraints as ()∂T ; (iii) squared error in addition with height dependent heat-406

ing rate constraints as ()∂T (h) (iv) models with physics-informed output normalization407

()norm:408

• MLP2: MLP emulating radiative fluxes with standard squared loss function:409

The loss function of this NN is given by Eq. (2). We provide a scheme of our MLP410

architecture in Figure 1. First a different set of embeddings for both surface fea-411

tures as well as each height of height-dependent features (e.g., humidity) are ex-412

tracted using different MLPs, each with two hidden layers of 128 and 256 nodes.413

Subsequently, the embeddings computed at each height level (H = 60) are flat-414

tened to have a size of 256×60 = 15360, which are later concatenated with the415

embeddings of the surface variables, creating a 15360+256 = 15616 dimensional416

vector. Then another MLP with three hidden layers of 1024 nodes each is applied,417

finalized by another fully connected layer of size 240 which is then reshaped to 60×418

4 (full column of each target variable).419

• MLP∂T : MLP with additional level-wise heating rate penalty:420

The loss function of this NN is given by Eq. (6) with λh = 1 for each height level421

h. Other details are identical to MLP2.422

• MLP2
norm: MLP with output normalization and squared loss:423

This MLP is identical to MLP2 except that the output are normalized. Employed424

normalization approach is explained in Section 2 Physics-informed normalization425

strategy for neural networks.426

• UNet2: UNet with squared loss:427

We adopt the architectural scheme of UNet, shown in Figure 2. Namely, we first428

broadcast surface features to match the same height axis of height dependent fea-429

tures and concatenate them with the height dependent features. We then apply430

a 1D UNet along height axis, starting with 64 feature channels and convolutional431

kernels of size 3. We use border value padding to preserve height length follow-432

ing convolutional operators. To account for the number of height levels (H = 60),433

we coarsen the height axis 4 times using maxpooling with sizes of 2, 3, 5, 2, re-434

spectively. We use attention gates (Oktay et al., 2018) at skip connections. The435

loss function of this NN is given by Eq. (2).436

• UNet∂T (h): UNet with additional level-wise heating rate penalty:437

The loss function of this NN is given by Eq. (6) with λ(h) equal to

λ(h) = exp

(
ln (1000)− 1

H − 1
· (H − 1− h) + 1

)
, (7)

where h = 0 is the TOA and h = H − 1 is the height level closest to the sur-438

face. The weight λ is then equal to 1 at the surface and smoothly increases to 1000439

at the TOA. The motivation for a height dependent weight of the heating rates440

penalty stems from the observation that the NNs perform weaker near the TOA.441

• UNet2norm: UNet with squared loss and output normalization:442

This UNet is identical to UNet2 except that the outputs are normalized similarly443

to MLP2
norm.444

• RNN2
norm: RNN with standard squared loss and output normalization:445

The loss function of this NN is given in Eq. (2). As shown in Figure 3, we use bidi-446

rectional (Bi-) LSTMs as the RNN cell type. Similar to UNet, we first broadcast447

surface features to match height axis of height dependent features and concate-448

nate them. This is followed by an independent MLP at each height level with two449

hidden layers of 128 and 256 nodes. MLP outputs are then concatenated along450
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Figure 1: Schematic of the MLP used in this work. x 3d and x 2d correspond to 3d and
2d inputs described in Table 1.

Figure 2: Schematic of the UNet used in this work. x 3d and x 2d correspond to 3d and
2d inputs described in Table 1.

Figure 3: Schematic of the RNN used in this work. x 3d and x 2d correspond to 3d and
2d inputs described in Table 1.

height axis once again. We then apply three Bi-LSTM cells, each with 1024 chan-451

nels, along the height axis. A fully connected layer at each height then maps the452

embeddings onto 4 channels.453

• RNN∂T (h): RNN with additional level-wise heating rates penalty:454

The loss function of this NN is given by Eq. (6) with λh given by Equation 7. All455

other details remain identical to RNN2.456

• RNN
∂T (h)
norm : RNN with additional level-wise heating rates penalty and output nor-457

malization:458

This RNN is similar to RNN∂T (h), however with output normalization similar to459

MLP2
norm.460

3 Data461

In this work, we focus on aquaplanet simulations. We assume the mixing ratio of462

all gases to be constant except for the water vapor. Furthermore, we do not consider any463

aerosols. There are neither topography nor seasonality in our simulations. The sun al-464
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Inputs Outputs

2d 3d 3d

surface temperature temperature shortwave down
surface pressure pressure shortwave up
specific humidity at surface specific humidity longwave down
cosine of solar zenith angle cloud cover longwave up
direct albedo, near infrared water content
diffuse albedo, near infrared ice content
direct albedo, UV-visible
diffuse albedo, UV-visible

Table 1: Inputs and outputs for the machine learning emulation. The 3d variables are
stored for 60 atmospheric levels.

warm-up

70%

test setgapval.val. training set

24.5%

Figure 4: Data split for the 12 month aquaplanet. Warm-up, gap, and each block of
validation sets (val.) are 20 days. Warm-up and gap are not used.

ways faces the equator. The simulation is run on the ICON grid R02B05 with a grid spac-465

ing of approximately 80 km. The ICON grid is constructed as follows. The sphere is first466

approximated with an icosahedron. Each vertex of each twenty triangle is divided into467

2 such that we obtain in total 120 triangles. Finally, the procedure iteratively divides468

each vertex in two 5 times and we obtain finally 81′920 triangles. The NN and RF are469

trained on this icosahedrical grid. We run the ICON simulation with 60 atmospheric lev-470

els. The model time step is 180 seconds and we store the data every 3 hours. The sim-471

ulation runs for one year with a 360 days calendar. We hence have 2′880 stored time steps.472

The stored input and output features are given in Table 1. We have in total 8+473

6× 60 = 368 input variables and 4× 60 = 240 output variables. We dedicate the first474

70% of the data to be used throughout training of the emulator and the last 30% to test475

and report the accuracy of the emulator. The first 20 days of the training set are removed476

to account for warming up period of ICON at the start of the simulation. The first 20477

days of the test set are removed to ensure a gap between the train and test data. This478

ensures that the test data set is slightly out of distribution. The days 20 to 39 and the479

last 20 days of the training set are omitted from training and are used as a validation480

set. The aforementioned data split is summarized in Figure 4. After training NNs for481

a fixed number of steps, the validation set score is used to pick the training step with482

optimal NN parameters (e.g., early stopping criteria). In total, this yields a training set483

with 1’534 time-steps (∼192 days) and a validation set with 321 time-steps (∼40 days).484

In ICON, the fluxes are given at half levels ( 12 , . . . , 60+
1
2 ) and the heating rates485

at full levels (1, . . . , 60). The flux fh at atmospheric level h is at the interface between486

the level h and the level h−1. There is one more half level than full levels because each487

full level needs to be enclosed by two half levels. The half level 60 + 1
2 corresponding488

to h = 60 is the surface and the half level 1
2 corresponding to h = 1 is the model top489

of atmosphere.490
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Figure 5: Size of the random forest in megabytes versus its MAE.

4 Results: Radiation emulation491

Evaluation metrics: We evaluate the machine learning emulators on the test set492

using mean absolute error (MAE). At each time point t ∈ {1, . . . , 321}, for each atmo-493

spheric column c ∈ {1, . . . , 81920} and at each height level h ∈ {1, . . . , 60}, we have494

ground truth flux values computed by ecRad and predicted flux values computed by our495

proposed methods. Aggregating MAE over different pairs of variables allows us to ob-496

serve different performance properties such as over time, horizontal space, and vertical497

space.498

4.1 Random Forest499

In general, RF model achieves the worst performance among the compared mod-500

els for fluxes prediction (see Figures 6, 7 and 8). It outperforms, however, all compared501

NNs for the shortwave downward prediction near the top levels. The superior performance502

of RF near the TOA can be also observed for calculated shortwave heating rates. The503

success of RF near the TOA could be attributed to (i) the fact that RFs have a desir-504

able property of being invariant to different scales of target variables as well as (ii) their505

property of averaging multiple decision trees that overfit to training data for their pre-506

dictions. This implies that the smoothly varying vertical profile observed in training data507

directly reflects to predictions of the RF for the test data.508

The random forest error: As our baseline RF model, we construct two RFs, one509

to predict the shortwave fluxes and one for the longwave fluxes. The RF model is con-510

strained to a minimum leaf size of 0.01% of the training set. In our experiments, this re-511

sulted in an RF with a memory footprint of about 142MB. In Figure 5, we compare the512

MAE against the memory size of the RF responsible of computing the shortwave fluxes.513

As a reference, we also include MLP2 in the plot. We observe that the accuracy of the514

RF can get close to the accuracy of NNs when its complexity increases. However the size515

of the RF quickly becomes too large to be of practical use. We observe that even for an516

RF of size close to 100GB, the MLP2 remains more accurate. The random forest out-517

puts are normalized as explained in 2.3 This improves the accuracy at no additional cost518

(see Table 2).519
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Random forest MAE Without normalization With normalization

Shortwave down 6.81 Wm−2 4.61 Wm−2

Shortwave up 9.09 Wm−2 8.06 Wm−2

Longwave down 5.22 Wm−2 5.11 Wm−2

Longwave up 5.52 Wm−2 5.32 Wm−2

Table 2: Effect of normalization on the random forest error.

4.2 Neural networks520

We discuss the performance of three NN architectures, MLP, UNet and RNN de-521

scribed in Section 2.4. For each architecture, we investigate the effect of the output nor-522

malization described in Section 2.4 and the effect of the physics informed loss function (6)523

on the accuracy.524

4.2.1 MLP525

In Figure 6, we show the error of the MLPs described in Section 2 for the fluxes526

and heating rates predictions. For downward directed fluxes, the error of all the MLPs527

(and also UNets and RNNs, see Figures 7 and 8) tends to increase towards the surface528

with peak error values at the cloud bottom height level typically located at around 1 km529

altitude. For upward directed fluxes, the MAE tends to increase with altitude and peak530

values are reached at the TOA, although the error exhibits its strongest increase in the531

1–4 km levels, while it remains constant above. The error hence increases in the direc-532

tion of the fluxes. Because prediction from one height level do not affect the next height533

level, the increase is not an accumulation of errors into the fluxes direction. The error534

increases in the fluxes direction because as the fluxes cross height levels, they interact535

with atmospheric constituents which thus increases the complexity of the prediction.536

For the downward longwave fluxes and the longwave heating rates prediction, the537

MLP has an error jump around 18km (MLP2, green dashed line in Figure 6). For the538

heating rates, the error jump is one order of magnitude large. It may be caused by a nu-539

merical discontinuity in the longwave downward prediction at that height. At the TOA,540

the MLP2 is significantly less accurate than the RF for the shortwave downward fluxes541

prediction.542

When trained with an additional heating rates penalty (MLP∂T , blue dotted line543

in Figure 6), an error jump appears for the shortwave downward fluxes, the longwave544

upward fluxes and shortwave heating rates around 10km height. The longwave error jump545

already present for the MLP2 appears at 10km height instead of 18km. Overall, the loss546

function (6) does not improve the accuracy of the MLP except for the shortwave heat-547

ing rates above 15km. Furthermore, it adds sudden error jump that are absent for the548

square loss function (2). We’ve tested two additional loss functions that are not shown549

in Figure 6. We first considered a height dependent heating rates penalty similar to UNet∂T (h).550

With this loss functions, the MLP becomes inaccurate at all heights for both fluxes and551

heating rates (see Appendix Appendix B). We also considered the loss function 4. For552

this loss, the MLP learns to add energy at the top and bottom to satisfy the new penalty553

which significantly degrades the accuracy of the solution at those heights (see Appendix Ap-554

pendix B). For those reasons, we do not discuss those loss functions further.555

The output normalization increases the accuracy of the model at all heights except556

for the shortwave heating rates below 4km height where the accuracy is slightly reduced557

(MLP 2
norm, red line in Figure 6). Furthermore the error jumps that we observe for MLP2

558
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Figure 6: MAE of the MLPs and of the RF emulator for the shortwave and longwave
downward fluxes, upward fluxes and heating rates. Legend: RF; random forest, MLP 2;
MLP trained with squared error loss, MLP 2

norm; MLP 2 with normalized output, MLP ∂T ;
MLP 2 with an additional penalty for the inferred heating rates. The models are described
in Section 2.4.
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Figure 7: MAE of the UNets and of the RF emulator for the shortwave and longwave
downward fluxes, upward fluxes and heating rates. MLP 2

norm is included as a reference.
Legend: RF; random forest, MLP 2

norm; MLP trained with squared error loss and nor-
malized output, UNet2; UNet trained with squared error loss, UNet2norm; UNet2 with
normalized output and UNet∂T (h); UNet2 trained with an additional height dependent
heating rates penalty. The models are described in Section 2.4.
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Figure 8: MAE of the RNNs and of the RF emulator for the shortwave and longwave
downward fluxes, upward fluxes and heating rates. MLP MLP 2

norm is included as a ref-
erence. Legend: RF; random forest, MLP 2

norm; MLP trained with squared error loss
and normalized output, RNN2

norm; RNN trained with squared error loss and output nor-
malization, RNN∂T (h); RNN trained with an additional height dependent heating rates

penalty, RNN
∂T (h)
norm ; RNN∂T (h) with output normalization. The models are described in

Section 2.4. )
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around 18km disappears. For the shortwave downward fluxes, the MLP 2
norm becomes559

close to the RF error at the TOA.560

For shortwave heating rates, the MLPs are outperformed by the RF above 15km561

by a large margin. This is likely because the RF predicts fluxes profiles that are smooth562

with height, while the NNs do not. The notable increase of the prediction error at the563

TOA is observed for all NNs and also reported in previous studies (Lagerquist et al., 2021;564

Ukkonen, 2022). For the derived longwave heating rates, the MLP is more accurate than565

the RF at most levels and especially in the troposphere. At the TOA however, the pre-566

diction error increases and the MLP is less accurate compared to the RF. As a compar-567

ison with the next NN architecture, we draw the MLP 2
norm error in Figures 7 and 8.568

4.2.2 UNet569

In Figure 7, we investigate the UNet architecture. We observe that the MLP 2
norm570

outperforms the UNet2 (dashed green line in Figure 7) for the fluxes and heating rates571

predictions except for the longwave downward fluxes between 4km and 20km. The er-572

ror difference is particularly large at the upper layers for the downward fluxes and heat-573

ing rates. The UNet2 doesn’t have error peaks similar to the ones observed for the MLP 2
574

and MLP ∂T .575

When training the UNet with an additional heating rates penalty (UNet∂T (h), blue576

dotted line in Figure 7), the model performance increases substantially for the heating577

rates prediction. Note that we consider here a heating rates penalty with height depen-578

dent weights (larger weights towards TOA). With this new penalty, UNet∂T (h) outper-579

forms MLP 2
norm at most heights for the heating rates predictions except at the top for580

the longwave. For the fluxes, the additional penalty also improves the accuracy for the581

downward fluxes at the upper layers except near the TOA for the longwave. Further-582

more, contrary to what was observed for the MLP ∂T , the additional penalty does not583

introduce error jumps.584

The output normalization also increases the accuracy of the UNet (UNet2norm, or-585

ange line in Figure 7). In particular, between 15km and 25 km, the UNet2norm is signif-586

icantly more accurate than the UNet2. Above 25km longwave downward flux error of587

the UNet2norm starts to increase and it becomes the least accurate among other com-588

pared UNets at the TOA. The accuracy improvement from the output normalization is589

less important than the one obtained when adding a heating rates term in the loss func-590

tion.591

4.2.3 RNN592

In Figure 8, we investigate the RNNs described in Section 2. The model RNN2
norm593

(orange line in Figure 8) is everywhere more accurate than the MLP 2
norm except near594

the TOA for the longwave heating rates prediction.595

If the RNN is trained with an additional heating rates penalty (RNN∂T (h), blue596

dotted line in Figure 8) but no output normalization, error peaks appear at 15km height597

for the downward fluxes and heating rates prediction. Note that these error jumps are598

not at the same height as the ones observed for MLP 2 and MLP ∂T
599

If we both normalize the outputs and trained the RNN with height dependent heat-600

ing rates (RNN
∂T (h)
norm , purple dashed-dotted line in Figure 8), the error peak disappear601

and the model we obtain becomes the best model at all heights for both the fluxes and602

heating rates prediction. We therefore investigate the model RNN
∂T (h)
norm further by look-603

ing at the zonal climatology (Figure 9), the zonal MAE (Figure 10), the top climatol-604

ogy (Figure 11), the top MAE (Figure 12), the surface climatology (Figure 13), the sur-605
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Figure 9: Zonal climatology of the model RNN
∂T (h)
norm and of the solver ecRad. The mean

is taken over all time steps and all columns in one degree latitude intervals.

face MAE (Figure 14) and a pointwise comparison of ecRad and RNN
∂T (h)
norm predictions606

(Figure 15).607

Zonal MAE and climatology: In Figure 9, we compare the zonal mean of RNN
∂T (h)
norm608

and ecRad’s prediction. The mean is taken over all time steps and all columns in one609

degree latitude intervals. The zonal mean of the emulator RNN
∂T (h)
norm is similar, for both610

fluxes and heating rates, to the zonal mean of ecRad prediction.611

In Figure 10, we plot the zonal MAE of RNN
∂T (h)
norm . Similar to Figure 9, the mean612

is taken over all time steps and all columns in one degree latitude intervals. We observe613

that the shortwave error is concentrated at the lower height levels for the downward fluxes614

and on the upper levels for upward fluxes. This corroborates findings previously in Fig-615

ure 8. Most of the flux prediction error appears in the tropical region. It is particularly616

large for the shortwave fluxes were the error reaches 10 W/m2. In contrast, the zonal617

MAE for the longwave fluxes never exceeds 4.5 W/m2. We can observe the error related618

to the clouds at 1km height where large errors occur below that height for the downward619

fluxes and above that height for the upward fluxes.620

The error for longwave heating rates is significantly larger than the shortwave er-621

ror. The most significant longwave heating rates errors are located between 500m and622

3km height where the error reaches 0.9 K/day. We observe that the large errors in the623

longwave heating rates prediction corresponds to the height where the mean longwave624

heating rates is the highest.625
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Top MAE and climatology: In Figure 11, we plot the time average prediction of626

RNN
∂T (h)
norm and of ecRad at the TOA. For the fluxes, RNN

∂T (h)
norm time average predic-627

tion is close to ecRad’s.628

For the heating rates, RNN
∂T (h)
norm and ecRad produce two different climatology. In629

particular RNN
∂T (h)
norm heating rates are too large (in absolute value) almost everywhere,630

except around -50, 50 degrees latitude where the heating rates are underestimated (in631

absolute value). For the shortwave heating rates, RNN
∂T (h)
norm underestimates the heat-632

ing rates near the 8 positions which can face the sun in our dataset (recall that the data633

are stored every 3 hours), and overestimates the 9 positions in-between (observe that the634

9 positions where the RNN
∂T (h)
norm heating rates are large are shifted compared to the 8635

positions where ecRad predicts large heating rates.)636

In Figure 12, we show the MAE of the RNN
∂T (h)
norm at the TOA. The mean is taken637

over time. The error is large for the upward fluxes and small for the downward fluxes.638

This is to be expected because the shortwave downward flux is straighforward to com-639

pute at the TOA and the longwave downward flux is essentially zero at the TOA. Most640

of the upward fluxes error is concentrated in two bands near the equator. Note that we641

also observe these error bands in the zonal MAE (Figure 10). We remark that the two642

bands we observe for the longwave upward flux in the climatology (Figure 11) are fur-643

ther away from the equator compared to the two error bands in Figure 12. This suggests644

that the RNN
∂T (h)
norm predicts the poleward side of the bands accurately but has large er-645

ror on the equatorward side. For the heating rates, large error bands also appear around646
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Figure 11: TOA climatology of the model RNN
∂T (h)
norm and of the solver ecRad. The mean

is taken over all time steps.

-50 and 50 degree latitude. For the heating rates, the error is larger for the longwave and647

for the fluxes the error is largely dominated by the shortwave upward fluxes.648

Surface MAE and climatology: In Figure 13, we plot the time average prediction649

of RNN
∂T (h)
norm and of ecRad at the surface. The averaged fluxes of RNN

∂T (h)
norm and ecRad650

as well as the heating rates appear fairly similar. Therefore a more detailed analysis of651

the MAE is necessary.652

The heating rates time average prediction of RNN
∂T (h)
norm is close to ecRad predic-653

tion in contrast to what was observed at the TOA. For the longwave heating rates, we654

observe in the climatology several locations where the mean longwave heating rates is655

positive. Those locations probably correspond to stationary weather events. For a longer656

dataset, the heating rates climatology should tend to become zonally uniform, while for657

a one year training data set zonal asymmetries are to be expected.658
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Figure 12: Top MAE of the model RNN
∂T (h)
norm . The mean is taken over all time steps.

In Figure 14, we show the MAE of RNN
∂T (h)
norm at the surface. We observe that the659

fluxes error is largely dominated by the shortwave downward fluxes error. It is surpris-660

ing that the upward shortwave flux error is so small compared to the downward flux er-661

ror. Indeed the shortwave upward flux should be more complex to compute since it re-662

sult from the interaction of the shortwave downward flux with the surface and the at-663

mospheric layer closest to the surface.664

In contrast to the fluxes error, the heating rates error is largely dominated by the665

longwave heating rates. The longwave heating rates error is mostly concentrated in the666

subtropics. Contrary to the TOA, the error near the equator is small. The error is con-667

centrated in several locations at -50 and 50 degree latitude. At the same latitudes, we668

observed in the surface climatology positive longwave heating rates. As already discussed,669

for a larger test set, uniform error bands located at -50,50 degree latitude should appear670

instead.671

Scatter plot: In Figure 15, for each flux and heating rate, we choose an interval672

that contains all predicted values (e.g. [0, 1400] for shortwave down). We then divide the673
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Figure 13: Surface climatology of the model RNN
∂T (h)
norm and of the solver ecRad. The

mean is taken over all time steps.

interval into 100 smaller intervals (e.g. [14 · k, 14 · (k+1)], k = 0, . . . , 99 for shortwave674

down). Each prediction of ecRad and of RNN
∂T (h)
norm falls into one of the 100 intervals.675

Comparing ecRad and RNN
∂T (h)
norm predictions, we can assign each point of our test set676

(time, column and height) to one of the 100×100 squares. We then count the number677

of predicted values falling into each square. Ideally, the only squares with a nonzero count678

would be the one on the diagonal (i.e. ecRad and RNN
∂T (h)
norm predictions are close). The679

size of the squares is 14 W/m2, 11.1 W/m2, 4.4 W/m2, 4.1 W/m2 for respectively the680

shortwave downward and upward fluxes and for the longwave downward and upward fluxes.681

The size of the squares is 1.5 K/day and 2 K/day for respectively the shortwave and long-682

wave heating rates.683

The fluxes scatter plots are roughly symmetrical to the x = y line with highest684

deviation from the x = y line happening at different x coordinates (≈ 700W/m2 for685

shortwave down, ≈ 500W/m2 for shortwave up, ≈ 200W/m2 for longwave down and686

≈ 300W/m2 for longwave up.) For the shortwave heating rates, we observe that some687

predictions are negative when the exact solution is always positive. Furthermore for both688
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Figure 14: Surface MAE of the model RNN
∂T (h)
norm . The mean is taken over all time steps.

longwave and shortwave heating, there are deviation of the prediction when the exact689

solution is zero, which points to some difficulties of the NNs predicting the rate of change690

of the corresponding flux along the day time or near the TOA where the heating rates691

drop to zero from one level to the next. Here, some fine tuning to the specifics of the un-692

derlying Numerical Weather Prediction (i.e., ICON) model might solve this issue. We693

also observe a few significant outliers for the shortwave heating rates, where the NN pre-694

diction reached 60 K/day while ecRad predicted 0 K/day.695

5 Discussions696

In the previous section, we investigated the performance of three NN architectures697

(MLP, UNet, RNN) with and without output normalization trained with the usual squared698

loss (Eq. 2), or with an additional heating rates penalty (Eq. 6), inspired by the column-699

integrated energy equation in an atmospheric column. Output normalization greatly im-700

proved our results. It is beneficial for each tested architecture and lead to improved ac-701

curacy for both fluxes and heating rates. Adding a heating rates penalty to the train-702
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ing loss allowed us to improve the performance of RNN and UNet substantially. How-703

ever, for MLPs, the additional heating rates penalty accentuated the error discontinu-704

ities already present in the MLP trained with squared loss, MLP 2. Similarly, we observed705

discontinuities in the error profile for the RNN without output normalization, RNN∂T (h).706

However, together with the output normalization, the additional penalty term gives the707

most accurate RNN. For the UNet, the additional penalty, even without normalization,708

was highly beneficial. Note that amongst the models tested, the UNet is the only one709

for which we did not encounter discontinuities in the error profile. For both the UNet710

and RNN, height dependent weight for the heating rates penalty improved the results.711

For the MLPs it was reducing the accuracy and we only considered a height indepen-712

dent heating rates penalty.713

Our best model is the RNN with physics-informed input and output normalization714

and heating rate loss (Eq. 6). From a physical point of view, it is not surprising that the715

RNN outperforms the other models. Indeed, physically the fluxes are crossing the at-716

mospheric levels one after the other in the direction of the fluxes. The fluxes at a given717

height level h are then function of the fluxes in the height level h−1 above (downward718

fluxes), h + 1 below (upward fluxes) and of the atmospheric composition in the given719

level h. This justifies the adopted bidirectional architecture. Although the RNN
∂T (h)
norm720

outperforms the other NNs at all heights, it does not outperform the RF for the heat-721

ing rates prediction at the TOA, particularly for the shortwave. As already discussed,722

this may be due to the smoother profiles produced by the RF.723

6 Summary724

In this first of two studies, we provide a systematic overview of different ML meth-725

ods to emulate the radiative transfer in the atmosphere. We tested ML architectures of726

varying complexity used in previous studies, including MLP (Chevallier et al., 1998; Ukko-727

nen et al., 2020), UNet (Lagerquist et al., 2021), RNN (Ukkonen, 2022), and RF (Belochitski728

et al., 2011) and different variants of physics-constraints in the loss function to obtain729

a holistic picture of the performance of these ML methods before testing them online in730

a state-of-the-art weather and climate model.731

We can conclude that achieving higher accuracy near TOA is more trivial through732

RFs without the cost of fine engineering needed with NNs. At TOA, the increase in MAE733

can be reduced by making the heating rates penalty term in the loss function height de-734

pendent. In general, however, it seems to be challenging for all tested architectures ex-735

cept for the RF to fit smoothly to near-zero values at the TOA. For the best perform-736

ing NN model, the MAE is larger for shortwave than for longwave radiation fluxes but737

longwave heating rates exhibit larger errors compared to shortwave heating rates. Short-738

wave downward fluxes errors increase towards the surface as humidity content increases739

and is in particular pronounced around the equator where surface precipitation indicates740

the existence of deep convective clouds. Shortwave upward fluxes error increases towards741

the TOA with a local maximum at tropical cloud tops. For longwave fluxes, the error742

patterns are fairly similar but smaller in magnitude everywhere. In general, the error pat-743

terns point to cloud top and cloud bottom regions as the main source of error. While744

shortwave heating rates are well predicted, the derived longwave heating rates exhibit745

larger MAEs around 1 km height at most latitudes. The error hence seems to be asso-746

ciated with the top of the planetary boundary layer (PBL) and its strong humidity gra-747

dient and shallow clouds on its top. A way forward could be to train different models748

for different heights in the atmosphere or make the importance of input features during749

training height dependent.750

For the design of ML-based radiation emulators, we propose to predict the corre-751

sponding fluxes and penalize training with the associated heating rates with height-depending752

weights. TOA and surface fluxes are important to predict because these are observabal753
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and hence used to constrain the energy balance of a climate model. The latter also serves754

as input to other model components in an ESM, such as the land model. Within the at-755

mosphere however, the heating rates are of relevance to move the temperature state for-756

ward in time. In theory one could directly predict the heating rates and derive the flux757

through integration albeit losing information on its direction. Nevertheless, we opt for758

the presented compromise to predict the fluxes and penalize by the heating rates.759

We recommend normalizing target features with respect to the largest value, e.g.,760

found at the model top (proportional to the solar constant) and surface (according to761

Boltzmann’s law) for shortwave and longwave radiation respectively. A recurrent net-762

work architecture running in both directions along height levels, suggested also by Ukkonen763

(2022), seems to be a natural choice because of the direction of radiative fluxes, however764

it remains to be seen how emerging ML architectures, such as transformers, will perform.765

Our preliminary experiments with transformers (not shown in this work) achieved good766

performance, yet far from the level of the RNN. Additional work required to make the767

transformer architecture competitive is left for future work.768

In other preliminary studies, we also trained an RF to predict the Fourier coeffi-769

cients of the radiation fluxes field using similar input variables as described above. Based770

on the predicted coefficients, the emulated radiation field can be reconstructed by Fourier771

synthesis. While that experiment produced reasonable results for the clear-sky flux, it772

proved to be more challenging to predict Fourier coefficients of the total flux field due773

to the high-frequency components associated with cloud-radiation interactions.774

In an upcoming study, we will report on the online performance of the various mod-775

els discussed here. To this end, the offline trained ML models will be coupled to ICON.776

This will also allow for alternating between ecRad and ML-based emulator(s) in a closed777

loop during runtime forming a potential hybrid model, which potential could be an at-778

tractive possibility for simulation beyond the weather scale.779

Open Research Section780

The data were generated using the ICON climate model described in Prill et al.781

(2023). The software is available for individuals on request at https://code.mpimet.mpg782

.de/projects/iconpublic/wiki/How to obtain the model code. The codes to repro-783

duce the results of this paper will be made available in https://renkulab.io/gitlab/784

deepcloud/rfe. Data to reproduce results of this work will be hosted at ETH Research785

Collection https://www.research-collection.ethz.ch/ (with a DOI) together with786

the ICON runscript used to generate the full dataset. ETH Zurich’s Research-Collection787

adheres to the FAIR principles and data is stored for at least 10 years.788
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Appendix A Random forest output normalization943

944

In Figure A1, we compare the random forest MAE on the test set with and with-945

out normalization of the outputs presented in Section 2.2. The normalization procedure946

increases significantly the accuracy of the random forest for the shortwave fluxes predic-947

tion. For the longwave downward flux, the normalization has essentially no effect on the948

error. For the longwave upward flux, the normalization increases the accuracy below 1 km.949

Between 1 km and 10 km, the accuracy is slightly reduced and above 10km the normal-950

ization has no effect on the accuracy. We still recommend the longwave output normal-951

ization as it increases the longwave upward flux significantly near the surface.952

Appendix B MLP additional loss functions953

We discuss the following MLPs:954

1. MLP
∫
E: MLP with additional column-integrated energy penalty955

The loss function of this NN is given by Eq. (4). All architectural details remain956

identical to MLP2.957

2. MLP ∂T (h) MLP with height dependent heating rates penalty958

The loss function of this NN is similar to UNet∂T (h). All architectural details re-959

main identical to MLP2.960

MLP
∫
E is penalized if column integrated energy, defined as the difference between the961

net radiation at the top and surface without distinction between shortwave and longwave,962

is not accurately predicted Eq. (4). The idea is, that this MLP preserves energy in the963

climate model. The MLP tries to satisfy the new penalty by modifying the TOA and964

surface fluxes. This completely breaks the models at those heights. Furthermore it adds965

oscillation in the longwave fluxes and heating rates.966

MLP ∂T (h) has a height dependent heating rates penalty. With the penalty, the MLP967

becomes inaccurate at all heights for both the fluxes and heating rates.968
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Figure A1: Effect of the normalization described in Section 2.2 for the random forest.
The outputs are not normalized for the RF error drawn in blue and they are normalized
for the RF drawn in red.
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Figure B1: MAE of the MLPs and of the RF emulator for the shortwave and longwave
downward fluxes, upward fluxes and heating rates. Legend: RF; random forest, MLP 2;
MLP trained with squared error loss, MLP 2

norm; MLP 2 with normalized output, MLP ∂T ;
MLP 2 with an additional penalty for the inferred heating rates, MLP

∫
E; MLP 2 with

loss function top and bottom energy penalty, MLP ∂T (h); MLP ∂T with height dependent
penalty. The models are described in Section 2.4.
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