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Abstract

Atmospheric rivers (ARs) are filaments of enhanced horizontal moisture transport in the atmosphere. Due to their prominent

role in the meridional moisture transport and regional weather extremes, ARs have been studied extensively in recent years.

Yet, the representations of ARs and their associated precipitation on a global scale remains largely unknown. In this study, we

developed an AR detection algorithm specifically for satellite observations using moisture and the geostrophic winds derived from

3D geopotential height field from the combined retrievals of the Atmospheric Infrared Sounder and the Advanced Microwave

Sounding Unit on NASA Aqua satellite. This algorithm enables us to develop the first global AR catalog based solely on satellite

observations. The satellite-based AR catalog is then combined with the satellite-based precipitation (Integrated Muti-SatellitE

Retrievals for GPM) to evaluate the representations of ARs and AR-induced precipitation in reanalysis products. Our results

show that the spreads in AR frequency and AR length distribution are generally small across datasets, while the spread in AR

width is relatively larger. In terms of the AR-induced precipitation, both AR-induced mean and extreme precipitation are too

weak nearly everywhere in reanalyses. However, all reanalyses tend to precipitate too often under AR conditions, especially

over low latitude regions. This finding is consistent with the “drizzling” bias which has plagued generations of climate models.

Overall, the findings of this study can help to improve the representations of ARs and associated precipitation in reanalyses

and climate models.
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Abstract 26 

Atmospheric rivers (ARs) are filaments of enhanced horizontal moisture transport in the 27 

atmosphere. Due to their prominent role in the meridional moisture transport and regional 28 

weather extremes, ARs have been studied extensively in recent years. Yet, the representations of 29 

ARs and their associated precipitation on a global scale remains largely unknown. In this study, 30 

we developed an AR detection algorithm specifically for satellite observations using moisture 31 

and the geostrophic winds derived from 3D geopotential height field from the combined 32 

retrievals of the Atmospheric Infrared Sounder and the Advanced Microwave Sounding Unit on 33 

NASA Aqua satellite. This algorithm enables us to develop the first global AR catalog based 34 

solely on satellite observations. The satellite-based AR catalog is then combined with the 35 

satellite-based precipitation (Integrated Muti-SatellitE Retrievals for GPM) to evaluate the 36 

representations of ARs and AR-induced precipitation in reanalysis products. Our results show 37 

that the spreads in AR frequency and AR length distribution are generally small across datasets, 38 

while the spread in AR width is relatively larger. In terms of the AR-induced precipitation, both 39 

AR-induced mean and extreme precipitation are too weak nearly everywhere in reanalyses. 40 

However, all reanalyses tend to precipitate too often under AR conditions, especially over low 41 

latitude regions. This finding is consistent with the “drizzling” bias which has plagued 42 

generations of climate models. Overall, the findings of this study can help to improve the 43 

representations of ARs and associated precipitation in reanalyses and climate models. 44 

Plain language summary 45 

Atmospheric rivers (ARs) are filaments of enhanced horizontal moisture transport in the 46 

atmosphere. These weather systems are responsible for most of the poleward atmospheric 47 

moisture transport over mid-latitudes and can cause extreme precipitation around the world. For 48 

a long time, researchers relied heavily on reanalysis products to study ARs. Albeit incorporating 49 

information from observations, reanalyses are produced by numerical models and thus should 50 

not be treated as real observations. In this study, for the first time, we developed a near global 51 

AR detection algorithm specially for satellite observations. Unlike previous AR detection 52 

algorithms designed for satellite observations, which were applicable to mean moisture content 53 

and on regional scales, our algorithm utilizes both the moisture field and wind information from 54 

satellite observations. Our algorithm can thus better characterize the transport nature of the 55 

detected ARs. Using both the developed algorithm and NASA satellite observations, we 56 

developed the first satellite-based near global AR catalog. This satellite-based AR catalog 57 

together with NASA satellite precipitation product was then used to evaluate how well major 58 

reanalyses represent ARs and their associated precipitation. We found that reanalyses generally 59 

perform well in representing the AR occurrence frequency and length, but show relatively larger 60 

uncertainty in representing the AR width. In terms of AR precipitation, ARs in reanalyses 61 

precipitate too lightly and too often. Our findings can help to improve the representation of ARs 62 

and associated precipitation in reanalyses and climate models. As the quality of satellite 63 

observations continues to improve, the methodology presented here can be applied to other 64 

satellite observations to develop higher resolution or higher frequency AR statistics. 65 

1 Introduction 66 

Characterized by filaments of enhanced moisture transport in the atmosphere, atmospheric rivers 67 

(ARs) play a critical role in the global hydrological cycle. Despite only covering a very small 68 

fraction of the Earth's circumference, an early study revealed that ARs on average contribute to 69 
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more than 90% of the poleward moisture transport over midlatitudes (Zhu & Newell, 1998). At 70 

the regional scale, depending on their strength and duration, ARs can exert either beneficial or 71 

detrimental impacts upon landfall (Eiras-Barca et al., 2021; Ralph et al., 2019). It has been 72 

shown that ARs are important freshwater suppliers to many coastal regions around the world and 73 

can serve as effective drought busters (Dettinger, 2013; Dettinger et al., 2011; Guan et al., 2010; 74 

Rutz & Steenburgh, 2012; Viale et al., 2018). For example, it has been estimated that up to half 75 

of the annual precipitation over California is delivered by ARs (Dettinger et al., 76 

2011).  Meanwhile, intense ARs making landfall usually lead to a wide range of weather hazards, 77 

such as wind and precipitation extremes, and flooding (Chen et al., 2018; Henn et al., 2020; Kim 78 

et al., 2018; Lamjiri et al., 2017; Lavers & Villarini, 2013; Ma et al., 2020a; Paltan et al., 2017; 79 

Ralph et al., 2006; Waliser & Guan, 2017). In recent years, there are an increasing number of 80 

studies on ARs’ roles in sea ice variability (Hegyi & Taylor, 2018; Wang et al., 2020; Woods & 81 

Caballero, 2016; Zhang et al., 2023) and ice shelf stability (Djoumna & Holland, 2021; 82 

Mattingly et al., 2018; Wille et al., 2019, 2022), extending the understanding of AR impacts 83 

beyond mid-latitude areas. 84 

 85 

Most AR studies have treated reanalysis products as observations (DeFlorio et al., 2019; Guan & 86 

Waliser, 2017; Massoud et al., 2019). Yet, reanalyses are not obtained by direct observations but 87 

produced by models which are constrained by observations through data assimilation. Since 88 

reanalyses are model-based “observations”, it is expected that each reanalysis would have its 89 

own biases intrinsic to the model used to produce it, especially over the regions where the 90 

observation networks are sparse (e.g., Guan et al., 2020). However, most AR studies, which use 91 

reanalyses as observations, usually assume that ARs in reanalyses are representative of the true 92 

observation. Given the inherent errors of the models used to produce these reanalyses, such an 93 

assumption needs to be justified. So far, studies on the intercomparison between reanalyses and 94 

observations of the AR representations are very limited, which reduces our confidence in the 95 

ability of reanalyses in representing ARs. By evaluating six AR events in reanalyses against 96 

aircraft observations, Ralph et al. (2012) concluded that Climate Forecast System Reanalysis 97 

(CFSR) (Saha et al., 2010) , Modern-Era Retrospective analysis for Research and Applications 98 

(MERRA) (Rienecker et al., 2011) and European Centre for Medium-Range Weather Forecasts 99 

(ECMWF) interim reanalysis (ERAI) (Dee et al., 2011) exhibit comparable skills in representing 100 

the characteristics of these six ARs. These three reanalyses also have better performance 101 

compared to National Centers for Environmental Prediction (NCEP) -National Center for 102 

Atmospheric Research (NCAR) Reanalysis I (NCEP R1) (Kalnay et al., 1996), Tropospheric 103 

Chemistry Reanalysis (TCR) (Miyazaki et al., 2012), and North American Regional Reanalysis 104 

(NARR) (Mesinger et al., 2006). Expanding the sample size to 21 AR events, Guan et al. (2018) 105 

found that, compared to dropsonde observations, ERAI and MERRA, Version 2 (MERRA-2) 106 

(Gelaro et al., 2017) have a mean error of -2% and -8%  in AR width, respectively, and +3% and 107 

-1% in total integrated water vapor transport (IVT), respectively. Using MERRA-2, ECMWF 108 

Reanalysis Version 5 (ERA5) (Hersbach et al., 2020) and Japanese 55-year Reanalysis (JRA-55) 109 

(Kobayashi et al., 2015), a recent study from the Atmospheric River Tracking Method 110 

Intercomparison Project (ARTMIP) (Shields et al., 2018) found that ARs tend to get detected 111 

more frequently in MERRA-2 due to its higher climatological IVT and also noted that ARs in 112 

ERA5 tend to be narrower due to its finer spatial resolution (Collow et al., 2022). It is 113 

immediately apparent that the above studies either evaluate AR representations in reanalyses 114 

using a small sample of observations over a limited area, or evaluate uncertainty in AR 115 
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representations based on intercomparing between a few reanalyses themselves. In addition, these 116 

studies have only examined the representation of basic AR characteristics, such as AR frequency 117 

and intensity, in reanalyses, leaving AR-induced precipitation in reanalyses largely unexplored. 118 

 119 

Besides reanalyses, satellite observations have also been frequently used to characterize ARs and 120 

their associated precipitation (Arabzadeh et al., 2020; Behrangi et al., 2016; Cannon et al., 2017, 121 

2020; Guan et al., 2010; Matrosov, 2013; Neiman et al., 2008; Neiman et al., 2008; Ralph et al., 122 

2004; Wick et al., 2013). Integrated water vapor (IWV) from the Special Sensor Microwave 123 

Imager (SSM/I) (Hollinger et al., 1990) has been instrumental since early studies of ARs. For 124 

example, by compositing the IWV from SSM/I of 312 AR events over the eastern North Pacific, 125 

Ralph et al. (2004) established the IWV AR threshold and found that, on average, the IWV 126 

magnitude and width of a typical AR is about 2.81 cm and 388 km, respectively. Focusing on 127 

landfalling ARs along western North America from 1997 to 2005, Neiman et al. (2008) used the 128 

IWV from SSM/I to investigate AR seasonality and landfall orientation. They found that warm 129 

season ARs tend to occur in the North while cool season ARs tend to occur in the South. Winter 130 

landfalling ARs tend to extend northeastward from the tropical eastern Pacific while summer 131 

landfalling ARs tend to be more zonally oriented. Building on these studies, an automated AR 132 

detection method using satellite IWV was introduced in Wick et al. (2013). Besides AR 133 

characteristics, AR-induced precipitation has also been studied using satellite observations. For 134 

example, using radar reflectivity profiles from the Global Precipitation Measurement Dual-135 

Frequency Precipitation Radar (GPM-DPR), Cannon et al. (2020) showed that both stratiform 136 

and convective precipitation is abundant in ARs, and that AR-induced precipitation is usually 137 

triggered by forced ascent in the vicinity of a cold front in frontogenetic environments. While 138 

these satellite-based studies have improved our understanding of ARs in observations, most of 139 

these studies focused on ARs occurring over the eastern North Pacific, and a global satellite-140 

based AR study is lacking. Secondly, since 3D satellite observed wind field is currently not 141 

available, these studies usually detect ARs by adopting a simple IWV threshold of 2 cm and 142 

requiring the detected object to be longer than 2000 km and narrower than 1000 km (Neiman et 143 

al., 2008; Ralph et al., 2004; Wick et al., 2013). However, ARs are defined as enhanced moisture 144 

transport in the atmosphere (AMS Glossary of Meteorology, 2017). Detecting ARs using only 145 

the moisture field would inevitably run the risk of detecting filamentary features which resemble 146 

ARs, but are associated with weak moisture transport due to stagnant weather conditions. 147 

Furthermore, variability in ARs at different time scales can be controlled by the variabilities in 148 

both circulation and moisture (Gao et al., 2015; Ma et al., 2021; Ma et al., 2020; Ma & Chen, 149 

2022; Payne et al., 2020; Zhang et al., 2021). For example, at the interannual time scale, it has 150 

been shown that AR variability is predominantly controlled by the circulation variability (Ma & 151 

Chen, 2022). But at the decadal time scale, either the circulation variability (Ma et al., 2020) or 152 

the moisture variability (Zhang et al., 2021) can dominate the AR variability. Using only IWV in 153 

the AR detection can generate AR variability which only reflects the variability in the moisture 154 

field and thus fails to capture the variability in the circulation field. Therefore, further 155 

improvements are needed to incorporate the wind component into the AR detection methods for 156 

satellite observations. 157 

 158 

Given the limitations in the previous AR studies discussed above, the goals of this study are 159 

threefold: i) improve previous AR detection methods for satellite observations by incorporating 160 

satellite-based wind information, ii) perform a comprehensive intercomparison of AR 161 
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representations between seven reanalyses, which are commonly used in AR community, and 162 

satellite observation, iii) evaluate AR precipitation in reanalyses against precipitation from 163 

satellite observation. The structure of this paper is organized as follows. Section 2 describes the 164 

reanalyses and satellite data used, as well as the approach used to detect ARs in satellite data. 165 

Main results will be presented in section 3. A brief conclusion and discussion are provided in 166 

section 4. 167 

 168 

2 Data and Methods 169 

2.1 Satellite Data and Reanalyses 170 

IWV from SSM/I (Hollinger et al., 1990) has been widely used in AR studies. However, 171 

the spatial coverage of SSM/I is confined to oceans while observations over land, which 172 

are most relevant for AR impacts, are not available. To circumvent this issue, the version 173 

6 (V6) Level 3 (L3) total integrated column water vapor (TotH2OVap or IWV) product 174 

from the combined retrievals of the Atmospheric Infrared Sounder (AIRS) and the 175 

Advanced Microwave Sounding Unit (AMSU) instruments on NASA’s Aqua satellite is 176 

used in this study (hereafter AIRS/AMSU) (AIRS Science Team/Joao Teixeira, 2013). 177 

The AIRS/AMSU dataset has a global coverage (land + ocean) with spatial resolution of 178 

1° × 1° and daily temporal resolution. Observations made each day consist of an 179 

ascending orbit and a descending orbit (Tian et al., 2013). We take the average of these 180 

two orbits to obtain a much smoother field which is representative of the daily mean. Due 181 

to the limited swath width of the satellite observations, gaps with no observation exist 182 

between swaths. While averaging the ascending orbit and descending orbit to create the 183 

daily mean can effectively remove most of these swath gaps, small gaps remain over 184 

subtropical regions after this procedure. We fill in these small gaps using the 185 

“poisson_grid_fill” function from NCL (The NCAR Command Language., 2019). Note 186 

that the results presented in this study would not be affected by whether these small gaps 187 

are being filled or not. In order to get the lower tropospheric wind information, 188 

geopotential heights at 925, 850, 700, and 600 mb levels are also obtained from the 189 

AIRS/AMSU and processed in the same way as the IWV field (see section 2.2 for the use 190 

of this variable in our study). Observed precipitation is based on the Integrated Muti-191 

SatellitE Retrievals for GPM (IMERG) Version 6 Final Run (Huffman etal., 2019). This 192 

satellite-based precipitation dataset has been widely used in previous studies for mid-193 

latitude weather systems, such as cyclones and ARs (Arabzadeh et al., 2020; Naud et al., 194 

2020). Due to the temporal coverage of the AIRS/AMSU combined retrievals, the study 195 

period of this work is from 08/31/2002 to 09/24/2016. 196 

Seven reanalyses, most of which have been widely used in AR studies, are employed 197 

here: they are MERRA-2 (Gelaro et al., 2017), ERA5 (Hersbach et al., 2020), ERAI (Dee 198 

et al., 2011), JRA-55 (Kobayashi et al., 2015), CFSR (Saha et al., 2010), 199 

NCEP/Department of Energy (DOE) Reanalysis II (NCEP R2) (Kanamitsu et al., 2002) 200 

and NCEP R1 (Kalnay et al., 1996). The inclusion of ERAI, NCEP R1 and NCEP R2 201 

here allows us to see if there are any improvements in the AR representation from older 202 

generations of reanalyses to newer generations of reanalyses. These datasets have varied 203 
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temporal resolutions. Data at 00 and 12 UTC are averaged to obtain the daily mean. We 204 

also tried calculating the daily mean using data at 00, 06, 12, and 18 UTC. The results 205 

presented in this study are not sensitive to how the daily mean is calculated (not shown). 206 

Both IWV and geopotential height are bilinearly interpolated to a common resolution of 207 

1° × 1° before analysis. The precipitation fields from reanalyses also have varied 208 

temporal resolutions. Some datasets provide the field at the analysis time step while 209 

others provide it at forecast time step, although all reanalysis precipitation data used are 210 

essentially short-term forecasts (i.e., no assimilation of observed precipitation) and purely 211 

generated by the models without any corrections based on observations.  Precipitation 212 

data are thus processed accordingly to obtain the daily mean. More specifically, daily 213 

precipitation from MERRA-2 and ERA5 is calculated by aggregating hourly total 214 

precipitation. Daily precipitation in ERAI is calculated by summing the 12-hour 215 

forecasted accumulated precipitation initialized at 00 and 12 UTC. Daily precipitation in 216 

JRA-55 is calculated from the forecasted precipitation rate initialized at 00, 06, 12, and 217 

18 UTC with steps of 3 and 6 hours. Daily precipitation in CFSR is calculated by 218 

aggregating the 6-hour forecasted accumulated precipitation initialized at 00, 06, 12, and 219 

18 UTC. For NCEP R1 and NCEP R2, mean daily precipitation rate is available for direct 220 

download. All reanalysis-based precipitation data and IMERG are regridded to a common 221 

1° × 1° resolution using an areal conservative method (“area_conserve_remap” from 222 

NCL) before analysis. 223 

2.2 AR Detection Method 224 

As has been discussed above, AR detections for satellite data usually rely only on the 225 

IWV because satellite-based 3D wind fields are not available. To introduce wind 226 

information into the AR detection, we derive geostrophic winds from the geopotential 227 

height at 925, 850, 700, and 600 mb levels using the “z2geouv” function from NCL. 228 

Outside of the deep tropics in ERA5, geostrophic winds at these levels are found to 229 

temporally correlate with the actual winds with correlation coefficients close to one (not 230 

shown). Geostrophic winds at these four levels are then vertically averaged to obtain the 231 

mass-weighted vertical average geostrophic zonal < 𝑈𝑔 > and meridional < 𝑉𝑔 > winds 232 

using: 233 

< 𝑈𝑔 > =  
𝑈925 × 37.5 + 𝑈850 × 112.5 + 𝑈700 × 125 + 𝑈600 × 50

(37.5 + 112.5 + 125 + 50)
 234 

< 𝑉𝑔 > =  
𝑉925 × 37.5 + 𝑉850 × 112.5 + 𝑉700 × 125 + 𝑉600 × 50

(37.5 + 112.5 + 125 + 50)
 235 

where the subscripts in U and V denote pressure levels. The IVT based on the weighted 236 

vertical average of geostrophic winds, which we will call the geostrophic IVT (GIVT), is 237 

then calculated as follows: 238 

𝐺𝐼𝑉𝑇 = √(𝐼𝑊𝑉 × 〈𝑈𝑔〉)2 + (𝐼𝑊𝑉 × 〈𝑉𝑔〉)2 239 
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We find that the GIVT can serve as a good proxy for the actual IVT in terms of 240 

magnitude. As demonstrated in Figures 1a and 1b, the snapshot of the GIVT shown for 241 

ERA5 is nearly identical to the snapshot of actual IVT. Filaments of enhanced IVT in the 242 

actual IVT field can also be found in the GIVT field. Minor differences between these 243 

two fields only exist in the magnitude: GIVT tends to slightly overestimate the magnitude 244 

of the actual IVT, especially over regions with enhanced IVT. Indeed, as shown in Figure 245 

2a, which plots the joint probability distribution function (PDF) of the actual IVT versus 246 

GIVT in ERA5 for the year 2003, most of the points fall along the one-to-one line, 247 

indicating the good correspondence between the GIVT and the actual IVT. As IVT 248 

increases, slightly more points are located above the one-to-one line than those located 249 

below it. This corroborates the results in Figures 1a and 1b that GIVT tends to be slightly 250 

stronger than the actual IVT over enhanced IVT regions. Such sub-geostrophic wind is 251 

expected near a low pressure center due to gradient wind balance. As shown later, such a 252 

slight overestimate of the IVT magnitude by the GIVT has negligible effect on the ARs 253 

detected due to the percentile-based threshold adopted by the AR detection tool (ARDT) 254 

used in this study. 255 

 256 

 257 

Figure 1. A snapshot of the IVT (a) and GIVT (b) in ERA5 on 10/05/2003. (c) is showing the 258 

same snapshot of GIVT, but from AIRS/AMSU. Corresponding ARs detected by the modified 259 

algorithm are shown in (d), (e), and (f), respectively. 260 

 261 

 262 
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 263 

Figure 2. Joint probability distribution function of IVT versus GIVT in ERA5 (a) and IVT from 264 

ERA5 versus smoothed GIVT from AIRS/AMSU (b). Note that the color bars are in logarithmic 265 

scale and only data from the year 2003 are used. 266 

The ARDT used in this study is based on the IVT-based Guan & Waliser (2015) 267 

algorithm, with modifications so that GIVT can be directly used as input. This ARDT is a 268 

global algorithm which has been widely used in AR studies (e.g., Arabzadeh et al., 2020; 269 

Espinoza et al., 2018; Ionita et al., 2020; Kim et al., 2021; Nash et al., 2018). Notable 270 

criteria adopted by this ARDT are listed here. Readers are referred to Guan & Waliser 271 

(2015) for a detailed description of the algorithm. In the first step of the detection, a 272 

seasonally and regionally dependent 85th percentile of the IVT magnitude, or 100 kg m-1 273 

s-1, whichever is greater, is used as the intensity threshold. The detected “objects” are 274 

then further filtered by three IVT direction criteria. The detected “object” will be filtered 275 

out if 1) more than half of the grid cells have IVT direction deviating more than 45° from 276 

the object’s mean IVT direction (the coherence criterion), 2) mean poleward meridional 277 

IVT is less than 50 kg m-1 s-1 (the meridional IVT criterion) and 3) direction of object-278 

mean IVT deviates from the overall orientation of the object’s shape by more than 45° 279 

(the consistency criterion). Objects which pass these three IVT direction criteria are 280 

subjected to further geometrical screening, such that the final detected ARs are longer 281 

than 2000 km in length and have a length/width ratio greater than two. 282 

To test the sensitivity of the algorithm to the input variables, in the first step, we used 283 

both the IVT and GIVT from ERA5 as input to the original Guan & Waliser (2015) 284 

ARDT. The GIVT-based AR frequency, which is defined as the fraction of time a grid 285 

cell experiences AR conditions, is very similar to that based on the IVT (Figure S1). 286 

Enhanced AR frequency is found over the mid-latitude storm track regions (Figure S1a). 287 

However, compared to the AR frequency based on the IVT, results based on the GIVT 288 

underestimate AR frequency over mid-latitude regions and overestimate it over the 289 

subtropics (Figure S1b). We then removed the three IVT direction criteria one at a time, 290 

and tested the sensitivity of the modified algorithm to the input variables. We found that 291 

removing either the coherence criterion or the consistency criterion has very little effects 292 

on the AR frequency (Figures S1c and S1e), consistent with the degree of filtering 293 

associated with the two criteria reported in Guan and Waliser (2015). The differences 294 

between the IVT-based AR frequency and the GIVT-based AR frequency persist (Figures 295 

S1d and S1f). However, once we removed the meridional IVT criterion, the differences 296 
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between the IVT-based AR frequency and the GIVT-based AR frequency mostly vanish 297 

(Figure S1h). Meanwhile, the magnitude of the AR frequency also increases nearly 298 

everywhere (Figure S1g). These results imply that the differences in the magnitude of the 299 

meridional IVT between the IVT and GIVT are likely nonnegligible. This is likely due to 300 

boundary layer friction that causes the direction of actual winds to deviate from 301 

geostrophic winds. Given the results found in the sensitivity experiments, we removed 302 

the three IVT direction criteria of the original algorithm in our modified algorithm. After 303 

these three IVT direction criteria are removed, AR frequency increases nearly 304 

everywhere and its distribution becomes more uniform (Figure S1i).  305 

Besides removing these three criteria, two additional minor modifications are also made 306 

to the algorithm. We found that the modified algorithm tends to detect too many ARs 307 

over the Northern Hemisphere continents during boreal summer. To partially alleviate 308 

this problem, instead of calculating the IVT threshold for a particular month using all the 309 

time steps from the five months centered on that month over the study period, we only 310 

use the time steps from that month in the modified algorithm. Furthermore, previous 311 

studies suggested that the Guan & Waliser (2015) algorithm may occasionally pick up 312 

tropical disturbances as ARs (Guan et al., 2018; Lora et al., 2020). To remedy this 313 

problem, we impose that, if the detected object has all its area located within 30°N/S, it 314 

will be filtered out. This criterion mostly affects ARs within 30°N/S and it reduces the 315 

magnitude of AR frequency over these regions. We want to emphasize that the 316 

conclusions presented in this study are not sensitive to whether these two additional 317 

modifications are adopted or not (not shown). In summary, our modified algorithm is 318 

based on the Guan & Waliser (2015) ARDT and detects ARs with an enhanced 319 

IVT/GIVT relative to its background state, a length greater than 2000 km, and a 320 

length/width ratio greater than two (see table S1 for the summary of the differences 321 

between the original Guan & Waliser (2015) algorithm and the modified algorithm used 322 

in this study).     323 

Due partly to the low sampling frequency in satellite observations, the geostrophic winds 324 

derived from the geopotential height tend to be noisier compared to the smoother fields in 325 

reanalyses (Fetzer et al., 2006; Hearty et al., 2014; North et al., 1993; Tian et al., 2013; 326 

Tian & Thomas, 2020). Since geostrophic winds are derived based on the gradient of the 327 

geopotential height, these noises in the geopotential height result in the derived 328 

geostrophic winds being too strong compared to the geostrophic winds in reanalyses. We 329 

applied a simple bias correction to the satellite weighted vertical average geostrophic 330 

wind speed so that the satellite mean wind speed over midlatitudes is equal to that in 331 

ERA5 (see text S1 in the supplementary for details on how the bias correction is carried 332 

out). We found that these noises in the geostrophic wind field in satellite data can also 333 

increase the “false negative” rate for AR detection. In other words, features which are 334 

detected as ARs in reanalyses are occasionally not picked up as ARs in satellite data. 335 

After manually examining those ARs which are detected in reanalyses, but not in satellite 336 

data, we found that most of those ARs are either broken into more than one smaller 337 

object or with stronger GIVT magnitude concentrated within a smaller single object in 338 

satellite data. Both situations can result in the AR failing to meet the geometric criteria of 339 

AR. To resolve this issue, Gaussian smoothing was applied to the bias-corrected 340 

weighted vertical average geostrophic wind speed of the satellite data. (Note that 341 
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Gaussian smoothing is not applied to the reanalyses because the data from reanalyses is 342 

already quite smooth.) We adjusted the size of the smoothing kernel by varying the sigma 343 

parameter ranging from 1 to 6 in an increment of 0.5. We found that, when the sigma is 344 

too small, the resulting field is not smooth enough. This results in the “false negative” 345 

rate remaining high. However, when we set the sigma too large, the field is smoothed out 346 

too much. This effect can cause some filaments of enhanced IVT to be smoothed out and 347 

thus potentially get filtered out during the detection process. We set the sigma to be three 348 

in this study as a balance between smoothing the IVT enough yet not inadvertently 349 

erasing any filamentary structure. This smoothing on the AIRS/AMSU geostrophic wind 350 

field tends to slightly enhance the weak GIVT values while weakening the strong GIVT 351 

values (Figures 1c and 2b). Since the ARDT used in this study uses a percentile-based 352 

threshold, the smoothing is expected to have very minor effects on the ARs detected 353 

(comparing Figure 1f with 1d and 1e). As a result, the AR frequency difference between 354 

ERA5 and AIRS/AMSU is small when sigma is set to three. These two additional 355 

operations on the satellite data are based on the assumption that the ERA5 winds are 356 

better representative of the true observation, as the satellite-based geostrophic winds are 357 

not directly measured or dynamically constrained. Whether such an assumption is valid 358 

or not is not a concern in this study, since both satellite data and reanalyses have their 359 

own biases in representing AR winds, and the purpose of this study is not to treat satellite 360 

data as the true observation and evaluate the biases in reanalyses relative to satellite 361 

observations. Instead, our goal is to demonstrate the feasibility of including wind 362 

information for AR detection based on satellite data and also comprehensively investigate 363 

the spread among reanalyses. Therefore, the assumption we made is justifiable for the 364 

purpose of this study. 365 

 366 

3 Results 367 

3.1 AR Frequency and Characteristics 368 

Figure 3a shows the annual AR frequency distribution in AIRS/AMSU. Enhanced AR 369 

frequency is observed over the mid-latitude oceans. Unlike the AR frequency distribution 370 

obtained from other global ARDTs that participated in the ARTMIP (Figure S2), the AR 371 

frequency distribution in Figure 3a is spatially more uniform, and substantially more ARs 372 

are detected over land. It has been shown by previous studies that these features in the 373 

AR frequency distribution are unique to algorithms adopting relative AR thresholds (Rutz 374 

et al., 2019; Shields et al., 2018). Since our algorithm is modified from the Guan & 375 

Waliser (2015) ARDT, it’s thus expected that the AR frequency distribution based on our 376 

algorithm shares many similarities to that based on the Guan & Waliser (2015) algorithm 377 

(Figure S2). The spatial patterns of the AR frequency difference between reanalyses and 378 

AIRS/AMSU are very similar across reanalyses: the differences over the storm track 379 

regions, where ARs are most active, are generally small. Reanalyses tend to have fewer 380 

ARs over the subtropical regions while having more ARs over the higher latitudes 381 

poleward of 60°N/S, especially near the coast of Antarctica. As shown in Figure S3, this 382 

pattern in the AR frequency difference does not depend on the magnitude of the sigma 383 

used in the smoothing function for AIRS/AMSU. Reanalyses also tend to have slightly 384 
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more ARs over the high latitude land regions over the Northern Hemisphere. Compared 385 

to AIRS/AMSU, all reanalyses show more ARs around the date line. This is caused by 386 

the temporal discontinuity at the date line in the AIRS/AMSU daily data files which can 387 

occasionally prevent the detection of ARs over this region. In each AIRS/AMSU daily L3 388 

product file, observations start at the date line and progress westward. This results in the 389 

data immediately west of the date line being farthest apart in time (~24 hours) from those 390 

immediately east of the dateline, leading to the temporal discontinuity at the date line in 391 

AIRS/AMSU daily data files. For the zonal mean figures shown below, regions around 392 

the date line (±10°) are excluded from the calculations. In addition, pressure levels at 393 

925 and 850 mb are used in the derivation of the geostrophic winds. This can result in 394 

unrealistic AR statistics over topographies. Therefore, regions with climatological surface 395 

pressure less than 850 mb (based on ERA5) are also excluded in the calculations of zonal 396 

mean. After these bias corrections, we see that the spreads among the reanalyses are 397 

small, with NCEP R1 and NCEP R2 having only slightly higher AR 398 

frequency, suggesting that all reanalyses have similar performance in representing the AR 399 

frequency distribution (Figures 3c, 3d, and 3e). 400 

 401 

 402 

 403 

Figure 3. AR frequency detected by the modified algorithm based on AIRS/AMSU (a). AR 404 

frequency difference between ERA5 and AIRS/AMSU (b). The differences between the zonal 405 

mean AR frequency in reanalysis products and AIRS/AMSU. (d) and (e) are the same as (c), but 406 
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for the zonal mean differences over oceans and land, respectively. The shading in (c), (d) and (e) 407 

represents one standard deviation of the annual zonal mean AR frequency in AIRS/AMSU. 408 

AR frequency is controlled by both the size and the number of detected ARs. In 409 

AIRS/AMSU, both the size and the number of detected ARs are sensitive to the value of 410 

sigma chosen for the gaussian smoothing. As sigma increases, both the AR length and 411 

width increase while the number of detected ARs drops (not shown; consistent with 412 

Figure 5k,l of Guan & Waliser (2015)). We set the sigma value to three, which minimizes 413 

the AR frequency difference between ERA5 and AIRS/AMSU over midlatitudes (Figure 414 

S3). Figure 4a shows that the PDFs of the AR length are consistent across different 415 

datasets. Compared to the AR length in reanalyses, ARs in AIRS/AMSU are slightly 416 

longer. The spread measured by the standard deviation in the AR length across reanalyses 417 

is relatively small and only about 0.5% of the climatology in AIRS/AMSU. However, 418 

there is a larger spread in the AR width distribution with the spread across reanalyses 419 

reaching about 4% of the climatology (Figure 4b). In particular, the ARs in MERRA-2 420 

are the narrowest. Consistent with the narrowest ARs in MERRA-2, ARs in MERRA-2 421 

also have the smallest area (Figure 4c) and largest length/width ratio (Figure 4d). The 422 

total number of ARs in MERRA-2 during the study period is more than other datasets 423 

(Figure 4a), consistent with the ARTMIP analysis for MERRA-2 (Collow et al., 2022). 424 

This suggests that MERRA-2 tends to simulate more ARs, but with smaller AR size. 425 

These two effects in MERRA-2 compensate for each other and result in the AR 426 

frequency being comparable to those in other reanalyses. NCEP R1, NCEP R2, and to a 427 

lesser extent, CFSR have larger AR size due to the larger AR width in these datasets, but 428 

fewer ARs were detected in them. Consequently, the length/width ratio in these three 429 

datasets are smallest and AR frequencies in NCEP R1 and NCEP R2 are slightly higher 430 

compared to other reanalyses (Figures 3c, 3d and 3e). It is also worth pointing out that 431 

NCEP R1, NCEP R2 and CFSR start out with a coarser resolution of 2.5°×2.5°. Even 432 

though we have regridded them to a common resolution of 1°×1°, such a coarser native 433 

resolution can still be expected to have some impacts on the geometry of the ARs (e.g., 434 

Guan & Waliser. (2017)). The wider ARs found in these three datasets thus could be 435 

partially caused by their coarser native resolution.  436 

 437 
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 438 

Figure 4. Probability distribution functions of AR length (a), width (b), area (c), and length/width 439 

ratio (d) for all reanalyses and AIRS/AMSU. The numbers inside the parentheses in (a) indicate 440 

the total number of ARs detected during the study period. 441 

 442 

3.2 AR Strength 443 

AR GIVT is defined as the GIVT under AR conditions. As shown in Figure 5a, enhanced 444 

AR GIVT occurs over the storm track regions. Unlike AR frequency, the spatial 445 

distribution of AR GIVT is less uniform and exhibits more spatial variation, with 446 

enhanced AR GIVT concentrated in smaller regions of the storm tracks. Compared to the 447 

magnitude of the AR GIVT over oceans, AR GIVT over land is substantially weaker.  448 

The inter-product differences in AR GIVT between reanalyses and AIRS/AMSU have 449 

considerably similar spatial characteristics (Figures 5b, 5c, 5d, and 5e). Reanalyses show 450 

stronger AR GIVT over the midlatitudes, especially the storm track regions. Weaker 451 

GIVT can be found over subtropical regions. Since the geostrophic wind in AIRS/AMSU 452 

is bias-corrected based on ERA5 (see the Method section or text S1 in the 453 

supplementary), the differences in AR GIVT between reanalyses and AIRS/AMSU 454 

should not be treated as biases from reanalysis winds. Over the Northern Hemisphere, 455 

MERRA-2, NCEP R1, and NCEP R2 tend to have stronger AR GIVT. Over the Southern 456 
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Ocean, AR GIVT in NCEP R1 and NCEP R2 are substantially stronger than the AR 457 

GIVT in AIRS/AMSU (up to about 27% stronger) and those in other reanalyses. The 458 

spread among these five reanalyses is relatively small, though the AR GIVT in MERRA-459 

2 is slightly stronger, consistent with the stronger IVT magnitude in MERRA-2 found in 460 

Collow et al. (2022). It is not surprising that we also find that the results of the AR GIVT 461 

are consistent with those of the climatological mean GIVT (Figure S3), suggesting that 462 

differences in AR GIVT among datasets are mostly due to the differences in the 463 

climatological mean GIVT. 464 

 465 

 466 

 467 

Figure 5. AR GIVT in AIRS/AMSU (a). AR GIVT difference between ERA5 and AIRS/AMSU 468 

(b). The differences between zonal mean AR GIVT in reanalyses and AIRS/AMSU (c). (d) and 469 

(e) are the same as (c), but for the zonal mean AR IVT over oceans and land, respectively. The 470 

shading in (c), (d), and (e) represents one standard deviation of the annual zonal mean AR GIVT 471 

in AIRS/AMSU. 472 

 473 

The inter-product differences in the AR GIVT can be caused by the differences in AR 474 

IWV and AR geostrophic wind magnitude. Figure 6a shows the AR IWV in 475 

AIRS/AMSU. Enhanced AR IWV mostly occurs over the subtropical regions 476 

equatorward of 30°N/S. Poleward of 30°N/S, AR IWV decreases rapidly. Compared to 477 

the AR IWV over oceans, AR IWV over land is substantially weaker. Compared to the 478 
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AR IWV in AIRS/AMSU, reanalyses simulate stronger AR IWV over midlatitudes 479 

poleward of 30°N/S and weaker AR IWV can be found equatorward of 30°N/S. This 480 

spatial pattern in the difference is shared by all reanalyses (Figures 6c, 6d and 6e). Over 481 

the Northern Hemisphere, the spread among all reanalyses is relatively small, with the 482 

AR IWV in NCEP R1 and NCEP R2 being slightly stronger than those in other 483 

reanalyses. Over the Southern Ocean, the AR IWV in NCEP R1 and NCEP R2 is 484 

substantially stronger than those in the other five reanalyses, which is consistent with the 485 

results in AR GIVT. Similar to GIVT, the results of the AR IWV are also reflective of the 486 

results in the climatological mean IWV (Figure S4). Since the AIRS/AMSU IWV data 487 

are subject to sampling biases and there is no bias correction applied to the AIRS/AMSU 488 

IWV field (Hearty et al., 2014; Tian et al., 2013; Tian & Thomas, 2020), the differences 489 

between AIRS/AMSU and other reanalyses should not be viewed as the biases in 490 

reanalyses. Instead, the spread among datasets should be simply viewed as observed 491 

uncertainties. 492 

 493 

 494 

 495 

Figure 6. AR IWV in AIRS/AMSU (a). AR IWV difference between ERA5 and AIRS/AMSU 496 

(b). The differences between zonal mean AR IWV in reanalyses and AIRS/AMSU (c). (d) and (e) 497 

are the same as (c), but for the zonal mean AR IWV over oceans and lands, respectively. The 498 

shading in (c), (d), and (e) represents one standard deviation of the annual zonal mean AR IWV 499 

in AIRS/AMSU. 500 
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Figure 7a shows the AR geostrophic wind magnitude. Unlike the pattern in the AR IWV, 501 

enhanced AR wind is found over the regions poleward of 30°N/S. This suggests that the 502 

enhanced AR GIVT shown in Figure 5a is dominated by IWV over the subtropics, but by 503 

wind over midlatitudes. Consistent with the climatological wind speed (Fig. S5), AR 504 

wind over the Southern Hemisphere is stronger compared to that over the Northern 505 

Hemisphere. Enhanced wind can also be found along the coastal regions of Antarctica. 506 

The enhanced wind over these regions is likely unrealistic, which may be caused by the 507 

presence of topography. Compared to the AR wind in AIRS/AMSU, reanalyses 508 

overestimate the wind magnitude over the midlatitude Southern Ocean while 509 

substantially underestimating it along the coastal regions of Antarctica where sea ice is 510 

present. Such a large difference between reanalyses and AIRS/AMSU over these regions 511 

usually covered by sea ice likely indicates that the wind over these regions in 512 

AIRS/AMSU may be biased high (Yue & Lambrigtsen, 2017, 2020). Weaker wind in 513 

reanalyses can be found over subtropical regions and regions at around 60°N. Unlike the 514 

AR IWV field, the spread in the AR wind among reanalyses is small (Figures 7c, 7d and 515 

7e), indicating higher skills for reanalyses in simulating the wind field. Note that the AR 516 

wind in the AIRS/AMSU shown here has been bias-corrected by the wind filed in ERA5 517 

based on the climatological wind speed over midlatitudes. The differences between 518 

reanalyses and AIRS/AMSU thus should not be treated as biases in reanalyses. 519 

 520 

 521 

 522 
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Figure 7. AR geostrophic wind magnitude in AIRS/AMSU (a). AR geostrophic wind magnitude 523 

difference between ERA5 and AIRS/AMSU (b). The differences between zonal mean AR 524 

geostrophic wind magnitude in reanalyses and AIRS/AMSU (c). (d) and (e) are the same as (c), 525 

but for the zonal mean AR geostrophic wind magnitude over oceans and land, respectively. The 526 

shading in (c), (d), and (e) represents one standard deviation of the annual zonal mean AR wind 527 

magnitude in AIRS/AMSU. The geostrophic winds shown here are the mass-weighted vertical 528 

average geostrophic winds. 529 

3.3 AR Precipitation 530 

It has been well documented that ARs are associated with enhanced precipitation (e.g., 531 

Arabzadeh et al., 2020; Gao et al., 2016; Lavers & Villarini, 2013). It’s also quite 532 

common that reanalysis-based precipitation is directly used in AR studies (Collow et al., 533 

2020; Gao et al., 2016; Kim et al., 2022; Maclennan et al., 2022; Pasquier et al., 2019; 534 

Zhou et al., 2022). Yet, reanalysis-based precipitation is not directly constrained by 535 

observations. Their performance against observed precipitation thus requires further 536 

evaluation. In this section, we will focus on AR precipitation which is defined as the 537 

precipitation that falls within the AR boundaries. Figure 8a shows the mean AR 538 

precipitation intensity. Since observations of precipitation in IMERG are scarce poleward 539 

of 60°N/S, the analyses of AR-related precipitation will be restricted to regions within 540 

60°N/S. Over the Northern Hemisphere, enhanced AR precipitation occurs over the 541 

poleward flank of the AR active regions over both the North Pacific and North Atlantic. 542 

Intense AR precipitation can be observed extending from the southwest of the ocean 543 

basin into the northeast of the ocean basin. We note a discontinuity between the western 544 

North Pacific and the eastern North Pacific. The intensity west of the date line is much 545 

weaker than that over east of the dateline. The exact cause of this discontinuity is unclear. 546 

However, after manual examinations of the identified ARs and the precipitation field, 547 

there seems to be a time lag between the AR footprints detected from AIRS/AMSU and 548 

the precipitation systems in IMERG over the western North Pacific: the precipitation 549 

systems tend to locate east/northeast (ahead) of the AR footprints. This spatial mismatch 550 

between the AR footprints and the precipitation systems likely contributes to the 551 

abnormally weak AR precipitation over this region. Therefore, we will exclude this 552 

region from the following analyses and discussion, as well as in the zonal mean 553 

calculations followed. 554 

 555 

 556 

 557 
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 558 

Figure 8. AR precipitation intensity in IMERG (a). AR precipitation intensity difference between 559 

ERA5 and IMERG (b). The differences between zonal mean AR precipitation intensity in 560 

reanalyses and IMERG (c). (d) and (e) are the same as (c), but for the zonal mean AR 561 

precipitation intensity over oceans and land, respectively. The shading in (c), (d), and (e) 562 

represents one standard deviation of the annual zonal mean AR precipitation intensity in IMERG. 563 

Over the Southern Hemisphere, consistent with Collow et al. (2022), strong AR 564 

precipitation occurs over the South Pacific and South Atlantic while AR precipitation 565 

over the South Indian Ocean is relatively weak. Compared to the AR precipitation over 566 

oceans, AR precipitation over land is much weaker, except over some coastal regions 567 

(Figures 8a). Reanalyses underestimate the AR precipitation over regions with strong AR 568 

precipitation intensity, such as the northeastern North Pacific, the North Atlantic 569 

poleward of 50°𝑁, western subtropics over the South Pacific and the Southern Ocean 570 

Poleward of around 40°S. The differences between reanalyses and satellite observation 571 

are relatively small over regions between 30° and 40° latitude in both hemispheres 572 

(Figure 8c). The biases over land are smaller compared to those over oceans, likely due to 573 

the smaller AR precipitation intensity over land (Figure 8e). Due to their small areas, land 574 

regions poleward of 40°S are excluded from the zonal mean calculation over land. 575 

Compared to other reanalyses, AR precipitation intensity is weakest in NCEP R1 while 576 

the spread among the other six reanalyses is generally small. 577 

As shown in Figure 9a, ARs contribute substantially to the total annual precipitation. 578 

Over many of the oceanic and coastal regions, AR precipitation can account for up to half 579 

of the total annual precipitation. The contribution of ARs to total precipitation over land 580 

is spatially more heterogeneous. For example, ARs can contribute up to half of the annual 581 
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precipitation over Australia and North Africa. At the same time, East Asia only receives 582 

10-30% of its annual precipitation from ARs. Compared to observation, reanalyses 583 

generally underestimate ARs’ contribution to the total precipitation over oceans, 584 

especially over regions equatorward of 30°N/S and poleward of 50°N/S. Smaller 585 

differences between reanalyses and satellite observation can be found over regions 586 

between 30°N/S and 40°N/S. Over land, ARs in reanalyses can contribute more to the 587 

total precipitation, such as over Australia and East Asia. At the same time, they can also 588 

underestimate ARs’ contribution to the total precipitation over regions such as northern 589 

North America and South Africa. The spread across reanalyses is generally small. 590 

However, over the Northern Hemisphere and equatorward of about 30°S over the 591 

Southern Hemisphere, NCEP R1 simulates the lowest contribution to total precipitation 592 

by ARs while CFSR produces the lowest contribution to total precipitation by ARs over 593 

oceans poleward of 30°S over the Southern Hemisphere.  594 

 595 

 596 

 597 

 598 

Figure 9. AR precipitation fraction in IMERG (a). AR precipitation fraction difference 599 

between ERA5 and IMERG (b). The differences between zonal mean AR precipitation 600 

fraction in reanalyses and IMERG (c). (d) and (e) are the same as (c), but for the zonal 601 

mean AR precipitation fraction over oceans and land, respectively. The shading in (c), (d), 602 
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and (e) represents one standard deviation of the annual zonal mean AR precipitation fraction in 603 

IMERG. 604 

 605 

It has been shown by previous studies that ARs play an even more important role in 606 

extreme precipitation compared to mean precipitation (Arabzadeh et al., 2020; Gao et al., 607 

2016; Guan et al., 2023; Waliser & Guan, 2017). Defined as the 95th percentile intensity 608 

of all the AR precipitation (including non-precipitating days), AR extreme precipitation 609 

intensifies substantially (Figure 10a) compared to AR mean precipitation (Figure 8a). 610 

Over the western South Pacific subtropics, northwest of the South Atlantic and southwest 611 

of the North Atlantic, the intensity of AR extreme precipitation can exceed 60 mm/day. 612 

Over the Southern Ocean, the spatial pattern of the AR extreme precipitation intensity is 613 

very similar to the AR mean precipitation intensity, with very strong intensity observed 614 

over the South Pacific and South Atlantic. The intensity over the South Indian Ocean is 615 

substantially weaker. Over the Northern Hemisphere oceans, enhanced AR extreme 616 

precipitation can be observed over the entire ocean basins of the North Pacific and North 617 

Atlantic, except over the southeast ocean basins. Enhanced AR extreme precipitation can 618 

also be found over the west coasts of North America and Chile due to orographic lifting, 619 

as well as in eastern North America and eastern South America. The spatial patterns of 620 

the difference between reanalyses and satellite observation (Figure 10b) are similar to 621 

those for the differences in AR mean precipitation between reanalyses and satellite 622 

observation (Figure 8b). The AR extreme precipitation in reanalyses is substantially 623 

weaker than the satellite observation nearly everywhere (Figure 10b). The largest 624 

underestimate occurs over the subtropical oceans and regions poleward of 50°N/S. The 625 

differences over land are smaller compared to the differences over oceans due likely to 626 

the weaker AR extreme precipitation over land. Over land, the magnitude in MERRA-2 627 

is most comparable to the observation (Figure 10e). The magnitude of the AR extreme 628 

precipitation is weakest in NCEP R1, followed by ERAI (Figure 10c). The spread of the 629 

other five reanalyses is generally small (Figure 10c). There is an improvement in 630 

simulating AR precipitation intensity from NCEP R1 to NCEP R2 and CFSR. Similar 631 

improvement can also be found from ERAI to ERA5. 632 

 633 

 634 

 635 
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 636 

Figure 10. Extreme AR precipitation intensity in IMERG (a). Extreme AR precipitation intensity 637 

difference between ERA5 and IMERG (b). The differences between zonal mean extreme AR 638 

precipitation intensity in reanalyses and IMERG (c). (d) and (e) are the same as (c), but for the 639 

zonal mean extreme AR precipitation intensity over oceans and land, respectively. The shading in 640 

(c), (d), and (e) represents one standard deviation of the annual zonal mean extreme AR 641 

precipitation intensity in IMERG. 642 

 643 

Next, we examine the AR fractional contribution to total extreme precipitation amount. 644 

For a grid point, we define an extreme precipitation threshold as the 95th percentile of all 645 

precipitation with intensity greater than 0.01 mm/day (including both AR days and non-646 

AR days). This threshold is calculated separately for each dataset. The total extreme 647 

precipitation for a grid point is then calculated by summing all the daily precipitation 648 

with intensity greater than or equal to this extreme precipitation threshold. As shown in 649 

Figure 11a, the spatial pattern of the fractional contribution to extreme precipitation by 650 

ARs is very similar to the spatial pattern in the fractional contribution to mean 651 

precipitation by ARs (Figure 9a). However, ARs contribute more to the total extreme 652 

precipitation. Compared to the 30-50% in the fractional contribution to mean 653 

precipitation, ARs account for 50-70% of the total extreme precipitation over most of the 654 

oceanic regions. Unlike the fractional contribution to mean precipitation which shows the 655 

largest fraction at around 30°N/S, the spatial pattern in the fractional contribution to 656 

extreme precipitation is spatially more uniform over oceans. Over land, large fractional 657 

contribution can be found over the west coast of North America, Chile, South Africa, 658 

eastern North America, eastern South America, Australia, and interestingly North Africa. 659 



manuscript submitted to replace this text with name of AGU journal 

 

In contrast to the differences in the fractional contribution to mean precipitation which 660 

shows strong underestimates by reanalyses nearly everywhere, the differences in 661 

fractional contribution to extreme precipitation are smaller. Underestimates by reanalyses 662 

can be found over regions poleward of 50°N/S and some regions over the subtropics. 663 

Over midlatitudes and many land regions, ARs in reanalyses tend to contribute slightly 664 

more to the total extreme precipitation. Compared to other reanalyses, NCEP R1 and R2 665 

tend to simulate a slightly smaller fraction of extreme precipitation contributed by ARs, 666 

especially over oceanic regions equatorward of about 40°N/S. 667 

Despite using different definition of AR days and/or different precipitation dataset, the 668 

satellite-based spatial patterns of the AR precipitation intensity (Figure 8a), fraction 669 

(Figure 9a), extreme AR precipitation intensity (Figure 10a) and fraction (Figure 11a) 670 

show marked similarity to those based on the original Guan & Waliser (2015) algorithm 671 

using reanalysis data (Arabzadeh et al., 2020; Zhao, 2022). These results indicate that our 672 

algorithm can correctly capture those precipitating systems with filaments of enhanced 673 

moisture transport. Compared to the original Guan & Waliser (2015) algorithm, the 674 

modified algorithm used here produces slightly higher AR frequency and with a more 675 

uniform spatial pattern (compared Figure 3a to Figure S2d). The consistency in the 676 

spatial patterns of the AR precipitation characteristics between our algorithm and the 677 

original Guan & Waliser (2015) algorithm suggests that both algorithms likely have high 678 

agreement in detecting those relatively strong ARs with intense precipitation. The 679 

disagreement in the AR frequency distribution is thus likely caused by the modified 680 

algorithm used here being able to detect more relatively weak ARs due to its less 681 

stringent criteria. 682 

 683 

 684 

 685 
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 686 

Figure 11. Extreme AR precipitation fraction in IMERG (a). Extreme AR precipitation 687 

fraction difference between ERA5 and IMERG (b). The differences between zonal mean 688 

extreme AR precipitation fraction in reanalyses and IMERG (c). (d) and (e) are the same 689 

as (c), but for the zonal mean extreme AR precipitation fraction over oceans and land, 690 

respectively. The shading in (c), (d), and (e) represents one standard deviation of the annual 691 

zonal mean extreme AR precipitation fraction in IMERG. 692 

It has been well documented that climate models tend to suffer from the so-693 

called  “drizzling” bias in which models tend to rain too frequently and too lightly (Chen 694 

et al., 2021; Dai, 2006). To investigate whether this problem is also present in AR 695 

precipitation, we define a metric called AR precipitation frequency. There is no guarantee 696 

that precipitation must occur when a grid point is experiencing AR conditions. We thus 697 

define AR precipitation frequency as the fraction of AR days a grid point experiences 698 

noticeable precipitation. Here, noticeable precipitation is defined to be greater than or 699 

equal to 0.5 mm/day. We tried varied thresholds ranging from 0.1 mm/day to 2 mm/day. 700 

The conclusions presented here are not sensitive to the threshold used (not shown). As 701 

shown in Figure 12a, over most of the mid-latitude regions, more than 80% of the AR 702 

days are associated with noticeable precipitation. This suggests that our algorithm is able 703 

to effectively identify precipitating systems with enhanced moisture transport. Smaller 704 

AR precipitation frequency is generally found over land and subtropical regions, 705 

suggesting that ARs are usually less efficient in generating precipitation over these 706 

regions. Compared to observation, ARs in reanalyses tend to precipitate too often, 707 

especially over subtropics equatorward of 30°N/S, which is consistent with previous 708 

studies showing that “drizzling” bias is most severe over lower latitude regions (Chen et 709 

al., 2021; Dai, 2006). The “drizzling” bias of ARs in reanalyses discovered here seems to 710 
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be consistent with previous studies in which they found that reanalyses tend to simulate 711 

too many wet days compared to observations (Herold et al., 2016; Naud et al., 2020; 712 

Zhou & Wang, 2017). Other regions which also suffer from this problem include regions 713 

poleward of 50°S, Eurasia, and the west coasts of North America and South America. 714 

Interestingly, this “drizzling” bias is greatly alleviated poleward of about 30°N over 715 

North Pacific and North Atlantic, as well as over the Southern Ocean between about 30°S 716 

to 40°S. Surprisingly, the biases in the AR precipitation frequency in NCEP R1 and R2 717 

are relatively smaller compared to other newer generation of reanalyses (Figures 12c, d 718 

and e). This seems to be in line with the finding by Zhou & Wang (2017) who showed 719 

that the frequency of the drizzle days over China is lower in NCEP R1 and R2 compared 720 

to other reanalysis products. In these two reanalyses, ARs precipitate even less often 721 

compared to observation over oceanic regions poleward of about 30°N over the North 722 

Atlantic. As shown in Figure S6, the biases in the AR precipitation frequency in 723 

reanalyses are also consistent with the biases in the precipitation frequency, which is 724 

simply defined as the fraction of days with daily precipitation greater than or equal to 0.5 725 

mm/day. The reasons for the smaller AR-related “drizzling” bias in these two older 726 

generation reanalyses are unknown and warrant further studies.  727 

 728 

 729 

 730 

 731 
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Figure 12. AR precipitation frequency in IMERG (a). AR precipitation frequency difference 732 

between ERA5 and IMERG (b). The differences between zonal mean AR precipitation frequency 733 

in reanalyses and IMERG (c). (d) and (e) are the same as (c), but for the zonal mean AR 734 

precipitation frequency over oceans and land, respectively. The shading in (c), (d), and (e) 735 

represents one standard deviation of the annual zonal mean AR precipitation frequency in 736 

IMERG. 737 

 738 

5 Conclusions and Discussion 739 

Satellite observations and reanalyses have been indispensable in characterizing ARs, which are 740 

associated with changes in both moisture and wind fields. However, previous AR studies using 741 

satellite data usually detect ARs based only on the IWV while studies using reanalyses usually 742 

make the assumption that reanalyses are representative of the true observation (Matrosov, 2013; 743 

Neiman et al., 2008; Ralph et al., 2004; Wick et al., 2013). In this study, we improve previous 744 

satellite-based AR studies by incorporating wind into the AR detection. Low-level geostrophic 745 

winds derived from satellite-based geopotential height are combined with the satellite-based 746 

IWV to obtain the GIVT. We demonstrate that GIVT can serve as a good proxy for IVT in terms 747 

of magnitude. By removing the three IVT direction criteria in the Guan & Waliser (2015) 748 

algorithm, namely the coherence criterion, the meridional IVT criterion and the consistency 749 

criterion, we show that the AR frequency based on the GIVT and the one based on the IVT are 750 

nearly identical. The modified ARDT is then applied to the GIVT from the satellite observation 751 

by AIRS/AMSU and seven commonly used reanalyses: MERRA-2, ERA5, ERAI, JRA-55, 752 

CFSR, NCEP R1, and NCEP R2. We find that all datasets show high agreement on AR 753 

frequency. Given that the IWV and wind field in reanalyses are strongly constrained by satellite 754 

observations, this result should be expected: a weather system which is present in satellite 755 

observations should also be present in reanalyses. While the spread in AR length across datasets 756 

is relatively small, larger spread in the AR width can be found across datasets. Consequently, the 757 

spread in width leads to the spreads in the AR area and AR length/width ratio. Compared to other 758 

datasets, MERRA-2 tends to simulate narrower and more ARs while CFSR, NCEP R1, and 759 

NCEP R2 tend to simulate broader and fewer ARs. Compared to ARs in satellite observation, 760 

ARs in reanalyses have stronger GIVT over midlatitudes. The spread in the AR GIVT among 761 

reanalyses is mostly caused by the spread in AR IWV while the spread in AR wind magnitude is 762 

small. 763 

 764 

Unlike IWV and winds in reanalyses which are heavily constrained by observations, 765 

precipitation in reanalyses is produced by the models without any direct observational 766 

constraints. Larger biases are thus expected in reanalysis-based precipitation. We evaluate the 767 

AR-induced precipitation in reanalyses against that based on IMERG. We reveal systematic 768 

biases in the reanalysis-based AR precipitation characteristics. Specifically, we find that 769 

reanalyses systematically underestimate both the mean and extreme AR precipitation intensity 770 

over oceans, with the strongest underestimates found in NCEP R1. Consequently, the fractional 771 

contributions to both the mean and extreme precipitation by ARs are all underestimated by 772 

reanalyses. It has long been known that climate models suffer from the so-called “drizzling” bias 773 

problem (Chen et al., 2021; Dai, 2006). Namely, models tend to rain too often and too lightly. 774 

Defining AR precipitation frequency as the fraction of AR days when a grid point experiences 775 

noticeable precipitation, we discover that ARs in reanalyses tend to rain too often, especially 776 
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over the lower latitude regions. Combined with the weak biases in the AR precipitation intensity, 777 

we demonstrate that the “drizzling” bias also exists for AR precipitation in reanalyses. These 778 

findings cast doubts on the direct uses of reanalysis-based precipitation in AR studies. 779 

 780 

Studies have shown that the statistics of ARs and AR precipitation are sensitive to the ARDT 781 

used (Collow et al., 2022; Rutz et al., 2019; Shields et al., 2018). In this study, we employed the 782 

modified ARDT based on Guan & Waliser (2015) to demonstrate the feasibility of using GIVT 783 

for detecting ARs. In this regard, this study thus serves as a proof of concept. We have 784 

demonstrated that GIVT can be a good proxy for IVT given that the direction of GIVT/IVT is 785 

not considered. Therefore, as long as the IVT-based ARDT doesn’t have any IVT direction 786 

criteria, GIVT can be used readily as input to the algorithm and produce AR statistics 787 

comparable to those based on IVT. As has been shown (Figure S2), the AR statistics based on 788 

Guan & Waliser (2015) are quite different from those based on other ARDTs. The results 789 

presented in this study are likely algorithm-dependent. For example, we show in this study that 790 

there is a high agreement among datasets on the AR frequency. However, this is mostly due to 791 

the percentile-based threshold used in our ARDT. It can be expected that reanalyses with larger 792 

climatological GIVT would have larger AR frequency if an absolute threshold is used. 793 

Nevertheless, since an identical ARDT is consistently applied to all datasets, the results 794 

regarding the spreads among datasets in this study should be more robust. 795 

 796 

It is well known that the satellite products have sampling biases (Fetzer et al., 2006; Hearty et al., 797 

2014; Lin et al., 2002; North et al., 1993; Tian et al., 2013; Tian & Thomas, 2020). As a product 798 

obtained from both infrared (AIRS) and microwave (AMSU) sensors, the retrieval quality of 799 

AIRS/AMSU under cloudy conditions degrades rapidly, and the sampling frequency under 800 

cloudy regions, such as the ITCZ and mid-latitude regions, is lower than that over the clear 801 

regions, such as the subtropics and some land regions. Furthermore, the Aqua satellite on which 802 

the AIRS and AMSU sensors board is in a Sun-synchronous polar orbit, both AIRS and AMSU 803 

can only sample the atmosphere twice daily at low latitude regions and thus cannot adequately 804 

resolve the diurnal cycle. These sampling issues can result in the sampling biases in the 805 

AIRS/AMSU observations (Hearty et al., 2014; Tian et al., 2013; Tian & Thomas, 2020). In 806 

addition, the AIRS/AMSU may also have measurement errors due to the AIRS/AMSU retrieval 807 

algorithm (Hearty et al., 2014). Given these factors, the results based on AIRS/AMSU are 808 

subject to sampling biases and measurement errors and the differences between AIRS/AMSU 809 

and other reanalyses also should not be viewed as biases in reanalyses. Instead, the spread among 810 

datasets should be simply viewed as observed uncertainties. Smaller spread of a quantity thus 811 

gives us more confidence in the ability of reanalyses and satellite observations in representing 812 

the true observation of that quantity and vice versa. In this sense, we have more confidence in the 813 

reanalyses and satellite observation’s ability in representing AR frequency, AR length and AR 814 

wind magnitude while our confidence in the AR width and AR IWV representations is lower. 815 

 816 

While potential biases exist in the IWV and geostrophic wind field from AIRS/AMSU, it is also 817 

possible that the satellite-based precipitation product IMERG also contains biases. Evaluations 818 

on the performance of IMERG against other ground observations and remotely sensed products 819 

have shown varied results (Pradhan et al., 2022). Whether IMERG has better performance than 820 

other observed precipitation products remains inconclusive. However, IMERG is produced by 821 

merging the precipitation estimates with highest quality passive microwave sensors and infrared 822 
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sensors. It thus can be regarded as the state-of-the-art observational precipitation product (Li et 823 

al., 2023; Ma et al., 2020; Watters et al., 2021; Xin et al., 2022). Compared to IMERG, it has 824 

been well known that models have trouble simulating the precipitation realistically (Chen et al., 825 

2021; Christopoulos & Schneider, 2021; Frei et al., 2003; Kim et al., 2021). It thus can be 826 

expected that the IMERG precipitation is closer to the true observation compared to reanalysis-827 

based precipitation. The differences between IMERG-based AR precipitation and reanalysis-828 

based AR precipitation can also be viewed as biases in reanalyses. Furthermore, a previous study 829 

(Naud et al., 2020), which uses IMERG to evaluate the modeled precipitation in oceanic 830 

extratropical cyclones, found that IMERG-based cyclone precipitation is stronger over the warm 831 

sector of the cyclone compared to other model- and reanalysis-based cyclone precipitation. 832 

Given that ARs are usually located over the warm sector of the cyclone, this result adds further 833 

confidence to the findings presented in this study. 834 

 835 

In this study, we have provided a proof of concept for the feasibility of detecting ARs in satellite 836 

observations using both moisture and wind information. As the quality of the satellite 837 

observations continues to improve, the methodology presented here can be applied to other 838 

satellite observations such as geostationary satellites to develop higher resolution or higher 839 

frequency AR statistics. We have also conducted a comprehensive intercomparison between 840 

reanalyses and satellite observations and among reanalyses on their skills in representing AR 841 

characteristics and AR-related precipitation. Our findings provide better guidance on the direct 842 

uses of reanalyses and reanalysis-based precipitation in future AR studies. The satellite-based 843 

AR statistics and AR precipitation developed in this study can also be used to evaluate the 844 

climate models’ skills in representing ARs and AR precipitation. Such evaluation will be 845 

presented in a future study. 846 
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 1235 

Text S1. 1236 

Due to the presence of the noises in the geopotential height field in AIRS/AMSU, the derived 1237 

geostrophic winds are too strong compared to those derived from reanalyses. To alleviate this 1238 

problem, a bias correction procedure was applied to the geostrophic wind magnitude in 1239 

AIRS/AMSU. More specifically, the weighted vertical average geostrophic winds were first 1240 

calculated for each grid point using data at 925, 850, 700 and 600 mb. The climatological mean 1241 

geostrophic wind magnitude for each grid point over mid-latitude oceans from 30° N/S to 60° 1242 

N/S in ERA5 was then calculated and regressed onto the unsmoothed climatological mean 1243 

geostrophic wind magnitude of the corresponding grid point over mid-latitude oceans from 30° 1244 

N/S to 60° N/S in AIRS/AMSU (spatial regression). The obtained regression coefficient and 1245 

intercept were then applied to the geostrophic wind magnitude at every grid point and time step 1246 

in AIRS/AMSU. This bias correction procedure would correct the mean in AIRS/AMSU so that 1247 

the climatological mean geostrophic wind magnitude spatially averaged over mid-latitude oceans 1248 

from 30° N/S to 60° N/S in AIRS/AMSU would equal to that in ERA5. Since the AR detection 1249 
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algorithm used in this study adopts a percentile-based threshold, such bias correction on the 1250 

geostrophic wind magnitude would not affect the ARs detected. 1251 

 1252 

 1253 

Criteria Original Guan & Waliser 

(2015) 

Modified Guan & Waliser 

(2015) 

Threshold 85th percentile IVT for a 

particular month is based 

on all the time steps from 

the five months centered 

on that month over the 

study period and a lower 

limit of 100 kg/m/s 

85th percentile IVT for a 

particular month is based 

on all the time steps from 

that month over the study 

period and a lower limit of 

100 kg/m/s 

Coherence criterion Yes No 

Meridional IVT criterion Yes No 

Consistency Criterion Yes No 

Length >= 2000 km Yes yes 

Length/Width Ratio >= 2 Yes Yes 

Detected Object filtered 

out if all its area located 

within 30° N/S 

No Yes 

Table S1. Summary of the differences between the original Guan & Waliser (2015) algorithm and the 1254 

modified algorithm used in this study. The definition of coherence criterion, meridional IVT criterion, and 1255 

consistency criterion can be found in section 2.2 of the main text. 1256 

 1257 

 1258 

 1259 
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Figure S1. AR frequency distribution based on GIVT using the original Guan & Waliser (2015) 1261 

algorithm (a), the original algorithm but with the coherence criterion removed (c), the original algorithm 1262 

but with the consistency criterion removed (e), the original algorithm but with the meridional IVT 1263 

criterion removed (g), the original algorithm but with all three IVT direction criteria removed (i). (b), (d), 1264 

(f), (h), and (j) are showing the AR frequency differences between those based on GIVT and those based 1265 

on IVT (GIVT – IVT) using the corresponding modified algorithms. See the main text for more 1266 

information on the IVT direction criteria used in the original algorithm. All results shown here are based 1267 

on ERA5. 1268 

  1269 
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 1270 

 1271 

Figure S2. Annual AR frequency based on the AR detection algorithm for satellite data and seven global 1272 

AR detection algorithms participated in the ARTMIP. All panels are based the 6-hourly data from 1273 

MERRA-2. 1274 

 1275 
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 1277 

 1278 

 1279 

 1280 

Figure S3. AR frequency difference between ERA5 and AIRS/AMSU as a function of sigma. 1281 

 1282 

 1283 

 1284 

 1285 

 1286 
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 1287 

Figure S4. Climatological mean GIVT in AIRS/AMSU (a). Climatological mean GIVT difference 1288 

between ERA5 and AIRS/AMSU (b). The differences between climatological zonal mean GIVT in 1289 

reanalyses and AIRS/AMSU (c). (d) and (e) are the same as (c), but for the climatological zonal mean 1290 

GIVT over oceans and land, respectively. The shading in (c), (d) and (e) represents one standard deviation 1291 

of the annual zonal mean GIVT in AIRS/AMSU 1292 

  1293 
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 1294 

 1295 

 1296 

Figure S5. Climatological mean IWV in AIRS/AMSU (a). Climatological mean IWV difference between 1297 

ERA5 and AIRS/AMSU (b). The differences between climatological zonal mean IWV in reanalyses and 1298 

AIRS/AMSU (c). (d) and (e) are the same as (c), but for the climatological zonal mean IWV over oceans 1299 

and land, respectively. The shading in (c), (d) and (e) represents one standard deviation of the annual 1300 

zonal mean IWV in AIRS/AMSU 1301 
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 1310 

 1311 

 1312 

Figure S6. Climatological mean geostrophic wind speed in AIRS/AMSU (a). Climatological mean 1313 

geostrophic wind speed difference between ERA5 and AIRS/AMSU (b). The differences between 1314 

climatological zonal mean geostrophic wind speed in reanalyses and AIRS/AMSU (c). (d) and (e) are the 1315 

same as (c), but for the climatological zonal mean geostrophic wind speed over oceans and land, 1316 
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respectively. The shading in (c), (d) and (e) represents one standard deviation of the annual zonal mean 1317 

wind magnitude in AIRS/AMSU 1318 

 1319 

 1320 

 1321 

 1322 

Figure S7. Precipitation frequency in satellite observation and reanalysis products. 1323 
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