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ABSTRACT 41 

Declining oxygen concentrations in the deep waters of lakes worldwide pose a pressing 42 

environmental and societal challenge. Existing theory suggests that low deep-water dissolved 43 

oxygen (DO) concentrations could trigger a positive feedback through which anoxia (i.e., very 44 

low DO) during a given summer begets increasingly severe occurrences of anoxia in following 45 

summers. Specifically, anoxic conditions can promote nutrient release from sediments, thereby 46 

stimulating phytoplankton growth, and subsequent phytoplankton decomposition can fuel 47 

heterotrophic respiration, resulting in increased spatial extent and duration of anoxia. However, 48 

while the individual relationships in this feedback are well established, to our knowledge there 49 

has not been a systematic analysis within or across lakes that simultaneously demonstrates all of 50 

the mechanisms necessary to produce a positive feedback that reinforces anoxia. Here, we 51 

compiled data from 656 widespread temperate lakes and reservoirs to analyze the proposed 52 

Anoxia Begets Anoxia (ABA) feedback. Lakes in the dataset span a broad range of surface area 53 

(1–126,909 ha), maximum depth (6–370 m), and morphometry, with a median time series 54 

duration of 30 years at each lake. Using linear mixed models, we found support for each of the 55 

positive feedback relationships between anoxia, phosphorus concentrations, chlorophyll-a 56 

concentrations, and oxygen demand across the 656-lake dataset. Likewise, we found further 57 

support for these relationships by analyzing time series data from individual lakes. Our results 58 

indicate that the strength of these feedback relationships may vary with lake-specific 59 

characteristics: for example, we found that surface phosphorus concentrations were more 60 

positively associated with chlorophyll-a in high-phosphorus lakes, and oxygen demand had a 61 

stronger influence on the extent of anoxia in deep lakes. Taken together, these results support the 62 
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existence of a positive feedback that could magnify the effects of climate change and other 63 

anthropogenic pressures driving the development of anoxia in lakes around the world. 64 

 65 
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1. INTRODUCTION 78 

Dissolved oxygen (DO) concentrations are declining in the bottom-waters of many 79 

aquatic ecosystems around the world (Jenny et al. 2016a; Schmidtko et al. 2017; Breitburg et al. 80 

2018; Jane et al. 2021; Zhi et al. 2023). These declines pose a significant threat to both marine 81 

and freshwater ecosystems, as low DO conditions can decrease habitat suitability for numerous 82 

aquatic organisms (e.g., Rosenberg et al. 1991; Vaquer-Sunyer and Duarte 2008; Schindler 2017; 83 

Pilla and Williamson 2023), and decrease redox potential, promoting methane production (e.g., 84 

Encinas Fernández et al. 2014; Vachon et al. 2017; Hounshell et al. 2021), and altering aquatic 85 

nutrient cycling (e.g., Hupfer and Lewandowski 2008; Middelburg and Levin 2009; Carey et al. 86 

2022a). In freshwater lakes, the trend of decreasing DO concentrations may be particularly 87 

severe, with rates of decline up to 10 times higher than those observed in marine ecosystems 88 

(Jane et al. 2021). As freshwaters are critical ecosystems for drinking water, recreation, 89 

irrigation, and biodiversity (Reynaud and Lanzanova 2017; Finlayson et al. 2018; Reid et al. 90 

2019; Lynch et al. 2023), understanding and addressing changes in freshwater DO is essential to 91 

ensuring water security and ecosystem functioning in the face of global change. 92 

Declines in bottom-water DO concentrations are often attributed to climate change and/or 93 

increased nutrient inputs (Jenny et al. 2016a; Bartosiewicz et al. 2019; Jane et al. 2023). 94 

Increased air temperatures have been shown to drive increased duration of thermal stratification 95 

(Foley et al. 2012; North et al. 2013; Oleksy and Richardson 2021; Woolway et al. 2021), which 96 

reduces or inhibits mixing of oxygen to the bottom waters (hypolimnion). Consequently, 97 

increases in stratification duration may provide more time for hypolimnetic DO depletion to 98 

occur, resulting in lower late-summer DO concentrations and increased duration of anoxia. 99 

Changes in stratification duration appear to be a particularly important driver of DO declines in 100 
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recent decades (ca. 1950-2020; Jane et al. 2023). However, historical nutrient inputs have likely 101 

also played a role in deoxygenation by increasing phytoplankton biomass and consequently 102 

oxygen demand (Jenny et al. 2016a; b). The relative importance of these two pathways to 103 

deoxygenation (i.e., greater stratification duration due to climate change and greater oxygen 104 

demand due to eutrophication) likely varies both among lakes and within lakes over time. 105 

Consequently, understanding interannual DO dynamics across many lakes may be critical to 106 

disentangling the independent effects of stratification duration and eutrophication amidst 107 

ongoing changes in global climate and land use (e.g., Moss 2011; Parmesan et al. 2022). 108 

Here, we analyze a positive feedback, derived from decades of aquatic research, by which 109 

anoxia (i.e., DO at or near 0 mg/L) during a given year begets increasingly frequent and severe 110 

occurrences of anoxia in subsequent years. In this “anoxia begets anoxia” (ABA) feedback, 111 

anoxic conditions promote internal phosphorus release, thereby stimulating phytoplankton 112 

growth and subsequent decomposition, which in turn fuels increased heterotrophic respiration 113 

and further accelerates hypolimnetic DO declines over time (Figure 1). As long-term 114 

limnological data have become increasingly accessible (e.g., Pilla et al. 2020; Jane et al. 2021), 115 

we now have the opportunity to test the strength and ubiquity of this feedback on a multi-116 

continental scale. 117 

While the individual relationships in the ABA feedback cycle (Figure 1) are well-118 

established, these relationships occur over multiple timescales and amidst numerous other 119 

interacting factors (e.g., climate variation) that could prevent the detection of the overall 120 

feedback. Hypolimnetic anoxia has been shown to enhance internal loading of phosphorus from 121 

sediments (e.g., Mortimer 1941; Nürnberg 1984; Orihel et al. 2017; Figure 1A). However, while 122 

redox-controlled phosphorus release fluxes have received significant attention, sediment 123 
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characteristics, microbial processing, and catchment inputs may also play important roles in 124 

phosphorus dynamics (e.g., Hupfer and Lewandowski 2008; Orihel et al. 2017). Increases in 125 

hypolimnetic phosphorus are expected to increase surface water (epilimnetic) phosphorus 126 

concentrations within a summer stratified period through both biological and physical processes 127 

(e.g., organism-mediated transport, diffusion, and internal seiche dynamics; Carpenter et al. 128 

1992; Kamarainen et al. 2009; Haupt et al. 2010; Cottingham et al. 2015) or during autumn mixis 129 

when epilimnetic and hypolimnetic waters homogenize (e.g., Nürnberg and Peters 1984, Wetzel 130 

2001; Figure 1B). Higher epilimnetic phosphorus concentrations in turn can stimulate 131 

phytoplankton growth in many lakes, thereby increasing chlorophyll-a (chl-a, Figure 1C; 132 

Schindler 1974), though many other important factors, including nitrogen concentrations, 133 

climate, and light availability, also contribute to phytoplankton growth (e.g., Paerl and Huisman 134 

2008; Reinl et al. 2023). Increased phytoplankton biomass and subsequent decomposition may 135 

fuel increased biological oxygen demand (Figure 1D; Pace and Prairie 2005; Müller et al. 2019; 136 

Ladwig et al. 2021) and result in earlier onset of anoxia (Figure 1E), although climate can also 137 

play an important role in driving DO dynamics in many lakes, as discussed above. Given the 138 

substantial complexity to each of these relationships, all operating on different time scales, it 139 

remains unclear the extent to which the full positive feedback plays a role in controlling DO 140 

dynamics within lakes around the world. 141 

Lake characteristics including size and residence time could potentially mediate the 142 

strength of the ABA feedback across lakes, though these relationships remain largely untested 143 

because they can only be characterized with long-term monitoring data across many diverse 144 

lakes. Lakes with longer residence time or larger sediment area:volume ratios may have greater 145 

sediment-water interactions, increasing the influence of oxygen demand on hypolimnetic DO, as 146 
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well as the influence of hypolimnetic DO on hypolimnetic TP (e.g., Jagtman et al. 1992). 147 

Likewise, lake size may control the importance of mixing dynamics between the epilimnion and 148 

hypolimnion, and residence time may affect the extent to which chl-a and hypolimnetic TP 149 

influence biogeochemical dynamics the following year (Wetzel 2001). While many of these 150 

expected relationships have not been assessed across lakes, an empirical analysis of data from 151 

2849 lakes suggests that the impact of phosphorus concentrations on chlorophyll-a may be 152 

stronger in shallow lakes relative to deep lakes, potentially due to differences in light availability 153 

and macrophyte cover (Zhao et al. 2023). Characterizing the effect of lake characteristics on the 154 

ABA feedback relationships is needed to identify which lakes are most susceptible to the 155 

feedback, enabling managers to prioritize conservation efforts across lakes. 156 

 157 

 158 

Figure 1: The proposed positive feedback through which “anoxia begets anoxia” (ABA). 159 

Hypolimnetic anoxia results in internal hypolimnetic phosphorus (TP) loading (A), which in turn 160 

increases epilimnetic TP (B) and stimulates phytoplankton growth, resulting in increased 161 

chlorophyll-a (chl-a; C). Phytoplankton decomposition fuels increased oxygen demand rates (D), 162 

which further drive hypolimnetic oxygen declines (E). This feedback can be externally 163 

influenced by increased air temperatures (gray dashed lines), among other factors.  164 

 165 
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In this study, we analyzed data from 656 widespread temperate lakes to study the drivers 166 

and consequences of interannual changes in hypolimnetic DO. Our research had three primary 167 

goals: first, we assessed the extent of support for each of the hypothesized relationships between 168 

anoxia, hypolimnetic phosphorus concentrations, epilimnetic phosphorus concentrations, 169 

epilimnetic chl-a, and oxygen demand across and within lakes (Figure 1). Second, we analyzed 170 

records of air temperature at each lake to assess how the ABA feedback may interact with 171 

changes in climate (Figure 1). We focused on climate as an external driver of the ABA feedback 172 

in lieu of accessible nutrient loading records for the study lakes. Third, we analyzed whether the 173 

strength of ABA relationships may vary with lake characteristics including lake depth and 174 

residence time. While our multi-lake approach precluded detailed consideration of external 175 

nutrient inputs and use of causal inference methods within a lake over time, analyzing data from 176 

many lakes was essential to testing the proposed relationships in this study and disentangling 177 

lake-specific effects amidst substantial heterogeneity. 178 

 179 

2. METHODS 180 

2.1 Overview of data compilation and analysis  181 

Analyzing the ABA feedback required time series data for hypolimnetic DO, 182 

hypolimnetic total phosphorus (TP), epilimnetic TP, epilimnetic chlorophyll-a (chl-a), 183 

hypolimnetic oxygen demand, and climate records across numerous lakes (Figure 1). We 184 

compiled in-lake data from 656 geographically widespread stratified lakes to enable these 185 

analyses (2.2 Dataset compilation). We used linear mixed models, including relevant lags and 186 

climatic data when appropriate (2.3.2 Mixed effects modeling) to assess support for the ABA 187 

feedback relationships across all lakes. We then ran the same linear models within individual 188 
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lakes when sufficient data were available to assess whether the strength of ABA relationships 189 

may vary with lake characteristics (2.3.3 Within-lake regressions). All data compilation and 190 

analyses are described in detail below. 191 

 192 

2.2 Dataset compilation 193 

2.2.1 In-lake data 194 

We synthesized data from a total of 656 temperate, seasonally-stratified lakes (Figure 2; 195 

Appendix S1: Text S1.1). Data were collated from Jane et al. (2021; n = 316 unique lakes not 196 

also available in the other datasets described here), the U.S. Wisconsin Department of Natural 197 

Resources (DNR; n = 163), the U.S. New Hampshire Volunteer Lake Assessment Program 198 

(VLAP; n = 93), the U.S. Lake Stewards of Maine (LSM) Volunteer Lake Monitoring Program 199 

(n = 48), the U.S. Adirondack lakes database (Winslow et al. 2018; Leach et al. 2018; n = 17), 200 

and members of the Global Lake Ecological Observatory Network (GLEON; n = 29). 201 

Chlorophyll-a data from Filazzola et al. (2020) were added for n = 15 lakes for which we did not 202 

have any other chl-a data.  203 

Data availability and collection methods differed substantially among sites (documented 204 

in Lewis et al. 2023). For each site, we collated available data for DO, water temperature, TP, 205 

and chl-a, as well as lake metadata including geographic coordinates, depth (mean and 206 

maximum), surface area, and elevation (Lewis et al. 2023). Total nitrogen (TN) and dissolved 207 

organic carbon (DOC) were also compiled, but were more limited in availability (n = 111 lakes 208 

for DOC and n = 119 lakes for TN), motivating us to primarily focus on TP in our analyses 209 

below. To harmonize multiple datasets, quality control was performed on all data, as described in 210 

the data publication (Lewis et al. 2023).  211 
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In sum, the complete dataset consisted of 108,736 distinct water temperature and DO 212 

profiles across 656 lakes during 1938-2022 (Appendix S2: Figure S2.1). The median data 213 

duration was 30 years at each lake (range: 3–81 years). Lakes in the dataset had a median depth 214 

of 14 m (Zmax; range: 6–370 m), median surface area of 100 ha (range: 1–126,909 ha), and 215 

median elevation of 264 m (range: -215–2804 m). The lakes were located in 18 countries across 216 

5 continents, with latitudes ranging from -42.6 to 68.3 (Lewis et al. 2023).  217 

 218 

2.2.1.1 HydroLAKES 219 

We collated additional metadata for each lake using HydroLAKES, a global database of 220 

1.4 million lakes (with surface area ≥10 ha; Messager et al. 2016). For lakes with missing mean 221 

or maximum depth (i.e., the depths were not reported with the data; n = 43), we used 222 

HydroLAKES data to fill in these values (Lewis et al. 2023). We also compiled residence time 223 

estimates from HydroLAKES to assess whether the strength of ABA feedback relationships may 224 

vary with differences in residence time across lakes. 225 

 226 

2.2.2 Epilimnetic and hypolimnetic concentrations 227 

2.2.2.1 Profile interpolation 228 

We interpolated all temperature and DO profiles to a 1-m resolution following Jane et al. 229 

(2021). Briefly, we selected all profiles with at least three depths, then used the pchip() function 230 

of the pracma R package (Borchers 2022) to interpolate measurements from the surface to the 231 

deepest sampled depth. 232 
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To account for variation and error in sampling procedures, we implemented a 233 

standardized screening protocol to remove temperature and DO profiles that were substantially 234 

shallower or deeper than the reported maximum depth of the lake (Appendix S3).  235 

 236 

2.2.2.2 Mean concentrations 237 

We averaged data for all focal variables to an annual timestep using data from the entire 238 

stratified period and, separately, the late-summer period at each lake (Appendix S1: Text S1.2). 239 

The late summer (i.e., mid-July through August in the northern hemisphere, following Jane et al. 240 

2021) is when DO concentrations are likely to approach their lowest value (Wetzel 2001), and 241 

may consequently be a critical time period for some processes in the ABA feedback. Conversely, 242 

other processes occurring throughout the entire summer stratified period (e.g., oxygen demand, 243 

hypolimnetic temperature) can also be critical to the ABA feedback, motivating the study of both 244 

periods within a year.  245 

For each profile during either the entire summer stratified period or the late-summer 246 

period, we calculated the depths of the top and bottom of the metalimnion (the middle thermal 247 

layer of the lake) using the rLakeAnalyzer R package (Winslow et al. 2019). We used mean 248 

metalimnion depths to estimate the bottom of the epilimnion and top of the hypolimnion for each 249 

lake-year. We then averaged all hypolimnetic and epilimnetic water quality measurements 250 

throughout the time-period of analysis, using interpolated profiles for temperature and DO and 251 

all measurements for TP, chl-a, TN, and DOC. To estimate the strength of stratification at the 252 

thermocline, we calculated maximum buoyancy frequency using rLakeAnalyzer (Read et al., 253 

2011; Winslow et al. 2019) for each temperature profile. Maximum buoyancy frequency was 254 

averaged throughout the stratified period for each lake-year (Table 1).  255 
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 256 

Figure 2: Data were compiled from a total of 656 widespread temperate lakes, with data 257 

availability differing across sites. A: map of all sites included in this dataset. Note that due to 258 

overlapping data points, many sites are not visible. More detailed maps of the United States and 259 

Europe are provided in Appendix S2: Figures S2 and S3. B: Summary of data availability for 260 

water temperature, dissolved oxygen (DO), total phosphorus (TP), and chlorophyll-a (chl-a) in 261 

the epilimnion (epi.) and hypolimnion (hypo.) of lakes in this study.  262 

 263 

2.2.3 Volume-weighted hypolimnetic oxygen demand 264 

 We calculated volume-weighted hypolimnetic oxygen demand (VHOD; hereafter oxygen 265 

demand) within each lake-year, following Wetzel and Likens (2000). Briefly, we used measured 266 

or modeled bathymetric contours and interpolated DO profiles to calculate the volume-weighted 267 
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hypolimnetic DO concentration for each sampling date, then used linear regression models to 268 

calculate the rate of decline in volume-weighted hypolimnetic DO concentrations within the 269 

summer stratified period. We calculated an oxygen demand rate based on the raw data, as well as 270 

a temperature-corrected oxygen demand rate following Pace & Prairie (2005). Detailed methods 271 

for both calculations are provided in Appendix S4.  272 

 273 

2.2.4 Anoxic Factor 274 

 Anoxic factor (AF) describes the spatial and temporal extent of anoxia within a lake, and 275 

is therefore a useful metric of deoxygenation in lakes that experience hypolimnetic anoxia 276 

(Nürnberg 1995; Nürnberg 2019). AF is expected to increase with increased oxygen demand, 277 

and can predict internal TP loading in lakes that experience hypolimnetic anoxia (Nürnberg 278 

1995; Nürnberg 2019; Figure 1). Here, we calculated AF within each lake-year following 279 

Nürnberg (1988) and Nürnberg (2019), modified to address limited data availability across and 280 

within lakes (Appendix S5). Briefly, we estimated the duration of anoxia using oxygen profiles, 281 

oxygen demand, and modeled turnover dates, and we used modeled or measured bathymetry to 282 

quantify the spatial extent of anoxia within each lake-year. The DO threshold for anoxia was 283 

defined operationally, as described below (2.3.3 Operational definition of anoxia), with detailed 284 

methods provided in Appendix S5.  285 

 286 

2.2.5 Climate data 287 

To disentangle the roles of changing climate and in-lake processes on DO dynamics in 288 

stratified lakes, we collated monthly air temperature and precipitation data for every lake in our 289 

dataset from the ERA5 climate reanalysis. ERA5 is a fifth-generation product from the European 290 
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Centre for Medium-Range Weather Forecasts (ECMWF), and provides meteorological data from 291 

1959–2022 on a 0.25-degree global grid (Hersbach et al. 2019). For our analysis, we used the 292 

monthly 2-m air temperature and total precipitation ERA5 data products, and found the closest 293 

gridded values for every lake in our dataset. We summarized “seasonal” air temperature and 294 

precipitation values by averaging across multiple months for each lake-year, with southern 295 

hemisphere data offset by six months. Spring values were calculated as the average of March and 296 

April air temperature or precipitation (following, e.g., Williamson et al. 2015). While 297 

stratification onset varies across latitudes and lakes, these spring months are the most likely to 298 

correspond to ice melt and spring mixing across the temperate lakes in this study (Woolway et al. 299 

2021; Appendix S1: Figure S1.2). Summer values were calculated as the average of July and 300 

August air temperature or precipitation, as these summer months most closely correspond with 301 

our late-summer in-lake data and were the warmest two months on average across the dataset 302 

(Appendix S2: Figure S2.4). Winter temperature and precipitation were calculated as the average 303 

of January and February air temperature and precipitation. These winter months were, on 304 

average, the coldest months in our dataset (Appendix S2: Figure S2.4), and likely constituted a 305 

significant portion of the ice-covered period in lakes that experience seasonal ice cover 306 

(Magnuson et al. 2000).  307 

 308 

2.3 Data analysis 309 

To analyze the proposed ABA relationships, we used lag analysis (Section 2.3.1), mixed 310 

effects modeling (Section 2.3.2), and within-lake regressions (Section 2.3.3). All data analyses 311 

were performed in R, version 4.2.1 (R Core Team, 2021). Analysis code is archived as a Zenodo 312 

repository for reproducibility (Lewis and Lau, 2023).  313 
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 314 

2.3.1 Lag analysis 315 

Several of the relationships in the proposed ABA feedback may operate across years, 316 

rather than within one year. To assess the appropriate lag for each step, we calculated the 317 

Spearman correlation between each variable of analysis and the preceding variable in the 318 

feedback cycle (e.g., between oxygen demand and chl-a; Figure 1) with 0, 1, and 2-year lags. 319 

These correlations were calculated separately for each lake with at least 10 years of paired data 320 

for the target parameters. Across all lakes, we calculated whether the mean of the resulting 321 

distribution of correlations was significantly different than zero using Wilcox tests with α = 0.05.  322 

 323 

2.3.2 Mixed effects modeling 324 

To assess the proposed mechanisms by which anoxia could create a positive feedback 325 

that promotes subsequent anoxia (Figure 1), we used linear mixed models to estimate the 326 

magnitude and direction of effect for drivers of AF, epilimnetic and hypolimnetic TP, 327 

epilimnetic chl-a, and oxygen demand among lake-years. To assess the relationship between 328 

oxygen demand and hypolimnetic DO concentrations in lakes that did not experience anoxia 329 

(i.e., AF = 0 days throughout the entire time series), we conducted an additional regression 330 

analysis for oxygen demand and late-summer hypolimnetic DO concentrations, rather than AF 331 

(Appendix S6). Lake ID was included as a random effect on the intercept in all models. Mixed 332 

effect models were run using the package lme4 in R (Bates et al. 2023). 333 

For each response variable, we filtered all data to only include lake-years with complete 334 

data for all proposed explanatory variables (Table 1). We log-transformed chl-a and TP 335 

concentrations due to the substantial positive skew of these data, and we Z-standardized all 336 
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explanatory variables. We fit linear mixed models for all possible combinations of explanatory 337 

variables and identified the best model using corrected Akaike Information Criterion (AICc). We 338 

report all selected models within two AICc units of the best model (Burnham & Anderson 2002). 339 

We assessed the multicollinearity of all models using the variance inflation factor, which we 340 

calculated using the vif() function from the package car in R (Fox et al. 2022).  341 

We plotted the coefficient estimate for all fixed effects in the selected models to visually 342 

compare the magnitude of effect for each explanatory variable. For these visualizations, we 343 

calculated 95% confidence intervals of the fixed effects using the confint.merMod() function 344 

from lme4 (Bates et al. 2023).  345 

 346 

2.3.3 Operational definition of anoxia 347 

We used an operational DO threshold to define hypolimnetic anoxia, following other 348 

studies on anoxia in lakes (e.g., Elshout et al. 2013; Nürnberg et al. 2019; LaBrie et al. 2023). To 349 

identify this threshold, we performed a breakpoint analysis and piecewise regression for 350 

hypolimnetic DO and TP using the package segmented in R (Muggeo, 2023; Appendix S6: Text 351 

S6.1). We then added slope-difference (U) and change-point (G0) parameters for the breakpoint 352 

relationship, and used the resulting breakpoint as a threshold value for our calculation of AF 353 

(Appendix S5).  354 

  355 
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Table 1: Explanatory variables used for mixed model regression. We tested several possible 356 

explanatory variables for each response variable using a mixed model approach. The time period 357 

over which mean values were calculated for each lake-year is provided for all water column 358 

variables. For information on lags used, see Appendix S7: Figures S1–S5. Epilimnion and 359 

hypolimnion are abbreviated as epi. and hypo. throughout.  360 

Response  

variable 

Proposed explanatory  

variables 
Time period Motivation for inclusion 

Anoxic factor  Oxygen demand Stratified ABA feedback 

Spring average air temp.  Stratification onset 

Autumn average air temp.  Stratification end 

Winter average air temp.  Ice dynamics 

Hypo. temperature Late-summer Solubility, stratification end 

    

Late-summer hypo. 

TP 

Anoxic factor Late-summer ABA feedback 

Epi. TP Stratified Diffusion/sinking 

Maximum buoyancy frequency Stratified Diffusion 

Hypo. temp Late-summer Temperature dependence of 

sediment flux 

Spring precipitation  Catchment inputs/flushing 

Summer precipitation  Catchment inputs/flushing 

Winter precipitation  Catchment inputs/flushing 

Mean TP measurement date Late-summer Seasonal change 

    

Stratified epi. TP Hypo. TP Late-summer ABA feedback 

Hypo. TP (t-1) Late-summer Autumn mixing 

Epi. TP (t-1) Late-summer Legacy effect 

Spring precipitation  Catchment inputs/flushing 

Summer precipitation  Catchment inputs/flushing 

Winter precipitation  Catchment inputs/flushing 

Maximum buoyancy frequency Stratified Diffusion 

Mean TP measurement date Stratified Seasonal change 

    

Stratified epi. chl-a Epi. TP Stratified ABA feedback 

Epi. TN Stratified Potential limiting nutrient 

Spring average air temp.  Temperature-dependence of 

phytoplankton growth Summer average air temp.  

 Mean chl-a measurement date Stratified Seasonal change 

    

Oxygen demand Epi. chl-a Stratified ABA feedback 

Epi. chl-a (t-1) Stratified ABA feedback 

Hypolimnetic temp. Stratified Temperature-dependence of 

respiration 

Hypo. surface area to volume 

ratio 

Stratified Sediment oxygen demand 

Maximum buoyancy frequency Stratified Diffusion 

 361 
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2.3.4 Within-lake regressions 362 

To assess whether the across-lake trends identified using mixed models were observable 363 

within individual lakes, we performed linear regressions separately at each lake. For each of our 364 

focal response variables (see Table 1), we used the same model formulations from the across-365 

lakes analysis (i.e., the explanatory variables from Table 1 that were selected via AICc) to 366 

perform regressions within a lake. We saved the resulting coefficient estimates for each 367 

explanatory variable used to predict this focal response. We then plotted the distribution of 368 

coefficient estimates for all explanatory variables across all lakes, and we compared the median 369 

of these distributions to the mixed effect model coefficient estimates. For each response variable, 370 

we only included lakes that had at least 10 years of paired data for the response variable and all 371 

selected explanatory variables. We removed n = 81 lakes that never experienced anoxia (i.e., AF 372 

= 0 throughout the timeseries) from the within-lake analysis of the drivers of AF. 373 

 374 

2.3.4.1 Driver analysis 375 

The coefficient estimates for explanatory variables included in the ABA feedback (e.g., 376 

the coefficient of epilimnetic TP for predicting epilimnetic chl-a) indicates the magnitude of the 377 

response, while accounting for other drivers (Table 1). As an exploratory analysis to assess 378 

which lakes are most susceptible to the ABA feedback, we analyzed whether there were 379 

significant differences in these coefficients based on differences in lake characteristics. For this 380 

analysis, we developed linear models predicting the coefficient estimate for each focal variable 381 

in the ABA feedback (Table 1) based upon (individually) maximum depth, surface area, mean 382 

depth, residence time, dynamic ratio (square root of lake area divided by mean depth; Håkanson 383 

1982), and mean concentrations of focal (ABA) variables (i.e., hypolimnetic DO, epilimnetic and 384 
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hypolimnetic TP, epilimnetic chl-a, and oxygen demand). We then used AICc to select the 385 

model(s) with the greatest explanatory power. We did not assess more complicated model 386 

structures (e.g., multiple drivers and interaction effects) due to the relatively small sample size 387 

for some of these analyses (e.g., n = 35 lakes for oxygen demand).  388 

 389 

2.3.5 Climate effects 390 

 To summarize the effects of climatic variation on oxygen dynamics, we analyzed 391 

monthly and annual air temperature data. First, we calculated correlations between monthly air 392 

temperatures and, separately, hypolimnetic temperature, oxygen demand, AF, and late-summer 393 

DO concentrations (Appendix S8). Then, we summarized the effects of high and low annual air 394 

temperature anomalies on AF and late-summer oxygen concentrations (Appendix S8). 395 

 396 

3. RESULTS 397 

3.1 Operational definition of hypolimnetic anoxia 398 

We identified a breakpoint relationship whereby hypolimnetic TP increased substantially 399 

after DO decreased below a threshold of 1.8 mg/L (56 µmol/L), averaged throughout the 400 

hypolimnion (Figure 3). Subsequently, we used 1.8 mg/L as our DO threshold for anoxia in all 401 

analyses. Of the 356 lakes with at least 10 years of hypolimnetic DO data, 146 lakes (34%) 402 

crossed the threshold of 1.8 mg/L during their time series (i.e., had at least one year with 403 

hypolimnion-averaged DO <1.8 mg/L and at least one year with DO ≥1.8 mg/L). Lakes that 404 

crossed this threshold (n = 146) were more common than lakes that had consistently anoxic (n = 405 

120) or consistently oxic (n = 90) hypolimnia. Furthermore, lakes that crossed the threshold of 406 
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1.8 mg/L had lower DO concentrations in the year following the first year of anoxia than in the 407 

year prior to the first year of anoxia (Appendix S9; Figure S9.1).  408 

 409 

 410 

Figure 3: Piecewise mixed model regression identified a breakpoint in the relationship between 411 

hypolimnetic DO and TP at 1.8 mg/L DO. Here, points represent individual lake-years. 412 

 413 

 414 

3.2 Regression analyses support expected relationships within and across lakes 415 

Our analyses across 656 lakes provided support for the ABA feedback. Of the 416 

explanatory variables used in our model selection process (Table 1), all variables that were 417 

predicted to promote the ABA feedback were found to be statistically significant drivers of their 418 

predicted responses (Figure 4), with expected temporal lags as applicable (0–1 years; Appendix 419 

S7). High AF was associated with high hypolimnetic TP (Figure 4A), and high hypolimnetic TP 420 

was associated with high epilimnetic TP, both within and between years (i.e., both Hypo TP and 421 

Hypo TPt-1 had positive coefficients; Figure 4B). High epilimnetic TP was in turn associated 422 

with high chl-a within a year (Figure 4C), and high chl-a was associated with high oxygen 423 
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demand (both VHOD and VHODstd 10ºC) the following year (Figure 4D; Appendix S10). Lastly, 424 

high oxygen demand was associated with greater AF in the lakes that experienced hypolimnetic 425 

anoxia (Figure 4E). For the lakes that did not exhibit anoxia during their time series, high oxygen 426 

demand was associated with low late-summer DO concentrations (Appendix S6).  427 

All of the ABA relationships observed to be significant across hundreds of lakes (n = 428 

111–386; Figure 4) were also supported by regression analyses conducted within individual lake 429 

time series (with n = 35–157 lakes for each analysis; Figure 5). The direction of each of the ABA 430 

relationships was identical within and across lakes (Figure 5). The magnitude of the median 431 

coefficient estimates for ABA explanatory variables within lakes (e.g., the coefficient for chl-a in 432 

the multiple linear regression with oxygen demand as a response variable) tended to be slightly 433 

smaller than the mixed model coefficient estimate (Figure 5) for each relationship, except for 434 

oxygen demand as a predictor of AF (Figure 5E).  435 

While the hypothesized ABA feedback was supported by regression analyses, variability 436 

in the focal response variables (i.e., AF, TP, chl-a, and oxygen demand; Table 1) was also 437 

modulated by additional driving factors, as expected (Figure 1; Appendix S8). Specifically, 438 

climatic variables were selected as part of the optimal model for nearly all focal variables: spring 439 

air temperatures were important drivers of AF and chl-a, spring and summer precipitation were 440 

significant drivers of epilimnetic TP, and winter precipitation was a significant driver of 441 

hypolimnetic TP (Figure 4; Figure 5). Water temperature also played a role in explaining 442 

variation in several focal responses: hypolimnetic temperatures were a significant predictor of 443 

both AF and oxygen demand (Figure 4; Figure 5). For all responses, we found substantial 444 

variability in the random intercept of the mixed-model regressions among lakes (Table 2) and 445 

variability in within-lake regression coefficients (Figure 5), indicating external lake-specific 446 
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factors that influence the state of each response variable at a given lake. Random effects were 447 

largest for AF, and residual standard deviation from mixed-model analyses was highest for 448 

oxygen demand and epilimnetic chl-a (Table 2).  449 

 450 

 451 

Figure 4: The proposed ABA feedback (bottom right) was supported by linear mixed model 452 

results across all variables (see Table 1). Here, panel titles indicate the response variable for each 453 

panel and y-axis labels indicate explanatory variables. X-axes indicate the magnitude and 95% 454 

confidence interval of the parameter estimate for each explanatory variable presented on the y-455 

axis. The black vertical lines in panels A-E denote a parameter estimate of zero. Blue rectangles 456 

highlight drivers in the hypothesized ABA feedback (bottom right). Explanatory variables are 457 

ordered by the magnitude of the parameter estimate within each panel. 458 

 459 
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 460 

Figure 5: Linear regressions analyzing time series data within individual lakes provide further 461 

support for the ABA feedback. Here, panel titles indicate the response variable for each panel 462 

and y-axis labels indicate explanatory variables. Individual points represent regression 463 

coefficients from within one lake. Density distributions describe the distribution of parameter 464 

values across lakes, with colors delineating the quartiles of the distribution (purple: 0-25%, blue: 465 

25-50%, green: 50-75%, and yellow: 75-100%). Black and white circles at the bottom of each 466 

distribution mark the parameter estimate from the mixed model analysis (Figure 4). The gray 467 

vertical lines in panels A-E denote a parameter estimate of zero. Blue rectangles highlight drivers 468 

in the hypothesized ABA feedback. Explanatory variables are ordered by the magnitude of the 469 

mixed-model parameter estimate for consistency with Figure 4. All x-axes range from -1 to 1 to 470 

enable comparison among panels. 471 

  472 
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Table 2: Random and residual variation from linear mixed models. Model structure and fixed 473 

effects are summarized in Figure 4. 474 

Response variable Random effect 

standard deviation 

(intercept) 

Residual standard 

deviation 

Anoxic factor (AF)  0.982 0.337 

Hypolimnetic TP 0.665 0.286 

Epilimnetic TP 0.248 0.340 

Epilimnetic chl-a 0.635 0.415 

Oxygen demand 0.630  

 

0.597  

 

 475 

 Across lakes, our analyses indicate that the relative strength of ABA relationships varied 476 

with lake characteristics. Specifically, the coefficient for the effect of epilimnetic TP on chl-a 477 

was larger for lakes with high mean epilimnetic TP values; the coefficient for the effect of 478 

oxygen demand on AF was larger for lakes with deep mean depth; and the coefficient for the 479 

effect of chl-a on oxygen demand was larger for lakes with long residence time (Figure 6). The 480 

other ABA feedback relationships were not significantly mediated by any one of our candidate 481 

predictors (Section 2.3.4.1).  482 

 483 
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 484 

Figure 6: The strength of ABA feedback relationships may be modulated by lake characteristics. 485 

A: The coefficient for the effect of epilimnetic total phosphorus (epi. TP) on chlorophyll-a (chl-486 

a) was most positive in lakes with high mean epilimnetic TP. B: The coefficient for the effect of 487 

the previous year’s chlorophyll-a (chl-a) on volume-weighted hypolimnetic oxygen demand 488 

(VHOD) was most positive in lakes with long residence times. C: The coefficient for the effect 489 

of VHOD on anoxic factor (AF) was most positive in lakes with deep mean depths. This 490 

relationship was robust to including all data (solid regression line) and excluding 491 

disproportionately influential points (i.e., Cook’s distance greater than 3× the mean, n = 12 lakes; 492 

shown as a dashed line). Linear regressions are presented as solid lines.  493 

 494 

 495 

4. DISCUSSION 496 

In analyzing ABA relationships both across and within 656 lakes, we found support for 497 

all linkages in the hypothesized ABA feedback (Figure 4; Figure 5). These results provide 498 

empirical support for the existence of a positive feedback mechanism that could intensify the 499 

development of anoxia in lakes around the world. Furthermore, our results indicate that the 500 
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strength of these relationships likely varies with lake characteristics, including mean depth, TP 501 

concentrations, and residence time. To our knowledge, our work is the first to quantitatively 502 

document all of the relationships that enable anoxia to beget increasingly frequent or more 503 

intense anoxia in future years across a large, multi-continental dataset of lakes. 504 

 505 

4.1 Decades of research facilitate identification of ABA feedback 506 

Individual relationships in the ABA feedback have been the subject of substantial 507 

research inquiry over the past century or longer (e.g., Sachs 1874; Thienemann 1928; Schindler 508 

1974). While these previous studies primarily focused on examining biogeochemical dynamics 509 

within one lake, they provided support for the individual relationships in the ABA feedback 510 

(Figure 1). Modeling studies provided a means of simultaneously considering all ABA 511 

relationships, and have shown mechanistic support for the existence of an ABA feedback in 512 

seasonally-stratified lakes (Carpenter 2003; Carpenter and Lathrop 2008). However, model 513 

simulations have indicated that the susceptibility of individual lakes to a trophic regime shift, as 514 

a result of the ABA feedback, depends on multiple lake-specific parameters (i.e., macrophyte 515 

presence, temperature, mean depth; Genkai-Kato & Carpenter, 2005), highlighting the need for a 516 

multi-lake empirical approach.  517 

By synthesizing data across many lakes, our mixed model approach allowed us to 518 

identify biogeochemical dynamics that likely would have been difficult to detect in individual 519 

lakes. The strength of this approach is reflected in the fact that coefficient estimates from our 520 

mixed model regressions, which integrate data from many lakes, were typically slightly larger in 521 

magnitude than the median coefficient estimates of regressions run within individual lakes 522 

(Figure 5), although both approaches showed support for the existence of the ABA feedback. 523 
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Across-lake regressions included a larger range of variation for predictor variables than is 524 

typically observed within individual lakes, which likely facilitated the detection of more 525 

substantial predictor-response effects. Through study of the hypothesized ABA feedback, we 526 

found support for several individual limnological relationships, some of which had not been 527 

previously analyzed on a widespread scale. Below we discuss our findings for each ABA 528 

relationship and their implications in the context of previous work (Sections 4.1.1–4.1.5). 529 

 530 

4.1.1 Effect of anoxia on hypolimnetic TP (Figure 1A) 531 

In this study, we observed a strong positive relationship between hypolimnetic anoxia 532 

and TP concentrations both within and across lakes. Across lakes, our breakpoint analysis 533 

detected a threshold relationship whereby hypolimnetic DO had a stronger effect on TP when 534 

DO concentrations decreased to levels approaching anoxia (<1.8 mg/L; Figure 3). Our results 535 

reinforce previous research affirming that AF (the duration and spatial extent of anoxia) may be 536 

strongly positively correlated with hypolimnetic TP concentrations (Figure 4; Figure 5; e.g., 537 

North et al. 2014; Nürnberg et al. 2019). A threshold relationship between DO and TP is well-538 

supported by previous research across sediment core incubations, in situ sediment chamber 539 

measurements, and mass-balance whole ecosystem analyses (e.g., Einsele 1936; Mortimer 1942; 540 

Orihel et al. 2017; Anderson et al. 2021). Here, our threshold value of 1.8 mg/L DO, averaged 541 

throughout the entire hypolimnion, likely reflects DO conditions of ~0 mg/L near the sediment-542 

water interface (which inherently is challenging to quantify empirically), resulting in enhanced 543 

TP loading (Nürnberg 2019). We note that our identified breakpoint of 1.8 mg/L is also 544 

remarkably similar to those identified in previous sediment incubation work (Matisoff et al. 545 

2016; Doig et al. 2017; Orihel et al. 2017). Overall, this analysis indicates that the ABA 546 
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mechanism may require hypolimnetic DO concentrations to decrease to low levels (i.e., <1.8 547 

mg/L) before a feedback effect will occur. 548 

In our dataset, it was common for lakes to cross the threshold of 1.8 mg/L (34% of n = 549 

356 lakes). Lakes where oxygen concentrations declined below 1.8 mg/L had lower DO 550 

concentrations in the year following the onset of anoxia than in the year prior to the onset of 551 

anoxia (Appendix S9; Figure S9.1). While our dataset was not a random or fully representative 552 

sample of global lakes, the large number of lakes which crossed the 1.8 mg/L threshold in this 553 

study suggests that the ABA feedback may be prevalent.  554 

 555 

4.1.2 Effect of hypolimnetic TP on epilimnetic TP (Figure 1B) 556 

 We found moderately strong support for an effect of hypolimnetic TP on epilimnetic TP 557 

both within one year and between years (i.e., hypolimnetic TP influences epilimnetic TP the 558 

following year). While the directionality of this relationship can be difficult to identify in the 559 

absence of detailed nutrient input data (i.e., epilimnetic TP can affect hypolimnetic TP, vice 560 

versa, or a third driver may simultaneously influence both), existing research provides strong 561 

support for this effect. Elevated hypolimnetic TP concentrations can increase epilimnetic TP 562 

concentrations within a summer stratified period through organism-mediated transport, diffusion, 563 

and internal seiche dynamics (e.g., Carpenter et al. 1992; Soranno et al. 1997; Kamarainen et al. 564 

2009; Nürnberg 2009; Haupt et al. 2010; Cottingham et al. 2015). At the onset of autumn 565 

mixing, the concentration of TP in the hypolimnion fundamentally determines the amount of 566 

potential TP input to the epilimnion, which can have legacy effects throughout the subsequent 567 

autumn, winter, and spring (e.g., Nürnberg and Peters 1984; Wang et al. 2019).  568 

 569 
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4.1.3 Effect of epilimnetic nutrients on epilimnetic chl-a (Figure 1C) 570 

 We found a strong positive association between surface water TP concentrations and 571 

surface water chl-a, both within and across lakes, likely reflecting the fact that interannual 572 

variability in phosphorus concentrations can play an important role in regulating phytoplankton 573 

growth in lakes (Figure 4; Figure 5). Our study follows many decades of data that illustrate the 574 

positive effect of TP on phytoplankton biomass (Schindler 1974; Smith 1982; MacKeigan et al. 575 

2023). In this study, we were unable to identify an effect of epilimnetic TN concentrations on 576 

chl-a, suggesting that in these lakes, TP may play a more important role in regulating 577 

phytoplankton growth. However, we note that data availability was substantially greater for TP 578 

(n = 387 lakes) than for TN (n = 86 lakes), and complexities of nitrogen forms (not considered 579 

here) may hinder the detection of a nitrogen effect. Previous research has documented the 580 

importance of nitrogen for limiting or co-limiting phytoplankton growth in some lakes, over 581 

multiple timescales (Elser et al. 2007; Lewis Jr. and Wurtsbaugh 2008; Paerl et al. 2016; Scott et 582 

al. 2019; Lewis et al. 2020). Consequently, our study highlights the need for long-term, speciated 583 

nitrogen data to disentangle the role of nitrogen in the ABA feedback. 584 

 585 

4.1.4 Effect of epilimnetic chl-a on oxygen demand (Figure 1D) 586 

 Support for the relationship between epilimnetic chl-a and oxygen demand was relatively 587 

weaker than for the other ABA relationships, although still consistent within and across lakes. 588 

We expected that this relationship would be more challenging to detect than the other ABA 589 

relationships due to high levels of spatio-temporal heterogeneity in chl-a and uncertainty 590 

associated with oxygen demand calculations (e.g., modeled bathymetry and the assumption of a 591 

closed system). Interestingly, the effect of chl-a appeared to occur at least as strongly between 592 
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years as within a year. Legacy effects of chl-a on oxygen demand are intuitive and expected, as 593 

decomposition of sediment organic matter (including settled phytoplankton biomass) may 594 

constitute the majority of the total hypolimnetic oxygen demand in many lakes (Steinsberger et 595 

al. 2020). Likewise, limited sampling of early-season bloom events could have partially obscured 596 

the role of within-year chl-a on oxygen demand. Regardless, our analyses provide support for 597 

both within-year and between-year effects of phytoplankton blooms in perpetuating anoxia.  598 

 599 

4.1.5 Effect of oxygen demand on hypolimnetic anoxia (Figure 1E) 600 

 The positive relationship between oxygen demand and AF is well-supported by this 601 

study, and is also intuitive: as biological and chemical demand for oxygen increases, the onset of 602 

anoxia is likely to occur earlier in the stratified period, increasing the total duration of anoxia 603 

(Figure 4; Figure 5). Furthermore, in lakes that did not experience anoxia throughout the time 604 

series of data used in this study, oxygen demand was negatively associated with late-summer DO 605 

concentrations (Appendix S6: Text S6.2), supporting that oxygen demand and DO 606 

concentrations are closely coupled in both oxic and anoxic lakes. Across the dataset, the effect of 607 

oxygen demand on hypolimnetic oxygen conditions occurred simultaneously with an additional 608 

positive effect of spring air temperatures (Figure 4; Figure 5, Appendix S6: Text S6.2), and in 609 

anoxic lakes AF was further regulated by autumn air temperatures (Figure 4; Figure 5). Positive 610 

associations between anoxia and spring and autumn air temperatures may highlight the important 611 

role that stratification duration (i.e., both onset in spring and end in autumn) can play in driving 612 

the spatial and temporal extent of anoxia (e.g., Nürnberg, 1995; Jane et al. 2023). Previous work 613 

has identified that the duration of summer stratification is increasing across many lakes 614 

(Woolway et al. 2021), driving decreased late-summer oxygen concentrations (Jane et al. 2023). 615 
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However, the factors that control oxygen demand are changing less consistently: temporal trends 616 

in hypolimnetic temperature are highly variable across lakes (Pilla et al. 2020; Richardson et al. 617 

2017), as are trends in chl-a from 1980–present (Kraemer et al. 2022). Consequently, it is not 618 

surprising that trends in oxygen demand appear to be inconsistent across lakes (Jane et al. 2023). 619 

In this study, our focus on annual and sub-annual timescales allowed us to more precisely 620 

investigate the mechanisms at play within and across 386 lakes (Figure 4E), identifying that 621 

variability in oxygen demand has the potential to drive a feedback effect in some lakes that 622 

experience hypolimnetic anoxia.  623 

 624 

4.2 Lake characteristics can increase susceptibility to the ABA feedback 625 

 Through our cross-lake analyses, we identified that the ABA feedback may be stronger in 626 

some lakes than others. In particular, mean epilimnetic TP concentrations, mean depth, and 627 

residence time each modulated ABA feedback relationships (Figure 6).  628 

First, the effect of TP on chl-a was strongest in lakes with high mean epilimnetic TP 629 

concentrations, especially for lakes with TP concentrations greater than ~10 µg/L (Figure 6A). 630 

These mesotrophic to eutrophic/hypertrophic lakes also tended to experience substantial 631 

variability in epilimnetic TP concentrations, which likely made the effect of changing TP 632 

concentrations more detectable in our standardized linear regression analyses (Appendix S11: 633 

Figure S11.1). Ultimately, our finding that TP and chl-a are more closely correlated at high TP 634 

concentrations may provide some resistance to the initiation of the ABA feedback in oligotrophic 635 

lakes, while further accelerating the ABA feedback as eutrophication proceeds due to external or 636 

internal nutrient loading.  637 
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Second, the effect of the previous year’s chl-a on oxygen demand was strongest in lakes 638 

with long residence times (Figure 6B). In these lakes, decomposing chl-a and autochthonous 639 

organic carbon may have more time to settle and accumulate on the hypolimnetic sediments, 640 

fueling oxygen demand the following year. Conversely, the effect of the previous year’s chl-a on 641 

oxygen demand was negligible in lakes with residence time less than ~100 days (Figure 6B), as 642 

chl-a may be quickly flushed and exported downstream from these lakes. Consequently, lakes 643 

with longer residence time may be more susceptible to the ABA feedback. 644 

Third, the magnitude of the effect of oxygen demand on AF generally increased with 645 

increasing mean depth of the lake (Figure 6C). Mechanistically, deeper lakes often have 646 

relatively lower oxygen demand due to low sediment area to hypolimnetic volume ratios 647 

(Livingstone and Imboden 1996; Müller et al. 2012; Steinsberger et al. 2020). Consequently, 648 

variation in oxygen demand can substantially affect the amount of time it takes to reach anoxia in 649 

these deep lakes. Conversely, in shallow lakes, hypolimnetic DO concentrations may be more 650 

strongly impacted by factors other than oxygen demand, including hypolimnetic primary 651 

production, stratification phenology, and mixing events (Wetzel 2001). Ultimately, deep lakes 652 

(i.e., mean depth > 5 m; Figure 6) appear to have a particularly strong coupling between oxygen 653 

demand and AF, strengthening the ABA feedback in these lakes.  654 

Combined, these results suggest that deep mesotrophic or eutrophic lakes with long 655 

residence times are particularly likely to be susceptible to the ABA feedback, though more data 656 

are needed to test these hypotheses. Importantly, our identification of factors that may affect the 657 

strength of the ABA feedback across lakes would not have been possible without the use of a 658 

multi-lake dataset like the one analyzed in this study. 659 

 660 
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4.3 Climate change has the potential to trigger the ABA feedback 661 

 Our analysis of 656 widespread lakes suggests a strong relationship between climate 662 

variation and deoxygenation. Importantly, this climate variability may have the potential to push 663 

hypolimnetic DO below the ~1.8 mg/L threshold that is associated with increased hypolimnetic 664 

TP release from sediment, thereby initiating the ABA feedback.  665 

 666 

4.2.1 High spring air temperatures are associated with anoxia 667 

 Our results suggest that increased spring air temperatures can contribute to DO declines 668 

not only by prolonging summer stratification, as demonstrated previously (Woolway et al. 2021; 669 

Jane et al. 2023), but also by increasing chl-a, hypolimnetic temperature, and oxygen demand 670 

(Figure 4C; Appendix S8). While we saw a clear effect of spring air temperatures on 671 

hypolimnetic DO dynamics, we did not observe a similar effect for summer temperatures 672 

(Appendix S8: Figure S8.1). Spring may be a particularly influential time period for the DO and 673 

temperature dynamics of warm monomictic and dimictic lakes, as this period sets the beginning 674 

of stratification and the initial heat and oxygen content of the hypolimnion (Shatwell et al. 2019; 675 

Woolway et al. 2021; Jane et al. 2023). While mean air temperatures are increasing around the 676 

world as a result of anthropogenic climate change, these impacts are not consistent across 677 

seasons or locations (Masson-Delmotte et al. 2021). Specifically, the time period during which 678 

temperatures fall in the historical range of spring temperatures is shortening across Northern 679 

Hemisphere mid-latitudes, which are representative of most of the lakes in this study (Wang et 680 

al. 2021). Conversely, the time period during which temperatures fall in the historical range of 681 

summer temperatures is lengthening (Wang et al. 2021; Woolway 2023). Our work highlights 682 

the importance of accounting for these differential changes in seasonal air temperatures, not just 683 
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annual means, when anticipating how changes in climate may affect hypolimnetic DO dynamics. 684 

Furthermore, as spring air temperatures continue to increase across many lakes, our work 685 

suggests that these climatic changes may play a role in causing hypolimnetic oxygen 686 

concentrations to decline, potentially initiating the ABA feedback.  687 

 688 

4.4 Strengths and limitations of this analysis 689 

 Using regression models within and across lakes, we were able to simultaneously analyze 690 

the extent of support for each of the relationships in the hypothesized ABA feedback. Lakes 691 

analyzed in this study span five orders of magnitude in surface area and two orders of magnitude 692 

in maximum depth (Zmax; Lewis et al. 2023). Amidst these substantial differences, we found 693 

consistent support for the ABA feedback relationships within and across lakes.  694 

While the dataset analyzed here is larger than those used in previous studies, data 695 

limitations continued to constrain our analysis. Specifically, we were unable to analyze the 696 

effects of external nutrient loads, or DOC concentrations on the ABA feedback due to lack of 697 

data, and we were unable to use causal inference methods to study ABA dynamics within 698 

individual lakes over time. Moreover, the majority (82%) of lakes analyzed here are temperate 699 

lakes located in the U.S.; consequently, results may not be fully generalizable to global lakes, 700 

and more research is needed to characterize DO dynamics in a broader, representative range of 701 

ecosystems, especially in tropical and southern hemisphere lakes. Our calculated AF values have 702 

substantial uncertainty, particularly with respect to stratification end dates, though we have done 703 

our best to minimize these uncertainties through detailed methodological testing (Appendix S5). 704 

To standardize across a wide range of lakes and sampling regimes, our analysis considered the 705 

entire hypolimnion as one homogenized layer, averaging over potentially meaningful variation in 706 
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DO dynamics across a depth gradient in the hypolimnion (e.g., LaBrie et al. 2023). Given the 707 

promising results we observed here, further exploration of depth-resolved DO declines across 708 

lakes likely has substantial potential to further our understanding of biogeochemical processing 709 

in lakes. 710 

 711 

4.5 Conclusions and global change implications 712 

 We found widespread empirical support for the ABA feedback in analyzing time series 713 

data across 656 diverse lakes. Relationships were particularly strong between oxygen demand 714 

and AF; AF and hypolimnetic TP; and epilimnetic TP and chl-a. Conversely, the effect of 715 

epilimnetic chl-a on oxygen demand was comparatively less strong, though still detectable both 716 

within and across lakes. As oxygen concentrations are decreasing in many lakes around the 717 

world, accounting for the ABA feedback may help effectively prioritize restoration and 718 

conservation efforts. Notably, our work suggests that catchment-scale nutrient management may 719 

be particularly critical for preventing deterioration of water quality in lakes with late-summer 720 

hypolimnetic DO concentrations just above 1.8 mg/L that have not yet crossed this threshold. 721 

These lakes are less likely to currently experience feedback effects of anoxia, but may cross this 722 

threshold in the future, thereby initiating an ABA feedback that, once triggered, will make water 723 

quality management more challenging. As climate and land use continue to change on a global 724 

scale, understanding and accounting for the ABA feedback may enable more effective 725 

conservation of culturally, economically, and ecologically important lake ecosystems. 726 

  727 
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