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Abstract 24 

Reliable projections of extreme future precipitation are fundamental for risk management and 25 

adaptation strategies. Convection-permitting models (CPMs) explicitly resolve large convective 26 

systems and represent sub-daily extremes more realistically than coarser resolution models, but 27 

present short records due to the high computational costs. Here, we evaluate the potential of a 28 

non-asymptotic approach, the Simplified Metastatistical Extreme Value (SMEV) to provide 29 

information on the future change of extreme sub-daily return levels based on CPM simulations. 30 

We focus on a complex-orography area in the NorthEastern Italy and use three 10-year time 31 

periods COSMO-crCLIM simulations (2.2 km resolution) under RCP8.5 scenario. When 32 

compared to a block r-maxima approach currently used in similar applications, the proposed 33 

approach shows reduced uncertainty in rare return level estimates (about 5-10% smaller 34 

confidence interval) and can improve the quantification of future changes from CPM 35 

simulations. We evaluate these changes and their statistical significance in return levels for 1 h to 36 

24 h durations. The changes show an interesting spatial organization associated with orography, 37 

with significant positive changes located at high elevations. These positive changes tend to 38 

increase with increasing return period and decreasing duration. Because SMEV can separate the 39 

roles of event intensity and occurrence, it allows for physical interpretations of these changes. 40 

We suggest that non-asymptotic approaches permit the quantification of change in rare extremes 41 

within available CPM runs. 42 

 43 

Plain Language Summary 44 

Short duration heavy rainfall may lead to various natural hazards like floods and landslides. 45 

Expected change in extreme precipitation due to global warming is a major concern. However, 46 

we still cannot quantify these changes because typical climate models cannot reproduce extreme 47 

precipitation accurately. The few models that can are very computationally expensive so that we 48 

have too few simulations for properly quantifying changes in extremes using traditional 49 

statistical methods. Here, we show how to use a new statistical method to quantify extremes 50 

from short model simulations. This method is more accurate than currently used methods and 51 

may help provide additional insights on the reasons underlying the observed changes. This 52 

method could represent a new tool in the hands of the climate research community. Examining 53 

the simulations of one model over North-Eastern Italy, we report an increase in extreme 54 

precipitation in mountainous areas and a non-significant decrease in the low elevation areas. 55 

1 Introduction 56 

Short-duration extreme precipitation is often caused by convective processes and can 57 

trigger several water-related hazards, such as flash-floods, urban floods, debris flows and 58 

landslides, which, in turn, can cause severe damages and numerous victims (e.g. Paprotny et al., 59 

2018; Formetta and Feyen, 2019). Convective activity is projected to increase in a warming 60 

climate (e.g., IPCC, 2019; Prein et al., 2017; Fowler et al., 2021a), leading to increased hazard, 61 

which is not accounted for in current design standards for flood-protection and risk management 62 

practices. Thus, we urgently need accurate and reliable projections of future extreme short-63 

duration precipitation to improve adaptation strategies. 64 

Convection‐Permitting climate Models (CPMs) are characterized by a fine spatial 65 

resolution (a few kilometers) that can explicitly resolve deep convective systems. This is a 66 

https://www.sciencedirect.com/science/article/pii/S0309170821002372#bib0041
https://www.sciencedirect.com/science/article/pii/S0309170821002372#bib0041
https://www.sciencedirect.com/science/article/pii/S0309170821002372#bib0013
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significant improvement with respect to coarser resolution models, such as Regional Climate 67 

Models, or RCMs, in which convection is parametrized as a sub-grid-scale process. Due to the 68 

explicit representation of convective physics, CPMs provide a more realistic representation of 69 

sub-daily precipitation, in terms of the probability distribution of event intensity and of their 70 

spatial structure (e.g. Prein et al. 2015; Lind et al., 2016; Ban et al. 2020; Berthou et al. 2020; 71 

Kendon et al. 2014). Especially in mountainous areas, the finer representation of orography 72 

together with the ability to resolve convection results in a reduction of model bias with respect to 73 

observed precipitation (Fosser at al. 2015; Lind et al. 2016; Reder et al. 2020) and in an 74 

improvement of the characterization of extreme sub-daily precipitation (Ban et al. 2020). The use 75 

of CPMs was also shown to improve the estimation of precipitation return levels in 76 

orographically complex regions (Poschlod et al. 2021; Poschlod 2021), although some biases 77 

remain (Dallan et al., 2023). The improved realism in CPM-modelled extremes, and their 78 

reduced model uncertainty, allows greater confidence in their projections, especially for short-79 

duration high-intensity precipitation (Kendon et al. 2014, 2017; Fosser et al. 2020, 2024).  80 

The use of CPM projections for the estimation of future changes in extreme precipitation 81 

in complex terrain is still in its infancy, but could help us devise and implement effective 82 

adaptation strategies to cope with rainfall-driven hazards. Several studies estimated extreme 83 

precipitation from CPM by using percentile methods (e.g. Ban et al 2014, 2015), but 84 

practitioners require estimates of rare extremes, corresponding to high return levels, which are 85 

much rarer than the typical percentile thresholds used in climate studies. Because of the high 86 

computational costs, CPMs simulations are, on the other hand, commonly available only for 87 

relatively short periods (up to 30 years, but typically around 10-20 yr), which can lead to high 88 

uncertainties in return level estimates when using traditional extreme value approaches (e.g. see 89 

Poschold 2021). To the best of our knowledge, just a few studies estimated future changes in 90 

short-duration precipitation return levels based on CPMs (Chan et al 2014, 2018; Ban at al. 2020; 91 

Rybka et al. 2022) instead of just analyzing changes in high percentiles. Chan et al. (2018) and 92 

Rybka et al. (2022) used a peak-over-threshold approach, and Ban et al. (2020) used a modified 93 

block-maxima (3-largest) approach, in which three maxima per year are retained instead of one. 94 

Due to the large associated uncertainties, however, they could provide only mean estimates of 95 

the changes in hourly and daily return levels over large domains (e.g., for the entire Europe in 96 

Ban et al. 2020, in 12 “natural” regions in Rybka et al. 2022) or for relatively low return periods 97 

(e.g., Chan et al 2018 focused on 5-yr return levels and provided spatially averaged results up to 98 

30-yr return levels).  99 

Here, we propose the use of a non-asymptotic statistical method for the analysis of 100 

extremes that may be effectively applied to the CPM short time-slices to reduce the stochastic 101 

uncertainties in the return level estimates. A new non-asymptotic method, known as the 102 

Metastatistical Extreme Value Distribution (MEVD; Marani and Ignaccolo, 2015; Zorzetto et al., 103 

2016) has recently been presented, followed by a simplified formulation, the Simplified MEV 104 

(SMEV; Marra et al. 2019, 2020). These non-asymptotic methods use information from a large 105 

proportion of the available data, instead of just using one maximum per year or a few values 106 

exceeding a high threshold (Marani and Ignaccolo, 2015). It has been demonstrated that both 107 

methods can reduce the stochastic uncertainty in the estimation of rare rainfall return levels with 108 

respect to classical extreme value analyses, especially when short data records are available (e.g., 109 

Zorzetto et al., 2016; Miniussi and Marani, 2020; Marra et al. 2018). While many methods were 110 

developed to quantify, and possibly reduce the uncertainty associated with traditional estimation 111 

approaches, applications of existing statistical models to CPM simulations did not prove 112 
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satisfactory. Poschlod (2021) explored different extreme value methods for estimating daily 113 

extreme precipitation from 30yr CPMs dataset, including the novel MEVD. In terms of 114 

uncertainty, he demonstrated that MEVD is preferable over block maxima and peak-over-115 

threshold methods, although it was found subject to a systematic underestimation of the return 116 

levels.  117 

The accuracy of non-asymptotic methods is directly linked to the accuracy of the 118 

assumption about the ordinary events distribution. In some regions of the globe, the two-119 

parameter Weibull typically used to describe the distribution of ordinary precipitation events 120 

seems to be a good model only for the tail ordinary events distribution, rather than the entire 121 

body (Wang et al., 2020; Marra et al., 2023). Indeed, the analytical derivations by Wilson and 122 

Toumi (2005) that underpin the use of Weibull distributions for precipitation relate to the tail of 123 

the distribution. Using a left-censoring threshold, one can use the two-parameter Weibull to 124 

describe the right tail of the ordinary events distribution, overcoming the above issue (e.g., see 125 

Miniussi and Marra, 2021 that focused on the same area as Poschlod, 2021). This however 126 

decreases the amount of data points available for parameter estimation, especially when 127 

parameters need to be estimated on yearly basis like in MEVD. Compared to MEVD, the SMEV 128 

approach neglects the inter-annual variability. Although not exact, this approximation increases 129 

the number of observations available for parameter estimation, and thus allows robust estimates 130 

in presence of left-censoring thresholds.  131 

The SMEV has been recently applied to study the orographic impact on precipitation 132 

extremes at different durations (Marra et al. 2021, 2022; Formetta et al., 2022; Amponsah et al., 133 

2022). By effectively exploiting the relatively short rainfall records usually available in mountain 134 

regions, SMEV does not require regionalizations (e.g., Buishand, 1991) or duration-scaling 135 

approaches, which may smooth existing orographic effects or other gradients in the statistics of 136 

the extremes. SMEV has already been successfully used on CPM short time-slice in few recent 137 

works. Dallan at al. (2023) applied SMEV to a 10-yr reanalysis-driven CPM for analyzing the 138 

CPM’s ability to represent the observed orographic effect on hourly precipitation return levels up 139 

to 100 yr return time. They showed that CPM reproduces the observed decrease of rainfall 140 

intensity with elevation (reverse orographic effect) for 1 h extreme rainfall, although with weaker 141 

magnitude with respect to observations. Shmilovitz et al. (2023) used SMEV-estimated statistics 142 

of extreme precipitation up to 100-year return levels by CPMs to explain some observed 143 

differences in the geomorphological evolution of a steep desert cliff. One interesting advantage 144 

of non-asymptotic approaches, such as MEVD and SMEV, is the explicit separation of the 145 

intensity distribution from the occurrence frequency of the ordinary events (that is, the number of 146 

occurrences of the independent processes), which allows linking directly the extremes to the 147 

properties of the underlying ordinary events. This ability was e.g. used to explain changes in the 148 

statistics of extreme hurricanes (Hosseini et al., 2019) and, more recently, of extreme 149 

precipitation (e.g., Marra et al., 2021; Dallan et al., 2022; Vidrio-Sahagún and He, 2022; Marra 150 

et al, 2022a). 151 

In this work, we apply SMEV to quantify and explain projected changes of sub-daily to 152 

daily precipitation return levels based on 10-yr CPM simulations. Specifically, we exploit this 153 

non-asymptotic formulation to attempt, for the first time, an explanation of the projected changes 154 

in extreme precipitation in terms of variations in intensity and occurrence frequency of the 155 

storms. This allows us to provide a physical interpretation of the projected changes. We focus on 156 

an orographically-complex region in northeastern Italy, where past trends in extreme short-157 
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duration (hourly) precipitation over the last decades were found significantly positive (Libertino 158 

et al 2019). This makes it a challenging and interesting study case for the estimation of future 159 

changes in extreme precipitation from a CPM model. The specific objectives are the following: i) 160 

evaluation of SMEV uncertainty compared with a modified Generalized Extreme Value (GEV) 161 

3-largest approach recently applied to CPM simulations; ii) assessment of the bias with respect to 162 

estimates based on long rain-gauge records; iii) estimation of future changes in rare precipitation 163 

return levels (up to 100 yr) at different sub-daily durations for two future time-slices; iv) 164 

demonstration of the potential of the SMEV approach for providing a physical interpretation of 165 

projected changes.  166 

2 Study area and data 167 

We focus on an Alpine area of about 32000 km
2
 in northeastern Italy, characterized by 168 

complex orography with elevation ranging from -5 m to 3990 m a.s.l. (Figure 1) and a high 169 

climatic heterogeneity. The mean annual precipitation is about 800 mm yr
-1

 in the south-eastern 170 

part of the domain, mostly flat, and increases towards the central part of the domain (2300-2500 171 

mm yr
-1

), where the Prealps represent the first orographic obstacle to the dominant atmospheric 172 

systems (e.g., Isotta et al., 2014). Drier conditions are found in the north-western part of the area 173 

(about 500 mm yr
-1

, on average) which is shadowed by the surrounding mountains against 174 

prevailing moisture winds from south-east. Synoptic-scale precipitation events at the 24 h, or 175 

longer, timescale are mainly generated by large-scale patterns associated with the Atlantic storm 176 

track and Mediterranean circulation and mostly occur in fall and winter. Shorter-duration 177 

extreme events in summer are convective in nature in the coastal zone and convective-orographic 178 

in the pre-alpine region and in the northern part of the domain (Norbiato et al., 2009). In the 179 

mountainous part of the area, Libertino et al. (2019) reported a significant positive trend in 180 

observed annual maxima for 1 to 24 h rainfall durations in the period 1928-2014. Dallan et al. 181 

(2022) estimated a significant positive trend in return levels for 15 min to 6 h durations in the 182 

period 1991-2020, and associated the stronger increase at the sub-hourly durations to an 183 

increased proportion of convective events in the summer. This tendency is also confirmed by a 184 

projected increase in lightning activity (Kahraman et al., 2022)” 185 

 186 
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 187 

Figure 1. Topography of the study area and location of rain gauges. 188 

 189 

2.1 Climate model simulations 190 

The model simulations used in this work were performed by ETH Zurich with the state-191 

of-the-art weather prediction COSMO (Consortium for Small-Scale Modeling in Climate Mode) 192 

model, running on GPU in climate mode, here called COSMO-crCLM (Rockel et al., 2008). 193 

The non-hydrostatic limited-area COSMO-crCLM solves numerically on a three-dimensional 194 

Arakawa-C grid (Arakawa and Lamb 1977) the fully compressible governing equations using 195 

finite difference methods (Steppeler et al., 2003; Förstner and Doms, 2004) and a third-order 196 

Runge-Kutta time-stepping scheme (Wicker and Skamarock, 2002). The model uses for 197 

horizontal advection a fifth-order upwind scheme, and an implicit Crank-Nicholson scheme in 198 

the vertical direction, discretized in 60 stretched model levels ranging from 20 m to 23.5 km 199 

(Baldauf et al., 2011). The physical parameterizations adopted here include a delta-two-stream 200 

radiative transfer scheme according to Ritter and Geleyn (1992) and a single-moment bulk cloud 201 

microphysics scheme with five categories of hydrometeors, i.e. cloud water, cloud ice, rain, 202 

snow, and graupel (Reinhardt and Seifert, 2006). Shallow convection is parameterised using a 203 

modified version of the Tiedtke mass flux scheme with moisture convergence closure (Tiedtke, 204 

1989), while deep convection is explicitly resolved at convection-permitting scale. COSMO-205 

crCLIM employs a turbulent kinetic energy-based parameterization for the planetary boundary 206 

layer and the surface transfer (Mellor and Yamada, 1982; Raschendorfer, 2001), and the 207 

TERRA-ML soil-vegetation-atmosphere-transfer model, with a 10-layer soil and a maximum 208 

soil depth of 15.24 m in the lower boundary (Heise et al., 2006). More details on the physical 209 

parameterizations used can be found in Leutwyler et al. (2016). 210 

The CPM at ~2.2km resolution is nested within the convection-parameterized RCM 211 

covering the Coordinated Regional Climate Downscaling Experiment (CORDEX) European 212 

domain at 12 km, which is in turn driven by the Earth System Model of the Max-Planck-Institute 213 

(MPI-ESM-LR; Stevens et al. 2013) run under the Representative Concentration Pathways 214 
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version 8.5 (RCP8.5) green-house gas scenario. For this study, three 10-year long CPM 215 

simulations are performed over the extended Alpine domain defined under the CORDEX 216 

Flagship Pilot Study on Convective Phenomena over Europe and the Mediterranean (FPS-217 

Convection; Coppola et al. 2020), i.e. historical 1996-2005, near and far future represented 218 

respectively by the period 2041-2050 and 2090-2099.  219 

 The same CPM, but driven by ERA-Interim for the period 2000-2009, was evaluated 220 

over the greater Alpine domain in Ban et al. (2021) and over our study area by Dallan et al. 221 

(2023). Ban et al (2021) found that the bias compared with several observational datasets is 222 

limited and similar to the other CPMs from the CORDEX-FPS project. Dallan et al (2023) found 223 

that the COSMO-crCLM can capture the observed orographic effects (decrease in the intensity 224 

of extreme hourly precipitation with elevation) but tends to overestimate extreme hourly 225 

precipitation at high elevations. 226 

2.2 Observational precipitation data 227 

We use observational 5-min resolution precipitation data from 174 rain gauges already 228 

used in Dallan et al. (2023) to evaluate the bias in the historical simulation (Figure 1). The rain 229 

gauges cover an elevation range from -3 to 2235 m a.s.l. and a time period from 1983 to 2020, 230 

with record lengths varying from 14 to 37 years (28 years on average). We use here the complete 231 

time series to have the most robust estimation of the observed extreme precipitation as a 232 

benchmark for the CPM evaluation. Rain gauge data is aggregated at 1h to match the CPM 233 

temporal resolution, while years with more than 10% of missing data are excluded from the 234 

analysis. 235 

3 Methods 236 

 This section describes the methodology to:  estimate return levels and their uncertainty; 237 

assess the CPM biases with observations; estimate the projected changes in return levels, and 238 

evaluate their statistical significance. For the CPM, precipitation times series at each grid cell are 239 

treated independently.  240 

3.1 Statistical methods and related uncertainty  241 

3.1.1 Simplified Metastatistical Extreme Value approach 242 

The Simplified Metastatistical Extreme Value (SMEV) is an approximation of the 243 

Metastatistical Extreme Value first introduced by Marani and Ignaccolo (2015) (MEVD, see also 244 

Zorzetto et al., 2016) in which the inter-annual variability is neglected (Marra et al., 2019). As 245 

opposed to traditional extreme value theory, in which the maximum values of asymptotically 246 

large blocks (𝑛 → ∞) or the Poisson exceedances over an asymptotically high threshold (𝜃 → ∞) 247 

are examined, these methods are based on the analysis of all the independent realizations of the 248 

(rainfall, in this case) process. These realizations are usually termed ordinary events. MEVD and 249 

SMEV are thus non-asymptotic methods, because they do not hinge on asymptotic behaviors, 250 

and are closely related to ordinary statistics (Marani and Zorzetto, 2019; Serinaldi et al., 2020). 251 

In addition to the reduced parameter estimation uncertainty (e.g., Zorzetto et al., 2016), these 252 

methods may help associating the emerging statistics with the underlying processes (e.g., 253 

Hosseini et al., 2019; Dallan et al., 2022; Araujo et al., 2023). Detailed background on the 254 
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method can be found in Marani and Ignaccolo (2015), Zorzetto et al. (2016), Marani and 255 

Zorzetto (2019), Marra et al. (2019), Miniussi and Marani (2020), and Marra et al. (2020).  256 

The main idea underlying non-asymptotic methods is that, once the tail behavior of the 257 

parent distribution of the ordinary events 𝐹(𝑥) is known, the distribution of the emerging block 258 

maxima can be written, in the simplified SMEV form, as: 259 

𝐺𝑆𝑀𝐸𝑉(𝑥) ≃ 𝐹(𝑥)𝑛         (1) 260 

where 𝑛 is the average number of ordinary events in a block. In the case of rainfall,  𝐹(𝑥), or its 261 

tail, is usually assumed to be a two-parameter Weibull distribution, an assumption emerging 262 

from thermodynamic reasoning (Wilson and Toumi 2005) and supported by observations (e.g., 263 

Zorzetto et al., 2016; Marra et al., 2020; Marra et al., 2023) and stochastic modeling results 264 

(Papalexiou, 2022). The two-parameter Weibull distribution is written as: 265 

𝐹(𝑥) = 1 − 𝑒−(𝑥/𝜆)𝜅
         (2) 266 

where 𝜆 is a scale parameter and 𝜅 is a shape parameter that defines the "heaviness" of the tail 267 

(i.e., how quickly the cumulative distribution function goes to 1). In general, larger shape 268 

parameters are associated with lighter tails, with 𝜅 = 1 corresponding to exponential tails, 𝜅 < 1 269 

to tails heavier than exponential and 𝜅 > 1 to tails lighter than exponential. 270 

Here, we define the ordinary events as described in Dallan et al. (2023): (i) we identify 271 

the independent storms in the time series as consecutive wet periods separated by dry hiatuses of 272 

at least 24 h, (ii) ordinary events are computed for each duration of interest (1, 3, 6, 12, 24 h) as 273 

the maximal intensities within each storm, using running windows of that duration moved with 274 

1 h steps. We define the tail of 𝐹(𝑥) (i.e., the portion of 𝐹(𝑥) which is well approximated by a 275 

two-parameter Weibull distribution and from which block maxima are likely extracted) using the 276 

test introduced by Marra et al. (2020) and later refined by Marra et al (2023). The test assesses 277 

whether the null hypothesis of having Weibull tails can be rejected based on the available data. A 278 

detailed description of the test can be found in Marra et al. (2022b; 2023), and the related codes 279 

are made available in Marra (2022). We define different percentile thresholds at different 280 

durations: 90th for 1h and 85th for longer durations. Once the threshold is defined, the 281 

corresponding parameters of the Weibull distribution are estimated using a Weibull coordinate 282 

transformation and a least-square linear regression, as proposed in Marani and Ignaccolo (2015). 283 

Return levels associated to a desired probability level can then be derived inverting eq. (1). All 284 

codes are made available in Marra (2020). 285 

3.1.2 GEVr: r-largest block maxima 286 

The Generalized Extreme Value analysis (Coles 2001; Katz et al. 2002; Wilks 2011) is an 287 

established method to estimate return levels from the block maxima of precipitation time series. 288 

The GEV’s cumulative distribution function GGEV can be written as 289 

𝐺𝐺𝐸𝑉(𝑥) = {𝑒−[1+
𝜉(𝑥−𝜇)

𝜎
]
−(

1
𝜉

)

        ξ ≠ 0

 𝑒−𝑒
−

𝑥−𝜇
𝜎                     ξ = 0

       (3) 290 

 291 

with location μ, scale σ, and shape ξ. 292 

https://link.springer.com/article/10.1007/s00382-018-4339-4#ref-CR11
https://link.springer.com/article/10.1007/s00382-018-4339-4#ref-CR24
https://link.springer.com/article/10.1007/s00382-018-4339-4#ref-CR65
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Here we use a modified version of this approach recently applied on 10yr-long CPM runs 293 

in Ban et al. (2020). Specifically, two modifications to the classical block maxima approach 294 

method were implemented in order to improve the estimation of the distribution parameters and 295 

to avoid unrealistic estimates of the shape parameters. First, a modified maximum-likelihood 296 

estimator is used, which incorporates a Bayesian prior distribution for the shape parameter 297 

(Martins and Stedinger 2000; Frei et al. 2006). Second, a r-largest approach (Coles 2001) is 298 

applied, where r independent maxima per year (3 in our case, as in Ban et al.2020) are 299 

considered. We ensure independence of the maxima by extracting them from the series of the 300 

independent ordinary events as identified in the SMEV method. Return levels associated to a 301 

desired probability level can then be derived inverting eq. (3). In the following, we refer to this 302 

modified GEV with the r-largest approach as GEVr. 303 

3.1.3 Uncertainty assessment between SMEV and GEVr 304 

The uncertainty associated with the return level estimates is quantified using a bootstrap 305 

procedure (Efron and Tibshirani, 1993). On the CPM datasets, 1000 bootstrap surrogates are 306 

created by randomly sampling 10 years with replacement (Overeem et al., 2008) using the same 307 

random sequences for all the grid cells and time slices. SMEV and GEVr distributions are then 308 

fitted on each of the bootstrapped surrogates, obtaining 1000 estimates of return levels for each 309 

duration and return period. At each grid point, the uncertainty in the return levels estimates X is 310 

then expressed as the normalized 90% confidence interval 𝐶𝐼90 evaluated from the distribution of 311 

the 1000 return levels, with X95 and X5 representing the 95th and 5th percentile: 312 

𝐶𝐼90[%] =
𝑋95−𝑋5

𝑋
∙ 100         (4) 313 

We compare the uncertainty of SMEV and GEVr for the three CPM time slices and for 314 

different return periods representing different levels of extrapolation from the available 10 years 315 

of data record. 316 

 Then we evaluate whether 10 years of data is a sufficiently large pool to assess 317 

the uncertainty or a longer time series is required to estimate the “true” uncertainty. Thus, we use 318 

a Monte Carlo experiment to generate a synthetic population consisting of 104 years of data with 319 

70 events per year from a Weibull distribution with shape parameter 0.7, typical of the study 320 

area, while the scale parameter set to 1 does not affect the results. We then considered different 321 

record lengths 𝐿 ranging from 1 to 50 years and computed the 𝐶𝐼90 from both SMEV and GEVr, 322 

based on: (i) 1000 bootstrap samples with replacement of 𝐿 years out of the synthetic population 323 

(the 104 years), and (ii) 1000 bootstrap samples with replacement of 𝐿 years out of 𝐿 years; this 324 

second step is repeated 500 times for each length 𝐿. From the first option we obtain the true 325 

uncertainty, from the second one the estimated uncertainty, for both SMEV and GEVr.  326 

3.2 Assessment of model bias and future changes 327 

From the previous analysis, at each location and for each duration, the following 328 

quantities (generically denoted with X in the following equations) are obtained: i) annual 329 

maxima (AM) and their mean value for the whole series, ii) average yearly number of ordinary 330 

events n, iii) scale and shape parameters of the Weibull distribution for SMEV, iv) return levels 331 

up to 100 yr return period. For these quantities, we analyze bias and future changes. 332 

https://link.springer.com/article/10.1007/s00382-018-4339-4#ref-CR39
https://link.springer.com/article/10.1007/s00382-018-4339-4#ref-CR18
https://link.springer.com/article/10.1007/s00382-018-4339-4#ref-CR11
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3.2.1 Computation of model bias and future changes 333 

The biases with respect to observational data are evaluated for the historical CPM 334 

(control period). As in Dallan et al. (2023), the bias assessment is based on the CPM hourly 335 

precipitation data extracted at the grid point closest to the rain gauge. The bias is assessed by 336 

comparing observation (OB) and station co-located historical CPM (SC_hist), for all the 337 

quantities X obtained from the frequency analysis. The relative bias 𝐵𝑋 is computed as the 338 

relative percentage difference of the CPM result 𝑋𝑆𝐶_ℎ𝑖𝑠𝑡 with the observed result 𝑋𝑜𝑏𝑠: 339 

 340 

𝐵𝑋[%] =
𝑋𝑆𝐶_ℎ𝑖𝑠𝑡−𝑋𝑜𝑏𝑠

𝑋𝑜𝑏𝑠
∙ 100         (5) 341 

In this work, we evaluate the bias in the model, but no bias correction is applied to the 342 

climate simulations to avoid adding additional uncertainty in the climate projections (Maraun et 343 

al. 2017). The main assumption here (see e.g. Maraun (2016) and Chen et al. (2021)) is that 344 

convection-permitting models provide a plausible representation of climate change-induced 345 

variations in precipitation extremes, even though biases may affect simulations in historical 346 

period runs 347 

The climate change signal in 10-year long near future and far future simulations with 348 

respect to the control scenario is evaluated for all the CPM grid points (~6500) in the study area. 349 

Assuming that the model bias is constant over time, the future relative change 𝐶𝑋 of each 350 

quantity X is computed by comparing the historical and future results in each grid cell of the 351 

study area. It is expressed as the relative percentage difference between the near and far future 352 

CPM result 𝑋𝑛𝑒𝑎𝑟,𝑓𝑎𝑟 with the historical CPM result 𝑋ℎ𝑖𝑠𝑡: 353 

 354 

𝐶𝑋[%] =
𝑋𝑛𝑒𝑎𝑟,𝑓𝑎𝑟−𝑋ℎ𝑖𝑠𝑡

𝑋ℎ𝑖𝑠𝑡
∙ 100         (6) 355 

3.2.2 Statistical significance of biases and of future changes 356 

To assess if the differences between observation and historical CPM (to test for the 357 

biases) or historical and future CPM (to test for the changes) are statistically significant, we 358 

perform formal hypotheses testing procedures. Specifically, we adopt a nonparametric 359 

permutation test (Pesarin, 2001), which requires no assumption about the distribution of the data.  360 

We used the same procedure for testing the statistical significance of both biases and 361 

future changes. The test is independently applied to each location (grid point) as follows: 362 

i) we label the control data (i.e. the empirical observations) as Group A, and the test data (i.e. 363 

historical CPM) with Group B; 364 

ii) we compute SMEV parameters and return levels separately for Group A and Group B and 365 

calculate the differences between the two groups (as described at section 3.1 and 3.3); 366 

iii) the two groups are then randomly permuted 1000 times, thus generating 1000 surrogates of 367 

group A and 1000 surrogates of group B. Each of the surrogates of group A will now contain 368 

elements of group B and vice-versa; 369 
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iv) we repeat step ii) for each surrogate A-B pair, obtaining 1000 differences in SMEV 370 

parameters and return levels between each of the two permuted groups; 371 

v) we check if the differences between the original samples can or cannot be distinguished from 372 

the differences between mixed samples. Specifically, if the original difference computed at step 373 

ii) is within the 2.5th-97.5th empirical percentile of the 1000 surrogate differences computed at 374 

step iv), the difference is not considered statistically significant. Otherwise, the original 375 

difference (bias or change) can be considered significant at the 5% level. 376 

The same procedure is used to investigate the significance of the climate change signal, 377 

but considering in this case as group A the historical CPM, and as group B the future CPM 378 

simulations. 379 

4. Results 380 

4.1. Uncertainty assessment between SMEV and GEVr 381 

The analysis of the uncertainty associated with the GEVr and the SMEV approaches is 382 

reported in Figure 2. Here, we compare the normalized 90% confidence intervals (𝐶𝐼90) of the 383 

return levels estimated with the two methods for different durations, probability levels (20-yr and 384 

100-yr return period), and time periods (near and far future). The error bars in Figure 2 represent 385 

the range of variation of the CIs in the area, that is across the 6500 grid points, with the median 386 

𝐶𝐼90 indicated with a dot, and thick and thin lines indicating inter-quartile range and 5th-95th 387 

range, respectively. The average 𝐶𝐼90 for SMEV is ~30-35% for the 20 yr return time and ~35-388 

40% for the 100 yr. For the 20yr return levels (panels a, b,c), GEVr and SMEV have similar 𝐶𝐼90 389 

at 1h duration; for longer durations SMEV presents generally smaller uncertainty, with both the 390 

median value in the area and the range being smaller than for GEVr. This is more evident for the 391 

100 yr return time (panels d, e, f): at 1 h duration SMEV 𝐶𝐼90 is slightly smaller than for GEVr, 392 

and for the longer durations it is about 5% smaller in the median value and 10% smaller in the 393 

95th value than GEVr. The uncertainty reduction in SMEV when duration is increased from 394 

d=1h to d>1h can be related to the different portion of the distribution used for the analysis, that 395 

is respectively the top 10% at 1h and 15% for the longer durations. Figure S1 in the Supporting 396 

Information shows the “true” uncertainty (as defined in section 3.1.3) and the estimated 397 

uncertainty (median and inter-quartile range across the 500 iterations is shown) as a function of 398 

the record length 𝐿. For our case, i.e. 𝐿 = 10, it is worth noting two aspects. First, “true” 399 

uncertainty is smaller for SMEV than for GEVr. Second, the estimated uncertainties of SMEV 400 

and GEVr are similar, but the SMEV estimated uncertainty is similar to the true one, while the 401 

GEVr estimated uncertainty is systematically underestimated with respect to the true uncertainty 402 

even for higher L. For a 10-yr-long record, the estimated CI90 is ~86% of true CI90 for SMEV 403 

while the estimated CI90 is ~78% true 𝐶𝐼90 for GEVr. This ancillary analysis gives us 404 

confidence in the interpretation of the estimated uncertainties. We also point out that estimating 405 

bootstrap uncertainties from samples shorter than about 10 years leads to strong underestimations 406 

of the true uncertainty with both methods. 407 

Thus, SMEV generally produces a lower uncertainty in the estimation of rare return 408 

levels, and a reduced underestimation of the “true” uncertainty with respect to GEVr.  409 

 410 
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 411 

Figure 2. Comparison of the uncertainty for GEVr and SMEV methods, expressed as the CI90 412 

obtained with the bootstrap procedure, at varying durations (x-axis) for 20 yr and 100 yr return 413 

time (upper and bottom rows), for the three time slices (columns). Each bar represents the 414 

variability of the CI90 in the area: the dot symbol is the median, the thick segment is the 415 

interquartile range, the thin segment is the 5th-95th range. 416 

4.2 Bias assessment 417 

The results of bias assessment for the historical period 1996-2005 are shown in Figure 3 418 

for two durations (1h and 24h), for mean AM and for the 20 yr return level. The results for the 419 

other durations are reported in the supplemental material (Figure S2). The 1h AM (panel a) 420 

biases exhibit a spatial pattern coherent with the topography of the study area: CPM tends to 421 

overestimate extremes in the north and north-west of the domain (violet colors), characterized by 422 

mountains, while slightly underestimate them over the lowland in the southeastern part of the 423 

area (orange colors). The statistically significant biases, ~20% of the station-points, are 424 

concentrated in the mountains in the north part of the domain. Other scattered significant points 425 

are likely associated with the sensitivity of the test and are expected given the 5% significance 426 

level used. For the 24 h (panel b), the overestimation is widespread but stronger and significant 427 

(~38% of the station-points) in a transversal zone, crossing the domain south-west to north-east, 428 

that is mostly mountainous. The bias in the 20-year quantiles show a spatial pattern consistent 429 

with the AM of the corresponding duration. The station-points showing significant bias are 430 

reduced compared to AM both for 1h and 24 h duration (respectively ~18% and ~22%). On 431 

average in the area, the uncertainty in the 20 yr return levels, expressed in terms of the 432 
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coefficient of variation evaluated from the bootstrap results, is 6-9% for the observations and 9-433 

11% for CPM, across all the durations. For the intermediate durations, the spatial pattern shown 434 

in figure S2 is consistent with Figure 3, with the significant overestimation mostly located in the 435 

mountainous part of the domain. The higher percentage of significant bias is found at 3 and 6 h 436 

durations (Figure S2). 437 

 438 

 439 

Figure 3. CPM bias with respect to observations, at the station-collocated points, for 1 h (a, c) 440 

and 24 h (b, d), for mean Annual Maxima (AM, top row, panels a, b) and 20 yr return level 441 

(bottom row, panels c, d). In purple the positive bias (CPM overestimation), in orange the 442 

negative bias (CPM underestimation. Biases significant at the 5% level are indicated with a black 443 

circle, and the fraction of significant biases in the area is reported in each panel. 444 

4.3 Future changes  445 

Maps of the future changes are reported for the 20 yr return levels in Section 4.3.1, while 446 

their variation with durations and return times is reported in Section 4.3.2 for the average 447 

significant change over the study area. 448 

4.3.1 Projected changes in return levels 449 

The projected changes in the 20 yr return levels for the near future with respect to the 450 

historical period are reported in Figure 4. The average change in the area is positive, in the range 451 
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+8-10% across all the durations, with roughly similar spatial patterns. The quantiles 452 

corresponding to return periods examined are generally projected to increase significantly in 453 

many areas over the mountains, while in the lowlands the change is both positive and negative, 454 

and generally not significant. At the 1 h duration most of the significant changes (~12% of the 455 

domain) are positive and span areas ranging from south-western to north-eastern Alps, as well as 456 

the coastal zone. At the 3 h duration the map of change is consistent with the previous one, with 457 

a less noisy pattern especially over the mountains, where a significant increase in the rainfall 458 

intensity is reported (significant points ~17% in the domain). At longer durations, the increasing 459 

signal in the mountain is still present but is located in an inner Alpine zone mostly corresponding 460 

to Alto-Adige region, while in the lowlands most of the area show a non-significant decrease. 461 

 462 

 463 

Figure 4. Near future change for the 20 yr return level, estimated at each grid point, for durations 464 

from 1 h to 24 h (panels a to e). In blue positive changes (increasing return levels), in orange 465 

negative changes (decreasing return levels). Changes significant at the 5% level are indicated 466 

with a dark dot, and the fraction of significant cases in the area is reported in each panel. 467 

The projected changes in the 20-yr return levels for the far future with respect to the 468 

historical period are reported in Figure 5. The average change in the area is positive, around 20% 469 

for the 1h duration and reducing across durations till 10% for the 24 h, and negative changes are 470 

reported only in small parts of the domain. Over the mountains the return levels are projected to 471 

significantly increase, particularly so at the shorter durations (1-3 hours) over the north and 472 

western part of the domain. At the longer duration return levels the increase is generally lower in 473 
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magnitude, with the significant changes concentrated in the inner mountain region in the north of 474 

the domain. In the lowlands the change is not statistically significant, with both positive and 475 

negative values and no clear spatial organization. At 1 h duration the signal of change in 476 

lowlands is quite noisy; at the longer duration, the western part of the lowland shows no change 477 

and low positive change, while the eastern area close to the coast shows generally a small 478 

decrease. 479 

 480 

 481 

Figure 5. Far future change for the 20 yr return level, estimated at each grid point, for durations 482 

from 1 h to 24 h (panels a to e). In blue positive changes (increasing return levels), in orange 483 

negative changes (decreasing return levels). Changes significant at the 5% level are indicated 484 

with a dark dot, and the fraction of significant cases in the area is reported in each panel. 485 

In Figure 6, we show the maps of future changes in the 100-yr return levels for 3 486 

durations (1, 3, 24 h), and for the near and the far future (in figure S3 the 6 h and 12 h durations). 487 

The results for this rarer return level are consistent with those for the 20 yr return level, both in 488 

terms of spatial organization and of proportion of significant changes. The strongest and most 489 

significant increase is projected to occur in mountainous areas at the shorter durations. Changes 490 

at the daily duration are more localized in the inner part of the mountainous region. The signal in 491 

the lowlands is generally not significant. 492 

 493 

 494 
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 495 

Figure 6. Near (panel a, b, c) and far (panels d, e, f) future change for the 100 yr return level, 496 

estimated with SMEV at each grid point, for durations 1, 3, 24 h. In blue positive changes 497 

(increasing return levels), in orange negative changes (decreasing return levels). Changes 498 

significant at the 5% level are indicated with a dark dot, and the fraction of significant cases in 499 

the area is reported in each panel. 500 

4.3.2 Dependence of the projected changes on duration and return period 501 

The average change in the extreme precipitation over the domain is calculated as the 502 

mean value of the significant changes and is presented in Figure 7 for both near (left panels, a, c) 503 

and far (right panels, b, d) future. The dependence on duration (Figure 7a, b) is remarkably 504 

different between near and far future. There is no evident variation with duration for the average 505 

change for the near future, with rather uniform values of about 30% to 50% for 5 yr and 100 yr 506 

return periods. For the far future, the average change decreases with increasing duration, passing 507 

for example from about 55% at 1 h to about 40% at 24 h for the 100-yr return level. The 508 

dependence of the changes on the return period are shown in panel c for the near future and in 509 

panel d for the far future. The dependence appears similar in both the time slices, with increasing 510 

change for increasing return periods, although the different dependence on duration can be 511 

clearly noticed. For the near future, passing from 2 yr to 100 yr return time the change increases 512 

by about +20% (from 25% to 45%), for all the durations. For the far future, the change increases 513 

by about +23% at 1 h duration and by +15% at 24 h. 514 

 515 
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 516 

Figure 7. Dependency of the return level future changes on time scale (durations) and 517 

probability level (return period). a) Near future change vs duration, for 4 return periods; b) Far 518 

future change vs duration, for 4 return periods; c) Near future change vs return period, for 5 519 

durations; d) Far future change vs return period, for 5 durations. 520 

4.4 Changes in the distribution parameters 521 

At each grid point, the projected change in the estimated distribution parameters (scale, 522 

shape) and average yearly number of events are calculated as described at Section 3.3. We then 523 

estimate the mean change in the parameters at the grid points where the change in the return 524 

levels is found to be significant at the different durations. We show in Figure 8 the results for the 525 

case of significant changes in the 20-yr return levels, but the figures obtained for other return 526 

levels are analogous (see Figure S3 for the 100 yr return period). This analysis shows that the 527 

mean change on n is almost null, the mean change on the scale parameter could be both negative 528 

(near future) or positive (far future at 1-3 h durations), and the mean change on the shape is 529 

negative across all the durations for both the time slices. A change in the scale implies a 530 

multiplicative change across the distribution intensity across all the occurrence probabilities. A 531 

decreasing shape parameter implies an increasing "heaviness" of the tail of the intensity 532 

distribution, that is, increasing probability of extremely high intensities. The increasing tail 533 

heaviness associated with the decreasing shape shown in Figure 8 explains the higher changes 534 

with higher return periods reported in Section 4.3.2. Tail "heaviness" is important in determining 535 
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extreme return levels, and that the projected decrease in the shape parameter dominates over the 536 

decrease in the scale parameter projected for the near future. In the particular cases of 1 h and 3 h 537 

durations in the far future, the combination of decreasing shape and increasing scale has a 538 

synergistic effect in increasing the return levels, thus leading to the highest mean change we find 539 

in our study: 54% and 49% at 1 h and 3 h for the 100 yr return level (Figure 7 b, d). 540 

541 
Figure 8. Mean future changes on the distribution parameters at the different durations, for a) 542 

near future and b) far future change. The mean change in parameters is calculated considering 543 

the grid points with the change in the 20 yr return levels is found significant. 544 

5. Discussion 545 

5.1 Bias and future changes  546 

The results on the bias assessment at 1h and 24 h duration are generally in line with the 547 

findings in Dallan et al. (2023), where they evaluated ERA-driven CPM simulation against the 548 

same rain gauges used in our work over the10-yr-long period 2000-2009. In particular, the bias 549 

in Figure 3 a,c for the 1h AM bias and 1h 20 yr return level has a spatial pattern similar to the 550 

previous study, although with reduced magnitude. For the 24 h AM (Fig3 b; no 24 h return level 551 

bias was analyzed in Dallan et al. 2023) the CPM driven with the GCM appears wetter than the 552 

ERA-driven one, leading to a reduction of the dry bias in lowland and an increase of the wet bias 553 

in the mountainous area. As mentioned in Dallan et al. (2023) for the hourly duration, our 554 

findings suggest that the role of the orography should be considered in the CPM bias adjustment 555 

approaches, and this appears to be different at the different durations. 556 

The obtained projected changes can be partially compared with those in Ban et al. (2020), 557 

where the future change for the 10yr return levels estimated with a GEV 3-largest approach, for 558 

1 h and 24 h duration was analyzed over a larger domain. They provided just the averaged 559 

change over the domain, finding positive changes for both 1 h and 24 h durations. Our results 560 

allow us to discuss in more detail the spatial pattern and the significance of the change, even for 561 

rarer return levels. Indeed, summarizing the findings of section 4.3.1, the analysis of the future 562 

changes in extreme precipitation indicates that according to the examined model in our study 563 

area an increase in extreme precipitation is expected mostly in the mountains. At the shorter 564 

durations (1-3 h) the increase is concentrated in a south-west to north-east mountainous band, in 565 

the near future, and over the whole mountainous area in the far future. At longer durations, the 566 
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CPM projects a higher increase in the inner part of the mountainous region for both the future 567 

periods. In the lowlands no statistically significant change could be detected at the 5% level. By 568 

separating the points in three elevation classes (Figure S5, same classes as in Dallan et al. 2023) 569 

it clearly emerges how the change in the median increases from lowlands to high elevations, for 570 

both future periods and all durations. The relatively wide ranges of change, however, suggest 571 

that elevation alone is not sufficient to explain all the changes. The percentage of significant 572 

points in each class exhibits a clear increase with increasing elevation class, with almost no 573 

significant changes observed in the lowlands and the highest percent in the high elevation class. 574 

This is more evident at 1-3 hours than at 24 hour duration. 575 

Despite a visual similarity in the spatial patterns of bias and future change, no 576 

quantitative relation emerges between bias and change signal, being their correlation low and 577 

slightly negative for all durations (see figure S6). 578 

Thanks to the limited stochastic uncertainty of the SMEV return level estimates (see 579 

Section 4.1 and Figure 2), the statistical significance of the changes in the 100 yr return levels 580 

could be determined (shown for three durations in Figure 6). Changes in these very rare 581 

quantities are qualitatively consistent with those found for the 20 yr case, both in terms of spatial 582 

patterns and relative magnitudes. This suggests that the signal-to-noise ratio of the detected 583 

changes is similar for 20 yr and 100 yr return levels. The proposed method thus represents a 584 

viable approach for estimating future changes in extreme precipitation from short CPM runs. 585 

A generally higher proportion of significant changes are reported at the shorter durations 586 

(1-3 h) with respect to daily durations, suggesting that changes in convective storms (related with 587 

short duration high-intensity precipitation) are expected to become more severe with climate 588 

change with respect to changes in large-scale storms.  589 

5.2 Implications of the projected changes  590 

The dependence on duration of the significant changes in extreme precipitation (Figure 7) 591 

is in line with the general tendency found in Ban et al. (2020). These authors found that the 592 

average increase for the 1 h extreme precipitation is higher than for the 24 h and 5 day durations, 593 

in both winter and summer seasons, and concluded that convective events are likely to become 594 

more significant with climate change. Our analysis confirms that, on average, the short duration 595 

extreme precipitation, mainly related to convection, is expected to increase more significantly 596 

than the longer duration extremes, especially in the far future. At 24 h duration, the average 597 

significant change is slightly higher in the near future than in the far future period (Figure 7 a, b). 598 

This can be the result of multiple factors: i) the average significant changes in near and far future 599 

periods are calculated over different grid cells since those with significant changes do not 600 

coincide between the two time slices; ii) the change in the underlying ordinary-value probability 601 

distribution parameters (see Section 5.3) reveals some nuanced dynamics, showing that 602 

thermodynamic and dynamic controls are not acting in the same direction when near and far 603 

future periods are considered; iii) natural variability may partially obscure the climate-change 604 

signal, particularly in a 10-year simulation, as years with record-breaking events may cluster and 605 

be followed by several decades with no new rainfall records (Kendon et al., 2023). In order to 606 

attenuate these limitations on the use of decadal time slices to sample future precipitation 607 

changes, recourse to an ensemble of models is recommended (Kendon et al. 2023), although 608 

beyond the purpose of this paper. 609 
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Ban et al. (2020) found that for summer hourly extremes the average future increase is 610 

slightly higher for higher return periods (rarer events). In this study, in which we could isolate 611 

the statistical significance of the signals, the projected significant changes show an evident 612 

dependence on the return period at all durations. This is of particular interest for risk 613 

management and engineers dealing with the design of infrastructures. The results from the 614 

examined model suggest that in our study area the largest increase in extreme precipitation is 615 

expected for short-duration long-return-period events, with vast implications on the intensity-616 

duration-frequency curves used for hazard assessment (e.g. Martel et al. 2021). 617 

The dependence of the significant changes on duration and return period does not appear 618 

to be related to elevation (Figure S7). For medium and high elevation classes, the average change 619 

in the 20 yr return level is almost constant with durations in the near future, while it decreases 620 

with duration in the far future (Figure S7 a) and b). All elevation classes and durations show 621 

relative change increasing with increasing return time (Figure S7 c and d). 622 

5.3 Physical interpretation of the projected changes 623 

The non-asymptotic structure of the SMEV model allows us to examine the changes in 624 

the distribution parameters and the number of events underlying the reported changes in extreme 625 

return levels (Figure 8). This opens the way to a physical interpretation of the results:  the 626 

distribution of the ordinary events (and hence its scale and shape parameters) can be related with 627 

the local-scale dynamics and thermodynamics of the atmosphere and to the differences in large-628 

scale dynamics associated with atmospheric motion. For example, the Clausius-Clapeyron 629 

relation quantifies the atmospheric water vapor holding capacity as a function of temperature 630 

and, when it comes to extreme precipitation, contains most of the information about the 631 

atmospheric thermodynamics. Under extreme precipitation the atmosphere is fully saturated and 632 

it is often assumed that extreme precipitation should increase with temperature at the same rate 633 

(that is about 7% °C
-1

). In such conditions, the scale parameter of the intensity distribution 634 

should change with temperature according to the above relation and the other parameters should 635 

remain unchanged.  636 

Despite this, the projected increase in extreme precipitation in the examined domain for 637 

the near future seems to be explained just by a decrease in the shape parameter. Since a general 638 

increase in temperature is expected in the study area in the future (e.g. Kotlarski et al., 2023), this 639 

suggests that changes in thermodynamics are not sufficient to explain what we observe, and that 640 

atmospheric dynamics plays a dominant role in explaining the projected changes. This is 641 

consistent with past changes observed in the same region in Dallan et al. (2022), that associated 642 

the past changes to an increased proportion of convective storms in the summer season. The 643 

results in Figure 8a suggest that similar changes are to be expected also in the near future.  644 

A different picture is provided for the far future (Figure 8b), where we see a dramatic 645 

increase in the scale parameter in addition to similar changes in the shape parameter and in the 646 

number of yearly storms. Due to the further increase in temperature toward the end of the 647 

century thermodynamic effects start to be clearly recognizable. Moreover, the dependence of the 648 

change in the scale parameter with duration shows a larger increase at the short durations, as 649 

expected from the thermodynamic effects related to the Clausius-Clapeyron relation (the 650 

assumption of full saturation is better met at short durations). 651 
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The ability of non-asymptotic methods, such as the SMEV proposed here, to separate the 652 

intensity and the occurrence frequency of storms could be further exploited in future studies, by 653 

including the analysis of temperature changes and the scaling with temperature of the extreme 654 

rainfall. This could provide viable ways to investigate the link between the change in the 655 

atmospheric dynamics and the change in the statistical characteristics of extreme rainfall. 656 

Moreover, in analysis based on model ensembles, SMEV could be beneficial in the 657 

understanding of the (possible) different results among different ensemble members, considering 658 

that the precipitation responses depend on several mechanisms and are not explained by just the 659 

change in temperature (Fosser et al. 2020). 660 

6. Conclusions 661 

In this work, we propose the use of non-asymptotic statistical methods to reduce the 662 

stochastic uncertainties related to the use of a short time period (10 years for the CPM 663 

simulations) and to analyze and attribute future changes in extreme precipitation. We exploit the 664 

ability of a high-resolution convection-permitting climate model (COSMO-crCLIM at 2.2 km 665 

resolution) in representing extreme short duration precipitation for estimating future changes in 666 

sub-daily rare return levels in a complex orography region in the eastern Italian Alps. We use a 667 

recent non-asymptotic statistical method, SMEV. We compare the uncertainty on the estimates 668 

from SMEV to the ones of a modified GEV approach (GEVr) recently used in Ban et al. (2020) 669 

and we take advantage of the reduced estimation uncertainty of SMEV to quantify the statistical 670 

significance of projected changes in return levels as high as 100 yr events. Further we exploit its 671 

non-asymptotic formulation to attribute the observed changes to variations in intensity and 672 

occurrence frequency of the storms, and to suggest a physical interpretation of the underlying 673 

changes.  674 

We perform a bias assessment based on 174 rain gauges (our benchmark) and the 174 675 

station-colocated historical CPM (control period 1996 - 2005). The biases of the historical CPM 676 

with the observation are generally significant and positive in the mountains, while not significant 677 

and both positive and negative in lowlands. This result suggests that bias correction methods 678 

should explicitly consider the role of orography (e.g. Velasquez et al, 2020; Dallan et al., 2023). 679 

We calculate future changes in extreme precipitation for all the grid cells in the domain for 680 

rainfall duration from 1 h to 24 h, return time from 2 yr to 100 yr, and two future time periods 681 

(near future, 2041-2050, and far future, 2090-2099). Based on the examined model, we find 682 

increasing significant changes mostly in the mountains, with stronger changes at the short 683 

durations (1 h and 3 h) and in the far future. Far-future changes in extreme precipitation decrease 684 

with increasing rainfall duration, suggesting that the projected increase will affect differently 685 

short and long duration intense precipitation. The projected increase is found to be higher at the 686 

higher return times, and this is important information to consider for risk management. 687 

Examining the underlying changes in the parameters of the SMEV model, we suggest that the 688 

projected changes for the near future are likely related to changes in local and large-scale 689 

dynamics, while in the far future thermodynamics (linked to temperature) also plays a major role. 690 

Our results demonstrate the reliability of the proposed method to investigate projected 691 

changes in sub-daily precipitation high return levels from short CPM simulations. The potential 692 

of non-asymptotic methods should be soon applied to a CPM ensemble to estimate the future 693 

changes in precipitation extremes accounting for models’ uncertainty and to assess and attribute 694 

possible inter-model differences. The use of non-asymptotic methods contributes to establishing 695 
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a clear relation between the changing physical processes and the changing statistics of extreme 696 

precipitation. 697 
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