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Abstract

Analog methods (AMs) have long been used for precipitation prediction and climate studies. However, they rely on manual

selections of parameters, such as the predictor variables and analogy criterion. Previous work showed the potential of genetic

algorithms (GAs) to optimize most parameters of AMs. This research goes one step further and investigates the potential

of GAs for automating the selection of the input variables and the analogy criteria (distance metric between two data fields)

in AMs. Our study focuses on daily precipitation prediction in central Europe, specifically Switzerland, as a representative

case. Comparative analysis against established reference methods demonstrates the superiority of the GA-optimized AM in

terms of predictive accuracy. The selected input variables exhibit strong associations with key meteorological processes that

influence precipitation generation. Further, we identify a new analogy criterion inspired by the Teweles-Wobus criterion, but

applied directly to grid values, which consistently performs better than other Euclidean distances. It shows potential for further

exploration regarding its unique characteristics. In contrast to conventional stepwise selection approaches, the GA-optimized

AM displays a preference for a flatter structure, characterized by a single level of analogy and an increased number of variables.

Although the GA optimization process is computationally intensive, we highlight the use of GPU-based computations to

significantly reduce computation time. Overall, our study demonstrates the successful application of GAs in automating input

variable selection for AMs, with potential implications for application in diverse locations and data exploration for predicting

alternative predictands.
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Abstract14

Analog methods (AMs) have long been used for precipitation prediction and cli-15

mate studies. However, they rely on manual selections of parameters, such as the pre-16

dictor variables and analogy criterion. Previous work showed the potential of genetic al-17

gorithms (GAs) to optimize most parameters of AMs. This research goes one step fur-18

ther and investigates the potential of GAs for automating the selection of the input vari-19

ables and the analogy criteria (distance metric between two data fields) in AMs. Our20

study focuses on daily precipitation prediction in central Europe, specifically Switzer-21

land, as a representative case. Comparative analysis against established reference meth-22

ods demonstrates the superiority of the GA-optimized AM in terms of predictive accu-23

racy. The selected input variables exhibit strong associations with key meteorological24

processes that influence precipitation generation. Further, we identify a new analogy cri-25

terion inspired by the Teweles-Wobus criterion, but applied directly to grid values, which26

consistently performs better than other Euclidean distances. It shows potential for fur-27

ther exploration regarding its unique characteristics. In contrast to conventional step-28

wise selection approaches, the GA-optimized AM displays a preference for a flatter struc-29

ture, characterized by a single level of analogy and an increased number of variables. Al-30

though the GA optimization process is computationally intensive, we highlight the use31

of GPU-based computations to significantly reduce computation time. Overall, our study32

demonstrates the successful application of GAs in automating input variable selection33

for AMs, with potential implications for application in diverse locations and data explo-34

ration for predicting alternative predictands.35

1 Introduction36

Analog methods (AMs) are statistical downscaling techniques (Maraun et al., 2010)37

that rely on inherent relationships between meteorological predictors, usually at a syn-38

optic scale, and local weather (Lorenz, 1956, 1969). AMs look for similar meteorolog-39

ical situations in the past to that of a target date of interest. They provide a conditional40

prediction based on the observed predictand values at these analog dates. Daily precip-41

itation has been the predictand of interest, either in the context of operational forecast-42

ing (e.g. T. Hamill & Whitaker, 2006; Bliefernicht, 2010; Marty et al., 2012; Horton et43

al., 2012; T. M. Hamill et al., 2015; Ben Daoud et al., 2016), climate change studies (e.g.44

Dayon et al., 2015; Raynaud et al., 2016), or past climate reconstruction (Caillouet et45

al., 2016). AMs are also used for other predictands, such as precipitation radar images46

(Panziera et al., 2011; Foresti et al., 2015), temperature (Delle Monache et al., 2013; Cail-47

louet et al., 2016; Raynaud et al., 2016; Jézéquel et al., 2017), wind (Delle Monache et48

al., 2013, 2011; Vanvyve et al., 2015; Alessandrini, Delle Monache, Sperati, & Nissen, 2015;49

Junk, Delle Monache, Alessandrini, Cervone, & von Bremen, 2015; Junk, Delle Monache,50

& Alessandrini, 2015), and solar radiation or power production (Alessandrini, Delle Monache,51

Sperati, & Cervone, 2015; Bessa et al., 2015; Raynaud et al., 2016).52

AMs may consist of a stepwise selection of similar meteorological situations based53

on multiple predictors organized in different consecutive levels of analogy, each of which54
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conditions the subsequent selection. Each predictor consists of a specific meteorologi-55

cal variable at a specific time and vertical level (if relevant). The similarity between two56

situations is computed using an analogy criterion (distance metric) over a relevant spa-57

tial domain. For each level of analogy, a certain number of analogs are selected (Obled58

et al., 2002; Bontron, 2004).59

AMs for predicting precipitation commonly have a first level of analogy based on60

the atmospheric circulation. The variable of interest is the geopotential height (Z) at var-61

ious pressure levels and specific times throughout the day (Table 2; Obled et al., 2002;62

Horton et al., 2018). Bontron (2004) introduced a second level of analogy based on a mois-63

ture index that is the product of the relative humidity at 850 hPa and the total precip-64

itable water (method RM3 in Table 2). Other consecutive studies selected different pres-65

sure levels (method RM4 in Table 2) or added a wind component to the moisture index66

(Marty, 2010; Horton et al., 2018). Ben Daoud et al. (2016) inserted an additional level67

of analogy between the circulation and the moisture analogy based on the vertical ve-68

locity at 850 hPa (methods RM6 in Table 2) and named it ”SANDHY” for Stepwise Ana-69

log Downscaling method for Hydrology (Ben Daoud et al., 2016; Caillouet et al., 2016).70

To calibrate the method, a semi-automatic sequential procedure (Bontron, 2004;71

Radanovics et al., 2013; Ben Daoud et al., 2016) has often been used to optimize the size72

of the domain and the number of analogs. However, the predictor variables, vertical lev-73

els, temporal windows (time of the day), and analogy criteria were selected manually.74

This manual selection requires the comparison of numerous combinations and a compre-75

hensive assessment of some parameter ranges. Moreover, the sequential calibration pro-76

cedure successively calibrates the different levels of analogy, and thus it does not han-77

dle parameters inter-dependencies. Considering these limitations, Horton et al. (2017)78

introduced a global optimization of the AM using genetic algorithms (GAs). Using this79

approach, an automatic and objective selection of the temporal windows, the vertical lev-80

els, the domains, and the number of analogs became possible, improving the method’s81

prediction skills (Horton et al., 2018). A weighting of the predictor variables has also been82

introduced. The only parameters left for a manual selection were the meteorological vari-83

ables and the analogy criteria.84

Selecting predictors for precipitation prediction with AMs in Europe has been the85

focus of multiple studies aiming to improve prediction skills (Obled et al., 2002; Bon-86

tron, 2004; Gibergans-Báguena & Llasat, 2007; Radanovics et al., 2013; Ben Daoud et87

al., 2016). Thus, the relevant predictors are likely to be known nowadays and supported88

by expert knowledge. However, transferring AMs to a region with different climatic con-89

ditions or to another predictand would involve reconsidering the selected meteorologi-90

cal variables. This work aims to test a fully automatic optimization of all AM param-91

eters, including the selection of the meteorological variables and even the analogy cri-92

teria, using GAs. GAs have already been used for input variable selection (IVS) in other93

contexts (D’heygere et al., 2003; Huang et al., 2007; Cateni et al., 2010; Gobeyn et al.,94

2017).95
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We here seek to assess the potential of GAs for input variable selection in the con-96

text of the analog method. Moreover, we want to test the GAs’ ability to jointly select97

the distance metric in addition, i.e., the analogy criteria. To compare with well-established98

AMs, daily precipitation in central Europe, specifically in Switzerland, has been chosen99

as predictand. Also, as is often the case, the AMs were optimized in the perfect prog-100

nosis framework, using predictors from reanalyses. This work focuses mainly on the proof101

of concept of automatic input variable selection for AMs rather than the details of the102

obtained results for the case study.103

The paper is organized as follows. Section 2 describes the datasets, the fundamen-104

tals of AMs, the characteristics of the GAs implementation, the software used, and the105

experiment setup details. Section 3 presents the results of different analyses, such as the106

selection of the best predictor variable, the relevance of various AM structures, and the107

skill of the optimized methods. Section 4 discusses some findings of the work. Finally,108

section 5 summarizes the main contributions of the work and open perspectives for ap-109

plications of the developed approach.110

2 Material and Methods111

2.1 Data112

The target variable (predictand) is daily precipitation derived from the RhiresD113

gridded dataset from MeteoSwiss. It is a daily aggregation (from 06 UTC of day D to114

06 UTC of day D+1) at a 2 km resolution with data from 1961 onward. It is produced115

using an interpolation scheme between gauging stations (Frei & Schär, 1998). The grid-116

ded data was here spatially aggregated across 25 catchments of about 200 km2 (Table117

1). These catchments were chosen to cover the different climatic regions of Switzerland118

(Schüepp & Gensler, 1980), as illustrated in Fig. 1.119

As often done in the context of the perfect prognosis framework, we used variables120

provided by global reanalyses. Even though most reanalyses provide good quality data121

over Europe, differences still exist, and the choice of the reanalysis dataset can impact122

the skill score of the AM even more significantly than the choice of the predictor vari-123

ables (Horton & Brönnimann, 2019). Thus, it was considered advisable to test some of124

the following analyses with another reanalysis to assess the robustness of the selected125

variables.126

The main reanalysis used in this work is ERA-Interim (ERA-I, Dee et al., 2011),127

which was produced by the European Centre for Medium-Range Weather Forecasts (ECMWF)128

and covers the period from 1979 to 2019. The forecast model uses a hybrid sigma-pressure129

vertical coordinate on 60 layers and has a T255 horizontal resolution (about 79 km) and130

a 30 min time step. The output variables have a grid resolution of 0.75◦. The present131

work started before the release of ERA5, the successor of ERA-I.132

The Climate Forecast System Reanalysis (CFSR, Saha et al., 2010), provided by133

NCEP, was used for the first experiment to compare the results obtained with ERA-I.134

The model used to produce CFSR has a horizontal resolution of T382 (about 38 km) and135
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Figure 1. Location of the 25 selected catchments in Switzerland along with the climatic

regions (dashed lines) and the river network (source: SwissTopo, HADES).

64 levels on sigma-pressure hybrid vertical coordinates. The period covered is from 1979136

to August 2019, and the output variables have a spatial resolution of 0.5◦.137

Finally, ERA5 (Hersbach et al., 2019) was used for the last analysis. ERA5 pro-138

vides more variables and a higher spatial grid (0.25◦, but used here at 0.5◦) and tem-139

poral resolution (hourly, but used here at a 3-hourly time step). ERA5 assimilates sig-140

nificantly more data than ERA-I and provides, among others, more consistent sea sur-141

face temperature and sea ice, an improved representation of tropical cyclones, a better142

balance of evaporation and precipitation, and improved soil moisture. ERA5 also relies143

on more appropriate radiative forcing and boundary conditions (e.g., changes in green-144

house gases, aerosols, SST, and sea ice) (Hersbach et al., 2019).145

2.2 Analog Methods146

AMs are based on the rationale that two similar synoptic situations may produce147

similar local weather (Lorenz, 1956, 1969). It thus consists of extracting past atmospheric148

situations similar to a target date. Selected predictor fields define this similarity. The149

conditional distribution of the predictand of interest (here, daily precipitation) is extracted150

from these analog dates. The analogy is defined by:151

1. The selected meteorological variables (predictors).152

2. The vertical levels at which the predictors are selected.153
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Table 1. Characteristics of the 25 selected catchments in Switzerland

Id Name of the river Climatic region Area Mean elevation
(km2) (m a.s.l.)

1 L’Allaine Eastern Jura 209.1 571
2 Ergolz Eastern Jura 150.3 589
3 L’Orbe Western Jura 209.3 1229
4 La Birse Western Jura 203.3 920
5 La Broye Western Plateau 184.5 791
6 Murg Central Plateau 184.8 658
7 Aabach Central Plateau 180.0 562
8 Töss Northeastern Plateau 189.3 745
9 Sense Western alpine north slope 179.6 1238
10 La Sarine Western alpine north slope 200.8 1779
11 Weisse Lütschine Western alpine north slope 165.0 2149
12 Emme Central alpine north slope 206.9 1151
13 Engelberger Aa Central alpine north slope 204.3 1654
14 Linth Eastern alpine north slope 195.7 1959
15 Sitter Eastern alpine north slope 162.2 1069
16 Dranse d’Entremont Valais 154.2 2340
17 La Navisence Valais 210.5 2541
18 Lonza Valais 161.7 2370
19 Doveria Southern Alps 170.5 2241
20 Ticino Southern Alps 208.5 2019
21 Verzasca Southern Alps 187.4 1656
22 Valser Rhein North and Central Grisons 185.8 2215
23 Plessur North and Central Grisons 207.7 1928
24 Mera Southern Alps 190.6 2142
25 Flaz Engadine 193.1 2599

3. The spatial windows (domains) over which the predictors are compared.154

4. The hours of the day at which the predictors are considered.155

5. The analogy criteria (distance metric to rank candidate situations).156

6. Possible weights between the predictors.157

7. The number of analog situations Ni to select for the level of analogy i.158

AMs usually start with a seasonal preselection to cope with seasonal effects (Lorenz,159

1969). The seasonal preselection is often implemented as a moving window of 120 days160

centered around the target date (Bontron, 2004; Marty et al., 2012; Horton et al., 2012;161

Ben Daoud et al., 2016). Alternatively, the candidate dates can be preselected based on162

similar air temperature at the nearest grid point (Ben Daoud et al., 2016, methods RM5163

and RM6 in Table 2). In this work, we used the temporal moving window to reduce the164

number of potential candidate dates and, thus, the computing time.165

The first level of analogy in AMs for precipitation is often based on the atmospheric166

circulation using the geopotential height (Z) at different pressure levels and hours of the167

day (Table 2). The distance (analogy criterion) between two Z fields is computed on the168

vector components of the gradient, i.e., using the difference between adjacent grid cells,169

rather than comparing absolute values. The Teweles–Wobus criterion (S1, Eq. 1, Tewe-170

les & Wobus, 1954; Drosdowsky & Zhang, 2003) was identified as the most suited by dif-171
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Table 2. Some analog methods listed by increasing complexity. The analogy criterion is S1 for

Z and RMSE for the other variables.

Method Preselection First level Second level Third level Reference

RM1 ±60 days
Z1000@12h

Bontron (2004)
Z500@24h

RM2 ±60 days

Z1000@06h

Horton et al. (2018)
Z1000@30h
Z700@24h
Z500@12h

RM3 ±60 days
Z1000@12h

MI850@12+24h Bontron (2004)
Z500@24h

RM4 ±60 days

Z1000@30h

Horton et al. (2018)
Z850@12h MI700@24h
Z700@24h MI600@12h
Z400@12h

RM5
T925@36h Z1000@12h MI925@12+24h

Ben Daoud et al. (2016)
T600@12h Z500@24h MI700@12+24h

RM6
T925@36h Z1000@12h

W850@06-24h
MI925@12+24h

Ben Daoud et al. (2016)
T600@12h Z500@24h MI700@12+24h

Z, geopotential height; T, air temperature; W, vertical velocity; MI, moisture index.

ferent studies (Wilson & Yacowar, 1980; Woodcock, 1980; Guilbaud & Obled, 1998; Bon-172

tron, 2004). It is defined as:173

S1 = 100

∑
i

|∆ẑi −∆zi|∑
i

max {|∆ẑi|, |∆zi|}
(1)

where ∆ẑi is the gradient component between the ith pair of adjacent points from the174

geopotential field of the target situation, and ∆zi is the corresponding observed gradi-175

ent component in the candidate situation. The gradient components are computed in176

both latitude and longitude directions. S1 ranges from 0 to 200. The smaller the S1 val-177

ues, the more similar the pressure fields. The S1 criterion characterizes the wind’s di-178

rection and strength, allowing a comparison of the atmospheric circulation.179

For other predictors than the geopotential height (e.g., for moisture variables), clas-180

sic criteria representing Euclidean distances between grid point values are used: Mean181

Absolute Error (MAE) and Root Mean Squared Error (RMSE), the latter being used182

most often.183

The output of the AM is a probabilistic prediction for the target day. It is provided184

by the empirical conditional distribution of the Ni predictand values corresponding to185

the Ni dates selected at the last level of analogy.186
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2.3 Genetic Algorithms187

GA is a global optimization technique inspired by genetics and natural selection188

(Holland, 1992). It belongs to the family of evolutionary algorithms and comprises dif-189

ferent operators such as natural selection, selection of couples, chromosome crossover,190

mutation, and elitism. These operators act on parameter sets of the problem to optimize191

by mixing, combinations, and random modifications. GA aims at combining, over time,192

the strength of different parameter sets and at exploring the parameters space while con-193

verging toward the global optimum. The optimization starts with 2000 random param-194

eter sets (as defined in Sect. 2.2) and is stopped when the best parameter set cannot be195

improved after 30 iterations.196

A variant of genetic algorithms (GAs) has been tailored to optimize AMs by Horton197

et al. (2017). All the method’s parameters except the meteorological predictor variables198

and the analogy criteria have already been successfully optimized using GAs (Horton et199

al., 2018). The use of GAs provided for the first time an objective and global optimiza-200

tion of AMs, which resulted in gains in prediction skills. To bring the optimization fur-201

ther, the selection of the predictor variables and the analogy criteria were performed here202

by GAs.203

The reason why the predictor variables and analogy criteria were left out in the pre-204

vious GA-AM set-up Horton et al. (2017) is the different nature of these variables. The205

parameters optimized so far by Horton et al. (2017) were quantitative variables, i.e., nu-206

merical values (e.g., location and size of the spatial windows or the number of analogs),207

which have a notion of continuity. The meteorological predictors or analogy criteria, how-208

ever, are categorical variables that have no relationship among options. They are treated209

as arrays of independent values by the algorithm. Therefore the mutation operator re-210

lying on a search radius in the parameters space (Horton et al., 2017) cannot be applied.211

Instead, a simple random sampling was used for these parameters when selected for mu-212

tation. In addition to the increased difficulty due to the higher number of parameters213

to optimize, this aspect will likely slow down the optimization.214

In GAs, the mutation operator changes a parameter value (gene) if this parame-215

ter was selected to mutate (all parameters have a certain mutation probability). The new216

value assigned depends on the rules of the mutation operator applied. This operator en-217

ables the optimization to explore new areas of the parameters space and was shown to218

have the most significant impact on the success of the optimization (Horton et al., 2017).219

Thus, as suggested in Horton et al. (2017), five variants of this operator were used in par-220

allel optimizations (see details in Appendix B): three variants of the non-uniform mu-221

tation (Michalewicz, 1996), the multiscale mutation (Horton et al., 2017), and the chro-222

mosome of adaptive search radius (Horton et al., 2017). The non-uniform mutation aims223

to reduce the magnitude of the search in the parameters space with the evolution of the224

population to transition from the exploration of the whole parameter space to the ex-225

ploitation of local solutions. This operator has three controlling variables, which makes226

it difficult to adjust, and thus is used with three different configurations. The multiscale227

mutation considers both exploration and exploitation in parallel. It has no controlling228
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parameters and no evolution during the optimization. The chromosome of adaptive search229

radius was introduced by Horton et al. (2017) and is inspired by the non-uniform mu-230

tation. It takes an auto-adaptive approach by adding two chromosomes, one for the mu-231

tation rate and one for controlling the search magnitude (see details in Horton et al., 2017).232

Therefore, it has no controlling parameters, is thus easier to use, and automatically tran-233

sitions from the exploration phase to exploitation.234

2.4 Software235

The optimization of AMs with GAs is implemented in the open-source AtmoSwing236

software1 (Horton, 2019a) that has been used for this work. AtmoSwing is written in object-237

oriented C++ and has been optimized for computational performance. It scales well on238

HPC infrastructures as the different members of the GAs populations, i.e., the various239

parameter sets, can be assessed in parallel using multiple independent threads. However,240

due to the increasingly large number of assessments needed by GAs with the increasing241

complexity of the problem, a further reduction in computing time became necessary. In-242

deed, while applying AMs to perform a prediction for a single target date is a very fast243

and light process, GAs require a substantial amount of parameter assessment over long244

calibration periods.245

A first attempt was based on storing the whole history of the optimization in mem-246

ory and looking up for equal – or similar – already-assessed parameters to a newly gen-247

erated parameters set. However, this approach turned out to be even more time-consuming248

after several generations and led to memory issues for long optimizations.249

Despite being simple methods, AMs require many comparisons of gridded fields dur-250

ing the calibration phase. For example, this work used a 24-year calibration period. For251

each target day, a gridded predictor needs to be compared to about 2820 candidate sit-252

uations (24*120-60, using a 120-day temporal window minus 60 days in the target year253

that are excluded). Over the entire calibration period, this amounts to about 24.7·106254

field comparisons per predictor of the first level of analogy. Here, one optimization re-255

quired, on average, about 200 generations made of 2000 individuals, which brings the256

average number of grid comparisons to about 1·1013 per predictor of the first level of257

analogy. The comparison of the gridded predictors – i.e., the calculation of the analogy258

criteria – was identified by profilers as the most time-consuming task, despite using the259

efficient linear algebra library Eigen 3 (Guennebaud et al., 2010).260

To reduce the processing time, computation using graphics processing units (GPUs)261

was implemented for this study in a new release of AtmoSwing, v.2.1.2 (Horton, 2019b).262

The calculation of the analogy criteria has been written using NVIDIA’s CUDA. The263

implementation details and the results of a benchmark experiment can be found in Ap-264

pendix A. When optimizing the methods using ERA5 at a 3-hourly time step and 0.5◦265

resolution, the difference is substantial. One generation (2000 evaluations) took 8 to more266

1 https://atmoswing.org/
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than 10 hours using 20 CPU threads, while 50 to 80 minutes were needed using 3 CPU267

threads and 3 GPU devices (NVIDIA GeForce703 RTX 2080).268

2.5 Experiments Setup269

The experiments were conducted over a 30-year period, from 1981 to 2010, divided270

into a calibration period (CP) and an independent validation period (VP – note that the271

years 2011-2018 were reserved for an additional test period, which was in the end not272

used). To reduce the impact of potential inhomogeneities in the time series, the selec-273

tion of the validation period (VP) was evenly distributed over the entire series (as in Ben274

Daoud, 2010). A total of 6 years was used for the VP by selecting one year out of ev-275

ery five (explicitly: 1985, 1990, 1995, 2000, 2005, 2010). The archive period (AP), where276

the analog dates are being retrieved, is the same as the CP. The VP is also excluded from277

the AP (days from the VP were never used as candidate situations for the selection of278

analogs), as well as a period of ±30 days around the target date to exclude potential de-279

pendent meteorological situations. Unless stated otherwise, all results are presented for280

the VP.281

The GAs optimized all parameters of the method. Only the AM structure (num-282

ber of analogy levels and predictors) was not optimized. Different structures were tested283

in section 3.2. For each level of analogy and each predictor, the following parameters were284

optimized within the corresponding ranges:285

1. Meteorological variable: see section 2.5.1.286

2. Vertical level: see section 2.5.1.287

3. Temporal windows (time of the day): from day D 00 UTC to D+1 06 UTC (c.f.288

precipitation accumulation period, sect 2.1)289

4. Spatial window (domain): latitudes=[35, 55], longitudes=[-10, 20]. The spatial win-290

dows differ between predictors, even in the same level of analogy.291

5. Analogy criterion: see section 2.5.2.292

6. Weight: [0, 1] with a precision of 0.01 (0.05 for experiment 2). The optimizer can293

turn off a variable by setting its weight to zero.294

7. Number of analogs: varies according to the structure, but with an overall range295

of [5, 300] and a step of 5. The optimizer can turn off a level of analogy by set-296

ting its number of analogs to the same value as the previous level of analogy.297

The CRPS (Continuous Ranked Probability Score; Brown, 1974; Matheson & Win-298

kler, 1976; Hersbach, 2000) was used to assess the skill of the predictions. It evaluates299

the predicted cumulative distribution functions F (y), here of the precipitation values y300

associated with the analog situations, compared to the single observed value y0 for a day301

i:302

CRPSi =

∫ +∞

0

[
Fi(y)−Hi(y − y0i )

]2
dy, (2)
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where H(y − y0i ) is the Heaviside function that is null when y − y0i < 0, and 1 other-303

wise; the better the prediction, the lower the score.304

2.5.1 Meteorological Variables305

The meteorological variables were considered for different types of vertical levels:306

surface or entire atmosphere (to capture e.g., the moisture content of an entire air col-307

umn), pressure levels (1000, 950, 900, 850, 800, 700, 600, 500, 400, 300, 200 hPa, to cap-308

ture the vertical structure), potential temperature levels (290, 300, 310, 320, 330, 350,309

400 K, necessary to include potential vorticity), and potential vorticity levels. The se-310

lected variables are listed in Table 3. The optimization can pick any variable on any level311

type and value, as long as it is available. Precipitation variables from reanalyses were312

not considered potential predictors. Precipitation is usually not considered as a predic-313

tor in AMs, as a method developed in the perfect prognosis context would then be dif-314

ficult to use in other conditions due to the high uncertainties and the biases associated315

with precipitation predicted by an NWP or a climate model.316

The variables were standardized (using the overall climatology) on-the-fly by At-317

moSwing when loaded from files. The standardization has no impact on the selection of318

analog situations for a single predictor, but it makes the combination of predictors within319

one level of analogy more balanced, as they might have very different orders of magni-320

tude and units. It allows a more effective optimization of the weights between predic-321

tors.322

2.5.2 Analogy Criteria323

The most common analogy criteria in AMs are the Root Mean Squared Error (RMSE)324

and the Teweles–Wobus criterion (S1, see section 2.2). Other criteria were made avail-325

able to the GAs in order to explore potential new characterizations of the analogy met-326

rics. Two of these criteria are new and derived from S1. The potential criteria made avail-327

able to the GAs are the following:328

1. RMSE: the Root Mean Squared Error.329

2. MD: the Mean Absolute Difference, or Mean Absolute Error. It differs from the330

RMSE in that the differences are not squared.331

3. S1: the Teweles–Wobus index as defined in Eq. 1 from section 2.2. It consists of332

a comparison of the gradients, primarily used for the geopotential height.333

4. S2: inspired by the Teweles–Wobus index, we introduced a new criterion based334

on the second derivative of the fields instead of the gradients:335

S2 = 100

∑
i

|∇2x̂i −∇2xi|∑
i

max
{
|∇2x̂i|, |∇2xi|

} (3)

where ∇2x̂i is the second derivative between the ith triplet of adjacent points from336

the predictor field of the target situation, and ∇2xi is the corresponding observed337
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Table 3. Selected variables for ERA-I, CFSR, and ERA5 for different types of vertical levels.

Variable Id Unit ERA-I CFSR ERA5
Levels: PL PT PV SC PL PT PV SC PL SC

CIRCULATION VARIABLES
Geopotential height Z gpm • • • • • •
Geopotential height anomaly ZA gpm •
Zonal wind U m s−1 • • • •a • • • • •a
Meridional wind V m s−1 • • • •a • • • • •a
Pressure PRES Pa • • •c • ••c •c
Vertical velocity W Pa s−1 • • • • •
Divergence D s−1 • • •
Vorticity VO s−1 • •
Potential vorticity PV m2 s−1 K kg−1 • • • •
Stream function STRM m2 s−1 •
Velocity potential VPOT m2 s−1 •
Montgomery potential MONT m2 s−2 •
Montgomery stream function MNTSF m2 s−1 •

MOISTURE VARIABLES
Relative humidity RH % • • • • •
Specific humidity SH kg kg−1 • • •
Total column water TCW kg m−2 • •
Total column water vapour TCWV kg m−2 • •
Cloud water CWAT kg m−2 •
Surface moisture flux IE kg m−2 s−1 •

TEMPERATURE VARIABLES

Temperature T K • •b • • • • •b
Potential temperature PT K •
Dewpoint temperature* DT K •a
Sea surface temperature SST K •
0◦ C isothermal level DEG0L m • •

RADIATION VARIABLES
Surf. net solar radiation SSR J m−2 • •
Surf. solar rad. downwards SSRD J m−2 • •
Surf. net thermal radiation STR J m−2 • •
Surf. thermal rad. downwards STRD J m−2 • •
Surf. latent heat flux SLHF J m−2 •
Surf. sensible heat flux SSHF J m−2 •
Top net solar radiation TSR J m−2 •
Top net thermal radiation TTR J m−2 •

STABILITY INDICES
Convective avail. pot. energy CAPE J kg−1 • • •
Convective inhibition CIN J kg−1 • •
Best (4 layer) lifted index 4LFTX K •
Surface lifted index LFTX K •
Lapse rate LAPR K m−1 •

OTHERS
Cloud cover CC (0 - 1) •
Low cloud cover LCC (0 - 1) •
Total cloud cover TCC (0 - 1) •
Snow depth SD m of w.e. •

PL = pressure levels, PT = pot. temp. levels, PV = pot. vorticity levels, SC = single level, surface or total column

*moisture and temperature variable, aat 10 m, bat 2 m, cat mean sea level.
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second derivative in the candidate situation. Please note that it differs from the338

S2 index from Teweles and Wobus (1954).339

5. S0: as with S2, this new criterion derives from S1 and is processed on the raw grid340

values. It differs from the MD mainly in that it is normalized by the sum of the341

maximum values instead of the number of points:342

S0 = 100

∑
i

|x̂i − xi|∑
i

max {|x̂i|, |xi|}
(4)

where x̂i is the ith point from the predictor field of the target situation, and xi343

is the corresponding observed point in the candidate situation. The reason for adding344

such a criterion was accidental, as it was an erroneous implementation of S2. How-345

ever, it turned out to be relevant (see sections 3 and 4.2).346

6. DSD: difference in standard deviation over the spatial window. It is a non-spatial347

criterion, as the location of the features does not matter.348

7. DMV: absolute difference in mean value. It is also non-spatial, as the means are349

computed over the spatial window before comparison.350

2.5.3 Design of Experiments351

The input variables selection with GAs has been assessed in sequential steps. First,352

GAs were used to identify the single best predictor variables and their associated anal-353

ogy criteria for each catchment (Sect. 3.1). The objective was to assess the consistency354

of the selected variables in the most straightforward configuration. Then, as AMs can355

be made of different levels of analogy with multiple predictors, the second experiment356

assessed the skill associated with different structures and the ability of GAs to deal with357

these, using a limited number of catchments (Sect. 3.2). Based on these results, the third358

experiment performs the input variables selection for each catchment (Sect 3.3).359

3 Results360

3.1 Best Single Variables361

The first experiment assesses the use of GAs to select a single predictor variable362

and analogy criterion for each catchment. The selection has been performed on ERA-363

I (Fig. 2) but also on CFSR for comparison (Fig. 3), with six optimizations per catch-364

ment and dataset. The six optimizations were based on different mutation operators (the365

five variants but twice the chromosome of adaptive search radius). The purpose of us-366

ing two reanalyses is to assess the consistency and possible differences in the variables367

selection between two datasets.368

One of the first elements that can be seen for both datasets is the dominance of369

the S0 criterion, selected 60% of the time for ERA-I and more than 55% of the time for370

CFSR, along with the other Teweles–Wobus-based criteria (Fig. 4). The other analogy371

criteria were rarely selected, if at all. The same applies to the RMSE, commonly used372
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in analog methods. The GAs could better predict using S0 as a metric for the Euclid-373

ian distance between the predictor fields. This result is further discussed in Sect. 4.2.374
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Figure 2. Best single variable selected (ordinate; see Table 3 for the variables abbreviations)

from ERA-I for the 25 catchments (abscissa). The colors represent the analogy criteria, and the

size of the dots is proportional to the skill score of the resulting method (the larger the dots, the

better), within a range of 5% of the best result (those with lower skill are hidden).
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Figure 3. Same as Fig. 2 but for CFSR.

The variable selection results show some variability per catchment but similar skill375

scores. Although GAs can, in theory, identify the global optimum, this search is highly376

time-consuming for such complex problems, and we have to stop the optimizations at377

a good-enough solution. These factors explain the variability that can be observed in the378

results. Nevertheless, this variability provides information about alternative variables379

with almost the same predictive skills.380

Figures 2 and 3 demonstrate that optimal variables can vary across different re-381

gions. Figure 5 illustrates this information spatially for ERA-I variables. In terms of sim-382

ilarities, the vertical velocity (W) at 700 and 800 hPa is the most frequently selected vari-383
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Figure 4. Frequency of the criteria selection for both reanalysis datasets.
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Figure 5. Map of the best variables for ERA-I for each catchment.

able for both datasets and is quantified using the S0 criteria. Upward vertical winds at384

these levels are typically associated with precipitation generation. Within the Southern385

Alpine climatic region (catchments 19, 20, 21), Z (based on the S1 criterion) emerges as386

the best single predictor for ERA-I, which is not so clear with CFSR. Heavy precipita-387

tion events in this region predominantly result from orographic effects related to sustained388

southerly advection of moisture-laden air masses (Massacand et al., 1998). Other regional389

clusters can be observed using ERA-I, such as the meridional wind V (with S1) in the390

eastern part of Switzerland, also likely related to the southerly advection, STR(D) (sur-391

face net thermal radiation and surface thermal radiation downwards) in northern Switzer-392

land, maybe related to cloud cover, and the second derivative of Z (with S2) for several393

catchments at similar latitudes. The second derivative of Z is also frequently selected for394

CFSR. While the variable of cloud water (CWAT) from CFSR is often chosen, it is not395

directly available in ERA-I.396
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3.2 Assessment of AM Structures397

The analysis of different AM structures (Sect. 2.5.3) aims to identify the best-performing398

structures, i.e., the optimal number of analogy levels and predictors. We first considered399

one to four levels of analogy, with one to four predictors per level. Five optimizations400

were performed for each of these 16 structures with the different mutation operators. As401

this assessment requires 80 optimizations, it was performed on only four catchments (L’Allaine402

(1), Sitter (15), Doveria (19), Flaz (25)). These were selected to maximize the diversity403

of climatic conditions represented. A complementary analysis was performed on two catch-404

ments (L’Allaine (1) and Doveria (19)) to explore the use of up to eight predictors on405

one and two levels of analogy. These experiments also allowed comparing the performance406

of the mutation operators for different problem complexities.407

Even though the structure is provided to the GAs, it can still evolve to a simpler408

version by assigning a zero weight to some predictors or by setting the same number of409

analogs for two successive levels of analogy. This simplification often happened, such as410

that no solution ended up with the structure 4 x 4 (four levels of analogy with four pre-411

dictors each). The best-performing methods on the validation period were always made412

of one or two levels of analogy (Fig. 6 and 7). While some reference methods have up413

to four levels of analogy (Sect. 2.2), the use of normalized variables and weights might414

here favor their combination in the same level of analogy. The methods with fewer lev-415

els of analogy present less of a hierarchy among the predictors. However, not having a416

systematic constraint by the atmospheric circulation, as in the reference methods, re-417

sults in more influence from other variables. Although atmospheric circulation is often418

of primary importance for heavy precipitation events, there can be situations where it419

is preferable to relax these constraints. However, we cannot conclude that two levels of420

analogy are the maximum to be considered, as the optimizer might have failed to op-421

timize complex structures satisfactorily.422

The results also depict significant performance differences between the mutation423

operators (Sect. 2.3). The chromosome of adaptive search radius (option #1) provides424

the best-performing parameter sets 76.3% of the time for the calibration period and 62.5%425

of the time for the validation period (Fig. B1). The second best is the non-uniform mu-426

tation with a mutation probability (pmut) of 0.1 (option #4), being the best option for427

11.3% of the optimizations for the calibration period and 21.3% for the validation pe-428

riod. However, the same operator with a mutation probability (pmut) of 0.2 (option #5;429

Gm,r=100) is the worst-performing option, with a success rate of 1.3% for the calibra-430

tion period and 2.5% for the validation period. It quite well illustrates the difficulty of431

tuning such operators and the risk of a badly-configured mutation operator, and thus432

the benefit of an auto-adaptive option such as the chromosome of adaptive search ra-433

dius with no controlling parameters. Moreover, it usually performed better for more com-434

plex AM structures.435
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Figure 6. CRPS scores obtained for different AM structures with up to four levels of analogy

and four variables per level for four catchments in Switzerland. Lower CRPS (yellow) represents

a better skill.
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Figure 7. CRPS scores obtained for different AM structures with up to two levels of analogy

and eight variables per level for two catchments in Switzerland. Lower CRPS (yellow) represents

a better skill.
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3.3 Full Optimization436

The third experiment used different AM structures to perform the full input vari-437

able selection for each catchment. Only the chromosome of adaptive search radius has438

been used because of its higher performance.439

3.3.1 Using Variables from ERA-I440

Based on the previous results, three AM structures were selected: 1 level of anal-441

ogy with 8 (1 x 8) or 12 predictors (1 x 12), and 2 levels with 6 predictors (2 x 6) (Sect.442

2.5.3). Two optimizations were performed by structure and catchment. The structure443

with two levels of analogy (2 x 6) turned out to be simplified by the GAs to a single level444

of analogy (1 x 6) for several catchments. Consequently, this structure resulted in lower445

skill scores (Figure 12) as fewer predictors were used. Thus, only structures with a sin-446

gle level of analogy (1 x 8 and 1 x 12) are further analyzed here.447
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Figure 8. Selected variables (see Table 3 for the variables abbreviations) from ERA-I for the

1 x 8 and 1 x 12 structures for the different catchments. The colors represent the analogy crite-

ria, and the size of the dots is proportional to the weight given to the predictor within the range

[0.02, 0.2]. Variables that were never selected with a weight equal to or larger than 0.05 are not

represented.
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Figure 9. Statistics of the 30 most selected variables from ERA-I for the 1 x 8 and 1 x 12

structures for the different catchments (100 optimizations) along with the analogy criteria,

the temporal window (30 = next day at 06 UTC; some radiation variables were considered at

15 UTC), and the spatial windows (longitudes and latitudes). The extent of Switzerland is shown

in gray on the plots of the spatial windows.

Figure 8 shows the different variables selected for each catchment along with the448

analogy criteria (color) and the weights (size). Figure 9 synthesizes the 30 most often449
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selected variables and the associated analogy criteria, temporal windows, and spatial win-450

dows across catchments. These results show again a strong dominance of the S0, S1, and451

S2 analogy criteria, with the others being only rarely selected, including RMSE. S0 is452

most often selected. The properties of S0 are further investigated in Sect. 4.2.453

Vertical velocity (W) at 700 hPa (and sometimes at 600 or 800 hPa) is the most454

frequently selected variable, also for catchments that were previously selecting another455

best single variable (Sect. 3.1). Those with higher elevations and located in the south-456

ern part of the country additionally selected W at 500 hPa or even higher.457

The surface solar radiation downwards (SSRD) is the second most selected vari-458

able and is mainly relevant when compared in terms of gradients (S1) rather than ab-459

solute values. It might thus be used as a proxy for clouds. Other radiation variables oc-460

cupy the fourth and fifth ranks, such as surface thermal radiation downwards (STRD)461

and surface net thermal radiation (STR). These are mainly relevant when compared in462

terms of absolute values (S0), although there is a non-negligible representation of the S1463

criteria. These can also be used as proxies for cloud cover information.464

CAPE is the third most selected variable, and the total column water (TCW) is465

the sixth variable. At the ninth position comes the meridional wind at 10 m, but using466

S1 or even S2. The derivative of the wind can be informative on the location of frontal467

systems and convergence or divergence zones. Then comes the meridional wind on the468

PV level. The 2 m temperature has the 12th position and is compared in terms of gra-469

dients (S1), which can reflect the position of fronts. Follows the geopotential height (Z)470

at 700 and 600 hPa compared primarily using the second derivatives of the fields (S2).471

The curvature of the geopotential height helps identify and characterize synoptic-scale472

features such as ridges and troughs in the atmosphere. A bit further down on the list,473

SLP is also compared in terms of its second derivative. Other variables such as RH, PV,474

D, and U also populate the 30 best variables.475

The optimal spatial windows (Figure 9) cover Switzerland most of the time, with476

different extents depending on the variables. For example, while the medians of the op-477

timal domains for W and CAPE are slightly larger than Switzerland, PV is here con-478

sidered on a larger domain. The 2m temperature (T2m) is characterized by unusual, lon-479

gitudinally extended domains, with the main body in southern Switzerland extending480

to the northern Mediterranean. Thus, it likely represents information at a synoptic scale,481

such as the location of fronts, rather than local conditions. Note that SST was also in482

the pool of potential variables but has never been selected as relevant.483

The optimal temporal windows (time of the day) show substantial variability be-484

tween the predictor variables. At the lower end of the range is TCW, which is consid-485

ered better at the beginning of the precipitation accumulation period (06 UTC). The top486

of the range (06 UTC the next day, corresponding to the end of the accumulation pe-487

riod) was favored by the divergence (D at 285◦K) and some low-level W (W900 and W950)488

or Z (Z900). It should be noted here that the radiation variables used were cumulative489

variables that were not decomposed prior to the analysis. Thus, most of the selected tem-490

poral windows correspond to the beginning of the accumulation period, i.e., 15 UTC.491
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3.3.2 Using Variables from ERA5492

A similar experiment has been conducted using ERA5 and a single method struc-493

ture (1 x 12). ERA5 has been used at a 3-hourly time step, which might be more rel-494

evant than 6-hourly when considering radiation variables, and at a 0.5◦ spatial resolu-495

tion. The potential analogy criteria were limited to S0, S1 and S2 and the spatial do-496

mains were slightly reduced (latitudes=[39, 55], longitudes=[-4, 20]). If previously the497

weights could be null for a predictor, a minimum of 0.01 was enforced here to force the498

GAs to select a relevant predictor. Finally, some predictors, often selected in the pre-499

vious experiment, were fixed: W700 (with S0 criterion), CAPE (with S0 criterion), TCW500

(with S0 or S1 criteria); leaving nine predictors unconstrained.501

In addition, only the variables found relevant when using ERA-I were selected as502

potential predictors, thus decreasing the pool of variables. Also, potential temperature503

levels and PV levels were not considered further. However, cloud cover variables were504

added to the potential predictors to assess whether SSRD served as a proxy for cloud505

cover. Thus, this experiment should not be considered a full exploration of ERA5 as it506

builds on the results obtained for ERA-I.507
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Figure 10. Selected variables (see Table 3 for the variables abbreviations) from ERA5 for the

1 x 12 structure for the different catchments. The variables that were forced into the AM are

marked with a rectangle. The colors represent the analogy criteria, and the size of the dots is

proportional to the weight given to the predictor within the range [0.02, 0.2]. Variables that were

never selected with a weight equal to or larger than 0.05 are not represented.
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Figure 11. Statistics of the 30 most selected variables from ERA5 for the 1 x 12 structure for

the different catchments (50 optimizations) along with the analogy criteria, the temporal window

(30 = next day at 06 UTC), and the spatial windows (longitudes and latitudes). The extent of

Switzerland is shown in gray on the plots of the spatial windows.

The selected variables from ERA5 are shown in Figure 10 and 11. When compar-508

ing with ERA-I results, TCW gained importance as it was the most selected variable here.509

Similarly, the relative humidity at 1000 and 850 hPa increased in importance as if its rel-510
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evance improved in ERA5. There were also changes in the radiation variables, with the511

added top (top-of-atmosphere) net thermal radiation (TTR) taking the fourth slot and512

being completed by other ones in the top 30 variables: top net solar radiation (TSR),513

surface latent heat flux (SLHF), surface net thermal radiation (STR), surface solar ra-514

diation downwards (SSRD), and surface net solar radiation (SSR). These variables are515

likely highly correlated, and the selection could be reduced. It can also be noted that516

these variables are still often considered in terms of gradient (using S1), even though cloud517

cover variables were made available. As for cloud cover variables, different ones were se-518

lected in the top 30: the low cloud cover (LCC) and the cloud cover (CC) at 600, 1000,519

and 500 hPa. While LCC was most often considered in terms of gradients, the absolute520

values of the other cloud cover variables were mostly selected. The importance of low521

level PV also increased compared to ERA-I. Conversely, the geopotential height was only522

selected at 500 hPa in the top 30 predictors, SLP is not among the best ones anymore,523

and the presence of the divergence variables also decreased.524

The optimal spatial domains are comparable with those selected for ERA-I, includ-525

ing the 2-meter temperature extension to the south. As for the temporal windows, TCW526

is again mainly selected between 6 and 12 UTC, and RH at different times of the day.527

PV is often selected at the end of the day, along with W at 1000 hPa, the surface latent528

heat flux (SLHF), and the 2-meter temperature (T2m). The other variables are mainly529

selected during the daytime.530

3.4 Skill Scores531

To assess the relevance of the methods optimized in this work, they have been com-532

pared to the reference methods (Sect. 2.2). Figure 12 shows the CRPS score improve-533

ment for the different reference and resulting methods compared to the simplest RM1534

method. The CRPS values being heavily influenced by the climatology and thus signif-535

icantly different from one catchment to another, they are best compared relatively to a536

reference catchment-wise.537

The improvement of the CRPS is shown for the first single variable selection from538

ERA-I (ERA-I GAS 1x1), the full optimizations using ERA-I (ERA-I GAS 1x8, 1x12,539

1/2x6) or ERA5 (ERA5 GAS 1x12). An additional experiment has been attempted by540

pre-selecting the predictor variables (along with their vertical level and their time) and541

the analogy criteria and letting the GAs optimize the weights between these variables,542

along with the spatial domains. To this end, 26 of the most commonly selected ERA5543

variables were provided to the optimizer, organized in a single level of analogy (1x26).544

The results are shown in Appendix C. As shown in Figure 12, this approach does not545

provide the best skill scores. It can be due to non-optimal choices made to homogenize546

the vertical levels or times of the day, for example. In addition, this approach is not com-547

putationally efficient as it requires loading variables that barely play a role in the selec-548

tion of analog situations. Therefore, we do not recommend using such a strategy.549

One can see in Fig. 12 that the selection of a single best variable (GAS 1x1) al-550

ready achieves better skill than the RM1 method. Obviously, the skill provided by a sin-551
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Figure 12. Performance scores of the different reference and optimized methods on the val-

idation period for the 25 catchments. The skill score is expressed as a percentage improvement

(lower values) in terms of the CRPS when considering RM1 as a benchmark. An LxP code rep-

resents the structures, with L being the number of levels of analogy and P being the number of

predictors per level.

gle variable remains lower than more complex AMs. All other optimized methods per-552

form substantially better than the reference methods. Thus, despite having a single level553

of analogy, they outperform complex stepwise AMs. The gain obtained using ERA5 in-554

stead of ERA-I can be due to higher spatial and temporal resolutions or better variables555

(Horton, 2021). The selection of the predictor variables and the analogy criteria by GAs,556

along with all other parameters, provides AMs that prove relevant, also on the valida-557

tion period.558

4 Discussion559

4.1 Transferability of the Results560

The main aim of this work was to test the ability of GAs to select input variables561

for analog methods. It was found that GAs could select relevant predictors with the anal-562

ogy criteria to quantify their similarity. However, it may not be optimal to use the se-563

lected predictors in another context blindly. Indeed, the list of potential variables must564

be adapted to the application of the AM.565

Depending on the application, some specific constraints should be considered for566

optimizing AMs. For example, for use in forecasting, only meteorological variables that567

are considered sufficiently well-predicted should be selected. As for climate impact stud-568
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ies, the availability of meteorological variables is significantly more limited than what569

a reanalysis and standard climate model output can offer. In addition, care should be570

taken to select variables that have a causal effect on the predictand of interest and avoid571

undesirable co-variability.572

4.2 What About this S0 Criteria?573

The success of the S0 criteria over RMSE was unexpected. Overall, the triplet S0,574

S1 and S2 dominate the selection of analogy criteria. S1 was developed to verify prog-575

nostic charts (Teweles & Wobus, 1954). It was computed using pressure differences be-576

tween stations arranged in north-south and east-west lines. The ”difficulty coefficient”577

(the denominator) reduces the influence of the seasons and weather systems’ strength578

on the score. About forty other scores were developed and assessed by Teweles and Wobus579

(1954), but S1 was the most stable. It was also selected to penalize forecasters who tended580

to be overly conservative by forecasting weak systems too often. Indeed, the denomina-581

tor being the sum of the maximum gradients of the forecast or the observation, the fore-582

cast of a weaker system is more penalized than that of a stronger system. However, this583

could result in the opposite effect as it is safer for the forecaster to predict a stronger584

system with larger gradients and thus make the denominator larger (Thompson & Carter,585

1972).586

The S0 and S2 criteria have the same characteristic as S1, i.e., they penalize more587

heavily weaker fields. Let us consider a field F1 with values 50% lower than the target588

field (F), and another one, F2, with values 50% higher. Then, S0(F, F1) = 50 and S0(F, F2) =589

33.3 while the absolute differences between the target (F) and F1 or F2 are equal. F2590

will then be selected as a better analog. To get the same S0 value, F2 would need to dou-591

ble the target field values. The consequence is that the selection of analogs based on S0,592

S1 and S2 is not symmetrical, and these criteria tend to select fields that are close to the593

reference but preferably stronger than weaker.594

To investigate further the characteristics of S0, we considered a variation named595

here S0obs that uses the observation (here, target situation) values only for the denom-596

inator and not the maximum between observation and forecast (here, candidate analog).597

It is then similar to the MAPE (Mean Absolute Percent Error) and is symmetrical. We598

performed a classic calibration of a simple AM using only W700 with (1) the S0 crite-599

ria, (2) the RMSE criteria, and (3) the S0obs criteria. The calibration was performed for600

each setup separately. Using RMSE deteriorates the skill score by 8.7% on average, and601

S0obs also deteriorates the skill score by 9.8%. Thus, the asymmetrical property of S0602

is beneficial for the prediction.603

We then considered the reference method RM3 and performed a classic calibration604

for the 25 catchments by replacing one or the other criterion. When using S1obs (S1 nor-605

malized by the gradients of the observations only) instead of S1 for Z, the skill score de-606

teriorates by 4.8% on average. However, when replacing the RMSE of the second level607

of analogy (MI) with S0, there is a slight loss in performance of 0.5%. As there is strong608

conditioning by the first level of analogy that provides the sample of candidate analog609
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dates to be subsampled on moisture variables, the criterion of the second level of anal-610

ogy has a lower impact.611

It seems therefore that the asymmetrical properties of S0, S1, and S2 are benefi-612

cial for the prediction. Analog situations are best considered a bit stronger than weaker613

while being close to the target situation. The CRPS is mainly sensitive to high precip-614

itation values, even more when the precipitation is not transformed (see Bontron, 2004,615

for precipitation transformation). Thus, one hypothesis is that large precipitation events616

being underrepresented in the archive, AMs are better off selecting stronger predictor617

fields, often associated with higher precipitation. It might then play a role of bias com-618

pensation for underrepresented high precipitation events. The reason for such behavior619

should be investigated further.620

5 Conclusions621

The objective of the work was to assess the ability of GAs to select the input vari-622

ables of the analog method along with the analogy criteria. The experiment was success-623

ful as the selected predictors provided better skills than the reference methods. More-624

over, most of the selected variables can be related to meteorological processes involved625

in precipitation generation. For example, among the most selected variables are: the ver-626

tical velocity (W) at 700 hPa (along with other levels), the total column water (TCW),627

the convective available potential energy (CAPE), radiation variables, the potential vor-628

ticity (PV), the relative humidity (RH), cloud cover variables, wind components, the geopo-629

tential height, air temperature, and the divergence.630

The selection of analogy criteria also proved fruitful, as there were clear trends to-631

ward a dominant criterion for a given variable. The unexpected result was the success632

of the criterion S0, inspired by the Teweles-Wobus criterion. This new S0 turned out to633

be the most often selected analogy criterion, replacing the RMSE for the characteriza-634

tion of Euclidean distances. Three analogy criteria were most often selected, and all are635

derived from the Teweles-Wobus criterion; one is based on the raw point values, another636

on the gradients, and the third on the second derivative of the fields. All of them are nor-637

malized by the sum of the largest point(pair)-wise values from the target and the can-638

didate fields. This normalization makes the criteria asymmetrical, so that higher values639

are preferred to lower ones. Heavy precipitation, which substantially influences the CRPS,640

is often associated with more dynamic situations, characterized by higher values. The641

GAs may try to compensate for the under-representation of heavy precipitation events642

by favoring situations associated with higher precipitation values. These assumptions643

would need to be further investigated.644

Another unexpected result is the preferred structure for the analog methods. While645

most reference methods build on a stepwise selection of predictors with successive lev-646

els of analogy subsampling from the previous one by using different predictors, here, the647

GAs preferred a flatter structure, mainly with a single level of analogy, but more vari-648

ables. The reference methods most often start with selecting candidate analogs using the649

geopotential height and then narrowing down the selection using vertical velocity or mois-650
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ture variables. A primary difference with the reference methods is that the variables are651

standardized here, and weights are used (and optimized) to combine them in a given level652

of analogy. These two elements make the combination of variables with different value653

ranges easier. However, it cannot be excluded that deeper structures can provide bet-654

ter results, but that GAs did not find these solutions.655

Such optimization is computationally intensive. The new GPU-based computations656

brought significant time improvement, particularly for high-resolution data. Other ap-657

proaches could be considered to decrease the computation time, such as a faster explo-658

ration of the dataset using a smaller period for data pre-screening, or the division of the659

whole period into smaller batches. An alternative could be to reduce the number of days660

with small precipitation amounts, as they have a small impact on the CRPS, while weight-661

ing their contributions by using a weighted CRPS approach.662

This work opens new perspectives for input variables selection in the context of the663

analog method. While the variables selected in these experiments might not be trans-664

ferable to other contexts, the approach was proven successful and can be applied to other665

datasets. The potential variables must be chosen wisely regarding the application intended.666

Such an approach can, for example, be used to select the relevant variables to predict667

precipitation for a new location, or as a data mining technique to explore a dataset to668

predict a new predictand of interest.669

Appendix A GPU Implementation and Benchmark670

Several GPU implementations were tested, with the most successful aiming to re-671

duce the data copy to the device while increasing the load of parallel processing. It con-672

sisted in copying the predictor data to the device and calling the kernel2 for every tar-673

get date, thus assessing all candidates for that target date in one call. The main ben-674

efit of this variant is that it allows overlapping – using streams – the calculation of the675

analogy criteria on the GPU and other calculations on the CPU, such as the extraction676

of the indices corresponding to the candidate dates (using a temporal moving window677

of 120 days) and the sorting of the resulting analogy criteria.678

Threads on the GPU are organized in dynamically defined blocks, with a size from679

32 to 1024 threads. Here, every candidate date is assigned to a different block, with in-680

ternal loops for cases where the number of grid points is higher than the number of threads681

in the block. All analogy criteria need a reduction step to synthesize a two-dimensional682

array into a single value. The reduction is part of the analogy criteria calculation and683

is thus also done on the GPU. The threads are organized in groups of 32, called warps,684

that are synchronous and can access each other’s registers. The reduction on the device685

was performed with an efficient warp-based reduction using the CUDA shuffle instruc-686

tion. Different block sizes were assessed, and the size of 64 threads was identified as op-687

timal as it leaves fewer threads inactive during the reduction. Access to the GPU’s global688

memory has also been kept to a minimum due to its higher latency.689

2 A kernel is a numerical function executed in parallel on the GPU.
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The Google benchmark library was used to assess the computing time of different690

AM structures – single or two levels of analogy and up to four predictors per level – along691

with various grid sizes. Figure A1 shows the results for the analogy criterion S1, with692

gradients being pre-processed using CPUs only (counted in the total time). The other693

analogy criteria showed similar results. The task consisted of extracting analogs for 32694

years using the other 31 years as archives for candidate situations within a 120-days tem-695

poral window. It makes a total of 43.5·106 field comparisons per predictor of the first696

level of analogy.697
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Figure A1. Computing time for the extraction of analogs over 32 years using the S1 criteria

for different grid sizes and various structures of AMs. An LxP code represents the structures,

with L being the number of levels of analogy and P being the number of predictors per level.

Time is given for using (s) standard CPUs and (c) CUDA on GPUs (NVIDIA GeForce RTX

2080). Note the logarithmic axes.

The experiment was conducted on the UBELIX cluster of the University of Bern,698

using the same node for the whole benchmark and processing on a single NVIDIA GeForce699

RTX 2080 graphics card. The CPU processing – using the linear algebra library Eigen700

3 (Guennebaud et al., 2010) – was done on a single thread. Although AtmoSwing can701

parallelize the calculation of the analogy criteria on multiple CPU threads, it uses a sin-702

gle thread for this task when optimizing with GAs because it parallelizes the evaluation703

of the different individuals on multiple threads. With GPUs, it still assesses the individ-704

uals on multiple CPU threads, each of them being able to use a different GPU device705

to calculate the analogy criteria. It is thus parallelizing both on CPUs and GPUs.706

The benchmark (Fig. A1) shows that the GPU computations are systematically707

faster than those on the CPU, and this difference increases with the number of grid points.708

The GPU computations were 13 times faster on average and up to 38 times faster (5.2 sec709
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instead of 3.3 min) when using 2048 points. Model outputs and reanalyses show an in-710

crease in spatial resolution; thus, the impact on the computation time will become in-711

creasingly important. When using CPU only, adding a predictor in the first level of anal-712

ogy has a much higher impact on time than adding a second level of analogy. It is ex-713

plained by the fact that it needs to process the analogy criteria for the whole archive for714

each predictor of the first level of analogy, while the second level has only a few candi-715

date situations to assess.716

Appendix B Performance of the Mutation Operators717

As suggested in Horton et al. (2017), five variants of the mutation operator were718

used in parallel optimizations:719

1. Chromosome of adaptive search radius (Horton et al., 2017)720

2. Multiscale mutation (Horton et al., 2017)721

3. Non-uniform mutation (pmut=0.1, Gm,r=50, w=0.1)722

4. Non-uniform mutation (pmut=0.1, Gm,r=100, w=0.1)723

5. Non-uniform mutation (pmut=0.2, Gm,r=100, w=0.1)724

where pmut is the mutation probability, Gm,r is the maximum number of gener-725

ations (G) during which the magnitude of the research varies, and w is a chosen thresh-726

old to maintain a minimum search magnitude when G > Gm,r.727

Figure B1 shows the performance of these five mutation operators for different AM728

structures and the different catchments considered in Sect. 3.2. Overall, the chromosome729

of adaptive search radius has a success rate of 76.25% in calibration and 62.5% in val-730

idation, the multiscale mutation 7.5%, and 8.75% respectively, and the non-uniform mu-731

tation with its different options: (3) 11.25% and 10%, (4) 11.25% and 21.25%, and (5)732

1.25% and 2.5% respectively.733

Thus, it is quite clear that the chromosome of adaptive search radius obtains the734

best results, all the more so with more complex structures, i.e., more predictor variables.735

Although its success rate decreases slightly in validation, it remains much larger than736

the other options. The non-uniform mutation shows significant variability of performance737

depending on its options.738
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Figure B1. Performance of the five mutation operators (Sect. 2.3) for different AM structures

and the different catchments considered in Sect. 3.2. The values represent the number of opti-

mizations for one mutation operator that resulted in the best performing AM. Results are shown

for both calibration and validation. When multiple operators obtain the same skill score, they all

get a point.
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Appendix C An Attempt to Constrain the Algorithms739

An additional experiment has been attempted by pre-selecting the predictor vari-740

ables (along with their vertical level and their time) and the analogy criteria and letting741

the GAs optimize the weights between these variables, along with the spatial domains.742

To this end, 26 of the most commonly selected ERA5 variables were provided to the op-743

timizer, organized in a single level of analogy. The results are shown in Figure C1 and744

depict high weight values for W at 600 and 700 hPa. Surprisingly, Z700 based on S2 also745

gets relatively high weight values.746
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Figure C1. Results of the optimization with preselected 26 variables for the different catch-

ments. (top) The colors represent the analogy criteria, and the size of the dots is proportional

to the weight given to the predictor within the range [0.01, 0.2]. (bottom) Boxplot of the weight

values for the different variables.

Open Research747

Reanalysis datasets can be obtained from the respective providers (see Acknowl-748

edgements). Precipitation data can be obtained from MeteoSwiss (for research purpose749

only). The software used, AtmoSwing (https://atmoswing.org, Horton, 2019a), is open-750

source and can be used without restrictions.751
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Jézéquel, A., Yiou, P., & Radanovics, S. (2017). Role of circulation in European877

heatwaves using flow analogues. Climate Dynamics, 1–15. doi: 10.1007/s00382878

-017-3667-0879

Junk, C., Delle Monache, L., & Alessandrini, S. (2015). Analog-based Ensemble880

Model Output Statistics. Monthly Weather Review , 143 (7), 2909–2917. doi: 10881

.1175/MWR-D-15-0095.1882

–38–



manuscript submitted to Water Resources Research

Junk, C., Delle Monache, L., Alessandrini, S., Cervone, G., & von Bremen, L.883

(2015). Predictor-weighting strategies for probabilistic wind power forecasting884

with an analog ensemble. Meteorologische Zeitschrift , 24 (4), 361–379. doi:885

10.1127/metz/2015/0659886

Lorenz, E. (1956). Empirical orthogonal functions and statistical weather prediction887

(Tech. Rep.). Massachusetts Institute of Technology, Department of Meteorol-888

ogy, Massachusetts Institute of Technology, Dept. of Meteorology.889

Lorenz, E. (1969). Atmospheric predictability as revealed by naturally occurring890

analogues. J. Atmos. Sci., 26 , 636–646. doi: 10.1175/1520-0469(1969)26⟨636:891

aparbn⟩2.0.co;2892

Maraun, D., Wetterhall, F., Chandler, R. E., Kendon, E. J., Widmann, M., Brienen,893

S., . . . Thiele-Eich, I. (2010). Precipitation downscaling under climate894

change: Recent developements to bridge the gap between dynamical mod-895

els and the end user. Reviews of Geophysics, 48 (RG3003), 1–34. doi:896

10.1029/2009RG000314897
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plication à des bassins de la région Cév (Unpublished doctoral dissertation).901
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Key Points:7

• Genetic algorithms were successful in selecting relevant input variables for the pre-8

diction of precipitation by analog methods9
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gle level of analogy, while outperforming stepwise methods13
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Abstract14

Analog methods (AMs) have long been used for precipitation prediction and cli-15

mate studies. However, they rely on manual selections of parameters, such as the pre-16

dictor variables and analogy criterion. Previous work showed the potential of genetic al-17

gorithms (GAs) to optimize most parameters of AMs. This research goes one step fur-18

ther and investigates the potential of GAs for automating the selection of the input vari-19

ables and the analogy criteria (distance metric between two data fields) in AMs. Our20

study focuses on daily precipitation prediction in central Europe, specifically Switzer-21

land, as a representative case. Comparative analysis against established reference meth-22

ods demonstrates the superiority of the GA-optimized AM in terms of predictive accu-23

racy. The selected input variables exhibit strong associations with key meteorological24

processes that influence precipitation generation. Further, we identify a new analogy cri-25

terion inspired by the Teweles-Wobus criterion, but applied directly to grid values, which26

consistently performs better than other Euclidean distances. It shows potential for fur-27

ther exploration regarding its unique characteristics. In contrast to conventional step-28

wise selection approaches, the GA-optimized AM displays a preference for a flatter struc-29

ture, characterized by a single level of analogy and an increased number of variables. Al-30

though the GA optimization process is computationally intensive, we highlight the use31

of GPU-based computations to significantly reduce computation time. Overall, our study32

demonstrates the successful application of GAs in automating input variable selection33

for AMs, with potential implications for application in diverse locations and data explo-34

ration for predicting alternative predictands.35

1 Introduction36

Analog methods (AMs) are statistical downscaling techniques (Maraun et al., 2010)37

that rely on inherent relationships between meteorological predictors, usually at a syn-38

optic scale, and local weather (Lorenz, 1956, 1969). AMs look for similar meteorolog-39

ical situations in the past to that of a target date of interest. They provide a conditional40

prediction based on the observed predictand values at these analog dates. Daily precip-41

itation has been the predictand of interest, either in the context of operational forecast-42

ing (e.g. T. Hamill & Whitaker, 2006; Bliefernicht, 2010; Marty et al., 2012; Horton et43

al., 2012; T. M. Hamill et al., 2015; Ben Daoud et al., 2016), climate change studies (e.g.44

Dayon et al., 2015; Raynaud et al., 2016), or past climate reconstruction (Caillouet et45

al., 2016). AMs are also used for other predictands, such as precipitation radar images46

(Panziera et al., 2011; Foresti et al., 2015), temperature (Delle Monache et al., 2013; Cail-47

louet et al., 2016; Raynaud et al., 2016; Jézéquel et al., 2017), wind (Delle Monache et48

al., 2013, 2011; Vanvyve et al., 2015; Alessandrini, Delle Monache, Sperati, & Nissen, 2015;49

Junk, Delle Monache, Alessandrini, Cervone, & von Bremen, 2015; Junk, Delle Monache,50

& Alessandrini, 2015), and solar radiation or power production (Alessandrini, Delle Monache,51

Sperati, & Cervone, 2015; Bessa et al., 2015; Raynaud et al., 2016).52

AMs may consist of a stepwise selection of similar meteorological situations based53

on multiple predictors organized in different consecutive levels of analogy, each of which54
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conditions the subsequent selection. Each predictor consists of a specific meteorologi-55

cal variable at a specific time and vertical level (if relevant). The similarity between two56

situations is computed using an analogy criterion (distance metric) over a relevant spa-57

tial domain. For each level of analogy, a certain number of analogs are selected (Obled58

et al., 2002; Bontron, 2004).59

AMs for predicting precipitation commonly have a first level of analogy based on60

the atmospheric circulation. The variable of interest is the geopotential height (Z) at var-61

ious pressure levels and specific times throughout the day (Table 2; Obled et al., 2002;62

Horton et al., 2018). Bontron (2004) introduced a second level of analogy based on a mois-63

ture index that is the product of the relative humidity at 850 hPa and the total precip-64

itable water (method RM3 in Table 2). Other consecutive studies selected different pres-65

sure levels (method RM4 in Table 2) or added a wind component to the moisture index66

(Marty, 2010; Horton et al., 2018). Ben Daoud et al. (2016) inserted an additional level67

of analogy between the circulation and the moisture analogy based on the vertical ve-68

locity at 850 hPa (methods RM6 in Table 2) and named it ”SANDHY” for Stepwise Ana-69

log Downscaling method for Hydrology (Ben Daoud et al., 2016; Caillouet et al., 2016).70

To calibrate the method, a semi-automatic sequential procedure (Bontron, 2004;71

Radanovics et al., 2013; Ben Daoud et al., 2016) has often been used to optimize the size72

of the domain and the number of analogs. However, the predictor variables, vertical lev-73

els, temporal windows (time of the day), and analogy criteria were selected manually.74

This manual selection requires the comparison of numerous combinations and a compre-75

hensive assessment of some parameter ranges. Moreover, the sequential calibration pro-76

cedure successively calibrates the different levels of analogy, and thus it does not han-77

dle parameters inter-dependencies. Considering these limitations, Horton et al. (2017)78

introduced a global optimization of the AM using genetic algorithms (GAs). Using this79

approach, an automatic and objective selection of the temporal windows, the vertical lev-80

els, the domains, and the number of analogs became possible, improving the method’s81

prediction skills (Horton et al., 2018). A weighting of the predictor variables has also been82

introduced. The only parameters left for a manual selection were the meteorological vari-83

ables and the analogy criteria.84

Selecting predictors for precipitation prediction with AMs in Europe has been the85

focus of multiple studies aiming to improve prediction skills (Obled et al., 2002; Bon-86

tron, 2004; Gibergans-Báguena & Llasat, 2007; Radanovics et al., 2013; Ben Daoud et87

al., 2016). Thus, the relevant predictors are likely to be known nowadays and supported88

by expert knowledge. However, transferring AMs to a region with different climatic con-89

ditions or to another predictand would involve reconsidering the selected meteorologi-90

cal variables. This work aims to test a fully automatic optimization of all AM param-91

eters, including the selection of the meteorological variables and even the analogy cri-92

teria, using GAs. GAs have already been used for input variable selection (IVS) in other93

contexts (D’heygere et al., 2003; Huang et al., 2007; Cateni et al., 2010; Gobeyn et al.,94

2017).95
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We here seek to assess the potential of GAs for input variable selection in the con-96

text of the analog method. Moreover, we want to test the GAs’ ability to jointly select97

the distance metric in addition, i.e., the analogy criteria. To compare with well-established98

AMs, daily precipitation in central Europe, specifically in Switzerland, has been chosen99

as predictand. Also, as is often the case, the AMs were optimized in the perfect prog-100

nosis framework, using predictors from reanalyses. This work focuses mainly on the proof101

of concept of automatic input variable selection for AMs rather than the details of the102

obtained results for the case study.103

The paper is organized as follows. Section 2 describes the datasets, the fundamen-104

tals of AMs, the characteristics of the GAs implementation, the software used, and the105

experiment setup details. Section 3 presents the results of different analyses, such as the106

selection of the best predictor variable, the relevance of various AM structures, and the107

skill of the optimized methods. Section 4 discusses some findings of the work. Finally,108

section 5 summarizes the main contributions of the work and open perspectives for ap-109

plications of the developed approach.110

2 Material and Methods111

2.1 Data112

The target variable (predictand) is daily precipitation derived from the RhiresD113

gridded dataset from MeteoSwiss. It is a daily aggregation (from 06 UTC of day D to114

06 UTC of day D+1) at a 2 km resolution with data from 1961 onward. It is produced115

using an interpolation scheme between gauging stations (Frei & Schär, 1998). The grid-116

ded data was here spatially aggregated across 25 catchments of about 200 km2 (Table117

1). These catchments were chosen to cover the different climatic regions of Switzerland118

(Schüepp & Gensler, 1980), as illustrated in Fig. 1.119

As often done in the context of the perfect prognosis framework, we used variables120

provided by global reanalyses. Even though most reanalyses provide good quality data121

over Europe, differences still exist, and the choice of the reanalysis dataset can impact122

the skill score of the AM even more significantly than the choice of the predictor vari-123

ables (Horton & Brönnimann, 2019). Thus, it was considered advisable to test some of124

the following analyses with another reanalysis to assess the robustness of the selected125

variables.126

The main reanalysis used in this work is ERA-Interim (ERA-I, Dee et al., 2011),127

which was produced by the European Centre for Medium-Range Weather Forecasts (ECMWF)128

and covers the period from 1979 to 2019. The forecast model uses a hybrid sigma-pressure129

vertical coordinate on 60 layers and has a T255 horizontal resolution (about 79 km) and130

a 30 min time step. The output variables have a grid resolution of 0.75◦. The present131

work started before the release of ERA5, the successor of ERA-I.132

The Climate Forecast System Reanalysis (CFSR, Saha et al., 2010), provided by133

NCEP, was used for the first experiment to compare the results obtained with ERA-I.134

The model used to produce CFSR has a horizontal resolution of T382 (about 38 km) and135
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Figure 1. Location of the 25 selected catchments in Switzerland along with the climatic

regions (dashed lines) and the river network (source: SwissTopo, HADES).

64 levels on sigma-pressure hybrid vertical coordinates. The period covered is from 1979136

to August 2019, and the output variables have a spatial resolution of 0.5◦.137

Finally, ERA5 (Hersbach et al., 2019) was used for the last analysis. ERA5 pro-138

vides more variables and a higher spatial grid (0.25◦, but used here at 0.5◦) and tem-139

poral resolution (hourly, but used here at a 3-hourly time step). ERA5 assimilates sig-140

nificantly more data than ERA-I and provides, among others, more consistent sea sur-141

face temperature and sea ice, an improved representation of tropical cyclones, a better142

balance of evaporation and precipitation, and improved soil moisture. ERA5 also relies143

on more appropriate radiative forcing and boundary conditions (e.g., changes in green-144

house gases, aerosols, SST, and sea ice) (Hersbach et al., 2019).145

2.2 Analog Methods146

AMs are based on the rationale that two similar synoptic situations may produce147

similar local weather (Lorenz, 1956, 1969). It thus consists of extracting past atmospheric148

situations similar to a target date. Selected predictor fields define this similarity. The149

conditional distribution of the predictand of interest (here, daily precipitation) is extracted150

from these analog dates. The analogy is defined by:151

1. The selected meteorological variables (predictors).152

2. The vertical levels at which the predictors are selected.153
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Table 1. Characteristics of the 25 selected catchments in Switzerland

Id Name of the river Climatic region Area Mean elevation
(km2) (m a.s.l.)

1 L’Allaine Eastern Jura 209.1 571
2 Ergolz Eastern Jura 150.3 589
3 L’Orbe Western Jura 209.3 1229
4 La Birse Western Jura 203.3 920
5 La Broye Western Plateau 184.5 791
6 Murg Central Plateau 184.8 658
7 Aabach Central Plateau 180.0 562
8 Töss Northeastern Plateau 189.3 745
9 Sense Western alpine north slope 179.6 1238
10 La Sarine Western alpine north slope 200.8 1779
11 Weisse Lütschine Western alpine north slope 165.0 2149
12 Emme Central alpine north slope 206.9 1151
13 Engelberger Aa Central alpine north slope 204.3 1654
14 Linth Eastern alpine north slope 195.7 1959
15 Sitter Eastern alpine north slope 162.2 1069
16 Dranse d’Entremont Valais 154.2 2340
17 La Navisence Valais 210.5 2541
18 Lonza Valais 161.7 2370
19 Doveria Southern Alps 170.5 2241
20 Ticino Southern Alps 208.5 2019
21 Verzasca Southern Alps 187.4 1656
22 Valser Rhein North and Central Grisons 185.8 2215
23 Plessur North and Central Grisons 207.7 1928
24 Mera Southern Alps 190.6 2142
25 Flaz Engadine 193.1 2599

3. The spatial windows (domains) over which the predictors are compared.154

4. The hours of the day at which the predictors are considered.155

5. The analogy criteria (distance metric to rank candidate situations).156

6. Possible weights between the predictors.157

7. The number of analog situations Ni to select for the level of analogy i.158

AMs usually start with a seasonal preselection to cope with seasonal effects (Lorenz,159

1969). The seasonal preselection is often implemented as a moving window of 120 days160

centered around the target date (Bontron, 2004; Marty et al., 2012; Horton et al., 2012;161

Ben Daoud et al., 2016). Alternatively, the candidate dates can be preselected based on162

similar air temperature at the nearest grid point (Ben Daoud et al., 2016, methods RM5163

and RM6 in Table 2). In this work, we used the temporal moving window to reduce the164

number of potential candidate dates and, thus, the computing time.165

The first level of analogy in AMs for precipitation is often based on the atmospheric166

circulation using the geopotential height (Z) at different pressure levels and hours of the167

day (Table 2). The distance (analogy criterion) between two Z fields is computed on the168

vector components of the gradient, i.e., using the difference between adjacent grid cells,169

rather than comparing absolute values. The Teweles–Wobus criterion (S1, Eq. 1, Tewe-170

les & Wobus, 1954; Drosdowsky & Zhang, 2003) was identified as the most suited by dif-171
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Table 2. Some analog methods listed by increasing complexity. The analogy criterion is S1 for

Z and RMSE for the other variables.

Method Preselection First level Second level Third level Reference

RM1 ±60 days
Z1000@12h

Bontron (2004)
Z500@24h

RM2 ±60 days

Z1000@06h

Horton et al. (2018)
Z1000@30h
Z700@24h
Z500@12h

RM3 ±60 days
Z1000@12h

MI850@12+24h Bontron (2004)
Z500@24h

RM4 ±60 days

Z1000@30h

Horton et al. (2018)
Z850@12h MI700@24h
Z700@24h MI600@12h
Z400@12h

RM5
T925@36h Z1000@12h MI925@12+24h

Ben Daoud et al. (2016)
T600@12h Z500@24h MI700@12+24h

RM6
T925@36h Z1000@12h

W850@06-24h
MI925@12+24h

Ben Daoud et al. (2016)
T600@12h Z500@24h MI700@12+24h

Z, geopotential height; T, air temperature; W, vertical velocity; MI, moisture index.

ferent studies (Wilson & Yacowar, 1980; Woodcock, 1980; Guilbaud & Obled, 1998; Bon-172

tron, 2004). It is defined as:173

S1 = 100

∑
i

|∆ẑi −∆zi|∑
i

max {|∆ẑi|, |∆zi|}
(1)

where ∆ẑi is the gradient component between the ith pair of adjacent points from the174

geopotential field of the target situation, and ∆zi is the corresponding observed gradi-175

ent component in the candidate situation. The gradient components are computed in176

both latitude and longitude directions. S1 ranges from 0 to 200. The smaller the S1 val-177

ues, the more similar the pressure fields. The S1 criterion characterizes the wind’s di-178

rection and strength, allowing a comparison of the atmospheric circulation.179

For other predictors than the geopotential height (e.g., for moisture variables), clas-180

sic criteria representing Euclidean distances between grid point values are used: Mean181

Absolute Error (MAE) and Root Mean Squared Error (RMSE), the latter being used182

most often.183

The output of the AM is a probabilistic prediction for the target day. It is provided184

by the empirical conditional distribution of the Ni predictand values corresponding to185

the Ni dates selected at the last level of analogy.186
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2.3 Genetic Algorithms187

GA is a global optimization technique inspired by genetics and natural selection188

(Holland, 1992). It belongs to the family of evolutionary algorithms and comprises dif-189

ferent operators such as natural selection, selection of couples, chromosome crossover,190

mutation, and elitism. These operators act on parameter sets of the problem to optimize191

by mixing, combinations, and random modifications. GA aims at combining, over time,192

the strength of different parameter sets and at exploring the parameters space while con-193

verging toward the global optimum. The optimization starts with 2000 random param-194

eter sets (as defined in Sect. 2.2) and is stopped when the best parameter set cannot be195

improved after 30 iterations.196

A variant of genetic algorithms (GAs) has been tailored to optimize AMs by Horton197

et al. (2017). All the method’s parameters except the meteorological predictor variables198

and the analogy criteria have already been successfully optimized using GAs (Horton et199

al., 2018). The use of GAs provided for the first time an objective and global optimiza-200

tion of AMs, which resulted in gains in prediction skills. To bring the optimization fur-201

ther, the selection of the predictor variables and the analogy criteria were performed here202

by GAs.203

The reason why the predictor variables and analogy criteria were left out in the pre-204

vious GA-AM set-up Horton et al. (2017) is the different nature of these variables. The205

parameters optimized so far by Horton et al. (2017) were quantitative variables, i.e., nu-206

merical values (e.g., location and size of the spatial windows or the number of analogs),207

which have a notion of continuity. The meteorological predictors or analogy criteria, how-208

ever, are categorical variables that have no relationship among options. They are treated209

as arrays of independent values by the algorithm. Therefore the mutation operator re-210

lying on a search radius in the parameters space (Horton et al., 2017) cannot be applied.211

Instead, a simple random sampling was used for these parameters when selected for mu-212

tation. In addition to the increased difficulty due to the higher number of parameters213

to optimize, this aspect will likely slow down the optimization.214

In GAs, the mutation operator changes a parameter value (gene) if this parame-215

ter was selected to mutate (all parameters have a certain mutation probability). The new216

value assigned depends on the rules of the mutation operator applied. This operator en-217

ables the optimization to explore new areas of the parameters space and was shown to218

have the most significant impact on the success of the optimization (Horton et al., 2017).219

Thus, as suggested in Horton et al. (2017), five variants of this operator were used in par-220

allel optimizations (see details in Appendix B): three variants of the non-uniform mu-221

tation (Michalewicz, 1996), the multiscale mutation (Horton et al., 2017), and the chro-222

mosome of adaptive search radius (Horton et al., 2017). The non-uniform mutation aims223

to reduce the magnitude of the search in the parameters space with the evolution of the224

population to transition from the exploration of the whole parameter space to the ex-225

ploitation of local solutions. This operator has three controlling variables, which makes226

it difficult to adjust, and thus is used with three different configurations. The multiscale227

mutation considers both exploration and exploitation in parallel. It has no controlling228
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parameters and no evolution during the optimization. The chromosome of adaptive search229

radius was introduced by Horton et al. (2017) and is inspired by the non-uniform mu-230

tation. It takes an auto-adaptive approach by adding two chromosomes, one for the mu-231

tation rate and one for controlling the search magnitude (see details in Horton et al., 2017).232

Therefore, it has no controlling parameters, is thus easier to use, and automatically tran-233

sitions from the exploration phase to exploitation.234

2.4 Software235

The optimization of AMs with GAs is implemented in the open-source AtmoSwing236

software1 (Horton, 2019a) that has been used for this work. AtmoSwing is written in object-237

oriented C++ and has been optimized for computational performance. It scales well on238

HPC infrastructures as the different members of the GAs populations, i.e., the various239

parameter sets, can be assessed in parallel using multiple independent threads. However,240

due to the increasingly large number of assessments needed by GAs with the increasing241

complexity of the problem, a further reduction in computing time became necessary. In-242

deed, while applying AMs to perform a prediction for a single target date is a very fast243

and light process, GAs require a substantial amount of parameter assessment over long244

calibration periods.245

A first attempt was based on storing the whole history of the optimization in mem-246

ory and looking up for equal – or similar – already-assessed parameters to a newly gen-247

erated parameters set. However, this approach turned out to be even more time-consuming248

after several generations and led to memory issues for long optimizations.249

Despite being simple methods, AMs require many comparisons of gridded fields dur-250

ing the calibration phase. For example, this work used a 24-year calibration period. For251

each target day, a gridded predictor needs to be compared to about 2820 candidate sit-252

uations (24*120-60, using a 120-day temporal window minus 60 days in the target year253

that are excluded). Over the entire calibration period, this amounts to about 24.7·106254

field comparisons per predictor of the first level of analogy. Here, one optimization re-255

quired, on average, about 200 generations made of 2000 individuals, which brings the256

average number of grid comparisons to about 1·1013 per predictor of the first level of257

analogy. The comparison of the gridded predictors – i.e., the calculation of the analogy258

criteria – was identified by profilers as the most time-consuming task, despite using the259

efficient linear algebra library Eigen 3 (Guennebaud et al., 2010).260

To reduce the processing time, computation using graphics processing units (GPUs)261

was implemented for this study in a new release of AtmoSwing, v.2.1.2 (Horton, 2019b).262

The calculation of the analogy criteria has been written using NVIDIA’s CUDA. The263

implementation details and the results of a benchmark experiment can be found in Ap-264

pendix A. When optimizing the methods using ERA5 at a 3-hourly time step and 0.5◦265

resolution, the difference is substantial. One generation (2000 evaluations) took 8 to more266

1 https://atmoswing.org/

–9–



manuscript submitted to Water Resources Research

than 10 hours using 20 CPU threads, while 50 to 80 minutes were needed using 3 CPU267

threads and 3 GPU devices (NVIDIA GeForce703 RTX 2080).268

2.5 Experiments Setup269

The experiments were conducted over a 30-year period, from 1981 to 2010, divided270

into a calibration period (CP) and an independent validation period (VP – note that the271

years 2011-2018 were reserved for an additional test period, which was in the end not272

used). To reduce the impact of potential inhomogeneities in the time series, the selec-273

tion of the validation period (VP) was evenly distributed over the entire series (as in Ben274

Daoud, 2010). A total of 6 years was used for the VP by selecting one year out of ev-275

ery five (explicitly: 1985, 1990, 1995, 2000, 2005, 2010). The archive period (AP), where276

the analog dates are being retrieved, is the same as the CP. The VP is also excluded from277

the AP (days from the VP were never used as candidate situations for the selection of278

analogs), as well as a period of ±30 days around the target date to exclude potential de-279

pendent meteorological situations. Unless stated otherwise, all results are presented for280

the VP.281

The GAs optimized all parameters of the method. Only the AM structure (num-282

ber of analogy levels and predictors) was not optimized. Different structures were tested283

in section 3.2. For each level of analogy and each predictor, the following parameters were284

optimized within the corresponding ranges:285

1. Meteorological variable: see section 2.5.1.286

2. Vertical level: see section 2.5.1.287

3. Temporal windows (time of the day): from day D 00 UTC to D+1 06 UTC (c.f.288

precipitation accumulation period, sect 2.1)289

4. Spatial window (domain): latitudes=[35, 55], longitudes=[-10, 20]. The spatial win-290

dows differ between predictors, even in the same level of analogy.291

5. Analogy criterion: see section 2.5.2.292

6. Weight: [0, 1] with a precision of 0.01 (0.05 for experiment 2). The optimizer can293

turn off a variable by setting its weight to zero.294

7. Number of analogs: varies according to the structure, but with an overall range295

of [5, 300] and a step of 5. The optimizer can turn off a level of analogy by set-296

ting its number of analogs to the same value as the previous level of analogy.297

The CRPS (Continuous Ranked Probability Score; Brown, 1974; Matheson & Win-298

kler, 1976; Hersbach, 2000) was used to assess the skill of the predictions. It evaluates299

the predicted cumulative distribution functions F (y), here of the precipitation values y300

associated with the analog situations, compared to the single observed value y0 for a day301

i:302

CRPSi =

∫ +∞

0

[
Fi(y)−Hi(y − y0i )

]2
dy, (2)
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where H(y − y0i ) is the Heaviside function that is null when y − y0i < 0, and 1 other-303

wise; the better the prediction, the lower the score.304

2.5.1 Meteorological Variables305

The meteorological variables were considered for different types of vertical levels:306

surface or entire atmosphere (to capture e.g., the moisture content of an entire air col-307

umn), pressure levels (1000, 950, 900, 850, 800, 700, 600, 500, 400, 300, 200 hPa, to cap-308

ture the vertical structure), potential temperature levels (290, 300, 310, 320, 330, 350,309

400 K, necessary to include potential vorticity), and potential vorticity levels. The se-310

lected variables are listed in Table 3. The optimization can pick any variable on any level311

type and value, as long as it is available. Precipitation variables from reanalyses were312

not considered potential predictors. Precipitation is usually not considered as a predic-313

tor in AMs, as a method developed in the perfect prognosis context would then be dif-314

ficult to use in other conditions due to the high uncertainties and the biases associated315

with precipitation predicted by an NWP or a climate model.316

The variables were standardized (using the overall climatology) on-the-fly by At-317

moSwing when loaded from files. The standardization has no impact on the selection of318

analog situations for a single predictor, but it makes the combination of predictors within319

one level of analogy more balanced, as they might have very different orders of magni-320

tude and units. It allows a more effective optimization of the weights between predic-321

tors.322

2.5.2 Analogy Criteria323

The most common analogy criteria in AMs are the Root Mean Squared Error (RMSE)324

and the Teweles–Wobus criterion (S1, see section 2.2). Other criteria were made avail-325

able to the GAs in order to explore potential new characterizations of the analogy met-326

rics. Two of these criteria are new and derived from S1. The potential criteria made avail-327

able to the GAs are the following:328

1. RMSE: the Root Mean Squared Error.329

2. MD: the Mean Absolute Difference, or Mean Absolute Error. It differs from the330

RMSE in that the differences are not squared.331

3. S1: the Teweles–Wobus index as defined in Eq. 1 from section 2.2. It consists of332

a comparison of the gradients, primarily used for the geopotential height.333

4. S2: inspired by the Teweles–Wobus index, we introduced a new criterion based334

on the second derivative of the fields instead of the gradients:335

S2 = 100

∑
i

|∇2x̂i −∇2xi|∑
i

max
{
|∇2x̂i|, |∇2xi|

} (3)

where ∇2x̂i is the second derivative between the ith triplet of adjacent points from336

the predictor field of the target situation, and ∇2xi is the corresponding observed337
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Table 3. Selected variables for ERA-I, CFSR, and ERA5 for different types of vertical levels.

Variable Id Unit ERA-I CFSR ERA5
Levels: PL PT PV SC PL PT PV SC PL SC

CIRCULATION VARIABLES
Geopotential height Z gpm • • • • • •
Geopotential height anomaly ZA gpm •
Zonal wind U m s−1 • • • •a • • • • •a
Meridional wind V m s−1 • • • •a • • • • •a
Pressure PRES Pa • • •c • ••c •c
Vertical velocity W Pa s−1 • • • • •
Divergence D s−1 • • •
Vorticity VO s−1 • •
Potential vorticity PV m2 s−1 K kg−1 • • • •
Stream function STRM m2 s−1 •
Velocity potential VPOT m2 s−1 •
Montgomery potential MONT m2 s−2 •
Montgomery stream function MNTSF m2 s−1 •

MOISTURE VARIABLES
Relative humidity RH % • • • • •
Specific humidity SH kg kg−1 • • •
Total column water TCW kg m−2 • •
Total column water vapour TCWV kg m−2 • •
Cloud water CWAT kg m−2 •
Surface moisture flux IE kg m−2 s−1 •

TEMPERATURE VARIABLES

Temperature T K • •b • • • • •b
Potential temperature PT K •
Dewpoint temperature* DT K •a
Sea surface temperature SST K •
0◦ C isothermal level DEG0L m • •

RADIATION VARIABLES
Surf. net solar radiation SSR J m−2 • •
Surf. solar rad. downwards SSRD J m−2 • •
Surf. net thermal radiation STR J m−2 • •
Surf. thermal rad. downwards STRD J m−2 • •
Surf. latent heat flux SLHF J m−2 •
Surf. sensible heat flux SSHF J m−2 •
Top net solar radiation TSR J m−2 •
Top net thermal radiation TTR J m−2 •

STABILITY INDICES
Convective avail. pot. energy CAPE J kg−1 • • •
Convective inhibition CIN J kg−1 • •
Best (4 layer) lifted index 4LFTX K •
Surface lifted index LFTX K •
Lapse rate LAPR K m−1 •

OTHERS
Cloud cover CC (0 - 1) •
Low cloud cover LCC (0 - 1) •
Total cloud cover TCC (0 - 1) •
Snow depth SD m of w.e. •

PL = pressure levels, PT = pot. temp. levels, PV = pot. vorticity levels, SC = single level, surface or total column

*moisture and temperature variable, aat 10 m, bat 2 m, cat mean sea level.
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second derivative in the candidate situation. Please note that it differs from the338

S2 index from Teweles and Wobus (1954).339

5. S0: as with S2, this new criterion derives from S1 and is processed on the raw grid340

values. It differs from the MD mainly in that it is normalized by the sum of the341

maximum values instead of the number of points:342

S0 = 100

∑
i

|x̂i − xi|∑
i

max {|x̂i|, |xi|}
(4)

where x̂i is the ith point from the predictor field of the target situation, and xi343

is the corresponding observed point in the candidate situation. The reason for adding344

such a criterion was accidental, as it was an erroneous implementation of S2. How-345

ever, it turned out to be relevant (see sections 3 and 4.2).346

6. DSD: difference in standard deviation over the spatial window. It is a non-spatial347

criterion, as the location of the features does not matter.348

7. DMV: absolute difference in mean value. It is also non-spatial, as the means are349

computed over the spatial window before comparison.350

2.5.3 Design of Experiments351

The input variables selection with GAs has been assessed in sequential steps. First,352

GAs were used to identify the single best predictor variables and their associated anal-353

ogy criteria for each catchment (Sect. 3.1). The objective was to assess the consistency354

of the selected variables in the most straightforward configuration. Then, as AMs can355

be made of different levels of analogy with multiple predictors, the second experiment356

assessed the skill associated with different structures and the ability of GAs to deal with357

these, using a limited number of catchments (Sect. 3.2). Based on these results, the third358

experiment performs the input variables selection for each catchment (Sect 3.3).359

3 Results360

3.1 Best Single Variables361

The first experiment assesses the use of GAs to select a single predictor variable362

and analogy criterion for each catchment. The selection has been performed on ERA-363

I (Fig. 2) but also on CFSR for comparison (Fig. 3), with six optimizations per catch-364

ment and dataset. The six optimizations were based on different mutation operators (the365

five variants but twice the chromosome of adaptive search radius). The purpose of us-366

ing two reanalyses is to assess the consistency and possible differences in the variables367

selection between two datasets.368

One of the first elements that can be seen for both datasets is the dominance of369

the S0 criterion, selected 60% of the time for ERA-I and more than 55% of the time for370

CFSR, along with the other Teweles–Wobus-based criteria (Fig. 4). The other analogy371

criteria were rarely selected, if at all. The same applies to the RMSE, commonly used372
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in analog methods. The GAs could better predict using S0 as a metric for the Euclid-373

ian distance between the predictor fields. This result is further discussed in Sect. 4.2.374

25242322212019181716151413121110987654321

STRD
STR

PV950
VO900

D900
D850
D800
W900
W850
W800
W700
W600
V800
Z900
Z850
Z800
Z700
Z600

Criteria
RMSE
S0
S1
S2
MD
DSD
DMV

Figure 2. Best single variable selected (ordinate; see Table 3 for the variables abbreviations)

from ERA-I for the 25 catchments (abscissa). The colors represent the analogy criteria, and the

size of the dots is proportional to the skill score of the resulting method (the larger the dots, the

better), within a range of 5% of the best result (those with lower skill are hidden).
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Figure 3. Same as Fig. 2 but for CFSR.

The variable selection results show some variability per catchment but similar skill375

scores. Although GAs can, in theory, identify the global optimum, this search is highly376

time-consuming for such complex problems, and we have to stop the optimizations at377

a good-enough solution. These factors explain the variability that can be observed in the378

results. Nevertheless, this variability provides information about alternative variables379

with almost the same predictive skills.380

Figures 2 and 3 demonstrate that optimal variables can vary across different re-381

gions. Figure 5 illustrates this information spatially for ERA-I variables. In terms of sim-382

ilarities, the vertical velocity (W) at 700 and 800 hPa is the most frequently selected vari-383
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Figure 4. Frequency of the criteria selection for both reanalysis datasets.
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Figure 5. Map of the best variables for ERA-I for each catchment.

able for both datasets and is quantified using the S0 criteria. Upward vertical winds at384

these levels are typically associated with precipitation generation. Within the Southern385

Alpine climatic region (catchments 19, 20, 21), Z (based on the S1 criterion) emerges as386

the best single predictor for ERA-I, which is not so clear with CFSR. Heavy precipita-387

tion events in this region predominantly result from orographic effects related to sustained388

southerly advection of moisture-laden air masses (Massacand et al., 1998). Other regional389

clusters can be observed using ERA-I, such as the meridional wind V (with S1) in the390

eastern part of Switzerland, also likely related to the southerly advection, STR(D) (sur-391

face net thermal radiation and surface thermal radiation downwards) in northern Switzer-392

land, maybe related to cloud cover, and the second derivative of Z (with S2) for several393

catchments at similar latitudes. The second derivative of Z is also frequently selected for394

CFSR. While the variable of cloud water (CWAT) from CFSR is often chosen, it is not395

directly available in ERA-I.396
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3.2 Assessment of AM Structures397

The analysis of different AM structures (Sect. 2.5.3) aims to identify the best-performing398

structures, i.e., the optimal number of analogy levels and predictors. We first considered399

one to four levels of analogy, with one to four predictors per level. Five optimizations400

were performed for each of these 16 structures with the different mutation operators. As401

this assessment requires 80 optimizations, it was performed on only four catchments (L’Allaine402

(1), Sitter (15), Doveria (19), Flaz (25)). These were selected to maximize the diversity403

of climatic conditions represented. A complementary analysis was performed on two catch-404

ments (L’Allaine (1) and Doveria (19)) to explore the use of up to eight predictors on405

one and two levels of analogy. These experiments also allowed comparing the performance406

of the mutation operators for different problem complexities.407

Even though the structure is provided to the GAs, it can still evolve to a simpler408

version by assigning a zero weight to some predictors or by setting the same number of409

analogs for two successive levels of analogy. This simplification often happened, such as410

that no solution ended up with the structure 4 x 4 (four levels of analogy with four pre-411

dictors each). The best-performing methods on the validation period were always made412

of one or two levels of analogy (Fig. 6 and 7). While some reference methods have up413

to four levels of analogy (Sect. 2.2), the use of normalized variables and weights might414

here favor their combination in the same level of analogy. The methods with fewer lev-415

els of analogy present less of a hierarchy among the predictors. However, not having a416

systematic constraint by the atmospheric circulation, as in the reference methods, re-417

sults in more influence from other variables. Although atmospheric circulation is often418

of primary importance for heavy precipitation events, there can be situations where it419

is preferable to relax these constraints. However, we cannot conclude that two levels of420

analogy are the maximum to be considered, as the optimizer might have failed to op-421

timize complex structures satisfactorily.422

The results also depict significant performance differences between the mutation423

operators (Sect. 2.3). The chromosome of adaptive search radius (option #1) provides424

the best-performing parameter sets 76.3% of the time for the calibration period and 62.5%425

of the time for the validation period (Fig. B1). The second best is the non-uniform mu-426

tation with a mutation probability (pmut) of 0.1 (option #4), being the best option for427

11.3% of the optimizations for the calibration period and 21.3% for the validation pe-428

riod. However, the same operator with a mutation probability (pmut) of 0.2 (option #5;429

Gm,r=100) is the worst-performing option, with a success rate of 1.3% for the calibra-430

tion period and 2.5% for the validation period. It quite well illustrates the difficulty of431

tuning such operators and the risk of a badly-configured mutation operator, and thus432

the benefit of an auto-adaptive option such as the chromosome of adaptive search ra-433

dius with no controlling parameters. Moreover, it usually performed better for more com-434

plex AM structures.435
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Figure 6. CRPS scores obtained for different AM structures with up to four levels of analogy

and four variables per level for four catchments in Switzerland. Lower CRPS (yellow) represents

a better skill.
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Figure 7. CRPS scores obtained for different AM structures with up to two levels of analogy

and eight variables per level for two catchments in Switzerland. Lower CRPS (yellow) represents

a better skill.
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3.3 Full Optimization436

The third experiment used different AM structures to perform the full input vari-437

able selection for each catchment. Only the chromosome of adaptive search radius has438

been used because of its higher performance.439

3.3.1 Using Variables from ERA-I440

Based on the previous results, three AM structures were selected: 1 level of anal-441

ogy with 8 (1 x 8) or 12 predictors (1 x 12), and 2 levels with 6 predictors (2 x 6) (Sect.442

2.5.3). Two optimizations were performed by structure and catchment. The structure443

with two levels of analogy (2 x 6) turned out to be simplified by the GAs to a single level444

of analogy (1 x 6) for several catchments. Consequently, this structure resulted in lower445

skill scores (Figure 12) as fewer predictors were used. Thus, only structures with a sin-446

gle level of analogy (1 x 8 and 1 x 12) are further analyzed here.447
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Figure 8. Selected variables (see Table 3 for the variables abbreviations) from ERA-I for the

1 x 8 and 1 x 12 structures for the different catchments. The colors represent the analogy crite-

ria, and the size of the dots is proportional to the weight given to the predictor within the range

[0.02, 0.2]. Variables that were never selected with a weight equal to or larger than 0.05 are not

represented.
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Figure 9. Statistics of the 30 most selected variables from ERA-I for the 1 x 8 and 1 x 12

structures for the different catchments (100 optimizations) along with the analogy criteria,

the temporal window (30 = next day at 06 UTC; some radiation variables were considered at

15 UTC), and the spatial windows (longitudes and latitudes). The extent of Switzerland is shown

in gray on the plots of the spatial windows.

Figure 8 shows the different variables selected for each catchment along with the448

analogy criteria (color) and the weights (size). Figure 9 synthesizes the 30 most often449
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selected variables and the associated analogy criteria, temporal windows, and spatial win-450

dows across catchments. These results show again a strong dominance of the S0, S1, and451

S2 analogy criteria, with the others being only rarely selected, including RMSE. S0 is452

most often selected. The properties of S0 are further investigated in Sect. 4.2.453

Vertical velocity (W) at 700 hPa (and sometimes at 600 or 800 hPa) is the most454

frequently selected variable, also for catchments that were previously selecting another455

best single variable (Sect. 3.1). Those with higher elevations and located in the south-456

ern part of the country additionally selected W at 500 hPa or even higher.457

The surface solar radiation downwards (SSRD) is the second most selected vari-458

able and is mainly relevant when compared in terms of gradients (S1) rather than ab-459

solute values. It might thus be used as a proxy for clouds. Other radiation variables oc-460

cupy the fourth and fifth ranks, such as surface thermal radiation downwards (STRD)461

and surface net thermal radiation (STR). These are mainly relevant when compared in462

terms of absolute values (S0), although there is a non-negligible representation of the S1463

criteria. These can also be used as proxies for cloud cover information.464

CAPE is the third most selected variable, and the total column water (TCW) is465

the sixth variable. At the ninth position comes the meridional wind at 10 m, but using466

S1 or even S2. The derivative of the wind can be informative on the location of frontal467

systems and convergence or divergence zones. Then comes the meridional wind on the468

PV level. The 2 m temperature has the 12th position and is compared in terms of gra-469

dients (S1), which can reflect the position of fronts. Follows the geopotential height (Z)470

at 700 and 600 hPa compared primarily using the second derivatives of the fields (S2).471

The curvature of the geopotential height helps identify and characterize synoptic-scale472

features such as ridges and troughs in the atmosphere. A bit further down on the list,473

SLP is also compared in terms of its second derivative. Other variables such as RH, PV,474

D, and U also populate the 30 best variables.475

The optimal spatial windows (Figure 9) cover Switzerland most of the time, with476

different extents depending on the variables. For example, while the medians of the op-477

timal domains for W and CAPE are slightly larger than Switzerland, PV is here con-478

sidered on a larger domain. The 2m temperature (T2m) is characterized by unusual, lon-479

gitudinally extended domains, with the main body in southern Switzerland extending480

to the northern Mediterranean. Thus, it likely represents information at a synoptic scale,481

such as the location of fronts, rather than local conditions. Note that SST was also in482

the pool of potential variables but has never been selected as relevant.483

The optimal temporal windows (time of the day) show substantial variability be-484

tween the predictor variables. At the lower end of the range is TCW, which is consid-485

ered better at the beginning of the precipitation accumulation period (06 UTC). The top486

of the range (06 UTC the next day, corresponding to the end of the accumulation pe-487

riod) was favored by the divergence (D at 285◦K) and some low-level W (W900 and W950)488

or Z (Z900). It should be noted here that the radiation variables used were cumulative489

variables that were not decomposed prior to the analysis. Thus, most of the selected tem-490

poral windows correspond to the beginning of the accumulation period, i.e., 15 UTC.491
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3.3.2 Using Variables from ERA5492

A similar experiment has been conducted using ERA5 and a single method struc-493

ture (1 x 12). ERA5 has been used at a 3-hourly time step, which might be more rel-494

evant than 6-hourly when considering radiation variables, and at a 0.5◦ spatial resolu-495

tion. The potential analogy criteria were limited to S0, S1 and S2 and the spatial do-496

mains were slightly reduced (latitudes=[39, 55], longitudes=[-4, 20]). If previously the497

weights could be null for a predictor, a minimum of 0.01 was enforced here to force the498

GAs to select a relevant predictor. Finally, some predictors, often selected in the pre-499

vious experiment, were fixed: W700 (with S0 criterion), CAPE (with S0 criterion), TCW500

(with S0 or S1 criteria); leaving nine predictors unconstrained.501

In addition, only the variables found relevant when using ERA-I were selected as502

potential predictors, thus decreasing the pool of variables. Also, potential temperature503

levels and PV levels were not considered further. However, cloud cover variables were504

added to the potential predictors to assess whether SSRD served as a proxy for cloud505

cover. Thus, this experiment should not be considered a full exploration of ERA5 as it506

builds on the results obtained for ERA-I.507

–23–



manuscript submitted to Water Resources Research

25242322212019181716151413121110987654321

LCC
CC1000
CC850
CC800
CC700
CC600
CC500

TCC
CAPE
TTR
TSR

SSHF
SLHF
STRD
STR

SSRD
SSR

DEG0L
T2m
T950
T700
T500
TCW

RH1000
RH950
RH900
RH850
RH800
RH700
RH600
RH500
PV1000
PV950
PV900
PV850
PV800
PV600
PV500
D1000
D850
D800
D600

W1000
W850
W800
W700
W600
W500
V10m
V800
V700
V600
V500
Z700
Z500

Criteria

S0

S1

S2

Figure 10. Selected variables (see Table 3 for the variables abbreviations) from ERA5 for the

1 x 12 structure for the different catchments. The variables that were forced into the AM are

marked with a rectangle. The colors represent the analogy criteria, and the size of the dots is

proportional to the weight given to the predictor within the range [0.02, 0.2]. Variables that were

never selected with a weight equal to or larger than 0.05 are not represented.
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Figure 11. Statistics of the 30 most selected variables from ERA5 for the 1 x 12 structure for

the different catchments (50 optimizations) along with the analogy criteria, the temporal window

(30 = next day at 06 UTC), and the spatial windows (longitudes and latitudes). The extent of

Switzerland is shown in gray on the plots of the spatial windows.

The selected variables from ERA5 are shown in Figure 10 and 11. When compar-508

ing with ERA-I results, TCW gained importance as it was the most selected variable here.509

Similarly, the relative humidity at 1000 and 850 hPa increased in importance as if its rel-510
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evance improved in ERA5. There were also changes in the radiation variables, with the511

added top (top-of-atmosphere) net thermal radiation (TTR) taking the fourth slot and512

being completed by other ones in the top 30 variables: top net solar radiation (TSR),513

surface latent heat flux (SLHF), surface net thermal radiation (STR), surface solar ra-514

diation downwards (SSRD), and surface net solar radiation (SSR). These variables are515

likely highly correlated, and the selection could be reduced. It can also be noted that516

these variables are still often considered in terms of gradient (using S1), even though cloud517

cover variables were made available. As for cloud cover variables, different ones were se-518

lected in the top 30: the low cloud cover (LCC) and the cloud cover (CC) at 600, 1000,519

and 500 hPa. While LCC was most often considered in terms of gradients, the absolute520

values of the other cloud cover variables were mostly selected. The importance of low521

level PV also increased compared to ERA-I. Conversely, the geopotential height was only522

selected at 500 hPa in the top 30 predictors, SLP is not among the best ones anymore,523

and the presence of the divergence variables also decreased.524

The optimal spatial domains are comparable with those selected for ERA-I, includ-525

ing the 2-meter temperature extension to the south. As for the temporal windows, TCW526

is again mainly selected between 6 and 12 UTC, and RH at different times of the day.527

PV is often selected at the end of the day, along with W at 1000 hPa, the surface latent528

heat flux (SLHF), and the 2-meter temperature (T2m). The other variables are mainly529

selected during the daytime.530

3.4 Skill Scores531

To assess the relevance of the methods optimized in this work, they have been com-532

pared to the reference methods (Sect. 2.2). Figure 12 shows the CRPS score improve-533

ment for the different reference and resulting methods compared to the simplest RM1534

method. The CRPS values being heavily influenced by the climatology and thus signif-535

icantly different from one catchment to another, they are best compared relatively to a536

reference catchment-wise.537

The improvement of the CRPS is shown for the first single variable selection from538

ERA-I (ERA-I GAS 1x1), the full optimizations using ERA-I (ERA-I GAS 1x8, 1x12,539

1/2x6) or ERA5 (ERA5 GAS 1x12). An additional experiment has been attempted by540

pre-selecting the predictor variables (along with their vertical level and their time) and541

the analogy criteria and letting the GAs optimize the weights between these variables,542

along with the spatial domains. To this end, 26 of the most commonly selected ERA5543

variables were provided to the optimizer, organized in a single level of analogy (1x26).544

The results are shown in Appendix C. As shown in Figure 12, this approach does not545

provide the best skill scores. It can be due to non-optimal choices made to homogenize546

the vertical levels or times of the day, for example. In addition, this approach is not com-547

putationally efficient as it requires loading variables that barely play a role in the selec-548

tion of analog situations. Therefore, we do not recommend using such a strategy.549

One can see in Fig. 12 that the selection of a single best variable (GAS 1x1) al-550

ready achieves better skill than the RM1 method. Obviously, the skill provided by a sin-551
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Figure 12. Performance scores of the different reference and optimized methods on the val-

idation period for the 25 catchments. The skill score is expressed as a percentage improvement

(lower values) in terms of the CRPS when considering RM1 as a benchmark. An LxP code rep-

resents the structures, with L being the number of levels of analogy and P being the number of

predictors per level.

gle variable remains lower than more complex AMs. All other optimized methods per-552

form substantially better than the reference methods. Thus, despite having a single level553

of analogy, they outperform complex stepwise AMs. The gain obtained using ERA5 in-554

stead of ERA-I can be due to higher spatial and temporal resolutions or better variables555

(Horton, 2021). The selection of the predictor variables and the analogy criteria by GAs,556

along with all other parameters, provides AMs that prove relevant, also on the valida-557

tion period.558

4 Discussion559

4.1 Transferability of the Results560

The main aim of this work was to test the ability of GAs to select input variables561

for analog methods. It was found that GAs could select relevant predictors with the anal-562

ogy criteria to quantify their similarity. However, it may not be optimal to use the se-563

lected predictors in another context blindly. Indeed, the list of potential variables must564

be adapted to the application of the AM.565

Depending on the application, some specific constraints should be considered for566

optimizing AMs. For example, for use in forecasting, only meteorological variables that567

are considered sufficiently well-predicted should be selected. As for climate impact stud-568
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ies, the availability of meteorological variables is significantly more limited than what569

a reanalysis and standard climate model output can offer. In addition, care should be570

taken to select variables that have a causal effect on the predictand of interest and avoid571

undesirable co-variability.572

4.2 What About this S0 Criteria?573

The success of the S0 criteria over RMSE was unexpected. Overall, the triplet S0,574

S1 and S2 dominate the selection of analogy criteria. S1 was developed to verify prog-575

nostic charts (Teweles & Wobus, 1954). It was computed using pressure differences be-576

tween stations arranged in north-south and east-west lines. The ”difficulty coefficient”577

(the denominator) reduces the influence of the seasons and weather systems’ strength578

on the score. About forty other scores were developed and assessed by Teweles and Wobus579

(1954), but S1 was the most stable. It was also selected to penalize forecasters who tended580

to be overly conservative by forecasting weak systems too often. Indeed, the denomina-581

tor being the sum of the maximum gradients of the forecast or the observation, the fore-582

cast of a weaker system is more penalized than that of a stronger system. However, this583

could result in the opposite effect as it is safer for the forecaster to predict a stronger584

system with larger gradients and thus make the denominator larger (Thompson & Carter,585

1972).586

The S0 and S2 criteria have the same characteristic as S1, i.e., they penalize more587

heavily weaker fields. Let us consider a field F1 with values 50% lower than the target588

field (F), and another one, F2, with values 50% higher. Then, S0(F, F1) = 50 and S0(F, F2) =589

33.3 while the absolute differences between the target (F) and F1 or F2 are equal. F2590

will then be selected as a better analog. To get the same S0 value, F2 would need to dou-591

ble the target field values. The consequence is that the selection of analogs based on S0,592

S1 and S2 is not symmetrical, and these criteria tend to select fields that are close to the593

reference but preferably stronger than weaker.594

To investigate further the characteristics of S0, we considered a variation named595

here S0obs that uses the observation (here, target situation) values only for the denom-596

inator and not the maximum between observation and forecast (here, candidate analog).597

It is then similar to the MAPE (Mean Absolute Percent Error) and is symmetrical. We598

performed a classic calibration of a simple AM using only W700 with (1) the S0 crite-599

ria, (2) the RMSE criteria, and (3) the S0obs criteria. The calibration was performed for600

each setup separately. Using RMSE deteriorates the skill score by 8.7% on average, and601

S0obs also deteriorates the skill score by 9.8%. Thus, the asymmetrical property of S0602

is beneficial for the prediction.603

We then considered the reference method RM3 and performed a classic calibration604

for the 25 catchments by replacing one or the other criterion. When using S1obs (S1 nor-605

malized by the gradients of the observations only) instead of S1 for Z, the skill score de-606

teriorates by 4.8% on average. However, when replacing the RMSE of the second level607

of analogy (MI) with S0, there is a slight loss in performance of 0.5%. As there is strong608

conditioning by the first level of analogy that provides the sample of candidate analog609
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dates to be subsampled on moisture variables, the criterion of the second level of anal-610

ogy has a lower impact.611

It seems therefore that the asymmetrical properties of S0, S1, and S2 are benefi-612

cial for the prediction. Analog situations are best considered a bit stronger than weaker613

while being close to the target situation. The CRPS is mainly sensitive to high precip-614

itation values, even more when the precipitation is not transformed (see Bontron, 2004,615

for precipitation transformation). Thus, one hypothesis is that large precipitation events616

being underrepresented in the archive, AMs are better off selecting stronger predictor617

fields, often associated with higher precipitation. It might then play a role of bias com-618

pensation for underrepresented high precipitation events. The reason for such behavior619

should be investigated further.620

5 Conclusions621

The objective of the work was to assess the ability of GAs to select the input vari-622

ables of the analog method along with the analogy criteria. The experiment was success-623

ful as the selected predictors provided better skills than the reference methods. More-624

over, most of the selected variables can be related to meteorological processes involved625

in precipitation generation. For example, among the most selected variables are: the ver-626

tical velocity (W) at 700 hPa (along with other levels), the total column water (TCW),627

the convective available potential energy (CAPE), radiation variables, the potential vor-628

ticity (PV), the relative humidity (RH), cloud cover variables, wind components, the geopo-629

tential height, air temperature, and the divergence.630

The selection of analogy criteria also proved fruitful, as there were clear trends to-631

ward a dominant criterion for a given variable. The unexpected result was the success632

of the criterion S0, inspired by the Teweles-Wobus criterion. This new S0 turned out to633

be the most often selected analogy criterion, replacing the RMSE for the characteriza-634

tion of Euclidean distances. Three analogy criteria were most often selected, and all are635

derived from the Teweles-Wobus criterion; one is based on the raw point values, another636

on the gradients, and the third on the second derivative of the fields. All of them are nor-637

malized by the sum of the largest point(pair)-wise values from the target and the can-638

didate fields. This normalization makes the criteria asymmetrical, so that higher values639

are preferred to lower ones. Heavy precipitation, which substantially influences the CRPS,640

is often associated with more dynamic situations, characterized by higher values. The641

GAs may try to compensate for the under-representation of heavy precipitation events642

by favoring situations associated with higher precipitation values. These assumptions643

would need to be further investigated.644

Another unexpected result is the preferred structure for the analog methods. While645

most reference methods build on a stepwise selection of predictors with successive lev-646

els of analogy subsampling from the previous one by using different predictors, here, the647

GAs preferred a flatter structure, mainly with a single level of analogy, but more vari-648

ables. The reference methods most often start with selecting candidate analogs using the649

geopotential height and then narrowing down the selection using vertical velocity or mois-650
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ture variables. A primary difference with the reference methods is that the variables are651

standardized here, and weights are used (and optimized) to combine them in a given level652

of analogy. These two elements make the combination of variables with different value653

ranges easier. However, it cannot be excluded that deeper structures can provide bet-654

ter results, but that GAs did not find these solutions.655

Such optimization is computationally intensive. The new GPU-based computations656

brought significant time improvement, particularly for high-resolution data. Other ap-657

proaches could be considered to decrease the computation time, such as a faster explo-658

ration of the dataset using a smaller period for data pre-screening, or the division of the659

whole period into smaller batches. An alternative could be to reduce the number of days660

with small precipitation amounts, as they have a small impact on the CRPS, while weight-661

ing their contributions by using a weighted CRPS approach.662

This work opens new perspectives for input variables selection in the context of the663

analog method. While the variables selected in these experiments might not be trans-664

ferable to other contexts, the approach was proven successful and can be applied to other665

datasets. The potential variables must be chosen wisely regarding the application intended.666

Such an approach can, for example, be used to select the relevant variables to predict667

precipitation for a new location, or as a data mining technique to explore a dataset to668

predict a new predictand of interest.669

Appendix A GPU Implementation and Benchmark670

Several GPU implementations were tested, with the most successful aiming to re-671

duce the data copy to the device while increasing the load of parallel processing. It con-672

sisted in copying the predictor data to the device and calling the kernel2 for every tar-673

get date, thus assessing all candidates for that target date in one call. The main ben-674

efit of this variant is that it allows overlapping – using streams – the calculation of the675

analogy criteria on the GPU and other calculations on the CPU, such as the extraction676

of the indices corresponding to the candidate dates (using a temporal moving window677

of 120 days) and the sorting of the resulting analogy criteria.678

Threads on the GPU are organized in dynamically defined blocks, with a size from679

32 to 1024 threads. Here, every candidate date is assigned to a different block, with in-680

ternal loops for cases where the number of grid points is higher than the number of threads681

in the block. All analogy criteria need a reduction step to synthesize a two-dimensional682

array into a single value. The reduction is part of the analogy criteria calculation and683

is thus also done on the GPU. The threads are organized in groups of 32, called warps,684

that are synchronous and can access each other’s registers. The reduction on the device685

was performed with an efficient warp-based reduction using the CUDA shuffle instruc-686

tion. Different block sizes were assessed, and the size of 64 threads was identified as op-687

timal as it leaves fewer threads inactive during the reduction. Access to the GPU’s global688

memory has also been kept to a minimum due to its higher latency.689

2 A kernel is a numerical function executed in parallel on the GPU.
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The Google benchmark library was used to assess the computing time of different690

AM structures – single or two levels of analogy and up to four predictors per level – along691

with various grid sizes. Figure A1 shows the results for the analogy criterion S1, with692

gradients being pre-processed using CPUs only (counted in the total time). The other693

analogy criteria showed similar results. The task consisted of extracting analogs for 32694

years using the other 31 years as archives for candidate situations within a 120-days tem-695

poral window. It makes a total of 43.5·106 field comparisons per predictor of the first696

level of analogy.697
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Figure A1. Computing time for the extraction of analogs over 32 years using the S1 criteria

for different grid sizes and various structures of AMs. An LxP code represents the structures,

with L being the number of levels of analogy and P being the number of predictors per level.

Time is given for using (s) standard CPUs and (c) CUDA on GPUs (NVIDIA GeForce RTX

2080). Note the logarithmic axes.

The experiment was conducted on the UBELIX cluster of the University of Bern,698

using the same node for the whole benchmark and processing on a single NVIDIA GeForce699

RTX 2080 graphics card. The CPU processing – using the linear algebra library Eigen700

3 (Guennebaud et al., 2010) – was done on a single thread. Although AtmoSwing can701

parallelize the calculation of the analogy criteria on multiple CPU threads, it uses a sin-702

gle thread for this task when optimizing with GAs because it parallelizes the evaluation703

of the different individuals on multiple threads. With GPUs, it still assesses the individ-704

uals on multiple CPU threads, each of them being able to use a different GPU device705

to calculate the analogy criteria. It is thus parallelizing both on CPUs and GPUs.706

The benchmark (Fig. A1) shows that the GPU computations are systematically707

faster than those on the CPU, and this difference increases with the number of grid points.708

The GPU computations were 13 times faster on average and up to 38 times faster (5.2 sec709
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instead of 3.3 min) when using 2048 points. Model outputs and reanalyses show an in-710

crease in spatial resolution; thus, the impact on the computation time will become in-711

creasingly important. When using CPU only, adding a predictor in the first level of anal-712

ogy has a much higher impact on time than adding a second level of analogy. It is ex-713

plained by the fact that it needs to process the analogy criteria for the whole archive for714

each predictor of the first level of analogy, while the second level has only a few candi-715

date situations to assess.716

Appendix B Performance of the Mutation Operators717

As suggested in Horton et al. (2017), five variants of the mutation operator were718

used in parallel optimizations:719

1. Chromosome of adaptive search radius (Horton et al., 2017)720

2. Multiscale mutation (Horton et al., 2017)721

3. Non-uniform mutation (pmut=0.1, Gm,r=50, w=0.1)722

4. Non-uniform mutation (pmut=0.1, Gm,r=100, w=0.1)723

5. Non-uniform mutation (pmut=0.2, Gm,r=100, w=0.1)724

where pmut is the mutation probability, Gm,r is the maximum number of gener-725

ations (G) during which the magnitude of the research varies, and w is a chosen thresh-726

old to maintain a minimum search magnitude when G > Gm,r.727

Figure B1 shows the performance of these five mutation operators for different AM728

structures and the different catchments considered in Sect. 3.2. Overall, the chromosome729

of adaptive search radius has a success rate of 76.25% in calibration and 62.5% in val-730

idation, the multiscale mutation 7.5%, and 8.75% respectively, and the non-uniform mu-731

tation with its different options: (3) 11.25% and 10%, (4) 11.25% and 21.25%, and (5)732

1.25% and 2.5% respectively.733

Thus, it is quite clear that the chromosome of adaptive search radius obtains the734

best results, all the more so with more complex structures, i.e., more predictor variables.735

Although its success rate decreases slightly in validation, it remains much larger than736

the other options. The non-uniform mutation shows significant variability of performance737

depending on its options.738
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Figure B1. Performance of the five mutation operators (Sect. 2.3) for different AM structures

and the different catchments considered in Sect. 3.2. The values represent the number of opti-

mizations for one mutation operator that resulted in the best performing AM. Results are shown

for both calibration and validation. When multiple operators obtain the same skill score, they all

get a point.
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Appendix C An Attempt to Constrain the Algorithms739

An additional experiment has been attempted by pre-selecting the predictor vari-740

ables (along with their vertical level and their time) and the analogy criteria and letting741

the GAs optimize the weights between these variables, along with the spatial domains.742

To this end, 26 of the most commonly selected ERA5 variables were provided to the op-743

timizer, organized in a single level of analogy. The results are shown in Figure C1 and744

depict high weight values for W at 600 and 700 hPa. Surprisingly, Z700 based on S2 also745

gets relatively high weight values.746
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Figure C1. Results of the optimization with preselected 26 variables for the different catch-

ments. (top) The colors represent the analogy criteria, and the size of the dots is proportional

to the weight given to the predictor within the range [0.01, 0.2]. (bottom) Boxplot of the weight

values for the different variables.

Open Research747

Reanalysis datasets can be obtained from the respective providers (see Acknowl-748

edgements). Precipitation data can be obtained from MeteoSwiss (for research purpose749

only). The software used, AtmoSwing (https://atmoswing.org, Horton, 2019a), is open-750

source and can be used without restrictions.751
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Hersbach, H., Bell, B., Berrisford, P., Horányi, A., Sabater, J. M., Nicolas, J., . . .849

Dee, D. (2019). Global reanalysis: goodbye ERA-Interim, hello ERA5.850

ECMWF Newsletter(159), 17–24. doi: 10.21957/vf291hehd7851

Holland, J. H. (1992, jul). Genetic Algorithms. Scientific American, 267 (1), 66–72.852

doi: 10.1038/scientificamerican0792-66853

Horton, P. (2019a). AtmoSwing: Analog Technique Model for Statistical Weather854

forecastING and downscalING (v2.1.0). Geoscientific Model Development ,855

12 (7), 2915–2940. doi: 10.5194/gmd-12-2915-2019856

Horton, P. (2019b, dec). AtmoSwing v2.1.2 [Software]. Zenodo. doi: 10.5281/zenodo857

.3559787858

Horton, P. (2021). Analogue methods and ERA5: Benefits and pitfalls. International859

Journal of Climatology(September 2021), 4078–4096. doi: 10.1002/joc.7484860
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