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Abstract

Satellite remote sensing is commonly used to observe the hydrologic cycle at spatial scales ranging from river basins to the
globe. Yet it remains difficult to obtain a balanced water budget using remote sensing data, which highlights the errors and
uncertainties in earth observation (EO) data. Various methods have been proposed to correct EO datasets to make them
more coherent, so that they result in a more balanced water budget. This study aimed to improve estimates of water budget
components (precipitation, evapotranspiration, runoff, and total water storage change) at the global scale using the methods
of optimal interpolation (OI) and neural network (NN) modeling. We trained a set of NNs on a set of 1,358 river basins and
validated them on an independent set of 340 basins and in-situ observations of evapotranspiration and river discharge. We
extended the models to make pixel-scale predictions in 0.5° grid cells for near-global coverage. Calibrated datasets result in
lower water budget residuals in validation basins: the mean and standard deviation of the imbalance is 11 + 44 mm/mo when
calculated with uncorrected EO data and 0.03 4+ 24 mm/mo after calibration by the NN models. This study suggests to data
producers where corrections should be made to the EO datasets, and demonstrates the benefits of physically-driven NN models

for studying the hydrologic cycle at the global scale.
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Key Points:

« Uncorrected remote sensing datasets cannot be combined for a balanced water bud-
get.

e Optimal interpolation and neural network modeling can be used together to read-
just datasets and reduce the water budget imbalance.

¢ Results can be used to show where remote sensing datasets are biased, to fill in
missing data, and for hindcasting.
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Abstract

Satellite remote sensing is commonly used to observe the hydrologic cycle at spatial scales
ranging from river basins to the globe. Yet it remains difficult to obtain a balanced wa-
ter budget using remote sensing data, which highlights the errors and uncertainties in
earth observation (EO) data. Various methods have been proposed to correct EO datasets
to make them more coherent, so that they result in a more balanced water budget. This
study aimed to improve estimates of water budget components (precipitation, evapotran-
spiration, runoff, and total water storage change) at the global scale using the methods

of optimal interpolation (OI) and neural network (NN) modeling. We trained a set of
NNs on a set of 1,358 river basins and validated them on an independent set of 340 basins
and in-situ observations of evapotranspiration and river discharge. We extended the mod-
els to make pixel-scale predictions in 0.5° grid cells for near-global coverage. Calibrated
datasets result in lower water budget residuals in validation basins: the mean and stan-
dard deviation of the imbalance is 11 + 44 mm/mo when calculated with uncorrected

EO data and 0.03 £ 24 mm/mo after calibration by the NN models. This study suggests
to data producers where corrections should be made to the EO datasets, and demonstrates
the benefits of physically-driven NN models for studying the hydrologic cycle at the global
scale.

Plain Language Summary

Today, satellite remote sensing can measure all the major flows in the water cy-
cle. This includes precipitation, evaporation, and changes in the amount of water stored
underground and in lakes and reservoirs. These flows are related to one another via the
water cycle: flows into and out of any region should be balanced. Yet, we cannot cal-
culate a balanced water budget with satellite data. This shows that further improvements
to these data are possible. We used a method called optimal interpolation to make cor-
rections to satellite datasets, so that they better balance the water budget. However, this
method only works at the scale of river basins, where river discharge data are available.
To extend our findings to other locations, we created a statistical model based on ma-
chine learning. This model can make predictions at the pixel scale over most of the earth’s
land surface. Often, our model can improve satellite observations of the water cycle. Fur-
ther, it provides useful information about when and where corrections are most needed.
Our study shows that machine learning methods can help improve data from satellites
related to the global water cycle.

1 Introduction

The water cycle, or hydrologic cycle (HC), is an important field of study for earth
scientists — changes to the HC have broad societal implications, with effects on drought,
flooding, agriculture, and water supply. And while enormous progress has been made
in monitoring the water cycle via remote sensing, capturing a complete picture from space
remains a difficult goal. The usefulness of earth observation (EO) datasets has not been
fully achieved because of “incoherence” among various data products — studies have demon-
strated that the water budget cannot be closed using remote sensing data without sig-
nificant errors (Hegerl et al., 2015; Rodell et al., 2015; McCabe et al., 2017). This leads
to the conclusion that satellite datasets still suffer from systematic bias or random er-
rors.

In this study, we seek to simultaneously optimize multiple satellite-estimated datasets
of hydrologic fluxes, reconciling them to create a balanced water budget. A simplified
water budget for any land area (e.g., river basin, grid cell) includes the four main fluxes
or HC components: precipitation, P, evapotranspiration F, total water storage change
(TWSC in the text and AS in equations), and runoff, R. By conservation of mass, the
water budget can be stated:
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P-E-AS—R=0 (1)

Conventional optimization methods have focused on calibrating individual com-
ponents of the HC one at a time (for example fitting P or F to ground-based observa-
tions). This approach is fundamental, but as one author wrote, it “ignores the interde-
pendencies and relationships inherent in observed responses” (McCabe et al., 2017). In
other words, we may be able to correct P by exploiting valuable information in the vari-
ables F, AS, and R, as they are related via the HC (Equation 1).

Recent research has shown that simultaneously optimizing multiple HC components
can result in a more balanced water budget. Many of these approaches focus on “assim-
ilation” of EO into hydrological models (see e.g., Yilmaz et al., 2011; Zhang et al., 2016;
Wong et al., 2021). Several recent studies focused on closing the water budget with a
more data-driven approach. One class of studies estimates a single component as a func-
tion of the other three. Some authors have made the simplifying assumption that, over
sufficiently long time periods, AS = 0 (i.e. no trend in storage), allowing one to esti-
mate total runoff (including subsurface flow) as R = P — E (Liu et al., 2020). Rodell
et al. (2011) estimated evapotranspiration over seven large river basins via the relation
E = P—R—AS, using the output of several land surface and atmospheric models for
the right side of this equation. The authors concluded that the uncertainty in AS mea-
sured by the GRACE satellites is too high to produce useful monthly estimates of E, but
that predicted seasonal patterns are fairly reliable. In another example, Lehmann et al.
(2022) estimated AS = P — E — R, and compared predictions to GRACE observa-
tions. They performed this analysis over 189 large river basins covering 90% of the con-
tinental land area. Rather than seeking to optimize the datasets, the authors looked for
the best combination of inputs, and reduced the imbalance through “cancellation of er-
rors in poor estimates of water budget components.”

Aires (2014) introduced an integration method called optimal interpolation (OI).
This closed-form analytical solution imposes a HC budget closure constraint. It forces
the imbalance to zero, and modifies each of the HC components by an amount inversely
proportional to its uncertainty. Aires showed that this constraint improves the estima-
tion of the HC components in some places and times. In a related paper Munier et al.
(2014) applied OI over the 3 million km? Mississippi River basin, revising satellite es-
timates for P, E, R, and AS. Later, Munier and Aires (2018) applied OI over 11 large
river basins. OI has also been shown to work well in optimizing satellite observations of
the hydrologic cycle over river basins in the Mediterranean (Pellet et al., 2018), South
Asia (Pellet, Aires, Papa, et al., 2019), and the Amazon (Pellet et al., 2021).

A major limitation of OI is that it can only be used at the basin scale, where ob-
servations of river discharge are available. Yet, the vast majority of the world’s rivers
and streams are ungaged, and gage data are particularly sparse in less-developed coun-
tries. Furthermore, to make truly global predictions, a model must be able to make pre-
dictions at the pixel scale. Munier and Aires (2018) extrapolated the balanced solution
from OI to the global scale with the help of auxiliary environmental information. How-
ever, environmental datasets were used in a rather simple way; the authors did not use
them as explanatory variables, but rather to divide basins into classes based on climate
regime.

We hypothesized that OI solutions could be extrapolated to new locations more
accurately with a more complex model and with more inputs to describe the environ-
ment. We attempt to do this here by using environmental data as input variables to a
flexible neural network (NN) model. Our approach involves two main steps. First, we
use OI over a pre-defined set of river basins. The solution is an optimized set of HC com-
ponents which satisfy the closure constraint. Next, we train a NN model to calibrate EO
datasets, with a goal of making them closer to the optimized version calculated by OI.
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We further hypothesized that the necessary adjustments are complex and non-linear, and
vary by time and location. This makes the problem well suited to approaches based on
machine learning.

Our method uses supervised learning, where a target is provided to train the NN.
The purpose of training is to find the set of model parameters to the function that best
relates the input(s) to the target(s). Here, we use the output of the OI algorithm as the
target. The NN output is a set of calibrated monthly estimates for P, E, R, and AS in
each basin. Again, these are not calibrated in the conventional sense of fitting to in situ
observations, but by combining information from multiple remote sensing datasets while
seeking to satisfy the HC closure constraint (Equation 1). We used environmental data
(elevation, slope, vegetation, etc.) as inputs to the model, hypothesizing that these ad-
ditional inputs will help the NN to find an optimal solution under varying conditions.

This study has two main objectives. First, to optimize hydrologic EO datasets and
to calculate a balanced water budget at the river basin scale from these data. Second,
to train a NN model based on these results to make improved estimates at the pixel scale.
A third, stretch goal for the study was to test the model’s ability to estimate missing data
via inference. For example, we can estimate GRACE-like TWSC by rearranging Equa-
tion 1 to give AS = P — E — R. This would allow us to fill in missing data or to esti-
mate water storage from before GRACE was launched in 2002, or similarly, to estimate
runoff in ungaged basins.

2 Datasets

We created a database of earth observations (EO) based on satellite remote sens-
ing, with datasets that quantify each of the four major fluxes in Equation 1. The EO
datasets are summarized in Table 1. All fluxes are expressed in area-normalized units
of depth per time in millimeters per month (mm/mo). Our database covers the 20-year
time period from January 2000 to December 2019, a total of 240 months. This time pe-
riod was chosen to overlap with the availability of observations of TWSC from the GRACE
satellites, launched in 2002.

As can be seen in Table 1, the EO datasets vary in terms of their spatial and tem-
poral resolution, posing a challenge to their integration. We put all EO data into the same
0.5° equirectangular grid, based on latitude and longitude, rescaling and projecting as
necessary. In theory, the analysis could be performed at any time scale (daily, weekly,
etc.) and at any spatial resolution. We chose 0.5° resolution to be compatible with the
runoff dataset GRUN. We computed monthly averages for all variables where needed.

We chose a monthly time scale to be compatible with GRACE TWSC data. Finally, we
evaluated the quality and completeness of each dataset and discarded anomalous obser-
vations.

2.1 Total Water Storage Change

Information on total water storage (TWS), comes from the GRACE (Gravity Re-
covery and Climate Experiment) satellites. The first pair of satellites were in operation
from 2002-2017, and a follow-on mission began in 2018. GRACE makes detailed mea-
surements in changes to the Earth’s gravity field over time. Most short-term changes are
due to the movement of water on land and underground (Tapley et al., 2004). GRACE
data have been used in groundbreaking studies to analyze the terrestrial water budget,
drought, climate change, and water management (see e.g., Famiglietti et al., 2011; Richey
et al., 2015; McCabe et al., 2017; Rodell et al., 2018).

GRACE provides the monthly TWS anomaly, expressed as a liquid water equiv-
alent thickness, in units of cm or mm. GRACE does not estimate the total volume or
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Table 1. Datasets compiled for the four major fluxes in the hydrologic cycle

Dataset Begin End Temporal res. Spatial res.  Citation
Water Storage Anomaly
GRACE-CSR 2002  present month 1.0° Save (2020)
GRACE-JPL 2002  present month 1.0° Landerer and Cooley
(2021)
GRACE-GSFC 2002  present month 1.0° Loomis et al. (2019)
Precipitation
GPCP v2.3 1979  present day 2.5° Adler et al. (2018)
GPM IMERG 2000  present day 0.10° Huffman et al. (2020)
MSWEP 1979  present day 0.10° Beck et al. (2019)
Evapotranspiration
GLEAM v3.5a 1980  present day 0.25° Martens et al. (2017)
GLEAM v3.5b 2003  present day 0.25° idem
ERA5 1950  present 3 hour 0.25° Hersbach et al. (2018)
Observed FE for validation
E: FluxNet 2015 2002 2010 hour point Pastorello et al. (2020)
Observed River Discharge - in situ
GRDC varies  varies day gage BfG (2020)
Australia 1970 2020 day gage Australia BOM (2020)
GSIM varies 2016 month gage Gudmundsson et al.
(2018)

Runoff - synthetic
G-RUN 1902 2019 month 0.5° Ghiggi et al. (2021)

mass of water in a region, but rather its change with respect to a historical baseline. Nev-
ertheless, the observations encompass water in all its forms and “represent the full mag-
nitude of land hydrology and land ice” (Landerer, 2021). We obtained three different GRACE
products (see Table 1). Each is based on the mass concentration solution developed by
the Jet Propulsion Laboratory (JPL), known as mascon. This technique employs a grav-
ity field basis function to separate the contributions in the signal from unequal distri-
bution of the earth’s mass from other factors such as water storage variations.

We calculated the month-over-month rate of change in water storage to provide
the flux in mm/mo. This converts the TWS anomaly to a flux, TWSC or AS, and cre-
ating the link between GRACE data and the other variables in the HC. There are sev-
eral methods for calculating the rate of change, but most researchers in this field use sim-
ple finite difference methods (see e.g., Landerer & Swenson, 2012; Biancamaria et al.,
2019). We used the backwards finite difference method.

AS  S;—Si
At t—(t—1) @)

The results we obtained from more complex methods such as fitting a cubic spline
or using an “equivalent smoothing filter” (see e.g., Landerer et al., 2010) were compa-
rable to those obtained with the simpler methods but often resulted in more missing ob-
servations, therefore we used the simple method in Equation 2.

Modeled TWSC - As a source of validation data, we also collected predictions
from a recent modeling study that reconstructed GRACE-like TWSC via other water
cycle components. Zhang et al. (2018) used a land surface model and data assimilation
techniques, first estimating the errors in each water budget component by comparison
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to in situ observations, then using a constrained Kalman filter to merge the datasets based
on their error information, with a goal of minimizing the imbalance. This study produced
global gridded datasets at 0.5° resolution, with monthly P, E, R, and AS for 1984-2010.

2.2 Precipitation
We obtained data from three sources (Table 1).

GPCP - The Global Precipitation Climatology Project (GPCP) has the longest
time record, beginning in 1979 (Adler et al., 2018). It also has the coarsest spatial res-
olution, at 2.5°. This dataset, produced by an international consortium of researchers,
is based on multiple satellite observations that are merged to estimate precipitation at
the global scale. We used version 2.3 of this dataset, which was updated in 2018.

GPM-Imerg - GPM-Imerg is the multi-satellite precipitation product from NASA.
IMERG combines data from multiple low-earth orbit satellites and geosynchronous or-
biting infrared satellites, using morphing techniques and a Kalman filter, to provide ac-
curate satellite-based precipitation estimates, supplemented by precipitation gauge anal-
yses.

MSWEP - The Multi-Source Weighted-Ensemble Precipitation (MSWEP) is not
a pure remote sensing product, but an “optimal merging” of gage observations, satel-
lite observations, and reanalysis model output (Beck et al., 2019). MSWEP has been shown
to be more accurate over mountainous regions, where many products consistently un-
derestimate P.

2.3 Evapotranspiration

Evapotranspiration, E, is the upward flux of water from the land to the atmosphere,
combining free-surface evaporation with transpiration, the flux of water from plant leaves
to the atmosphere. It is an important driver of the global climate, responsible for the
exchange of water and energy from the land and sea surface to the atmosphere. It has
been estimated that as a global average, E is about 60-75% of precipitation (Shiklomanov,
2009). E cannot be measured directly via remote sensing. Rather, scientists measure land
surface temperature or near-surface air temperature and use empirical relationships to
estimate F.

Gleam - The Global Land Evaporation Amsterdam Model (GLEAM) is a set of
algorithms that estimates the various components that contribute to total E: transpi-
ration, bare-soil evaporation, interception loss, open-water evaporation, and sublimation
(Martens et al., 2017; Miralles et al., 2011; Hersbach et al., 2018). The authors used an
empirical relationship, the Priestley-Taylor equation, to calculate potential E based on
satellite observations of surface net radiation and near-surface air temperature. GLEAM
version 3.5a used reanalysis rather than satellite observation, and covers 1980 to present.
The updated version 3.5b relies more on remote sensing data, and has a more limited
temporal coverage of 2003 to present.

ERAS5 - We also included a dataset that is not a purely remote-sensing based prod-
uct, but based on the assimilation model ERAS5, from the European Centre for Medium-
Range Weather Forecasts (ECMWF'). The model combines historical estimates (from both
remote sensing and in situ observations) using an advanced modeling and assimilation
system. ERAB produces many variables describing the atmosphere, land, and ocean, at
a resolution of up to a 30 km grid (Guillory, 2022). ERA5 estimates of E have been used
in many recent hydroclimatic studies (see e.g., Tarek et al., 2020; Singer et al., 2021; Lu
et al., 2021).
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Observed evapotranspiration at flux towers - In order to validate our results,
we obtained in situ measurements of F from flux towers, where latent heat flux and other
measurements are obtained via eddy covariance methods. We selected data for 117 tow-
ers from the FluxNet2015 dataset, which compiles data from 212 global towers (Pastorello
et al., 2020). The majority of selected towers are in Europe (51 towers) or North Amer-
ica (46), with fewer in Africa (2), Asia (6), Australia (9), and South America (3).

Care must be taken in comparing E observed at flux towers to gridded hydro-climatic

data. The value in a single grid cell (or pixel) represents an average for an area over which
conditions can vary widely. At the scale of our model grid, a single 0.5° pixel has an area
of about 3,000 km? near the equator. Land cover, vegetation, and topography over a grid
cell may vary drastically from those at the flux tower site. This limits the meaningful-
ness of comparisons between gridded model estimates flux tower observations.

2.4 Runoff

River flow, or discharge, is an in situ measurement, measured at gages, typically
operated by public agencies. The gage location is considered the outlet of a river basin,
and the discharge is the sum of basin runoff. The terms runoff and river discharge are
frequently the source of confusion, and care must be taken to distinguish these related
but distinct quantities. While definitions vary among sources, here we follow the defi-
nitions used by Ghiggi et al. (2019). Runoff is defined as all the water draining from a
small land area, and cannot be observed directly. River discharge, by contrast, is mea-
sured at a single point on a river. One may estimate river discharge from the runoff in
the upstream area by spatially averaging the gridded runoff data. As the travel time of
water in the river system is neglected, this method can only be assumed to be correct
over long time scales. We assume that on a monthly scale, the effect of water routing
is negligible for small- to mid-size basins.

a) River discharge gages

?’ .
g &
v
s s e s
Source @ty %
e Australia ‘3_" ‘i. L
* GSIM 1 s I .
*GRDC  * P

(b) Synthetic river basins

Experiment
Partition #1
[ Training t
[ Validation

Figure 1. Map of this study’s river basins: (a) 2,056 river flow gaging stations, corresponding
to the basin outlets (basin boundaries not shown); (b) 1,698 synthetic river basins created for

training and validating the neural network model.



258 We sought to develop a large database of global gaged basins that would represent

259 a range of geographic locations, environments, and basin sizes to better sample the global

260 water cycle on Earth. We selected gages for our analysis based on data quality, geographic

261 and temporal coverage, and location. We considered gages with an upstream area >2,500 km?2.
262 We obtained river dischage data from 3 sources. First, we selected 1,737 gages from

263 the Global Runoff Data Center (GRDC) and supplemented it with information from two
264 other sources to fill in blank spaces on the map (notably Asia and Australia). The GRDC

265 database contains historical mean daily and monthly discharge data from 159 countries
266 (WMO, 1989; BfG, 2020). The GRDC database contained 10,361 stations when we ac-
267 quired data, however the majority of these did not fit our criteria for spatial and tem-

268 poral coverage. Second, we obtained data for 272 gages from the Global Streamflow In-

269 dices and Metadata (GSIM) archive (Do et al., 2018; Gudmundsson et al., 2018). Finally,
270 we obtained runoff data for 47 gages in Australia from their Bureau of Meteorology (BOM)’s
o Hydrologic Reference Stations (Australia BOM, 2020).

o2 We calculated monthly average runoff for months with at least 25 days of data. Vol-
273 umetric flow rates in m3/s were converted to area-normalized fluxes in mm/mo by di-

274 viding by the land surface area in km? and multiplying by an appropriate conversion fac-
275 tor. The spatial coverage of our final 2,056 river gages (and their basins) is uneven across
276 the globe (see Figure 1). North America is over-represented with 1,111 gages (more than

217 half the total), as is Europe with 393 gages, while we have only 70 gages in Africa, 178
278 in Asia, and 195 in South America.

279 Runoff observations are limited, as they are only available at gaged locations. As
280 an alternative, indirect estimates of runoff are available from several sources. For our ex-
281 periments in closing the HC, we used estimated runoff from GRUN Ensemble (Ghiggi

282 et al., 2021). The authors created a global gridded dataset of runoff with a random for-

283 est model using P and near-surface temperature as predictor variables. For the 2021 GRUN
284 Ensemble project, the authors used input data from 21 different sources, “including a

25 set of atmospheric reanalysis, post-processed reanalysis and interpolated-stations data.”

286 In order to check the quality of the GRUN dataset, we performed an independent

287 evaluation against our 2,056 gages and found that GRUN is a relatively good fit to ob-
288 served discharge. We first estimated the monthly discharge at the basin outlet by cal-
289 culating the spatially averaged mean of gridded GRUN runoff. Then we calculated fit
290 statistics comparing the observed and modeled flow time series. We found that a me-

201 dian correlation R = 0.84 and median root mean square error, RMSE = 11.8 mm/mo,
292 and 75% of gages had RMSE < 19 mm/mo. We also calculated a common fit indica-

203 tor for modeled discharge, the Kling-Gupta Efficiency (KGE). Median KGE is 0.53, and
204 81% of gages have KGE > —0.41, the point at which a model’s predictions are better

295 than the mean of observations (Knoben et al., 2019).

206 2.5 Environmental Indices

207 We also collected observations of ancillary environmental data as inputs to our NN
208 model. Our hypothesis is that errors in EO data (that the NN will attempt to correct)

209 are the consequence of certain environmental conditions. For example, precipitation es-
300 timates are often biased in mountainous regions, or in relation to snow cover. The en-

301 vironmental data are listed with their source/citation below. In all cases, we rescaled and
302 reprojected datasets as necessary and calculated spatial means for river basins as described
303 above. The 12 environmental indices are:

304 1. Aridity index (Trabucco & Zomer, 2019)

305 2. Mean elevation (Amatulli et al., 2018)

306 3. Median slope (Amatulli et al., 2018)
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. Basin centroid latitude (calculated)

. Enhanced vegetation index (Didan, 2015)

. Vegetation growth/senescence (calculated)

. Irrigated area (Siebert et al., 2015)

. Fire: burned area (Giglio et al., 2020)

. Snow cover (Hall & Riggs, 2021)

10. Solar radiation (Hogan, 2015)

11. Land surface temperature (Wan et al., 2021)
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2.6 Preliminary Analysis of EO Datasets

Figure 2 shows a snapshot of one month (January 2005) of the EO datasets used
as input in our analysis. The different datasets share many similarities in terms of the
overall patterns, but there are many differences. For example, GPCP precipitation ap-
pears smoother, while the other two datasets, which have a higher spatial resolution, show
finer-grained patterns of rainfall. This is particularly evident over the Amazon and south-
ern Africa. Similarly, one can see differences in the spatial patterns and range of mag-
nitude of F and AS. River discharge, measured at gages, has a sparser coverage, and
the distribution of flows is highly skewed, with measured discharges covering several or-
ders of magnitude from 0 to nearly 1,000 mm/mo.
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Figure 2. Snapshot of EO data for a single month, January 2005.

Figure 3 shows the distribution of values in the EO datasets used as input in our
model using standard boxplot conventions (boxes = interquartile range, whiskers = 10%ile
and the 90%-ile). The top boxplot in each set of observations is for all pixels over land,
while the lower box shows the distribution across our 2,056 gaged basins. For most vari-
ables, the distribution of fluxes is greater over the pixels compared to the basins, with
higher highs and lower lows. This is particularly the case for P, but is also seen with F.
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When we calculate the mean flux over a basin, it tends to smooth out the extremes and
compress the distribution of observed fluxes. There are also differences in the distribu-
tions within each category of fluxes. For example, GPM-Imerg contains higher obser-
vations of P, with a higher 75- and 90-percentile than the other two datasets. The monthly
water storage change, AS, is centered at about zero for each dataset. This is expected,

as the storage in pixels and basins tends to fluctuate seasonally, and any long-term trend

is small compared to the annual variations in storage. Runoff has the smallest magni-

tude of any of the hydrologic fluxes, with a low of 0 mm/mo (no observed flow) to a 90%-
ile of 68 mm/mo, lower than the 90%-ile of P or E. We conclude that the lack of con-
sensus among datasets is further evidence of the need for them to be reconciled.
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Figure 3. Boxplots showing the distribution of values in the EO datasets at the pixel scale
over continents (except Antarctica and Greenland) and averaged over gaged river basins used in
this study.

3 Methodology
3.1 Training database at basin scale over the world

We analyzed the water balance at the scale of two geographic units: river basins
and pixels. For the pixel-scale analysis, we used a 0.5° equirectangular grid. We excluded
Antarctica, Greenland, and the Arctic north of 77°. Near the equator, a single pixel is
about 56 km on a side and has an area of about 3,100 km?2. The disadvantage to study-
ing the water balance at the pixel scale is the lack of observations of horizontal inflow
or outflow. In this regard, there are advantages to working at the scale of river basins,
or watersheds. A watershed is defined as the area on the Earth’s surface where water
drains to a common outlet and is determined by the topography of the land surface.

We obtained basin geodata in shapefile format from the GRDC, which covered many
of our gaged basins (Lehner et al., 2008). However, some of these basin boundaries ap-
peared to be inaccurate. Therefore, we created a new set of boundaries for every water-
shed using the best-available global hydrographic data. We used a hybrid method that
uses both vector- and raster-based data (Heberger, 2022). Our method uses the vector
dataset MERIT-Basins (Lin et al., 2019, 2021), where rivers are encoded as polylines and
catchment boundaries as polygons.

Our resulting 2,056 basins vary in size from 2,500 km? to 4.7 million km? for the
Amazon basin. The distribution of basin sizes is highly skewed, meaning that we have
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many small- and medium-sized basins, and fewer large basins. Of these, 119 watersheds
have an area of less than 3,000 km?. Our set of gaged basins covers 47 million km?, about
35% of our study domain, the land surface below 77° North and excluding Greenland and
Antarctica.

For each basin, we calculated the average for each of EO variables in Tables 1 and
the environmental variables described above. To calculate the spatial weighted mean,
we converted each basin polygon to a grid “mask,” where each pixel is a floating-point
number representing the fraction of the pixel’s area that is inside the basin (from 0 to
1). Because the surface area of pixels varies by latitude, we used the pixel’s area in our
calculation of the weighted mean.

When working with a gridded runoff dataset, we are free from the constraint of us-
ing gaged basins, and we may define river basins of any size and at any location for bet-
ter sampling of many environmental conditions. To take full advantage of this, we cre-
ated a set of 1,698 synthetic river basins, shown in Figure 1(b). These represent real, phys-
ical basins, but their outlets do not correspond to a gage. We created the synthetic basins

by using a gridded dataset of flow direction created by the developers of the GloFaS-LISFLOOD

model (Harrigan et al., 2020) and the Python library pysheds (Bartos et al., 2023). The
basins range in size from 20,000 to 50,000 km?; the relatively small size allows fits the
hypothesis that we may neglect water travel time at the monthly time scale. The color
coding in Figure 1 shows the experimental partition we created for the training and val-
idation of the NN model, with 80% of basins for training (in blue), and 20% of basins
for validation (in red). The result is a set of 1,698 basins shown in Figure 1(b).

3.2 Optimal Interpolation

We follow previous studies (Aires, 2014; Pellet, Aires, Munier, et al., 2019) in us-
ing OI to integrate EO datasets and balance the water budget at the river basin scale.
We refer to the water balance residual as the imbalance, calculated by:

I=P—-E—-AS—R. (3)

The OI approach is based on forcing I to equal zero, or minimizing I, while dis-
tributing the errors among the inputs in inverse proportion to each variable’s uncertainty.
These methods, well described by Rodgers (2000), are referred to as “inverse methods”
and are widely used in remote sensing. The goal of OI is to combine these multiple es-
timates to obtain the best consensus of the HC state. For a detailed explanation of the
mathematics behind OI, see Aires (2014) and Pellet, Aires, Munier, et al. (2019).

We begin by defining an initial best guess for each of the four HC components. This
is done by calculating a weighted average of the inputs for each component. Simple weight-
ing (SW), as described by Aires (2014), is an application of the method of inverse vari-
ance weighting to the problem of calculating the “best estimate” that combines multi-
ple satellite observed fluxes. It is a form of weighted averaging where the weight on the
each observation is the inverse of the variance or uncertainty of that observation. The
uncertainty must be estimated a priori for each observation or dataset. After calculat-
ing the best first guess of the water budget based on the SW mean, we apply a post-filter
to enforce the water balance. The post filter is a linear transformation based on the un-
certainty in each component. Aires (2014) derived a solution for determining the linear
combination of variables that satisfies the water budget constraint, weighting the con-
tribution such that variables with lower error variance receive greater weight.

The OI method is simple and effective. Further, it has the advantage of not rely-
ing on any model. When it is applied strictly (e.g., without an optional relaxation fac-
tor described by Pellet, Aires, Munier, et al. (2019)), it will always result in a balanced
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water budget. However, this strict requirement can also produce unrealistic results. The
OI method does not guard against returning negative values, which is obviously unre-
alistic for precipitation or runoff. Or it may produce values outside of the range that has
been observed in a region.

For this study, we altered how OI is applied compared to previous applications, by
recalculating the post-filter matrix in every river basin and at every time step. The OI
algorithm requires an a priori estimate of the error covariance matrix for our input vari-
ables, the hydrologic fluxes estimated by remote sensing. In practice, this information
is rarely available, and therefore uncertainties are estimated by expert judgment or by
computational experiments. Previous applications of OI assumed constant values for un-
certainties, regardless of the season or the location. Such an assumption is defensible when
analyzing a single river basin (the Mississippi, in Munier et al., 2014), a single region,
(Southeast Asia, in Pellet, Aires, Papa, et al., 2019), or the analysis is restricted to very
large basins (Munier & Aires, 2018). However, we aimed for global coverage, and our river
basins cover a wide range of climates and hydrologic conditions, from highly arid to trop-
ical rainforest. We estimated the uncertainty for each estimated flux as the minimum
of 6 mm/mo or 20% of the absolute value of the flux.

3.3 Neural Network Model

The OI method works well at the basin scale but require all HC components to be
present. To improve the accuracy of applying OI findings to new locations, we aim to
use a more complex model that includes additional inputs to describe the environment.
We attempt to achieve this by utilizing environmental data as input variables in a flex-
ible neural network (NN) model.

We chose a particular type of NN, a multi-layered perceptron (Rumelhart et al.,
1987). The neurons are organized in successive layers, each neuron first performs a weighted
average of their inputs using synaptic weights. A non-linear sigmoid function g such as
a tanh or tansig function is then applied on the weighted average. The final output of
a neuron ¢ is then given by: y; = ¢ (Z;\Ll wjixj), where (x;;5 = 1,---,N) are the
N inputs of neuron 4, and wj; is the synaptic weight between neuron j and 4 (Bishop,
1996).

More generally, a NN is a flexible model that can simulate complex nonlinear re-
lationships. Given the correct model form and proper training, it can fit any arbitrary
function. Often, classical NN architecture is fully connected, meaning that every neu-
ron has a connection with all the neurons of the previous layer. This is not the case here,
where we are operating multiple independent NNs for calibration and mixture. We ex-
perimented with a number of NN architectures. While the one shown in Figure 4 is among
the simpler models that we tried, it performed the best. On the left are the model in-
puts, the uncorrected EO datasets, and on the right are the targets, the solution from
OI that results in a balanced water budget. We chose a modular architecture with sep-
arate calibration and mixture steps that allows us to investigate the outputs of individ-
ual layers as we may gain useful information from each:

» First, a set of NNs serves to calibrate the individual inputs, or to transform them
such that they more closely match the OI solution that satisfies the water balance
constraint. For example, the output of the first calibration sub-model in Figure 4,
Py cql, is a function of P, and the ancillary variables. In this way, each EO prod-
uct can be optimized independently to each other. This allows running the NN
in various configurations with different numbers of input variables (e.g., when one
input variable is missing).
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Figure 4. Neural network model architecture for calibration then mixture of EO datasets.

e Next, the mizture NNs combine information output by the calibration layer to es-
timate P, E, AS, and R. The NN seeks the best compromise among the calibrated
EO datasets to fit the target, the OI solution.

A database with paired input and target data is required to train and test the NN
model, as well as to select the best model architecture and find the best set of model pa-
rameters. For the set of NNs shown in Figure 4, each of the 10 calibration networks has
13 inputs (1 EO variable and 12 ancillary environmental variables), 10 neurons in the
hidden layer, and 1 neuron in the output layer. The outputs of the calibration layer are
calibrated EO datasets, which are useful in their own right, as they should better bal-
ance the water budget. Further, they are inputs to the mixture model layers. These lay-
ers also have 10 neurons in the hidden layer and 1 neuron in the output layer. For ex-
ample, the inputs to the precipitation mixture model are calibrated P from each of the
three calibration models plus the ancillary variables. Again the target is the OI solution
for P calculated previously. In the following section, we evaluate the results of the 10
calibration NNs (1 calibration per EO dataset), and the output of 4 mixture NNs (1 mix-
ture per HC component).

The number of neurons in the hidden layers and the number of hidden layers con-
trols the complexity of the model. We experimented with a range of network sizes and
configurations, and found that the fit does not improve with more neurons. Estimation
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of the optimal parameters of the NN was performed during the training stage using the
back-propagation Levenberg-Marquardt algorithm (Rumelhart et al., 1987). We trained
the model on a set of 1,358 basins and validated the model over a set of 340 indepen-
dent basins (for an 80/20 split between training and validation). We corrected any phys-
ically implausible negative values for P or R by setting them zero. Finally, outputs for
AS and R were smoothed with a 3-month moving mean filter to remove high-frequency
noise from the predictions. We also performed the equivalent smoothing on validation
datasets in order to ensure a fair comparison.

4 Results

Here, we evaluate the results of our optimization procedure for EO data using OI
and NN modeling. The best model will be one that reconciles the inputs and results in
a lower water budget residual, I. It should yield results that are plausible while chang-
ing the inputs as little as necessary.

Figure 5 is an example showing the inputs and outputs of our method over one river
basin. The data is for the White River at Petersburg, Indiana, United States, with a drainage
area of 29,000 km?. While no river basin is typical, this location does a good job demon-
strating the output from our calculations as it has a long record of river discharge. The
corrections made in this basin are relatively modest; over this region of the eastern United
States, remote sensing datasets tend to be more reliable and well-calibrated due to the
density and availability of in situ calibration data.

The time series plots in Figure 5 show the inputs (EO datasets, in gray), the out-
puts of OI (green) and the outputs of the mixture NN (purple). There is significant dis-
agreement among the 3 P datasets as their seasonality differs. E for this location is more
consistent. The three GRACE datasets for TWSC or AS are highly correlated with one
another, as expected since they are derived from the same satellite data. The bottom
plot shows the HC residual or imbalance, I. The gray lines show each of the 27 possi-
ble combinations of the datasets (3P x3E x3AS x 1R). The imbalances based on un-
corrected EO data are significant: the seasonal I can reach £50 mm/mo depending on
the combination of datasets. The objective of our integration technique is to reduce this
imbalance as much as possible. I based on the OI solution (in blue) is equal to zero by
definition.

The NN optimization of P, E and R results in a significant improvement in I. One
of the key features of our model is that it should make minimal modifications to the in-
puts while moving closer to a solution that balances the water budget. In particular, we
note that discharge R is changed less by the NN optimization than it is by OI. This means
that the NN optimization acts mostly on P and F towards a better coherency with R
and AS.

4.1 Evaluation of Water Budget Closure

Figure 6 shows the distribution of the HC imbalance in the 340 validation basins.
The empirical PDFs are kernel density plots showing the mean (left) and the standard
deviation (right) of I in each basin. The gray lines show the imbalance calculated from
the original uncorrected EO datasets (27 cases). The OI solution is not shown, as I =
0. We again calculated I using each of the 27 combinations of datasets output by the
calibration NNs (shown in pink), and the I resulting from the mean for each component
(in red). Finally, the blue line shows the result of the final NN mixture model. Each step
in the optimization process reduces both the bias and the variance of I. The mean and
standard deviation of the I with uncorrected EO data is 11 + 44 mm/mo. Simply av-
eraging multiple datasets significantly improves the water balance. A great deal more
improvement comes from the NN calibration models (I = 0.12 4+ 27 mm/mo). The NN
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Figure 5. Time series plots of EO data over the White River basin in Indiana, US (GRDC
gage 4123202) on left. Datasets are: observed (light colors), the simple-weighted mean of observa-
tions (SW, dashed black), OI solution (green), and estimated by the NN model (purple). At right

is the corresponding seasonality (monthly averages).

mixture model has a slight positive impact (I = —0.03 &+ 24 mm/mo). It appears there-
fore that most of the improvement comes from the initial calibration layer with an ad-
ditional but minor improvement from the mixture layer.

We next applied the trained NN model at the pixel scale, making monthly predic-
tions of P, I/, AS and R in 0.5° grid cells over land. We then calculated imbalance, I,
in every pixel. Figure 7(a) shows Iy rx, the long-term average imbalance based on the
output of the NN mixture model. We visualize how much the NN has improved the im-
balance at the pixel scale in Figure 7(b), where we have calculated an “improvement fac-
tor,” comparing Iy;rx to Isy, the imbalance based on the SW mean of EO datasets.
The improvement factor is a convergence metric that measures how much closer I is to
zero after optimization, and is calculated as |Isw |—|Inrx|- A positive value indicates
that the imbalance is closer to zero (our desired result), while a negative value means
that the imbalance is further from zero (negative result). The NN model results in a lower
water budget residual in nearly all locations, with particularly large improvements over
parts of the Amazon and southeast Asia. The imbalance is made worse in a few loca-
tions, notably near the extreme western coasts of Canada, Chile, England, and Norway.
These more difficult locations can be related to coastal contamination on the EO data,
elevation, and ice presence. Furthermore, our model may not adequately capture the dy-
namics in high mountain regions; such environments are not well sampled in our dataset
as we set a minimum threshold for the basin area.
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Figure 7. Map of the average HC imbalance in 0.5° pixels over the years 2000 - 2019: (a)
the imbalance calculated by fluxes calibrated by the NN mixture model, and (b) the average

improvement from EO observations.

4.2 Evaluation of the calibration EO data

As an additional assessment of our optimization, we compared the output of our
NN model to observations where available, seeking to answer the following questions: Are
we improving the fit to observations, or moving further away from them? Are we able
to improve EO data more in certain locations or under certain conditions?

For this analysis, we first compared EO estimates of E to observed E at 117 global
flux towers. Then we compared the outputs of the calibration and mixture NN models
to these same observations. We repeated the same procedure for R, comparing NN pre-
dictions to discharge measured at gages. We calculated fit statistics comparing the ob-
served and predicted time series at each flux tower or gage. Table 2 reports the median
of the fit statistic. For example, we calculated 117 values for the correlation coefficient,
R. For Gleam-A, the first row in the table, these values ranged from -0.11 to 0.98, with
a median of 0.91. The models denoted with cal. have undergone calibration using the
NN model. Entries in bold text highlight the best value of each indicator within its class.

For E, the NN models generally improved the fit to observations collected at flux
towers. The improvements are not very big, and may not be important considering the
caveats related to comparing point estimates to grid cell values. Nevertheless, it is a pos-
itive sign that our model does not degrade the signal, and in fact may be improving it.
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Table 2. Validation of the NN model predictions for £ and R, showing the impact of the NN

calibration and mixture model on the goodness of fit to observations.

Dataset Corr. R RMSE, mm/mo

Evapotranspiration, at 117 flux towers
GLEAM-A 0.91 21.4
Gleam-A cal.* 0.92 19.0
Gleam-B 0.93 20.1
Gleam-B cal. 0.92 18.5
ERA5 0.91 19.9
ERAS5 cal. 0.91 19.4
Mixture NN 0.92 19.4

Runoff, at 1,781 gages
GRUN 0.90 9.26
GRUN cal. 0.89 9.34

* cal. = calibrated by NN model

The situation with discharge is largely reversed, and it appears that NN calibra-
tion is degrading the signal somewhat, albeit only slightly. Here, we calculated fit statis-
tics against a set of gages with a strong runoff signal (we excluded gages in arid regions
where runoff is often at or near zero, leaving 1,781 gages). The changes made to runoff
data, and fits to observations are not evenly distributed. Based on the change in RMSE,
there is an improved fit to observations in 47% of basins, and a slight degradation in the
fit in 53% of basins. Maps of the changes in each fit indicator (not shown in this paper)
reveal that the most improvement occurs in arid regions, while the worst degradation
occurs at gages north of 70° latitude, in the Arctic regions of North America, Europe,
and Asia.

5 Reconstruction of Total Water Storage Change

An advantage to the NN architecture described in Figure 4 is that it is modular.
Each step (calibration, mixture) results in an improvement to EO datasets, in terms of
producing a balanced water budget, as seen in Figure 6. This is very valuable when faced
with missing data: A missing HC component can be estimated by inference from the other
three. Indeed, several studies have exploited this relationship (see e.g., Rodell et al., 2011;
Munier et al., 2014; Liu et al., 2020; Pellet, Aires, Papa, et al., 2019; Lehmann et al., 2022).

We used this approach for indirect estimation of AS. This allows us to estimate
GRACE-like TWSC for the time period before 2002 when the satellites were launched,
or to fill in missing data. If we assume a balanced water budget, rearranging Equation
1 gives AS = P — E — R. Estimating missing components using indirect observations
should be improved when using the optimized water components of the previous section.
This is therefore an indirect evaluation of the water budget obtained by our integration
framework.

Overall, we obtained a significantly improved fit to GRACE observations with AS
obtained from the three other NN-calibrated fluxes, compared to similar estimation with
uncorrected EO data. At the pixel scale, our new NN-inferred AS compare favorably
to those predicted by Zhang et al. (2018). Figure 8(b) shows the empirical probability
distribution function (PDF) for two fit indicators over land pixels. While reconstruct-
ing TWSC was not the main goal of this study, this experiment shows the improved agree-
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Figure 8. Empirical PDF of the correlation (left) and RMSE (right) between GRACE obser-

vations and indirect estimates for AS over 57,286 land pixels.

ment of the water components, which should be beneficial for future applications. The
fact that our NN model performs well under most conditions is encouraging.

Figure 9 shows a reconstruction of GRACE-like monthly TWSC over 3 river basins
of varying size. Here, it is estimated indirectly from the other three components of the
water cycle, AS.s;, = P — E — R. The gray lines show AS estimated by uncorrected
EO datasets. After 2000, there are 9 different combinations shown (3P x3EXx3x1R).
Before 1980, there are fewer combinations, as some datasets have limited temporal cov-
erage (see Table 1). The green line shows TWSC from GRACE, where available (aver-
age of the three solutions in Table 1). The orange line is our reconstruction of AS. Fi-
nally, the dashed purple line is AS from the study by Zhang et al. (2018). Over the se-
lected basins, the reconstructed time series of TWSC do a good job recreating the sea-
sonal patterns observed by GRACE over river basins of a range of sizes. Further, both
reconstructed time series of TWSC are a significantly better fit to observations compared
to estimates based on uncorrected EO data. As shown in 8, the reconstruction based on
this study’s NN is a slightly better fit to observations compared to the results from Zhang
et al. (2018). This study’s indirect estimates of TWSC are able to cover a longer time

period; the modular nature of the calibration NN model allows us to use whichever dataset(s)

are available in a given time period for estimation. In general, estimates are more ro-
bust when more datasets are available. As fewer datasets are available from 1980 to 2000,
this is an additional source of uncertainty for hindcast estimates of TWSC.

There are also other limitations to the reconstructed datasets of TWSC. It can be
shown that even a very small bias makes it impossible to calculate the trend in TWS with
any degree of accuracy. We are computing TWSC from climate data only, while it has
been shown that human activities like groundwater pumping and the filling and drain-
ing of reservoirs have a major impact on TWS (Rodell et al., 2018).

6 Conclusions

We explored novel methods of analyzing and combining earth observation datasets
describing major hydrologic fluxes, with the goal of reducing the overall error in estimat-
ing the water budget. We applied a closed-form analytical solution, optimal interpola-
tion, which forces the water budget residual to zero. This approach has several advan-
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Figure 9. GRACE-like TWSC reconstructed by indirect estimation over three river basins

tages — it is simple to implement and has a basis in theory and existing practice, as it
seeks to allocate errors in observations in inverse proportion to their uncertainty. Nev-
ertheless, this approach has limitations that prevent us from applying it globally. Most
importantly, OI requires observations of river discharge (only available on a few gaged
river basins) and change in water storage (only available via the GRACE satellites in
operation since 2002).

Previous research in this area has demonstrated the utility of the OI approach. In
this paper, we expand upon previous work in two important ways. First, we applied the
method at a larger scale, optimizing observed fluxes in over 1,654 river basins on every
continent except Greenland and Antarctica. Second, we demonstrated the ability of a
neural network model to reproduce the results of OI with reasonable accuracy over rel-
atively large river basins (> 2,500 km2). The model fit varies by location; it tends to
be better over humid regions, and less accurate over the Arctic or over parts of Asia and
South America. The NN model can be used over river basins nearly anywhere on the globe,
globally and at the pixel scale. We showed that calibrating EO data with our NN at the
pixel scale results in improved coherency among datasets and a lower HC residual over
most continental land surfaces.

Our set of NN is modular, with separate models for calibration of individual datasets,
and for mixture of different datasets of the same water component. This allows us to make
estimations in the absence of one or more of the four main fluxes in the hydrologic cy-
cle. We validated our NN model by comparing the output against in situ observations
and found that the calibration generally improves the fit to £ measured at flux towers,
and does not seriously degrade the fit to observed river discharge. We tested the abil-
ity of the NN model to estimate missing HC components by inference. Estimates based
on NN calibrated fluxes are a major improvement over uncorrected EO data. Neverthe-
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less, estimating TWS indirectly via the three other HC components is not accurate enough
for trend detection or for hindcasting TWS anamolies in the decades before the launch
of the GRACE satellites.

The NN framework introduced by Aires (2014) and expanded upon in this paper
opens new doors for the integration of satellite data to study the HC. The NN model
we developed is original in the field of water budget closure studies, and has some spe-
cial features that allow us to integrate satellite observations. Our model is nested, fea-
turing independent calibration and mixture models to stay closer to the physical treat-
ment that we intend to produce. Our approach optimizes EO datasets and closes the HC
without the use of a simulation model. Rather, our data-driven approach can be set up
to rely only on data from satellite returns. This makes it valuable for the calibration and
validation of climate models and hydrologic models, among other applications.

Future research in this area could experiment with using different NN architectures.
The fit of the NN may also be improved by providing more input data. Our hypothe-
sis is that providing the model with more information about the hydrologic conditions
allows it to customize parameters for different climate zones, plant communities, and hy-
drologic conditions. Our results confirm that ancillary environmental data improves the
fit of the model, although the improvement is modest. Further research may find a com-
bination of environmental data and model configuration that helps the model differen-
tiate zones with a different hydrologic response, such as deserts or tropical rainforests.
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Figure 6.
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