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Abstract

Satellite remote sensing is commonly used to observe the hydrologic cycle at spatial scales ranging from river basins to the

globe. Yet it remains difficult to obtain a balanced water budget using remote sensing data, which highlights the errors and

uncertainties in earth observation (EO) data. Various methods have been proposed to correct EO datasets to make them

more coherent, so that they result in a more balanced water budget. This study aimed to improve estimates of water budget

components (precipitation, evapotranspiration, runoff, and total water storage change) at the global scale using the methods

of optimal interpolation (OI) and neural network (NN) modeling. We trained a set of NNs on a set of 1,358 river basins and

validated them on an independent set of 340 basins and in-situ observations of evapotranspiration and river discharge. We

extended the models to make pixel-scale predictions in 0.5° grid cells for near-global coverage. Calibrated datasets result in

lower water budget residuals in validation basins: the mean and standard deviation of the imbalance is 11 ± 44 mm/mo when

calculated with uncorrected EO data and 0.03 ± 24 mm/mo after calibration by the NN models. This study suggests to data

producers where corrections should be made to the EO datasets, and demonstrates the benefits of physically-driven NN models

for studying the hydrologic cycle at the global scale.
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Abstract18

Satellite remote sensing is commonly used to observe the hydrologic cycle at spatial scales19

ranging from river basins to the globe. Yet it remains difficult to obtain a balanced wa-20

ter budget using remote sensing data, which highlights the errors and uncertainties in21

earth observation (EO) data. Various methods have been proposed to correct EO datasets22

to make them more coherent, so that they result in a more balanced water budget. This23

study aimed to improve estimates of water budget components (precipitation, evapotran-24

spiration, runoff, and total water storage change) at the global scale using the methods25

of optimal interpolation (OI) and neural network (NN) modeling. We trained a set of26

NNs on a set of 1,358 river basins and validated them on an independent set of 340 basins27

and in-situ observations of evapotranspiration and river discharge. We extended the mod-28

els to make pixel-scale predictions in 0.5° grid cells for near-global coverage. Calibrated29

datasets result in lower water budget residuals in validation basins: the mean and stan-30

dard deviation of the imbalance is 11 ± 44 mm/mo when calculated with uncorrected31

EO data and 0.03 ± 24 mm/mo after calibration by the NN models. This study suggests32

to data producers where corrections should be made to the EO datasets, and demonstrates33

the benefits of physically-driven NN models for studying the hydrologic cycle at the global34

scale.35

Plain Language Summary36

Today, satellite remote sensing can measure all the major flows in the water cy-37

cle. This includes precipitation, evaporation, and changes in the amount of water stored38

underground and in lakes and reservoirs. These flows are related to one another via the39

water cycle: flows into and out of any region should be balanced. Yet, we cannot cal-40

culate a balanced water budget with satellite data. This shows that further improvements41

to these data are possible. We used a method called optimal interpolation to make cor-42

rections to satellite datasets, so that they better balance the water budget. However, this43

method only works at the scale of river basins, where river discharge data are available.44

To extend our findings to other locations, we created a statistical model based on ma-45

chine learning. This model can make predictions at the pixel scale over most of the earth’s46

land surface. Often, our model can improve satellite observations of the water cycle. Fur-47

ther, it provides useful information about when and where corrections are most needed.48

Our study shows that machine learning methods can help improve data from satellites49

related to the global water cycle.50

1 Introduction51

The water cycle, or hydrologic cycle (HC), is an important field of study for earth52

scientists — changes to the HC have broad societal implications, with effects on drought,53

flooding, agriculture, and water supply. And while enormous progress has been made54

in monitoring the water cycle via remote sensing, capturing a complete picture from space55

remains a difficult goal. The usefulness of earth observation (EO) datasets has not been56

fully achieved because of “incoherence” among various data products – studies have demon-57

strated that the water budget cannot be closed using remote sensing data without sig-58

nificant errors (Hegerl et al., 2015; Rodell et al., 2015; McCabe et al., 2017). This leads59

to the conclusion that satellite datasets still suffer from systematic bias or random er-60

rors.61

In this study, we seek to simultaneously optimize multiple satellite-estimated datasets62

of hydrologic fluxes, reconciling them to create a balanced water budget. A simplified63

water budget for any land area (e.g., river basin, grid cell) includes the four main fluxes64

or HC components: precipitation, P , evapotranspiration E, total water storage change65

(TWSC in the text and ∆S in equations), and runoff, R. By conservation of mass, the66

water budget can be stated:67
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P − E −∆S −R = 0 (1)

Conventional optimization methods have focused on calibrating individual com-68

ponents of the HC one at a time (for example fitting P or E to ground-based observa-69

tions). This approach is fundamental, but as one author wrote, it “ignores the interde-70

pendencies and relationships inherent in observed responses” (McCabe et al., 2017). In71

other words, we may be able to correct P by exploiting valuable information in the vari-72

ables E, ∆S, and R, as they are related via the HC (Equation 1).73

Recent research has shown that simultaneously optimizing multiple HC components74

can result in a more balanced water budget. Many of these approaches focus on “assim-75

ilation” of EO into hydrological models (see e.g., Yilmaz et al., 2011; Zhang et al., 2016;76

Wong et al., 2021). Several recent studies focused on closing the water budget with a77

more data-driven approach. One class of studies estimates a single component as a func-78

tion of the other three. Some authors have made the simplifying assumption that, over79

sufficiently long time periods, ∆S = 0 (i.e. no trend in storage), allowing one to esti-80

mate total runoff (including subsurface flow) as R = P − E (Liu et al., 2020). Rodell81

et al. (2011) estimated evapotranspiration over seven large river basins via the relation82

E = P−R−∆S, using the output of several land surface and atmospheric models for83

the right side of this equation. The authors concluded that the uncertainty in ∆S mea-84

sured by the GRACE satellites is too high to produce useful monthly estimates of E, but85

that predicted seasonal patterns are fairly reliable. In another example, Lehmann et al.86

(2022) estimated ∆S = P − E − R, and compared predictions to GRACE observa-87

tions. They performed this analysis over 189 large river basins covering 90% of the con-88

tinental land area. Rather than seeking to optimize the datasets, the authors looked for89

the best combination of inputs, and reduced the imbalance through “cancellation of er-90

rors in poor estimates of water budget components.”91

Aires (2014) introduced an integration method called optimal interpolation (OI).92

This closed-form analytical solution imposes a HC budget closure constraint. It forces93

the imbalance to zero, and modifies each of the HC components by an amount inversely94

proportional to its uncertainty. Aires showed that this constraint improves the estima-95

tion of the HC components in some places and times. In a related paper Munier et al.96

(2014) applied OI over the 3 million km2 Mississippi River basin, revising satellite es-97

timates for P , E, R, and ∆S. Later, Munier and Aires (2018) applied OI over 11 large98

river basins. OI has also been shown to work well in optimizing satellite observations of99

the hydrologic cycle over river basins in the Mediterranean (Pellet et al., 2018), South100

Asia (Pellet, Aires, Papa, et al., 2019), and the Amazon (Pellet et al., 2021).101

A major limitation of OI is that it can only be used at the basin scale, where ob-102

servations of river discharge are available. Yet, the vast majority of the world’s rivers103

and streams are ungaged, and gage data are particularly sparse in less-developed coun-104

tries. Furthermore, to make truly global predictions, a model must be able to make pre-105

dictions at the pixel scale. Munier and Aires (2018) extrapolated the balanced solution106

from OI to the global scale with the help of auxiliary environmental information. How-107

ever, environmental datasets were used in a rather simple way; the authors did not use108

them as explanatory variables, but rather to divide basins into classes based on climate109

regime.110

We hypothesized that OI solutions could be extrapolated to new locations more111

accurately with a more complex model and with more inputs to describe the environ-112

ment. We attempt to do this here by using environmental data as input variables to a113

flexible neural network (NN) model. Our approach involves two main steps. First, we114

use OI over a pre-defined set of river basins. The solution is an optimized set of HC com-115

ponents which satisfy the closure constraint. Next, we train a NN model to calibrate EO116

datasets, with a goal of making them closer to the optimized version calculated by OI.117
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We further hypothesized that the necessary adjustments are complex and non-linear, and118

vary by time and location. This makes the problem well suited to approaches based on119

machine learning.120

Our method uses supervised learning, where a target is provided to train the NN.121

The purpose of training is to find the set of model parameters to the function that best122

relates the input(s) to the target(s). Here, we use the output of the OI algorithm as the123

target. The NN output is a set of calibrated monthly estimates for P , E, R, and ∆S in124

each basin. Again, these are not calibrated in the conventional sense of fitting to in situ125

observations, but by combining information from multiple remote sensing datasets while126

seeking to satisfy the HC closure constraint (Equation 1). We used environmental data127

(elevation, slope, vegetation, etc.) as inputs to the model, hypothesizing that these ad-128

ditional inputs will help the NN to find an optimal solution under varying conditions.129

This study has two main objectives. First, to optimize hydrologic EO datasets and130

to calculate a balanced water budget at the river basin scale from these data. Second,131

to train a NN model based on these results to make improved estimates at the pixel scale.132

A third, stretch goal for the study was to test the model’s ability to estimate missing data133

via inference. For example, we can estimate GRACE-like TWSC by rearranging Equa-134

tion 1 to give ∆S = P −E−R. This would allow us to fill in missing data or to esti-135

mate water storage from before GRACE was launched in 2002, or similarly, to estimate136

runoff in ungaged basins.137

2 Datasets138

We created a database of earth observations (EO) based on satellite remote sens-139

ing, with datasets that quantify each of the four major fluxes in Equation 1. The EO140

datasets are summarized in Table 1. All fluxes are expressed in area-normalized units141

of depth per time in millimeters per month (mm/mo). Our database covers the 20-year142

time period from January 2000 to December 2019, a total of 240 months. This time pe-143

riod was chosen to overlap with the availability of observations of TWSC from the GRACE144

satellites, launched in 2002.145

As can be seen in Table 1, the EO datasets vary in terms of their spatial and tem-146

poral resolution, posing a challenge to their integration. We put all EO data into the same147

0.5° equirectangular grid, based on latitude and longitude, rescaling and projecting as148

necessary. In theory, the analysis could be performed at any time scale (daily, weekly,149

etc.) and at any spatial resolution. We chose 0.5° resolution to be compatible with the150

runoff dataset GRUN. We computed monthly averages for all variables where needed.151

We chose a monthly time scale to be compatible with GRACE TWSC data. Finally, we152

evaluated the quality and completeness of each dataset and discarded anomalous obser-153

vations.154

2.1 Total Water Storage Change155

Information on total water storage (TWS), comes from the GRACE (Gravity Re-156

covery and Climate Experiment) satellites. The first pair of satellites were in operation157

from 2002-2017, and a follow-on mission began in 2018. GRACE makes detailed mea-158

surements in changes to the Earth’s gravity field over time. Most short-term changes are159

due to the movement of water on land and underground (Tapley et al., 2004). GRACE160

data have been used in groundbreaking studies to analyze the terrestrial water budget,161

drought, climate change, and water management (see e.g., Famiglietti et al., 2011; Richey162

et al., 2015; McCabe et al., 2017; Rodell et al., 2018).163

GRACE provides the monthly TWS anomaly, expressed as a liquid water equiv-164

alent thickness, in units of cm or mm. GRACE does not estimate the total volume or165
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Table 1. Datasets compiled for the four major fluxes in the hydrologic cycle

Dataset Begin End Temporal res. Spatial res. Citation

Water Storage Anomaly
GRACE-CSR 2002 present month 1.0° Save (2020)
GRACE-JPL 2002 present month 1.0° Landerer and Cooley

(2021)
GRACE-GSFC 2002 present month 1.0° Loomis et al. (2019)

Precipitation
GPCP v2.3 1979 present day 2.5° Adler et al. (2018)
GPM IMERG 2000 present day 0.10° Huffman et al. (2020)
MSWEP 1979 present day 0.10° Beck et al. (2019)

Evapotranspiration
GLEAM v3.5a 1980 present day 0.25° Martens et al. (2017)
GLEAM v3.5b 2003 present day 0.25° idem
ERA5 1950 present 3 hour 0.25° Hersbach et al. (2018)

Observed E for validation
E: FluxNet 2015 2002 2010 hour point Pastorello et al. (2020)
Observed River Discharge - in situ
GRDC varies varies day gage BfG (2020)
Australia 1970 2020 day gage Australia BOM (2020)
GSIM varies 2016 month gage Gudmundsson et al.

(2018)
Runoff - synthetic
G-RUN 1902 2019 month 0.5° Ghiggi et al. (2021)

mass of water in a region, but rather its change with respect to a historical baseline. Nev-166

ertheless, the observations encompass water in all its forms and “represent the full mag-167

nitude of land hydrology and land ice” (Landerer, 2021). We obtained three different GRACE168

products (see Table 1). Each is based on the mass concentration solution developed by169

the Jet Propulsion Laboratory (JPL), known as mascon. This technique employs a grav-170

ity field basis function to separate the contributions in the signal from unequal distri-171

bution of the earth’s mass from other factors such as water storage variations.172

We calculated the month-over-month rate of change in water storage to provide173

the flux in mm/mo. This converts the TWS anomaly to a flux, TWSC or ∆S, and cre-174

ating the link between GRACE data and the other variables in the HC. There are sev-175

eral methods for calculating the rate of change, but most researchers in this field use sim-176

ple finite difference methods (see e.g., Landerer & Swenson, 2012; Biancamaria et al.,177

2019). We used the backwards finite difference method.178

∆S

∆t
=

St − St−1

t− (t− 1)
(2)

The results we obtained from more complex methods such as fitting a cubic spline179

or using an “equivalent smoothing filter” (see e.g., Landerer et al., 2010) were compa-180

rable to those obtained with the simpler methods but often resulted in more missing ob-181

servations, therefore we used the simple method in Equation 2.182

Modeled TWSC - As a source of validation data, we also collected predictions183

from a recent modeling study that reconstructed GRACE-like TWSC via other water184

cycle components. Zhang et al. (2018) used a land surface model and data assimilation185

techniques, first estimating the errors in each water budget component by comparison186
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to in situ observations, then using a constrained Kalman filter to merge the datasets based187

on their error information, with a goal of minimizing the imbalance. This study produced188

global gridded datasets at 0.5° resolution, with monthly P , E, R, and ∆S for 1984–2010.189

2.2 Precipitation190

We obtained data from three sources (Table 1).191

GPCP - The Global Precipitation Climatology Project (GPCP) has the longest192

time record, beginning in 1979 (Adler et al., 2018). It also has the coarsest spatial res-193

olution, at 2.5°. This dataset, produced by an international consortium of researchers,194

is based on multiple satellite observations that are merged to estimate precipitation at195

the global scale. We used version 2.3 of this dataset, which was updated in 2018.196

GPM-Imerg - GPM-Imerg is the multi-satellite precipitation product from NASA.197

IMERG combines data from multiple low-earth orbit satellites and geosynchronous or-198

biting infrared satellites, using morphing techniques and a Kalman filter, to provide ac-199

curate satellite-based precipitation estimates, supplemented by precipitation gauge anal-200

yses.201

MSWEP - The Multi-Source Weighted-Ensemble Precipitation (MSWEP) is not202

a pure remote sensing product, but an “optimal merging” of gage observations, satel-203

lite observations, and reanalysis model output (Beck et al., 2019). MSWEP has been shown204

to be more accurate over mountainous regions, where many products consistently un-205

derestimate P .206

2.3 Evapotranspiration207

Evapotranspiration, E, is the upward flux of water from the land to the atmosphere,208

combining free-surface evaporation with transpiration, the flux of water from plant leaves209

to the atmosphere. It is an important driver of the global climate, responsible for the210

exchange of water and energy from the land and sea surface to the atmosphere. It has211

been estimated that as a global average, E is about 60-75% of precipitation (Shiklomanov,212

2009). E cannot be measured directly via remote sensing. Rather, scientists measure land213

surface temperature or near-surface air temperature and use empirical relationships to214

estimate E.215

Gleam - The Global Land Evaporation Amsterdam Model (GLEAM) is a set of216

algorithms that estimates the various components that contribute to total E: transpi-217

ration, bare-soil evaporation, interception loss, open-water evaporation, and sublimation218

(Martens et al., 2017; Miralles et al., 2011; Hersbach et al., 2018). The authors used an219

empirical relationship, the Priestley-Taylor equation, to calculate potential E based on220

satellite observations of surface net radiation and near-surface air temperature. GLEAM221

version 3.5a used reanalysis rather than satellite observation, and covers 1980 to present.222

The updated version 3.5b relies more on remote sensing data, and has a more limited223

temporal coverage of 2003 to present.224

ERA5 - We also included a dataset that is not a purely remote-sensing based prod-225

uct, but based on the assimilation model ERA5, from the European Centre for Medium-226

Range Weather Forecasts (ECMWF). The model combines historical estimates (from both227

remote sensing and in situ observations) using an advanced modeling and assimilation228

system. ERA5 produces many variables describing the atmosphere, land, and ocean, at229

a resolution of up to a 30 km grid (Guillory, 2022). ERA5 estimates of E have been used230

in many recent hydroclimatic studies (see e.g., Tarek et al., 2020; Singer et al., 2021; Lu231

et al., 2021).232
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Observed evapotranspiration at flux towers - In order to validate our results,233

we obtained in situ measurements of E from flux towers, where latent heat flux and other234

measurements are obtained via eddy covariance methods. We selected data for 117 tow-235

ers from the FluxNet2015 dataset, which compiles data from 212 global towers (Pastorello236

et al., 2020). The majority of selected towers are in Europe (51 towers) or North Amer-237

ica (46), with fewer in Africa (2), Asia (6), Australia (9), and South America (3).238

Care must be taken in comparing E observed at flux towers to gridded hydro-climatic239

data. The value in a single grid cell (or pixel) represents an average for an area over which240

conditions can vary widely. At the scale of our model grid, a single 0.5° pixel has an area241

of about 3,000 km2 near the equator. Land cover, vegetation, and topography over a grid242

cell may vary drastically from those at the flux tower site. This limits the meaningful-243

ness of comparisons between gridded model estimates flux tower observations.244

2.4 Runoff245

River flow, or discharge, is an in situ measurement, measured at gages, typically246

operated by public agencies. The gage location is considered the outlet of a river basin,247

and the discharge is the sum of basin runoff. The terms runoff and river discharge are248

frequently the source of confusion, and care must be taken to distinguish these related249

but distinct quantities. While definitions vary among sources, here we follow the defi-250

nitions used by Ghiggi et al. (2019). Runoff is defined as all the water draining from a251

small land area, and cannot be observed directly. River discharge, by contrast, is mea-252

sured at a single point on a river. One may estimate river discharge from the runoff in253

the upstream area by spatially averaging the gridded runoff data. As the travel time of254

water in the river system is neglected, this method can only be assumed to be correct255

over long time scales. We assume that on a monthly scale, the effect of water routing256

is negligible for small- to mid-size basins.257

a) River discharge gages

Source
Australia

GSIM
GRDC

(b) Synthetic river basins

Training
Validation

Experiment
Partition #1

Figure 1. Map of this study’s river basins: (a) 2,056 river flow gaging stations, corresponding

to the basin outlets (basin boundaries not shown); (b) 1,698 synthetic river basins created for

training and validating the neural network model.
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We sought to develop a large database of global gaged basins that would represent258

a range of geographic locations, environments, and basin sizes to better sample the global259

water cycle on Earth. We selected gages for our analysis based on data quality, geographic260

and temporal coverage, and location. We considered gages with an upstream area ≥2,500 km2.261

We obtained river dischage data from 3 sources. First, we selected 1,737 gages from262

the Global Runoff Data Center (GRDC) and supplemented it with information from two263

other sources to fill in blank spaces on the map (notably Asia and Australia). The GRDC264

database contains historical mean daily and monthly discharge data from 159 countries265

(WMO, 1989; BfG, 2020). The GRDC database contained 10,361 stations when we ac-266

quired data, however the majority of these did not fit our criteria for spatial and tem-267

poral coverage. Second, we obtained data for 272 gages from the Global Streamflow In-268

dices and Metadata (GSIM) archive (Do et al., 2018; Gudmundsson et al., 2018). Finally,269

we obtained runoff data for 47 gages in Australia from their Bureau of Meteorology (BOM)’s270

Hydrologic Reference Stations (Australia BOM, 2020).271

We calculated monthly average runoff for months with at least 25 days of data. Vol-272

umetric flow rates in m3/s were converted to area-normalized fluxes in mm/mo by di-273

viding by the land surface area in km2 and multiplying by an appropriate conversion fac-274

tor. The spatial coverage of our final 2,056 river gages (and their basins) is uneven across275

the globe (see Figure 1). North America is over-represented with 1,111 gages (more than276

half the total), as is Europe with 393 gages, while we have only 70 gages in Africa, 178277

in Asia, and 195 in South America.278

Runoff observations are limited, as they are only available at gaged locations. As279

an alternative, indirect estimates of runoff are available from several sources. For our ex-280

periments in closing the HC, we used estimated runoff from GRUN Ensemble (Ghiggi281

et al., 2021). The authors created a global gridded dataset of runoff with a random for-282

est model using P and near-surface temperature as predictor variables. For the 2021 GRUN283

Ensemble project, the authors used input data from 21 different sources, “including a284

set of atmospheric reanalysis, post-processed reanalysis and interpolated-stations data.”285

In order to check the quality of the GRUN dataset, we performed an independent286

evaluation against our 2,056 gages and found that GRUN is a relatively good fit to ob-287

served discharge. We first estimated the monthly discharge at the basin outlet by cal-288

culating the spatially averaged mean of gridded GRUN runoff. Then we calculated fit289

statistics comparing the observed and modeled flow time series. We found that a me-290

dian correlation R = 0.84 and median root mean square error, RMSE = 11.8 mm/mo,291

and 75% of gages had RMSE < 19 mm/mo. We also calculated a common fit indica-292

tor for modeled discharge, the Kling-Gupta Efficiency (KGE). Median KGE is 0.53, and293

81% of gages have KGE > −0.41, the point at which a model’s predictions are better294

than the mean of observations (Knoben et al., 2019).295

2.5 Environmental Indices296

We also collected observations of ancillary environmental data as inputs to our NN297

model. Our hypothesis is that errors in EO data (that the NN will attempt to correct)298

are the consequence of certain environmental conditions. For example, precipitation es-299

timates are often biased in mountainous regions, or in relation to snow cover. The en-300

vironmental data are listed with their source/citation below. In all cases, we rescaled and301

reprojected datasets as necessary and calculated spatial means for river basins as described302

above. The 12 environmental indices are:303

1. Aridity index (Trabucco & Zomer, 2019)304

2. Mean elevation (Amatulli et al., 2018)305

3. Median slope (Amatulli et al., 2018)306
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4. Basin centroid latitude (calculated)307

5. Enhanced vegetation index (Didan, 2015)308

6. Vegetation growth/senescence (calculated)309

7. Irrigated area (Siebert et al., 2015)310

8. Fire: burned area (Giglio et al., 2020)311

9. Snow cover (Hall & Riggs, 2021)312

10. Solar radiation (Hogan, 2015)313

11. Land surface temperature (Wan et al., 2021)314

2.6 Preliminary Analysis of EO Datasets315

Figure 2 shows a snapshot of one month (January 2005) of the EO datasets used316

as input in our analysis. The different datasets share many similarities in terms of the317

overall patterns, but there are many differences. For example, GPCP precipitation ap-318

pears smoother, while the other two datasets, which have a higher spatial resolution, show319

finer-grained patterns of rainfall. This is particularly evident over the Amazon and south-320

ern Africa. Similarly, one can see differences in the spatial patterns and range of mag-321

nitude of E and ∆S. River discharge, measured at gages, has a sparser coverage, and322

the distribution of flows is highly skewed, with measured discharges covering several or-323

ders of magnitude from 0 to nearly 1,000 mm/mo.324
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Figure 2. Snapshot of EO data for a single month, January 2005.

Figure 3 shows the distribution of values in the EO datasets used as input in our325

model using standard boxplot conventions (boxes = interquartile range, whiskers = 10%ile326

and the 90%-ile). The top boxplot in each set of observations is for all pixels over land,327

while the lower box shows the distribution across our 2,056 gaged basins. For most vari-328

ables, the distribution of fluxes is greater over the pixels compared to the basins, with329

higher highs and lower lows. This is particularly the case for P , but is also seen with E.330
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When we calculate the mean flux over a basin, it tends to smooth out the extremes and331

compress the distribution of observed fluxes. There are also differences in the distribu-332

tions within each category of fluxes. For example, GPM-Imerg contains higher obser-333

vations of P , with a higher 75- and 90-percentile than the other two datasets. The monthly334

water storage change, ∆S, is centered at about zero for each dataset. This is expected,335

as the storage in pixels and basins tends to fluctuate seasonally, and any long-term trend336

is small compared to the annual variations in storage. Runoff has the smallest magni-337

tude of any of the hydrologic fluxes, with a low of 0 mm/mo (no observed flow) to a 90%-338

ile of 68 mm/mo, lower than the 90%-ile of P or E. We conclude that the lack of con-339

sensus among datasets is further evidence of the need for them to be reconciled.340

0 50 100 150 200 250

Precip.
pixels

basins
GPCP

GPM-Imerg

MSWEP
Evap.

Gleam A

Gleam B

ERA5
TWSC or ΔS 

CSR

GSFC

JPL
Runoff

GRUN (pixels)
Gages (basins)

Flux, mm/mo

−100    −50

Figure 3. Boxplots showing the distribution of values in the EO datasets at the pixel scale

over continents (except Antarctica and Greenland) and averaged over gaged river basins used in

this study.

3 Methodology341

3.1 Training database at basin scale over the world342

We analyzed the water balance at the scale of two geographic units: river basins343

and pixels. For the pixel-scale analysis, we used a 0.5° equirectangular grid. We excluded344

Antarctica, Greenland, and the Arctic north of 77°. Near the equator, a single pixel is345

about 56 km on a side and has an area of about 3,100 km2. The disadvantage to study-346

ing the water balance at the pixel scale is the lack of observations of horizontal inflow347

or outflow. In this regard, there are advantages to working at the scale of river basins,348

or watersheds. A watershed is defined as the area on the Earth’s surface where water349

drains to a common outlet and is determined by the topography of the land surface.350

We obtained basin geodata in shapefile format from the GRDC, which covered many351

of our gaged basins (Lehner et al., 2008). However, some of these basin boundaries ap-352

peared to be inaccurate. Therefore, we created a new set of boundaries for every water-353

shed using the best-available global hydrographic data. We used a hybrid method that354

uses both vector- and raster-based data (Heberger, 2022). Our method uses the vector355

dataset MERIT-Basins (Lin et al., 2019, 2021), where rivers are encoded as polylines and356

catchment boundaries as polygons.357

Our resulting 2,056 basins vary in size from 2,500 km2 to 4.7 million km2 for the358

Amazon basin. The distribution of basin sizes is highly skewed, meaning that we have359
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many small- and medium-sized basins, and fewer large basins. Of these, 119 watersheds360

have an area of less than 3,000 km2. Our set of gaged basins covers 47 million km2, about361

35% of our study domain, the land surface below 77° North and excluding Greenland and362

Antarctica.363

For each basin, we calculated the average for each of EO variables in Tables 1 and364

the environmental variables described above. To calculate the spatial weighted mean,365

we converted each basin polygon to a grid “mask,” where each pixel is a floating-point366

number representing the fraction of the pixel’s area that is inside the basin (from 0 to367

1). Because the surface area of pixels varies by latitude, we used the pixel’s area in our368

calculation of the weighted mean.369

When working with a gridded runoff dataset, we are free from the constraint of us-370

ing gaged basins, and we may define river basins of any size and at any location for bet-371

ter sampling of many environmental conditions. To take full advantage of this, we cre-372

ated a set of 1,698 synthetic river basins, shown in Figure 1(b). These represent real, phys-373

ical basins, but their outlets do not correspond to a gage. We created the synthetic basins374

by using a gridded dataset of flow direction created by the developers of the GloFaS-LISFLOOD375

model (Harrigan et al., 2020) and the Python library pysheds (Bartos et al., 2023). The376

basins range in size from 20,000 to 50,000 km2; the relatively small size allows fits the377

hypothesis that we may neglect water travel time at the monthly time scale. The color378

coding in Figure 1 shows the experimental partition we created for the training and val-379

idation of the NN model, with 80% of basins for training (in blue), and 20% of basins380

for validation (in red). The result is a set of 1,698 basins shown in Figure 1(b).381

3.2 Optimal Interpolation382

We follow previous studies (Aires, 2014; Pellet, Aires, Munier, et al., 2019) in us-383

ing OI to integrate EO datasets and balance the water budget at the river basin scale.384

We refer to the water balance residual as the imbalance, calculated by:385

I = P − E −∆S −R. (3)

The OI approach is based on forcing I to equal zero, or minimizing I, while dis-386

tributing the errors among the inputs in inverse proportion to each variable’s uncertainty.387

These methods, well described by Rodgers (2000), are referred to as “inverse methods”388

and are widely used in remote sensing. The goal of OI is to combine these multiple es-389

timates to obtain the best consensus of the HC state. For a detailed explanation of the390

mathematics behind OI, see Aires (2014) and Pellet, Aires, Munier, et al. (2019).391

We begin by defining an initial best guess for each of the four HC components. This392

is done by calculating a weighted average of the inputs for each component. Simple weight-393

ing (SW), as described by Aires (2014), is an application of the method of inverse vari-394

ance weighting to the problem of calculating the “best estimate” that combines multi-395

ple satellite observed fluxes. It is a form of weighted averaging where the weight on the396

each observation is the inverse of the variance or uncertainty of that observation. The397

uncertainty must be estimated a priori for each observation or dataset. After calculat-398

ing the best first guess of the water budget based on the SW mean, we apply a post-filter399

to enforce the water balance. The post filter is a linear transformation based on the un-400

certainty in each component. Aires (2014) derived a solution for determining the linear401

combination of variables that satisfies the water budget constraint, weighting the con-402

tribution such that variables with lower error variance receive greater weight.403

The OI method is simple and effective. Further, it has the advantage of not rely-404

ing on any model. When it is applied strictly (e.g., without an optional relaxation fac-405

tor described by Pellet, Aires, Munier, et al. (2019)), it will always result in a balanced406
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water budget. However, this strict requirement can also produce unrealistic results. The407

OI method does not guard against returning negative values, which is obviously unre-408

alistic for precipitation or runoff. Or it may produce values outside of the range that has409

been observed in a region.410

For this study, we altered how OI is applied compared to previous applications, by411

recalculating the post-filter matrix in every river basin and at every time step. The OI412

algorithm requires an a priori estimate of the error covariance matrix for our input vari-413

ables, the hydrologic fluxes estimated by remote sensing. In practice, this information414

is rarely available, and therefore uncertainties are estimated by expert judgment or by415

computational experiments. Previous applications of OI assumed constant values for un-416

certainties, regardless of the season or the location. Such an assumption is defensible when417

analyzing a single river basin (the Mississippi, in Munier et al., 2014), a single region,418

(Southeast Asia, in Pellet, Aires, Papa, et al., 2019), or the analysis is restricted to very419

large basins (Munier & Aires, 2018). However, we aimed for global coverage, and our river420

basins cover a wide range of climates and hydrologic conditions, from highly arid to trop-421

ical rainforest. We estimated the uncertainty for each estimated flux as the minimum422

of 6 mm/mo or 20% of the absolute value of the flux.423

3.3 Neural Network Model424

The OI method works well at the basin scale but require all HC components to be425

present. To improve the accuracy of applying OI findings to new locations, we aim to426

use a more complex model that includes additional inputs to describe the environment.427

We attempt to achieve this by utilizing environmental data as input variables in a flex-428

ible neural network (NN) model.429

We chose a particular type of NN, a multi-layered perceptron (Rumelhart et al.,430

1987). The neurons are organized in successive layers, each neuron first performs a weighted431

average of their inputs using synaptic weights. A non-linear sigmoid function g such as432

a tanh or tansig function is then applied on the weighted average. The final output of433

a neuron i is then given by: yi = g
(∑N

j=1 wjixj

)
, where (xj ; j = 1, · · · , N) are the434

N inputs of neuron i, and wji is the synaptic weight between neuron j and i (Bishop,435

1996).436

More generally, a NN is a flexible model that can simulate complex nonlinear re-437

lationships. Given the correct model form and proper training, it can fit any arbitrary438

function. Often, classical NN architecture is fully connected, meaning that every neu-439

ron has a connection with all the neurons of the previous layer. This is not the case here,440

where we are operating multiple independent NNs for calibration and mixture. We ex-441

perimented with a number of NN architectures. While the one shown in Figure 4 is among442

the simpler models that we tried, it performed the best. On the left are the model in-443

puts, the uncorrected EO datasets, and on the right are the targets, the solution from444

OI that results in a balanced water budget. We chose a modular architecture with sep-445

arate calibration and mixture steps that allows us to investigate the outputs of individ-446

ual layers as we may gain useful information from each:447

• First, a set of NNs serves to calibrate the individual inputs, or to transform them448

such that they more closely match the OI solution that satisfies the water balance449

constraint. For example, the output of the first calibration sub-model in Figure 4,450

P1,cal, is a function of P1 and the ancillary variables. In this way, each EO prod-451

uct can be optimized independently to each other. This allows running the NN452

in various configurations with different numbers of input variables (e.g., when one453

input variable is missing).454
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• Next, the mixture NNs combine information output by the calibration layer to es-455

timate P , E, ∆S, and R. The NN seeks the best compromise among the calibrated456

EO datasets to fit the target, the OI solution.457

A database with paired input and target data is required to train and test the NN458

model, as well as to select the best model architecture and find the best set of model pa-459

rameters. For the set of NNs shown in Figure 4, each of the 10 calibration networks has460

13 inputs (1 EO variable and 12 ancillary environmental variables), 10 neurons in the461

hidden layer, and 1 neuron in the output layer. The outputs of the calibration layer are462

calibrated EO datasets, which are useful in their own right, as they should better bal-463

ance the water budget. Further, they are inputs to the mixture model layers. These lay-464

ers also have 10 neurons in the hidden layer and 1 neuron in the output layer. For ex-465

ample, the inputs to the precipitation mixture model are calibrated P from each of the466

three calibration models plus the ancillary variables. Again the target is the OI solution467

for P calculated previously. In the following section, we evaluate the results of the 10468

calibration NNs (1 calibration per EO dataset), and the output of 4 mixture NNs (1 mix-469

ture per HC component).470

The number of neurons in the hidden layers and the number of hidden layers con-471

trols the complexity of the model. We experimented with a range of network sizes and472

configurations, and found that the fit does not improve with more neurons. Estimation473
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of the optimal parameters of the NN was performed during the training stage using the474

back-propagation Levenberg-Marquardt algorithm (Rumelhart et al., 1987). We trained475

the model on a set of 1,358 basins and validated the model over a set of 340 indepen-476

dent basins (for an 80/20 split between training and validation). We corrected any phys-477

ically implausible negative values for P or R by setting them zero. Finally, outputs for478

∆S and R were smoothed with a 3-month moving mean filter to remove high-frequency479

noise from the predictions. We also performed the equivalent smoothing on validation480

datasets in order to ensure a fair comparison.481

4 Results482

Here, we evaluate the results of our optimization procedure for EO data using OI483

and NN modeling. The best model will be one that reconciles the inputs and results in484

a lower water budget residual, I. It should yield results that are plausible while chang-485

ing the inputs as little as necessary.486

Figure 5 is an example showing the inputs and outputs of our method over one river487

basin. The data is for the White River at Petersburg, Indiana, United States, with a drainage488

area of 29,000 km2. While no river basin is typical, this location does a good job demon-489

strating the output from our calculations as it has a long record of river discharge. The490

corrections made in this basin are relatively modest; over this region of the eastern United491

States, remote sensing datasets tend to be more reliable and well-calibrated due to the492

density and availability of in situ calibration data.493

The time series plots in Figure 5 show the inputs (EO datasets, in gray), the out-494

puts of OI (green) and the outputs of the mixture NN (purple). There is significant dis-495

agreement among the 3 P datasets as their seasonality differs. E for this location is more496

consistent. The three GRACE datasets for TWSC or ∆S are highly correlated with one497

another, as expected since they are derived from the same satellite data. The bottom498

plot shows the HC residual or imbalance, I. The gray lines show each of the 27 possi-499

ble combinations of the datasets (3P×3E×3∆S×1R). The imbalances based on un-500

corrected EO data are significant: the seasonal I can reach ±50 mm/mo depending on501

the combination of datasets. The objective of our integration technique is to reduce this502

imbalance as much as possible. I based on the OI solution (in blue) is equal to zero by503

definition.504

The NN optimization of P , E and R results in a significant improvement in I. One505

of the key features of our model is that it should make minimal modifications to the in-506

puts while moving closer to a solution that balances the water budget. In particular, we507

note that discharge R is changed less by the NN optimization than it is by OI. This means508

that the NN optimization acts mostly on P and E towards a better coherency with R509

and ∆S.510

4.1 Evaluation of Water Budget Closure511

Figure 6 shows the distribution of the HC imbalance in the 340 validation basins.512

The empirical PDFs are kernel density plots showing the mean (left) and the standard513

deviation (right) of I in each basin. The gray lines show the imbalance calculated from514

the original uncorrected EO datasets (27 cases). The OI solution is not shown, as I =515

0. We again calculated I using each of the 27 combinations of datasets output by the516

calibration NNs (shown in pink), and the I resulting from the mean for each component517

(in red). Finally, the blue line shows the result of the final NN mixture model. Each step518

in the optimization process reduces both the bias and the variance of I. The mean and519

standard deviation of the I with uncorrected EO data is 11 ± 44 mm/mo. Simply av-520

eraging multiple datasets significantly improves the water balance. A great deal more521

improvement comes from the NN calibration models (I = 0.12 ± 27 mm/mo). The NN522
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is the corresponding seasonality (monthly averages).

mixture model has a slight positive impact (I = −0.03 ± 24 mm/mo). It appears there-523

fore that most of the improvement comes from the initial calibration layer with an ad-524

ditional but minor improvement from the mixture layer.525

We next applied the trained NN model at the pixel scale, making monthly predic-526

tions of P , E, ∆S and R in 0.5° grid cells over land. We then calculated imbalance, I,527

in every pixel. Figure 7(a) shows IMIX , the long-term average imbalance based on the528

output of the NN mixture model. We visualize how much the NN has improved the im-529

balance at the pixel scale in Figure 7(b), where we have calculated an “improvement fac-530

tor,” comparing IMIX to ISW , the imbalance based on the SW mean of EO datasets.531

The improvement factor is a convergence metric that measures how much closer I is to532

zero after optimization, and is calculated as |ISW |−|IMIX |. A positive value indicates533

that the imbalance is closer to zero (our desired result), while a negative value means534

that the imbalance is further from zero (negative result). The NN model results in a lower535

water budget residual in nearly all locations, with particularly large improvements over536

parts of the Amazon and southeast Asia. The imbalance is made worse in a few loca-537

tions, notably near the extreme western coasts of Canada, Chile, England, and Norway.538

These more difficult locations can be related to coastal contamination on the EO data,539

elevation, and ice presence. Furthermore, our model may not adequately capture the dy-540

namics in high mountain regions; such environments are not well sampled in our dataset541

as we set a minimum threshold for the basin area.542
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Figure 6. Empirical probability distribution plots of the HC imbalance, showing the mean

and standard deviation of the imbalance over the 340 validation basins.
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Figure 7. Map of the average HC imbalance in 0.5° pixels over the years 2000 - 2019: (a)

the imbalance calculated by fluxes calibrated by the NN mixture model, and (b) the average

improvement from EO observations.

4.2 Evaluation of the calibration EO data543

As an additional assessment of our optimization, we compared the output of our544

NN model to observations where available, seeking to answer the following questions: Are545

we improving the fit to observations, or moving further away from them? Are we able546

to improve EO data more in certain locations or under certain conditions?547

For this analysis, we first compared EO estimates of E to observed E at 117 global548

flux towers. Then we compared the outputs of the calibration and mixture NN models549

to these same observations. We repeated the same procedure for R, comparing NN pre-550

dictions to discharge measured at gages. We calculated fit statistics comparing the ob-551

served and predicted time series at each flux tower or gage. Table 2 reports the median552

of the fit statistic. For example, we calculated 117 values for the correlation coefficient,553

R. For Gleam-A, the first row in the table, these values ranged from -0.11 to 0.98, with554

a median of 0.91. The models denoted with cal. have undergone calibration using the555

NN model. Entries in bold text highlight the best value of each indicator within its class.556

For E, the NN models generally improved the fit to observations collected at flux557

towers. The improvements are not very big, and may not be important considering the558

caveats related to comparing point estimates to grid cell values. Nevertheless, it is a pos-559

itive sign that our model does not degrade the signal, and in fact may be improving it.560
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Table 2. Validation of the NN model predictions for E and R, showing the impact of the NN

calibration and mixture model on the goodness of fit to observations.

Dataset Corr. R RMSE, mm/mo

Evapotranspiration, at 117 flux towers
GLEAM-A 0.91 21.4
Gleam-A cal.* 0.92 19.0

Gleam-B 0.93 20.1
Gleam-B cal. 0.92 18.5

ERA5 0.91 19.9
ERA5 cal. 0.91 19.4

Mixture NN 0.92 19.4

Runoff, at 1,781 gages
GRUN 0.90 9.26
GRUN cal. 0.89 9.34

* cal. = calibrated by NN model

The situation with discharge is largely reversed, and it appears that NN calibra-561

tion is degrading the signal somewhat, albeit only slightly. Here, we calculated fit statis-562

tics against a set of gages with a strong runoff signal (we excluded gages in arid regions563

where runoff is often at or near zero, leaving 1,781 gages). The changes made to runoff564

data, and fits to observations are not evenly distributed. Based on the change in RMSE,565

there is an improved fit to observations in 47% of basins, and a slight degradation in the566

fit in 53% of basins. Maps of the changes in each fit indicator (not shown in this paper)567

reveal that the most improvement occurs in arid regions, while the worst degradation568

occurs at gages north of 70° latitude, in the Arctic regions of North America, Europe,569

and Asia.570

5 Reconstruction of Total Water Storage Change571

An advantage to the NN architecture described in Figure 4 is that it is modular.572

Each step (calibration, mixture) results in an improvement to EO datasets, in terms of573

producing a balanced water budget, as seen in Figure 6. This is very valuable when faced574

with missing data: A missing HC component can be estimated by inference from the other575

three. Indeed, several studies have exploited this relationship (see e.g., Rodell et al., 2011;576

Munier et al., 2014; Liu et al., 2020; Pellet, Aires, Papa, et al., 2019; Lehmann et al., 2022).577

We used this approach for indirect estimation of ∆S. This allows us to estimate578

GRACE-like TWSC for the time period before 2002 when the satellites were launched,579

or to fill in missing data. If we assume a balanced water budget, rearranging Equation580

1 gives ∆S = P −E −R. Estimating missing components using indirect observations581

should be improved when using the optimized water components of the previous section.582

This is therefore an indirect evaluation of the water budget obtained by our integration583

framework.584

Overall, we obtained a significantly improved fit to GRACE observations with ∆S585

obtained from the three other NN-calibrated fluxes, compared to similar estimation with586

uncorrected EO data. At the pixel scale, our new NN-inferred ∆S compare favorably587

to those predicted by Zhang et al. (2018). Figure 8(b) shows the empirical probability588

distribution function (PDF) for two fit indicators over land pixels. While reconstruct-589

ing TWSC was not the main goal of this study, this experiment shows the improved agree-590
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Figure 8. Empirical PDF of the correlation (left) and RMSE (right) between GRACE obser-

vations and indirect estimates for ∆S over 57,286 land pixels.

ment of the water components, which should be beneficial for future applications. The591

fact that our NN model performs well under most conditions is encouraging.592

Figure 9 shows a reconstruction of GRACE-like monthly TWSC over 3 river basins593

of varying size. Here, it is estimated indirectly from the other three components of the594

water cycle, ∆Sest. = P − E − R. The gray lines show ∆S estimated by uncorrected595

EO datasets. After 2000, there are 9 different combinations shown (3P×3E×3×1R).596

Before 1980, there are fewer combinations, as some datasets have limited temporal cov-597

erage (see Table 1). The green line shows TWSC from GRACE, where available (aver-598

age of the three solutions in Table 1). The orange line is our reconstruction of ∆S. Fi-599

nally, the dashed purple line is ∆S from the study by Zhang et al. (2018). Over the se-600

lected basins, the reconstructed time series of TWSC do a good job recreating the sea-601

sonal patterns observed by GRACE over river basins of a range of sizes. Further, both602

reconstructed time series of TWSC are a significantly better fit to observations compared603

to estimates based on uncorrected EO data. As shown in 8, the reconstruction based on604

this study’s NN is a slightly better fit to observations compared to the results from Zhang605

et al. (2018). This study’s indirect estimates of TWSC are able to cover a longer time606

period; the modular nature of the calibration NN model allows us to use whichever dataset(s)607

are available in a given time period for estimation. In general, estimates are more ro-608

bust when more datasets are available. As fewer datasets are available from 1980 to 2000,609

this is an additional source of uncertainty for hindcast estimates of TWSC.610

There are also other limitations to the reconstructed datasets of TWSC. It can be611

shown that even a very small bias makes it impossible to calculate the trend in TWS with612

any degree of accuracy. We are computing TWSC from climate data only, while it has613

been shown that human activities like groundwater pumping and the filling and drain-614

ing of reservoirs have a major impact on TWS (Rodell et al., 2018).615

6 Conclusions616

We explored novel methods of analyzing and combining earth observation datasets617

describing major hydrologic fluxes, with the goal of reducing the overall error in estimat-618

ing the water budget. We applied a closed-form analytical solution, optimal interpola-619

tion, which forces the water budget residual to zero. This approach has several advan-620
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Figure 9. GRACE-like TWSC reconstructed by indirect estimation over three river basins

tages – it is simple to implement and has a basis in theory and existing practice, as it621

seeks to allocate errors in observations in inverse proportion to their uncertainty. Nev-622

ertheless, this approach has limitations that prevent us from applying it globally. Most623

importantly, OI requires observations of river discharge (only available on a few gaged624

river basins) and change in water storage (only available via the GRACE satellites in625

operation since 2002).626

Previous research in this area has demonstrated the utility of the OI approach. In627

this paper, we expand upon previous work in two important ways. First, we applied the628

method at a larger scale, optimizing observed fluxes in over 1,654 river basins on every629

continent except Greenland and Antarctica. Second, we demonstrated the ability of a630

neural network model to reproduce the results of OI with reasonable accuracy over rel-631

atively large river basins (> 2, 500 km2). The model fit varies by location; it tends to632

be better over humid regions, and less accurate over the Arctic or over parts of Asia and633

South America. The NN model can be used over river basins nearly anywhere on the globe,634

globally and at the pixel scale. We showed that calibrating EO data with our NN at the635

pixel scale results in improved coherency among datasets and a lower HC residual over636

most continental land surfaces.637

Our set of NN is modular, with separate models for calibration of individual datasets,638

and for mixture of different datasets of the same water component. This allows us to make639

estimations in the absence of one or more of the four main fluxes in the hydrologic cy-640

cle. We validated our NN model by comparing the output against in situ observations641

and found that the calibration generally improves the fit to E measured at flux towers,642

and does not seriously degrade the fit to observed river discharge. We tested the abil-643

ity of the NN model to estimate missing HC components by inference. Estimates based644

on NN calibrated fluxes are a major improvement over uncorrected EO data. Neverthe-645
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less, estimating TWS indirectly via the three other HC components is not accurate enough646

for trend detection or for hindcasting TWS anamolies in the decades before the launch647

of the GRACE satellites.648

The NN framework introduced by Aires (2014) and expanded upon in this paper649

opens new doors for the integration of satellite data to study the HC. The NN model650

we developed is original in the field of water budget closure studies, and has some spe-651

cial features that allow us to integrate satellite observations. Our model is nested, fea-652

turing independent calibration and mixture models to stay closer to the physical treat-653

ment that we intend to produce. Our approach optimizes EO datasets and closes the HC654

without the use of a simulation model. Rather, our data-driven approach can be set up655

to rely only on data from satellite returns. This makes it valuable for the calibration and656

validation of climate models and hydrologic models, among other applications.657

Future research in this area could experiment with using different NN architectures.658

The fit of the NN may also be improved by providing more input data. Our hypothe-659

sis is that providing the model with more information about the hydrologic conditions660

allows it to customize parameters for different climate zones, plant communities, and hy-661

drologic conditions. Our results confirm that ancillary environmental data improves the662

fit of the model, although the improvement is modest. Further research may find a com-663

bination of environmental data and model configuration that helps the model differen-664

tiate zones with a different hydrologic response, such as deserts or tropical rainforests.665
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(b) Peace River above Alces River, Alberta, Canada, Area = 130,000 km²
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