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Abstract

Although marine controlled source electromagnetic (CSEM) methods are effective for investigating offshore freshened groundwa-

ter (OFG) systems, interpreting the spatial extent and salinity of OFG remains challenging. Integrating CSEM resistivity models

with information on sub-surface properties, such as host-rock porosity, allows for estimates of pore-water salinity. However,

deterministic inversion approaches pose challenges in quantitatively analyzing these estimates as they provide only one best-fit

model with no associated estimate of model parameter uncertainty. To address this limitation, we employ a trans-dimensional

Markov-Chain Monte-Carlo inversion on marine CSEM data, under the assumption of horizontal stratification, collected from

the Canterbury Bight, New Zealand. We integrate the resulting posterior distributions of electrical resistivity with borehole and

seismic reflection data to quantify pore-water salinity with uncertainty estimates. The results reveal a low-salinity groundwater

body in the center of the survey area at varying depths, hosted by consecutive silty- and fine-sand layers approximately 20 to 60

km from the coast. These observations support the previous study’s results obtained through deterministic 2-D inversion and

suggest freshening of the OFG body closer to the shore within a permeable, coarse-sand layer 40 to 150 m beneath the seafloor.

This implies a potential active connection between the OFG body and the terrestrial groundwater system. We demonstrate

how the Bayesian approach constrains the uncertainties in resistivity models and subsequently in pore-water salinity estimates.

Our findings highlight the potential of Bayesian inversions in enhancing our understanding of OFG systems, providing crucial

boundary conditions for hydrogeological modeling and sustainable water resource development.
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• Correlation between pore-water salinities and seismic-derived stratigraphy provides 20 

boundary conditions for hydrogeological modeling. 21 
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Abstract 24 

Although marine controlled source electromagnetic (CSEM) methods are effective for 25 

investigating offshore freshened groundwater (OFG) systems, interpreting the spatial extent and 26 

salinity of OFG remains challenging. Integrating CSEM resistivity models with information on 27 

sub-surface properties, such as host-rock porosity, allows for estimates of pore-water salinity. 28 

However, deterministic inversion approaches pose challenges in quantitatively analyzing these 29 

estimates as they provide only one best-fit model with no associated estimate of model parameter 30 

uncertainty. To address this limitation, we employ a trans-dimensional Markov-Chain Monte-31 

Carlo inversion on marine CSEM data, under the assumption of horizontal stratification, 32 

collected from the Canterbury Bight, New Zealand. We integrate the resulting posterior 33 

distributions of electrical resistivity with borehole and seismic reflection data to quantify pore-34 

water salinity with uncertainty estimates. The results reveal a low-salinity groundwater body in 35 

the center of the survey area at varying depths, hosted by consecutive silty- and fine-sand layers 36 

approximately 20 to 60 km from the coast. These observations support the previous study's 37 

results obtained through deterministic 2-D inversion and suggest freshening of the OFG body 38 

closer to the shore within a permeable, coarse-sand layer 40 to 150 m beneath the seafloor. This 39 

implies a potential active connection between the OFG body and the terrestrial groundwater 40 

system. We demonstrate how the Bayesian approach constrains the uncertainties in resistivity 41 

models and subsequently in pore-water salinity estimates. Our findings highlight the potential of 42 

Bayesian inversions in enhancing our understanding of OFG systems, providing crucial 43 

boundary conditions for hydrogeological modeling and sustainable water resource development.  44 

Plain Language Summary 45 

Geophysical methods that measure the electromagnetic properties of the Earth are effective in 46 

investigating freshwater sources beneath the seafloor. By Combing the geophysical and 47 

geological information, we can better assess the quality of this groundwater. In this study, we 48 

develop a workflow that uses statistical methods to integrate electromagnetic observations with 49 

borehole and acoustic measurements along the eastern coast of the South Island of New Zealand. 50 

We aim to improve our understanding of the groundwater quality beneath the seafloor. Our 51 

research shows the presence of freshened groundwater within the sandy seafloor. Importantly, 52 

our observations indicate that the freshwater extends closer to the coast. These findings are 53 
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significant as they enhance the hydrogeological modeling of the groundwater system and suggest 54 

its potential as a source of freshwater.  55 

1 Introduction 56 

The rising demand for potable water in coastal regions has recently promoted growing 57 

research interest in detecting offshore freshened groundwater (OFG) worldwide (Post et al., 58 

2013). OFG emplacement is commonly explained through either meteoric recharge during sea-59 

level low-stands (e.g., Cohen et al., 2010; Meisler, Leahy, & Knobel, 1984; Person et al., 2003) 60 

and/or through active meteoric recharge via permeable connections between onshore and 61 

offshore aquifers (e.g., Hong et al., 2019; Johnston, 1983; Weymer et al., 2022), allowing 62 

freshened pore-fluid to reside within presently submerged seafloor. Due to the ongoing pressure 63 

on terrestrial aquifers caused by environmental and anthropogenic stressors, offshore 64 

groundwater investigation has gained new urgency. One proposition is that near-coastal OFG 65 

reservoirs can serve as unconventional sources of drinking water, especially along densely 66 

populated coastal regions and on islands, where terrestrial aquifers cannot maintain a sufficient 67 

supply for inhabitants, agriculture, and industry (Bakkenet al., 2012; Micallef et al., 2021; 68 

Zamrsky, Essink et al., 2022).  69 

Evidence of OFG has been documented in coastal embayments and continental shelves 70 

worldwide (e.g., Attias et al., 2020; Cambareri & Eichner, 1998; Gustafson et al., 2019; Haroon, 71 

Lippert et al., 2018; Haroon et al., 2021; Hathaway et al., 1979; King et al, 2022; Martin et al., 72 

2007; Micallef et al., 2020), demonstrating that low-salinity groundwater within the seafloor 73 

(water depths <1000 m) occurs on a global scale (Post et al., 2013). Global OFG volume has 74 

been estimated at 106 km3 (Micallef et al., 2021), yet these estimates are poorly constrained 75 

since they are based on first-order assumptions derived from point-source borehole 76 

measurements and hydrogeological modeling. A general lack of integrated geophysical data and 77 

hydrogeological investigations along continental shelves precludes a seamless accounting for 78 

more precise volume and salinity estimates on both global and regional scales (Weymer et al., 79 

2022). In order to argue for the sustainable use of OFG as an unconventional resource, volumes, 80 

geometries, salinities, as well as environmental impacts need to be precisely quantified before 81 

exploitation.  82 
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Several applications of marine controlled source electromagnetic (CSEM) methods have 83 

proven effective in identifying OFG residing in various offshore geological settings (e.g., Attias 84 

et al., 2020; Blatter et al., 2019; Evans, 2007; Gustafson et al., 2019; Haroon, Lippert et al., 85 

2018; Haroon et al., 2021; King et al., 2022; Levi et al., 2018; Lippert & Tezkan, 2020; Micallef 86 

et al., 2020). The electrical resistivity distribution of the seafloor, which can be obtained from 87 

CSEM data, is controlled by the salinity of the pore-fluid, the porosity of the host rock, and the 88 

degree of its cementation (Archie, 1942; Hoefel & Evans, 2001). Thereby, resistivity models are 89 

utilized as a proxy to delineate the spatial extent of OFG systems along continental shelves by 90 

applying the empirical Archie’s relationship (Archie, 1942) which relates the resistivity of the 91 

seafloor to the resistivity of the pore-fluid (e.g., Gustafson et al., 2019; King et al., 2022; 92 

Micallef et al., 2020), but only one study assesses the uncertainty of the derived resistivity 93 

models and its impact on the uncertainty of OFG reservoir characterization (Blatter et al., 2019). 94 

This is particularly important when aiming to validate hydrogeological models with geophysical 95 

data, an approach that has been identified as instrumental in the future assessment of OFG 96 

resource potential, evolution, and response functions to external drivers (Arévalo-Martínez et al., 97 

2023; Weymer et al., 2022).  98 

From a geophysical perspective, one of the main challenges in the assessment of OFG 99 

bodies is to reliably predict the pore-fluid salinity distribution based on electrical resistivity 100 

models. Two primary factors contribute to uncertainty in the OFG salinity estimation: a) the 101 

uncertainty of the best-fit resistivity model, and b) unknown variations in lithology-dependent 102 

parameters in Archie’s relationship. The majority of CSEM studies apply a smoothness 103 

constraint in a deterministic inversion approach and subsequently estimate pore-fluid salinities 104 

by assuming representative values for the cementation factor and host-rock porosity in Archie’s 105 

relationship (Archie, 1942). In most cases, the comparison between predicted salinity 106 

distributions derived from geophysical models and hydrogeological modeling or ground-truth 107 

measurements at boreholes achieves only a qualitative match (e.g., Gustafson et al., 2019; 108 

Micallef et al., 2020), possibly because model parameter ambiguities do not flow into the 109 

analysis. A more quantitative assessment of OFG salinity distributions can be achieved if 110 

uncertainties are addressed within the entire evaluation chain of deriving pore-water salinity 111 

models from integrated CSEM analysis. 112 
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An uncertainty evaluation of pore-water salinity predictions derived from CSEM 113 

measurements will allow inference about the genesis of OFG and its potential connection to their 114 

terrestrial counterparts, as well as provide a cornerstone for future monitoring of 115 

freshwater/saltwater interfaces with electromagnetic methods. These uncertainty estimates 116 

ideally require a statistical analysis of all parameters in Archie’s empirical relationship (Archie, 117 

1942), i.e., bulk resistivity, porosity, and cementation factor. Deterministic CSEM inversion 118 

approaches use an objective function that is constrained by additional regularization terms such 119 

as a roughness constraint (e.g., Constable et al., 1987) to iteratively optimize the data misfit 120 

between measured and synthetic data and ensure numerical stability. These deterministic 121 

inversion approaches are computationally efficient in terms of searching for one best-fit model 122 

(e.g., Abubakar et al., 2008; Constable et al., 1987) and therefore required for a 2-D and 3-D 123 

inversion of CSEM data. Yet, they cannot quantify the inherent uncertainty in model parameters. 124 

Moreover, smoothed resistivity models pose additional challenges when integrated with other 125 

geophysical data, such as multi-channel seismic (MCS) reflection or borehole data, due to 126 

disparate spatial resolution. However, integrating electrical resistivity models with lithological 127 

information derived from seismic/acoustic methods is essential for the regional mapping of OFG 128 

(e.g., Weymer et al., 2022), as lithological sequences and geological heterogeneities govern the 129 

distribution of OFG (Zamrsky, Karssenberg, et al., 2020). In contrast to deterministic inversion 130 

approaches, Bayesian inversion algorithms treat parameters as random variables that are 131 

probabilistically sampled, resulting in an ensemble of best-fit resistivity models instead of a 132 

single best-fit model. Therefore, they can be used to provide rigorous estimates of model 133 

parameter uncertainties (Malinverno, 2002); however, the large computation time associated 134 

with them limits their application to 1-D modeling. Trans-dimensional Bayesian inversion has 135 

been applied to various geophysical data (e.g., Bodin & Sambridge, 2009; Dettmer, Dosso, & 136 

Holland, 2011; Gallagher, 2012; Ray, Alumbaugh, et al., 2013).   137 

The goal of this study is to introduce a workflow using a 1-D Bayesian inversion to 138 

evaluate uncertainty in pore-water salinity predictions derived from integrated analysis based on 139 

CSEM, MCS, and borehole data. We base our analysis on a data set acquired in the Canterbury 140 

Bight, NZ (cf. Figure 1), where all required data are available and an OFG body is known to 141 

exist within the shallow seafloor (Micallef et al., 2020). Firstly, we validate the developed 142 

workflow at the site of borehole U1353 drilled during IODP Expedition 317 (Fulthorpe et al., 143 
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2011) for ground-truthing and subsequently apply it at locations further away from the borehole, 144 

where the aquifer response detected by CSEM is greatest. Lastly, we discuss insights gained 145 

from this analysis regarding the evolution of Canterbury Bight’s OFG system.   146 

2 Regional Setting and Available Data 147 

Canterbury Bight is located along the eastern coast of the South Island of New Zealand. 148 

The continental shelf, spanning an approximate area of 13000 km2, includes about 1 km-thick 149 

progradational successions of shelf-slope deposits (e.g., Browne & Naish, 2003; Lu & Fulthorpe, 150 

2003). To determine the relative contributions of global sea level fluctuations (eustasy) and local 151 

tectonic, sedimentary, and oceanographic processes in controlling continental margin 152 

depositional cyclicity, three International Ocean Discovery Program (IODP) sites were drilled 153 

along a coast perpendicular transect during IODP Expedition 317 (Fulthorpe et al., 2011; Figure 154 

1a). A subtle decrease in pore-water salinity was observed at Site U1353, which is located 155 

closest to the shoreline at a water depth of 85 m and a distance of about 45 km from the coast. 156 

This salinity anomaly was identified at a depth between 20 m and 60 m below the seafloor (bsf) 157 

and contains brackish pore-water with a salinity of approximately 24 practical salinity units 158 

(psu), in contrast to the background seawater salinity of 34 psu in the survey area (Micallef et al., 159 

2020). 160 

In 2018, a joint marine CSEM and seismic survey was conducted within the framework 161 

of the MARCAN project. The survey covered four profiles spanning a total length of 175 km 162 

across the Canterbury Bight and utilized a seafloor-towed CSEM system. This system employed 163 

a 100 m long transmitter dipole with a 20 A bipolar current signal and four inline electric field 164 

receiver dipoles (Gehrmann, Dettmer, et al., 2015) with offsets of 150 m, 250 m, 400 m, and 650 165 

m. The CSEM measurements were obtained at 267 stationary waypoints spaced every 500 m 166 

along lines 2, 4, and 5, and every 1 km along line 7, at a sampling rate of 10 kHz. Collected MCS 167 

data was acquired using a GeoEel Digital seismic streamer (Geometrics). The streamer consisted 168 

of 24 channels with a group interval of 12.5 m and offsets between 22 m and 308 m. The seismic 169 

source was a single mini GI-gun (13/35 cubic inch) towed at 1.5 m below the sea-surface. 170 

Resistivity models derived from a 2-D deterministic inversion of the acquired CSEM data 171 

are presented by Micallef et al. (2020) using a time-domain extension of MARE2DEM (Haroon, 172 

Hölz, et al., 2018; Key, 2016). Moreover, Micallef et al. (2020) interpreted the MCS reflection 173 
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profiles in terms of geological facies clay, silt, fine sand, coarse sand, and gravel, respectively. 174 

For conducting hydrogeological modeling, they assigned porosities of 45 percent to clay and 175 

silty material, 40 percent to fine sands, 35 percent to coarse sands, and 20 percent to gravel. 176 

However, it is important to note that these values represent mean first-order estimates, and their 177 

uncertainty is likely to increase at greater distances from the borehole U1353. This is due to 178 

limitations in the interpretation bias in seismic facies classification, inadequate information on 179 

sediment sorting and compaction, and local heterogeneities.  180 

According to Micallef et al. (2020), the most prominent resistivity anomaly (> 25 Ωm) is 181 

identified north of the borehole on the coast perpendicular line 4 and along the coast parallel line 182 

7 (cf., Figure 4 in Micallef et al., 2020) This anomaly is significant as marine sediments in the 183 

region typically exhibit resistivity values ranging from 0.3 Ωm to 3 Ωm when fully saturated 184 

with seawater (Fulthorpe et al., 2011). Therefore, the identified resistivity anomalies suggest the 185 

presence of a large OFG body to the north of the borehole. The results of Micallef et al. (2020) 186 

also indicate that site U1353 serves as the southern boundary of a substantial OFG system that 187 

extends northwards up to line 5. Micallef et al. (2020) estimated pore-water salinities from the 2-188 

D resistivity models by applying Archie’s relationship assuming constant porosities of 20, 30, 189 

and 40 percent to define plausible upper and lower limits of the potential OFG volumes. Their 190 

results suggest that the volume of OFG may increase by a factor of four as porosity increases 191 

from 20 to 40 percent.  192 

To enhance the accuracy of the salinity estimates and address associated uncertainties, we 193 

selected waypoints on line 2, intersecting with the borehole, and on line 4, which features the 194 

identified resistivity anomaly, for a Bayesian analysis. The workflow of this analysis is explained 195 

in the following section. 196 
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 197 

Figure 1. (a) Map of the Canterbury Basin displaying the locations of acquired CSEM and seismic profiles. 198 

The yellow circles illustrate the locations of the IODP boreholes. CSEM line 2 intersects with the location 199 

of IODP site U1353, for which (b) salinity and (c) porosity measurements up to a depth of 300 mbsf are 200 

available (Fulthorpe et al., 2011) 201 

3 Methods 202 

To quantify pore-water salinity with corresponding uncertainty estimates using CSEM 203 

data, we employ a 1-D trans-dimensional Markov Chain Monte Carlo (MCMC) modeling 204 

approach (e.g., Mosegaard & Tarantola, 1995; Sambridge & Mosegaard, 2002) based on a 205 

Metropolis-Hastings algorithm (Green, 1995; Hastings, 1970; Metropolis et al., 1953). Following 206 

the concepts of previous publications (Blatter et al., 2019; Gehrmann, Dettmer, et al., 2015; 207 

Gehrmann, Schwalenberg, et al., 2015; Ray & Key, 2012), we compute the posterior probability 208 

density (PPD) of resistivity models that are constrained by measured CSEM data and 209 

independent prior information about the site. These probabilities are then converted to 210 

probabilities of pore-water salinity by applying Archie’s relationship (Archie, 1942). 211 

3.1 Bayesian formulation 212 

Here, Bayesian inversion employs MCMC sampling to estimate the PPD. The 213 

computational cost for Bayesian inversion can be large and therefore limits its applications 214 

mainly to 1-D layered resistivity models that are computationally less expensive compared to 2-215 

D/3-D modeling. However, the predominantly horizontal stratigraphy observed in the CSEM 216 

experiment’s scale enables a 1-D inversion. 217 
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The PPD combines prior knowledge about the model parameters and data information 218 

(e.g., Gelman et al., 2014), as expressed by Bayes’ theorem. 219 

𝑝(𝐦|𝐝) =
𝑝(𝐝|𝐦)𝑝(𝐦)

𝑝(𝐝) ,									 
(1) 

where d and m are the vectors of data and model parameters, respectively, and p 220 

represents the probability density functions (PDF). The PPD is the conditional probability of 221 

model parameters given the observed data, p(m|d). The term p(d|m) is the conditional 222 

probability of the data given the model, which is interpreted as the likelihood of the model, L(m), 223 

for observed data. The prior p(m) is a probability density function of model parameters and is 224 

independent of the data. In this study, uniform distributions with parameter bounds are chosen as 225 

priors so that the solution is primarily constrained by the data. The probability p(d) is the 226 

Bayesian evidence and normalizes the probability to unity. It can be ignored in this work (e.g., 227 

Sambridge et al., 2006). 228 

For the likelihood function L(m), we assume that data errors are zero-mean and Gaussian 229 

distributed with covariance matrix Cd, see equation. (2), where χ2 is the data misfit, equation (3), 230 

𝑝(𝐝|𝐦) ∝ exp.−
𝜒!

2 2,				 
(2) 

where χ2quantifies the fit of predicted data f(m) and observed data d. 231 

𝜒! = 3𝐝 − 𝑓(𝐦)5"𝐂#$%3𝐝 − 𝑓(𝐦)5.      (3) 

In this study, we use 1-D trans-dimensional MCMC algorithm with parallel tempering 232 

(Dettmer & Dosso, 2012), which efficiently samples the parameter space by incorporating a 233 

variable number of sub-seafloor resistivity layers. The algorithm adds and deletes layers 234 

depending on the data required using the Metropolis-Hastings-Green acceptance criterion 235 

(Metropolis et al., 1953). To improve the starting model for MCMC sampling, we use a non-236 

linear hybrid optimization technique (Dosso et al., 2001) 237 

The PPD relies on the selection of appropriate data errors and minimum errors. If the data 238 

errors are large, the model resolution will decline, leading to large uncertainties. Conversely, 239 

small data errors can cause overfitting, resulting in unrealistically low uncertainty. Here, we 240 

assign a minimum relative error of one percent to account for systematic errors such as 241 
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inaccurate array geometry or timing errors between transmitter and receiver signals. The one 242 

percent value is close to the data error derived during the CSEM data processing step, stacking. It 243 

is important to note that the applied minimum errors are smaller than the minimum allowed 244 

relative errors of four percent that were assumed for the deterministic 2-D inversion in Micallef 245 

et al. (2020; Figure 2a). This larger error was employed in the 2-D inversion as it searches for a 246 

vertically and laterally smoothed model over all data collected along the profile, whereas a 1-D 247 

layered model uses only data measured at one predefined waypoint. To better understand the 248 

impact of the applied error model on the PPDs and allow for a more coherent comparison with 249 

the 2-D inversion, we also provide PPDs for an assumed minimum error of four percent in the 250 

appendix (cf., Figure A 1). 251 

3.2 Probability density of resistivity models 252 

Inherent to CSEM data inversion is that the product between resistivity and layer 253 

thickness is often better resolved than the parameters themselves (Edwards, 1997). One major 254 

advantage of implementing a trans-dimensional inversion is therefore the assessment of the 255 

uncertainty of the resistivity and the layer thickness. We present these in terms of interface 256 

probabilities as a function of depth (Figure 2b, left) and PPD profiles for a layered sub-seafloor 257 

resistivity (Figure 2b, right). To illustrate the PPDs, we create depth grids and generate 258 

normalized histograms for resistivity values at predefined depth intervals (Figure 2b). The 259 

histogram values within each depth bin represent the corresponding probability density with 260 

higher values indicating a higher probability, represented by warmer colors. Cooler and grey 261 

colors represent low probability density while white indicates no models within the grid cell. The 262 

posterior median model is presented by a dashed black line, and the uncertainties in the model 263 

parameters are quantified with 95 percent credibility intervals (CI). To show the Bayesian results 264 

as interface-depth probabilities, we create a depth grid and calculate normalized histograms for 265 

the number of interfaces estimated at each depth interval. Additionally, to facilitate comparison 266 

we extract resistivity-depth profiles from the 2-D inversion of Micallef et al. (2020) at the 267 

collected locations (represented by black circular markers). 268 
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3.3 Conversion of resistivity to pore-water salinity probability distribution  269 

After obtaining the ensemble of seafloor resistivity models through Bayesian inversion, 270 

we convert them into pore-fluid salinity values using the Fofonoff & Millard (1983) algorithm. 271 

We then apply Archie’s relationship (Archie, 1942) to link the bulk resistivity (ρb) to the pore-272 

fluid resistivity (ρf) using the following equation. 273 

𝜌& = 𝑎𝜙$'𝜌( .																	 (4) 

Here, ϕ is the porosity of sediments, a is the tortuosity factor and m is the formation 274 

cementation factor, indicating the degree of interconnection of the pore spaces and generally 275 

assumed to be constant for a given geological structure. Pore-water salinity can be derived from 276 

pore-water resistivity, temperature, and pressure based on the Practical Salinity Scale (PSS –78) 277 

conversion (Fofonoff & Millard, 1983). We assume that porosity values at each depth are 278 

normally distributed, with a standard deviation of 0.05. Our incomplete knowledge of Archie’s 279 

parameter coefficients a and m is encapsulated in the workflow by assuming a uniform 280 

distribution in the range of 0.8 to 1.2 and 1.9 to 2.3, respectively. This uniform distribution best 281 

captures the variation in Archie’s parameters due to interbedding of silty and sandy material, 282 

which has been observed in the borehole core and seismic data (cf., Figure 3). 283 

At the borehole U1353 location, porosity values obtained from in-situ measurements are 284 

available (Fulthorpe et al., 2011). For locations away from the borehole, we extract the porosity-285 

depth profile at any desired waypoint from the seismically interpreted facies presented by 286 

Micallef et al. (2020; Figure 3) along the survey lines. To compute pore-water salinity 287 

distributions as a function of depth, we generate a salinity-depth grid with a vertical resolution of 288 

5 m and translate the ensemble of resistivity models onto the grids. At each depth interval, a 289 

random generator selects corresponding ρb, ϕ, m, and 2 values from the individual distributions 290 

to obtain ρf, which is subsequently converted into a pore-water salinity profile. Normalized 291 

histograms of the salinity distributions at each depth interval are computed and illustrated as 292 

probability density functions. Here we classify pore-water as fresh for salinities below 1 psu, 293 

fresh to brackish for salinities ranging from 1 to 10 psu, and brackish for salinities ranging from 294 

10 and 30 psu. 295 
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3.4 Workflow calibration  296 

We execute the above-outlined sequences to three key waypoints of the survey area. The 297 

following steps are chronologically applied and presented: 298 

1- Execute a Bayesian inversion at the waypoint located nearest to borehole U1353 (WP9 on 299 

line 2) to verify, validate and calibrate our approach, where we have in-situ control.  300 

We derive the PPD of resistivity at WP9, as illustrated in Figure 2b, and transform it to pore-301 

water salinity estimates (cf., Figure 4) using a) the porosity distribution over depth obtained from 302 

the porosity-depth profile collected at the borehole and subsequently compare it to b) the 303 

porosity estimates derived from the interpreted seismic facies (cf., Figure 3c). 304 

2- Repeat the procedure at WP12 and WP60 along line 4, where the most prominent resistivity 305 

anomaly is detected but no borehole data are available to constrain the pore-water salinity 306 

conversion (cf., Figure 5 and Figure 6).  307 

4 Results 308 

4.1 CSEM-derived salinity conversion at borehole U1353 309 

Figure 2a shows the 2-D inversion results of line 2 presented by Micallef et al. (2020). 310 

The interface probability (left panel in Figure 2b) at WP9 (line 2) indicates that the CSEM data 311 

can resolve two layers over a half-space with interfaces at approximately 14 and 80 mbsf. The 312 

upper boundary of a subtle resistivity increase is well resolved, while the lower boundary is less 313 

decisive, which is typical for CSEM resolution characteristics. The resistivity PPD (right panel in 314 

Figure 2b) denotes that the resistivity of the upper two layers is well-constrained at 0.8 ± 0.5 and 315 

2 ± 0.8 Ωm, respectively, down to approximately 80 mbsf. However, at greater depth, the 316 

credibility intervals are wider, implying that the CSEM data do not constrain the model 317 

resistivity beneath the second layer. The resistivity profile derived by the smoothed deterministic 318 

2-D inversion at this location also shows changes in vertical resistivity-depth gradient. For the 319 

second layer, the 2-D resistivities model coincides with the resistivity of the highest probability 320 

in the Bayesian inversion. For the layer above and the region below the second layer, the 2-D 321 

model predicts higher resistivities than the resistivities at the center of the probability 322 

distribution, yet maintains the 95 percent credibility interval of the PPD. 323 
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The pore-water salinity probability density computed for porosity measurements taken in 324 

borehole U1353 (Figure 4a) shows a salinity-depth variation with decreased salinity values 325 

within the second layer. Above layer two, the predicted salinities approach normal seawater 326 

values. Below layer two, the range of possible salinities widens and ranges from brackish to 327 

hypersaline (> 30 psu) water. Yet, the highest probabilities are shown for seawater salinity of 328 

around 34 psu. The median pore-water salinity model follows the salinity trend over depth 329 

measured at the borehole (pink circular markers). The salinity profile converted from the 2-D 330 

inversion model fits well to the center of the salinity PPD for both borehole-based and 331 

seismically derived porosity estimates within the aquiferous layer. Salinity predictions based on 332 

porosity distribution extracted from interpreted seismic facies (Figure 4b) show almost identical 333 

results, validating that seismically derived porosities distributions are applicable to capture the 334 

in-situ porosity profile, particularly if we assume a Gaussian porosity distribution at each depth 335 

for seismic-derived porosities. 336 

 337 

Figure 2. (a) 2-D resistivity model from the acquired CSEM data along line 2 as overlain on the 338 

corresponding seismic reflection profile (Micallef et al., 2020). Black triangles indicate stationary 339 

waypoints. The location of borehole U1353 and the closest waypoint (WP9) to that is marked by an 340 

arrow. (b) The result of 1-D Bayesian inversion at WP9. The left panel shows interface probability as a 341 
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function of depth. The right panel presents the resistivity marginal probability profile. The color indicates 342 

the probability. Credibility intervals contain 95 percent of the model samples evaluated at each depth 343 

interval. The 2-D resistivity model is shown by black circular markers. 344 

 345 

 346 

Figure 3. Seismically interpreted facies along (a) line 2 and (b) line 4 from Micallef et al. (2020). (c) 347 

Porosity profile measured at borehole U1353 (blue circular markers) and porosity profile extracted from 348 

interpreted facies (yellow circular markers) at the borehole location. The assumed probability distribution 349 

of porosities over depth at (d) WP9, (e) WP12, and (f) WP60. 350 

 351 

Figure 4. (a) Distribution of pore-water salinity as a function of depth at WP9 derived from Bayesian 352 

resistivity probability density (Figure 2b) by applying Archie’s relationship using (a) porosities derived 353 

from in-situ measurements at U1353 and (b) porosities derived from interpreted seismic facies. Pore-354 
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water salinity measurements at borehole U1353 and salinity estimates converted from 2-D inversion 355 

resistivity models are shown in pink and black circular markers, respectively. 356 

4.2 Characteristics of salinity anomalies at the center of the survey area 357 

The PPD of resistivity at WP12 in Figure 5b shows two well-identified interfaces at 358 

depths of approximately 20 and 40 mbsf, each associated with a distinct increase in resistivity 359 

reaching a maximum resistivity of around 200 Ωm in the third layer. The resistivity decreases 360 

again at greater depths (with elevated interface probabilities between 110 and 200 mbsf). The 361 

large range of resistivities at depths greater than 150 mbsf indicates a decrease in the sensitivity 362 

of the data with the highest probabilities for resistivity values greater than 20 Ωm. In 363 

comparison, the 2-D inversion model in Figure 5a shows only a continuous smooth increase in 364 

resistivity with depth. While resistivities of the upper two layers and lower half-space coincide 365 

with the median resistivity of the 1-D inversion results, the 2-D inversion model does not include 366 

the highly resistive intermediate layer. We attribute the difference in resolution to the lower 367 

minimum relative error of one percent assumed in the Bayesian inversion compared to the 368 

minimum relative error of four percent applied in the deterministic 2-D inversion. This 369 

hypothesis is corroborated by the fact that a rerun of the Bayesian inversion at WP12 with an 370 

error level of four percent leads to a simple two-layer model consisting of a conductive layer 371 

over a resistive half-space with no resistive anomaly (cf., Figure A 1a). 372 

At WP60, the PPD of resistivity (Figure 5c) exhibits three layers over a half-space. The 373 

Bayesian inversion places a resistive layer between 30 and 75 mbsf (with the highest probability 374 

for a resistivity value of 15 Ωm) over a conductive layer (with resistivity values of less than 1 375 

Ωm) between 75 and 100 mbsf. Note that the resistivity value within the underlying half-space is 376 

poorly constrained, allowing for values greater than 3 Ωm. The 2-D inversion model at this 377 

waypoint shows a smoothed version of the Bayesian-derived model, including the more 378 

conductive layer at around 75 m depth. 379 

Overall, we observe a decrease in resistivity values within our Bayesian resistivity 380 

distributions from the near coastal site WP12 to the farther coastal site WP60. 381 

 382 
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 383 

Figure 5. (a) 2-D inversion results along line 4 overlain on the seismic reflection profile (Micallef et al., 384 

2020). Black triangles indicate the stationary waypoints. Left panels in (b) and (c) present interface 385 

probability at WP12 and WP60, respectively. The right panels in (b) and (c) illustrate probability density 386 

distributions of resistivity indicated by colors at WP12 and WP60, respectively.  387 

The pore-water salinity distribution derived from the resistivity PPDs at WP12 (Figure 388 

6a) indicates that the salinity values at the seafloor are around 34 psu, which is typical of the 389 

seawater salinity of the survey area. A layer of very low salinity appears between approximately 390 

40 and 150 mbsf, with a thickness of 110 m and salinity variations between 0.1 and 0.5 psu 391 

indicating freshened pore-water. This layer of fresh pore-water roughly corresponds to the 392 

vertical extent of low-porosity (35 per cent) coarse-grained sand deposits in the interpreted 393 

seismic section (orange zone in Figure 3b). The correlation of the resistive anomaly with coarse 394 

sand structure further raises confidence in our results and that the CSEM data can resolve a layer 395 

with freshened pore-water when using an error level of one percent. At a depth between 110 and 396 

200 mbsf, salinities increase (between 0.1 and 10 psu) indicating fresh to brackish pore-water, 397 

which extends to greater depths. 398 

At WP60, there is a seawater-saturated shallow layer that is approximately 20 m thick, 399 

which is underlain by a low salinity layer extending down to about 75 mbsf. Pore-water salinity 400 
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in this layer is concentrated around 3 psu, suggesting the presence of a freshened zone between 401 

25 and 75 mbsf (Figure 6b). Note that the depth interval of the freshwater zone occurs at a 402 

similar depth interval of the freshened groundwater body identified in the borehole on line 2. The 403 

freshened layer is followed by a highly saline layer between 75 m and 100 mbsf, with salinity 404 

values ranging between approximately 30 and 100 psu. Pore-water salinity decreases again at 405 

depths greater than 100 mbsf, showing a variation between 0.3 and 30 psu, suggesting a fresh to 406 

brackish groundwater body. These values are slightly higher than the predicted salinities within 407 

the lower freshwater body identified beneath WP12 at depths greater than 110 mbsf (Figure 6a). 408 

 409 

Figure 6. Probability distribution of pore-water salinity converted from posterior probability density at (a) 410 

WP12 and (b) WP60. The pore-water salinity distributions are derived based on the posterior probability 411 

density of resistivity (Figure 5b–c) and interpreted seismic facies derived porosity distributions at the 412 

respective waypoints (Figure 3e–f).    413 

5 Discussion 414 

Understanding salinity distributions of pore-fluid using CSEM data requires an 415 

understanding of electrical resistivity uncertainty, as well as a statistical analysis of the host-rock 416 

porosity and Archie's parameters. Deterministic inversion approaches fail to provide a 417 

quantitative uncertainty estimate of the resistivity. In contrast, Bayesian inversion algorithms 418 

result in PPD of resistivity, from which uncertainty in pore-water salinity estimates can be 419 

addressed. In this study, we present a workflow that converts sub-seafloor resistivity models to a 420 
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PPD of pore-water salinity by incorporating seismic attribute data and considering uncertainties 421 

in sediment porosity and Archie’s parameters in equation (4). 422 

5.1 Comparing 2-D deterministic and 1-D Bayesian inversion results 423 

At the borehole location (WP9 of line 2), the probability distribution of resistivity and 2-424 

D resistivity model coincide very well, which validates our 1-D Bayesian approach and enhances 425 

our confidence in the quality of the CSEM data. Similarly, at the eastern WP60 on line 4, where 426 

the resistivity cross-section along the profile exhibits 2-D resistivity variations, the PPD of 427 

resistivity shows good congruence with the 2-D inversion model indicating that the 1-D 428 

Bayesian approach can work in regions of temperate 2-D model variations. Surprisingly, at the 429 

western part of line 4 (WP12), where the sub-seafloor appears to be 1-D, there are clear 430 

disparities between the deterministic 2-D resistivity model and the probability distribution of 431 

resistivity between approximately 40 and 150 mbsf. The differences can be reconciled when 432 

applying a consistent minimum relative error of four percent in the Bayesian and 2-D inversion 433 

(cf., Figure A 1a). The resistivity model obtained from the 2-D inversion and the PPD of 434 

resistivity at WP12 in Figure A 1 show similar behavior, although the 2-D resistivity model 435 

indicates lower values as compared to resistivity estimates from Bayesian inversion. This shows 436 

that deterministic inversion approaches do not resolve sudden changes in resistivity due to the 437 

smoothing regularization of the method. The comparison between the probability distribution of 438 

resistivity depicted in Figure 5 with a minimum relative error of one percent and Figure A 1 with 439 

a minimum relative error of four percent reveals that the PPD of resistivity is highly dependent 440 

on the choice of error. Furthermore, increasing the data error leads to a decrease in model 441 

resolution. While we have verified the implementation of the one percent minimum relative error 442 

on data at the borehole location, it cannot be ascertained that we are not overfitting systematic 443 

errors in our data by choosing a small error of one percent compared to error estimates from 444 

stacking during CSEM data processing. The local error at one waypoint is usually smaller than 445 

the overall assumed error on the entire study area. Therefore, assuming a smaller minimum 446 

relative error and applying the Bayesian approach improves the model resolution. The difference 447 

between the probability distribution of resistivity and the 2-D model underlines the need for 448 

local, more stochastic inversion methods at points of interest identified by the 2-D inversion 449 

results. Nevertheless, a significant limitation of the Bayesian inversion approach is the high 450 
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computational time required to calculate the PPD. Consequently, this approach is currently only 451 

suitable for a few investigation points and is dependent on a multi-dimensional deterministic 452 

inversion to guide the choice of points for stochastic inversions. 453 

5.2 Statistical derivation of pore-water salinity from PPD of resistivity 454 

Estimating the pore-water salinity from the probability distribution of sub-seafloor 455 

resistivity is challenging due to uncertainties in Archie’s coefficients. Borehole U1353 comprises 456 

lithological units that include interlayered clay, silt, and sand horizons, each characterized by 457 

different Archie's parameters (a and m in equation (4)). To address this issue, we adopt an 458 

approach in which we choose a uniform probability distribution for each of these parameters 459 

while converting the PPD of resistivity to the probability distribution of pore-water salinity. This 460 

approach results in broader salinity probability distributions (cf., Figure 4), allowing us to 461 

identify potential uncertainties due to our lack of detailed in-situ knowledge to calibrate Archie's 462 

parameters. 463 

The salinity-depth measurements at borehole U1353 (indicated by pink circular markers 464 

in Figure 4) align with the high probability range of the predicted pore-water salinity 465 

distribution, although they do not coincide with the median salinity model. Specifically, salinities 466 

between 20 and 60 mbsf are higher compared to the salinity probability distribution’s center, 467 

while salinities in the region below 120 mbsf are lower due to the presence of a different 468 

lithological unit  (cf., Expedition 317 Scientists 2011). These results suggest that the uncertainty 469 

in Archie’s parameters may impact the pore-water salinity estimation. 470 

5.3 Correlation between pore-water salinity distribution and seismic facies 471 

The agreement between the probability density distributions of pore-water salinity 472 

obtained from resistivity models employing seismically-derived porosity estimates and the in-473 

situ porosity measurements at borehole U1353 (Figure 4a and Figure 4b) supports the suitability 474 

of using interpreted seismic facies for porosity estimation at distant locations from the borehole. 475 

It is important to note that the seismic facies classification needs to be extrapolated from a 476 

borehole and may lose accuracy at larger distances to the borehole. 477 

The pore-water salinity PPD at the borehole location (WP9) overlaid on MCS line 2 478 

demonstrates that the first and second interfaces at 14 and 80 mbsf correspond with two seismic 479 
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reflectors at the same depths (cf., Figure 7a). This alignment suggests that the salinity decrease 480 

occurs within an onlap sedimentary package that comprises fine-grained sand, which is both 481 

over- and underlain by fine silt and clay material. Towards the shore, the onlap sedimentary 482 

package pinches out, making it unlikely that there is a connection or feeding mechanism from 483 

current onshore groundwater bodies at U1353. In contrast, the sandy deposit extends horizontally 484 

to the east. However, at borehole U1354, which is located approximately 8 km seaward of 485 

U1353 along line 2, the subtle salinity variations are not detectable (cf., Figure 2c in Micallef et 486 

al., 2020). Overall, the geometry of the sedimentary unit and estimated salinity variations suggest 487 

that the freshened OFG body along line 2 is most likely a patchy remnant of a paleo groundwater 488 

body that formed during previous glacial low stands (U1353 is located landward of the paleo-489 

shelf during the last glacial low stand). This remnant body may currently experience 490 

salinification due to saltwater diffusion from the seaward side. 491 

Line 4 presents salinity anomalies with greater variations and deeper depths compared to 492 

line 2 (cf., Figure 2a and Figure 5a). Pore-water salinity PPD profile obtained from the eastern 493 

part of line 4 (WP60) reveals the occurrence of a shallow freshwater zone between 15 to 70 mbsf 494 

(cf., Figure 6b). This OFG body is located at a depth similar to the one observed at U1353, but 495 

with significantly lower salinity values. The OFG body is situated within fine-grained sandy 496 

sediments, which are underlain and overlain by clay and silty material. As with line 2, the 497 

seismic reflector that corresponds to the upper limit of the sediment package pinches out 498 

landwards. This observation is further supported by the 2-D resistivity section, which shows the 499 

extension of the resistivity anomaly from approximately 24 km from the beginning of line 4 to 500 

the end of the profile (Figure 5a). We interpret this feature as a remnant OFG body that likely 501 

formed during the last (and possibly preceding) glacial seawater low-stand, similar to line 2. A 502 

possible geological explanation for the zone of high conductivity is the presence of a clay-rich 503 

sediment layer consisting of very fine-grained particles located directly beneath the shallow 504 

OFG. However, we also acknowledge the possibility of inversion artifacts resulting from 2-D 505 

effects, which could provide an alternative explanation. 506 

At greater depths (> 100 mbsf) beneath WP60, a second low salinity layer has been 507 

identified within silt/fine sand facies (Figure 6b). The upper limit of this OFG body coincides 508 

with a seismic reflector located at approximately 100 mbsf, which is present throughout the 509 

entire profile and rises landward (cf., Figure 7b). The Bayesian inversion results suggest that the 510 
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shallow and deep OFG bodies are not interconnected. This is further supported by both the 2-D 511 

inversion results and the seismic data, corroborating the absence of hydraulic continuity between 512 

these two distinct OFG bodies. The resolution of CSEM data decreases with depth and is limited 513 

below 100 mbsf, and as a result, we are unable to accurately constrain the depth of the base of 514 

the OFG body and variations in salinity at greater depths. Yet, our results indicate that pore-515 

water salinities in this region are below 10 psu. 516 

The deeper low-salinity body represents a somewhat different scenario from the 517 

shallower OFG bodies that are geometrically constrained and associated with onlap sediment 518 

packages. At the western part of line 4 (WP12), a freshwater OFG body with salinities below 0.5 519 

psu is predicted between approximately 40 to 150 mbsf (cf., Figure 6a). This zone extends 520 

slightly above the top of a coarse sand sediment package (orange zone in Figure 3b), and is 521 

associated with a prominent seismic reflector that slopes eastwards along the profile, indicating 522 

the top of the deeper OFG body beneath WP60 (cf., Figure 7b). The base of the freshwater body 523 

is aligned with the base of the coarse-grained sand sediments at a depth of approximately 150 524 

mbsf.  Below the coarser sand zone, the pore-water salinity slightly increases while remaining in 525 

the freshwater range below 10 psu.  526 

5.4 Interpreting an extensive OFG body 527 

The correlation between the observed pore-water salinity variations at WP12 and WP60 528 

ranging from 0.1 to 10 psu strongly suggests a hydraulic connection between the lower OFG 529 

body beneath WP60 and the freshwater OFG body to the west at WP12 (cf., Figure 7b). Our 530 

Bayesian inversion models, 2-D inversion results, and seismic data all support the possibility of a 531 

continuous freshwater body that may be hydrologically linked to a land-based aquifer. Although 532 

CSEM data is missing crossing the shallow water coastal transition zone, which would provide 533 

continuous coverage to confirm the land-sea groundwater connection, an EM/GPR study 534 

conducted along the Ashburton coast (north of line 4) by Weymer et al. (2020) that it is likely the 535 

onshore-offshore groundwater system is connected. The onshore aquifer is situated within gravel 536 

layers of sediment sequences (Dommisse, 2006) that were transported by high-energy braided 537 

rivers during the last glacial period (Rowan et al., 2012). Unconnected sand and silt/clay layers 538 

within these sequences serve as aquitards (Browne & Naish, 2003) Given that line 4 is located in 539 

an area with modern estuaries of various rivers (cf., Micallef et al., 2020), which are likely 540 
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remnants of the formerly high-energy braided rivers, and considering the seaward regional 541 

groundwater flow, it is plausible that the deep OFG body observed at line 4 is a continuation of 542 

the onshore aquifer extending seaward. Furthermore, onshore borehole information in the survey 543 

area (cf., Davey, 2004, 2006) provides approximate depths of the onshore multi-layer aquifers 544 

between 0 to 50 m, 50 to 90 m, and greater than 90 m. These depth ranges show a reasonable 545 

agreement with the depths of the OFG body along line 4 which strengthens the possibility of an 546 

onshore-offshore groundwater connection.  547 

 5.5 The impact of porosity variation on the pore-water salinity estimates 548 

Porosity estimates for a sequence of silt and fine sand layers along line 4 based on 549 

interpreted seismic facies, are higher compared to those obtained from line 2 as there is a lack of 550 

borehole data for ground-truthing. To account for the uncertainty in porosity values, we integrate 551 

them into the pore-water salinity estimations by assuming normal distributions for seismically-552 

driven porosity over depth. Yet, porosity estimates may vary beyond this range, especially at 553 

lithological transitions (e.g. between approximately 50 and 150 mbsf in Figure 3b and Figure 554 

3e). A lower porosity associated with coarse sand units could result in higher salinities. To 555 

validate that the very low salinities observed are not due to high assumed porosity, we repeated 556 

the conversion of seafloor resistivity to pore-water salinity by reducing the porosity for the 557 

coarse sand facies by 15 percent (cf., Figure 8). The resulting PPD of pore-water salinity 558 

indicates slightly higher salinity values within the depth interval of the coarse sand layer (0.1 to 3 559 

psu), yet still falls within the freshwater region. This is in agreement with Micallef et al. (2020), 560 

who concluded that the resistivity anomalies derived from 2-D inversion cannot be explained by 561 

porosity variations alone, but are indicative of freshened pore-water in the respective sediment 562 

sections.  563 
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 564 

Figure 7. Seismic reflection data along (a) line 2 and (b) line 4 showing seismic reflectors. The white line 565 

in (b) shows the boundary between two seismic profiles along line 4 acquired using different acquisition 566 

equipment and geometry. Probability density distribution of pore-water salinity at (a) WP9 and (b) WP12 567 

and WP60 overlain on the corresponding seismic lines. 568 

 569 

Figure 8. (a) An assumed 15 percent decrease in porosity within the depth range of coarse sand sediments 570 

(indicated by the orange zone in Figure 3b) between approximately 50 and 150 mbsf. The corresponding 571 
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probability density distribution of pore-water salinity is calculated for a porosity value of (b) 35 percent 572 

and (c) 20 percent in the coarse-grained materials.  573 

6 Conclusions 574 

We present a methodology that employs a Bayesian workflow to evaluate uncertainty in 575 

pore-water salinity predictions within the Canterbury Bight. Our approach utilizes resistivity 576 

estimates obtained from CSEM data, in-situ porosity measurements, seismic-facies derived 577 

porosities, and Archie’s rock physics relationship to characterize OFGs. We utilize a trans-578 

dimensional MCMC algorithm to estimate a probability distribution of resistivity models and 579 

interface depth probabilities. By implementing Archie’s relationship, we derive the pore-water 580 

salinity distribution and associated uncertainties from the resistivity models. 581 

The efficacy of our workflow was successfully validated at the IODP borehole location, 582 

where it accurately captured a zone displaying a subtle drop in pore-water salinity values 583 

recorded in borehole U1353. Furthermore, our study reveals that interpreted seismic facies can 584 

serve as reliable proxies for classifying porosity estimates extrapolated from nearby boreholes. 585 

In the center of the survey area, analysis of the correlation between the PPD of pore-586 

water salinity and the seismic reflection profile along coast-perpendicular line 4 suggests the 587 

presence of an OFG body containing brackish to freshened pore-water stored within silty/fine-588 

grained sediments at depths greater than 100 mbsf. Shoreward, the OFG body extends and 589 

transitions into facies comprising coarse sand sediments (west of line 4 at depths below 40 mbsf, 590 

Figure 7b). This freshened OFG likely represents an extension of the onshore aquifer and 591 

appears to be disconnected from a shallower local freshened zone identified in the eastern part of 592 

the profile. 593 

To enhance our understanding of the extent of the salinity anomalies associated with 594 

freshened pore-water, we integrate them with stratigraphy derived from reflection seismic data. 595 

The trans-dimensional approach allows for the identification of abrupt resistivity changes related 596 

to freshened pore-water layers which helped to identify facies possibly connected to onshore 597 

groundwater that a 2-D deterministic approach overlooked. Therefore, we strongly recommend 598 

assessing uncertainties using Bayesian approaches for selected waypoints and estimating 599 

uncertainties for derived salinities to avoid both over and under-interpretation of the 600 

hydrogeological model such as the extent of groundwater within the seafloor. 601 
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  781 

Appendix A: PPD of Resistivity for a Minimum Relative Error of Four Percent  782 

To assess the impact of error models on the PPD of resistivity obtained through Bayesian 783 

inversion, we perform additional Bayesian inversions at WP12 and WP60 using a minimum 784 

relative error of four percent, as applied by Micallef et al. (2020). Figure A 1 illustrates the 785 

Bayesian inversion results at WP12 and WP60 in terms of interface-depth probabilities and the 786 

marginal probability density profile of the resistivity. The probability distribution of resistivity at 787 

WP12 only resolves the first interface at 25 mbsf, indicating a significant increase in resistivity 788 

to values greater than 100 Ωm. Overall, the data lose resolution at greater depths. At WP60, the 789 

PPD of resistivity shows three distinct layers above the basement, which agrees well with the 2-790 

D inversion model. Nevertheless, interface probabilities as a function of depth suggest only one 791 

distinct interface at 50 mbsf with high uncertainty.   792 

 793 
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 794 

Figure A 1. Probability density distributions of sub-seafloor resistivity at (a) WP12 and (b) WP60 795 

assuming a minimum relative error of four percent, as it was assumed for 2-D deterministic inversion of 796 

CSEM data at the same waypoints. 797 

 798 
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boundary conditions for hydrogeological modeling. 21 

 22 

  23 



manuscript submitted to Water Resources Researchal 

 

Abstract 24 

Although marine controlled source electromagnetic (CSEM) methods are effective for 25 

investigating offshore freshened groundwater (OFG) systems, interpreting the spatial extent and 26 

salinity of OFG remains challenging. Integrating CSEM resistivity models with information on 27 

sub-surface properties, such as host-rock porosity, allows for estimates of pore-water salinity. 28 

However, deterministic inversion approaches pose challenges in quantitatively analyzing these 29 

estimates as they provide only one best-fit model with no associated estimate of model parameter 30 

uncertainty. To address this limitation, we employ a trans-dimensional Markov-Chain Monte-31 

Carlo inversion on marine CSEM data, under the assumption of horizontal stratification, 32 

collected from the Canterbury Bight, New Zealand. We integrate the resulting posterior 33 

distributions of electrical resistivity with borehole and seismic reflection data to quantify pore-34 

water salinity with uncertainty estimates. The results reveal a low-salinity groundwater body in 35 

the center of the survey area at varying depths, hosted by consecutive silty- and fine-sand layers 36 

approximately 20 to 60 km from the coast. These observations support the previous study's 37 

results obtained through deterministic 2-D inversion and suggest freshening of the OFG body 38 

closer to the shore within a permeable, coarse-sand layer 40 to 150 m beneath the seafloor. This 39 

implies a potential active connection between the OFG body and the terrestrial groundwater 40 

system. We demonstrate how the Bayesian approach constrains the uncertainties in resistivity 41 

models and subsequently in pore-water salinity estimates. Our findings highlight the potential of 42 

Bayesian inversions in enhancing our understanding of OFG systems, providing crucial 43 

boundary conditions for hydrogeological modeling and sustainable water resource development.  44 

Plain Language Summary 45 

Geophysical methods that measure the electromagnetic properties of the Earth are effective in 46 

investigating freshwater sources beneath the seafloor. By Combing the geophysical and 47 

geological information, we can better assess the quality of this groundwater. In this study, we 48 

develop a workflow that uses statistical methods to integrate electromagnetic observations with 49 

borehole and acoustic measurements along the eastern coast of the South Island of New Zealand. 50 

We aim to improve our understanding of the groundwater quality beneath the seafloor. Our 51 

research shows the presence of freshened groundwater within the sandy seafloor. Importantly, 52 

our observations indicate that the freshwater extends closer to the coast. These findings are 53 
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significant as they enhance the hydrogeological modeling of the groundwater system and suggest 54 

its potential as a source of freshwater.  55 

1 Introduction 56 

The rising demand for potable water in coastal regions has recently promoted growing 57 

research interest in detecting offshore freshened groundwater (OFG) worldwide (Post et al., 58 

2013). OFG emplacement is commonly explained through either meteoric recharge during sea-59 

level low-stands (e.g., Cohen et al., 2010; Meisler, Leahy, & Knobel, 1984; Person et al., 2003) 60 

and/or through active meteoric recharge via permeable connections between onshore and 61 

offshore aquifers (e.g., Hong et al., 2019; Johnston, 1983; Weymer et al., 2022), allowing 62 

freshened pore-fluid to reside within presently submerged seafloor. Due to the ongoing pressure 63 

on terrestrial aquifers caused by environmental and anthropogenic stressors, offshore 64 

groundwater investigation has gained new urgency. One proposition is that near-coastal OFG 65 

reservoirs can serve as unconventional sources of drinking water, especially along densely 66 

populated coastal regions and on islands, where terrestrial aquifers cannot maintain a sufficient 67 

supply for inhabitants, agriculture, and industry (Bakkenet al., 2012; Micallef et al., 2021; 68 

Zamrsky, Essink et al., 2022).  69 

Evidence of OFG has been documented in coastal embayments and continental shelves 70 

worldwide (e.g., Attias et al., 2020; Cambareri & Eichner, 1998; Gustafson et al., 2019; Haroon, 71 

Lippert et al., 2018; Haroon et al., 2021; Hathaway et al., 1979; King et al, 2022; Martin et al., 72 

2007; Micallef et al., 2020), demonstrating that low-salinity groundwater within the seafloor 73 

(water depths <1000 m) occurs on a global scale (Post et al., 2013). Global OFG volume has 74 

been estimated at 106 km3 (Micallef et al., 2021), yet these estimates are poorly constrained 75 

since they are based on first-order assumptions derived from point-source borehole 76 

measurements and hydrogeological modeling. A general lack of integrated geophysical data and 77 

hydrogeological investigations along continental shelves precludes a seamless accounting for 78 

more precise volume and salinity estimates on both global and regional scales (Weymer et al., 79 

2022). In order to argue for the sustainable use of OFG as an unconventional resource, volumes, 80 

geometries, salinities, as well as environmental impacts need to be precisely quantified before 81 

exploitation.  82 
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Several applications of marine controlled source electromagnetic (CSEM) methods have 83 

proven effective in identifying OFG residing in various offshore geological settings (e.g., Attias 84 

et al., 2020; Blatter et al., 2019; Evans, 2007; Gustafson et al., 2019; Haroon, Lippert et al., 85 

2018; Haroon et al., 2021; King et al., 2022; Levi et al., 2018; Lippert & Tezkan, 2020; Micallef 86 

et al., 2020). The electrical resistivity distribution of the seafloor, which can be obtained from 87 

CSEM data, is controlled by the salinity of the pore-fluid, the porosity of the host rock, and the 88 

degree of its cementation (Archie, 1942; Hoefel & Evans, 2001). Thereby, resistivity models are 89 

utilized as a proxy to delineate the spatial extent of OFG systems along continental shelves by 90 

applying the empirical Archie’s relationship (Archie, 1942) which relates the resistivity of the 91 

seafloor to the resistivity of the pore-fluid (e.g., Gustafson et al., 2019; King et al., 2022; 92 

Micallef et al., 2020), but only one study assesses the uncertainty of the derived resistivity 93 

models and its impact on the uncertainty of OFG reservoir characterization (Blatter et al., 2019). 94 

This is particularly important when aiming to validate hydrogeological models with geophysical 95 

data, an approach that has been identified as instrumental in the future assessment of OFG 96 

resource potential, evolution, and response functions to external drivers (Arévalo-Martínez et al., 97 

2023; Weymer et al., 2022).  98 

From a geophysical perspective, one of the main challenges in the assessment of OFG 99 

bodies is to reliably predict the pore-fluid salinity distribution based on electrical resistivity 100 

models. Two primary factors contribute to uncertainty in the OFG salinity estimation: a) the 101 

uncertainty of the best-fit resistivity model, and b) unknown variations in lithology-dependent 102 

parameters in Archie’s relationship. The majority of CSEM studies apply a smoothness 103 

constraint in a deterministic inversion approach and subsequently estimate pore-fluid salinities 104 

by assuming representative values for the cementation factor and host-rock porosity in Archie’s 105 

relationship (Archie, 1942). In most cases, the comparison between predicted salinity 106 

distributions derived from geophysical models and hydrogeological modeling or ground-truth 107 

measurements at boreholes achieves only a qualitative match (e.g., Gustafson et al., 2019; 108 

Micallef et al., 2020), possibly because model parameter ambiguities do not flow into the 109 

analysis. A more quantitative assessment of OFG salinity distributions can be achieved if 110 

uncertainties are addressed within the entire evaluation chain of deriving pore-water salinity 111 

models from integrated CSEM analysis. 112 
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An uncertainty evaluation of pore-water salinity predictions derived from CSEM 113 

measurements will allow inference about the genesis of OFG and its potential connection to their 114 

terrestrial counterparts, as well as provide a cornerstone for future monitoring of 115 

freshwater/saltwater interfaces with electromagnetic methods. These uncertainty estimates 116 

ideally require a statistical analysis of all parameters in Archie’s empirical relationship (Archie, 117 

1942), i.e., bulk resistivity, porosity, and cementation factor. Deterministic CSEM inversion 118 

approaches use an objective function that is constrained by additional regularization terms such 119 

as a roughness constraint (e.g., Constable et al., 1987) to iteratively optimize the data misfit 120 

between measured and synthetic data and ensure numerical stability. These deterministic 121 

inversion approaches are computationally efficient in terms of searching for one best-fit model 122 

(e.g., Abubakar et al., 2008; Constable et al., 1987) and therefore required for a 2-D and 3-D 123 

inversion of CSEM data. Yet, they cannot quantify the inherent uncertainty in model parameters. 124 

Moreover, smoothed resistivity models pose additional challenges when integrated with other 125 

geophysical data, such as multi-channel seismic (MCS) reflection or borehole data, due to 126 

disparate spatial resolution. However, integrating electrical resistivity models with lithological 127 

information derived from seismic/acoustic methods is essential for the regional mapping of OFG 128 

(e.g., Weymer et al., 2022), as lithological sequences and geological heterogeneities govern the 129 

distribution of OFG (Zamrsky, Karssenberg, et al., 2020). In contrast to deterministic inversion 130 

approaches, Bayesian inversion algorithms treat parameters as random variables that are 131 

probabilistically sampled, resulting in an ensemble of best-fit resistivity models instead of a 132 

single best-fit model. Therefore, they can be used to provide rigorous estimates of model 133 

parameter uncertainties (Malinverno, 2002); however, the large computation time associated 134 

with them limits their application to 1-D modeling. Trans-dimensional Bayesian inversion has 135 

been applied to various geophysical data (e.g., Bodin & Sambridge, 2009; Dettmer, Dosso, & 136 

Holland, 2011; Gallagher, 2012; Ray, Alumbaugh, et al., 2013).   137 

The goal of this study is to introduce a workflow using a 1-D Bayesian inversion to 138 

evaluate uncertainty in pore-water salinity predictions derived from integrated analysis based on 139 

CSEM, MCS, and borehole data. We base our analysis on a data set acquired in the Canterbury 140 

Bight, NZ (cf. Figure 1), where all required data are available and an OFG body is known to 141 

exist within the shallow seafloor (Micallef et al., 2020). Firstly, we validate the developed 142 

workflow at the site of borehole U1353 drilled during IODP Expedition 317 (Fulthorpe et al., 143 
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2011) for ground-truthing and subsequently apply it at locations further away from the borehole, 144 

where the aquifer response detected by CSEM is greatest. Lastly, we discuss insights gained 145 

from this analysis regarding the evolution of Canterbury Bight’s OFG system.   146 

2 Regional Setting and Available Data 147 

Canterbury Bight is located along the eastern coast of the South Island of New Zealand. 148 

The continental shelf, spanning an approximate area of 13000 km2, includes about 1 km-thick 149 

progradational successions of shelf-slope deposits (e.g., Browne & Naish, 2003; Lu & Fulthorpe, 150 

2003). To determine the relative contributions of global sea level fluctuations (eustasy) and local 151 

tectonic, sedimentary, and oceanographic processes in controlling continental margin 152 

depositional cyclicity, three International Ocean Discovery Program (IODP) sites were drilled 153 

along a coast perpendicular transect during IODP Expedition 317 (Fulthorpe et al., 2011; Figure 154 

1a). A subtle decrease in pore-water salinity was observed at Site U1353, which is located 155 

closest to the shoreline at a water depth of 85 m and a distance of about 45 km from the coast. 156 

This salinity anomaly was identified at a depth between 20 m and 60 m below the seafloor (bsf) 157 

and contains brackish pore-water with a salinity of approximately 24 practical salinity units 158 

(psu), in contrast to the background seawater salinity of 34 psu in the survey area (Micallef et al., 159 

2020). 160 

In 2018, a joint marine CSEM and seismic survey was conducted within the framework 161 

of the MARCAN project. The survey covered four profiles spanning a total length of 175 km 162 

across the Canterbury Bight and utilized a seafloor-towed CSEM system. This system employed 163 

a 100 m long transmitter dipole with a 20 A bipolar current signal and four inline electric field 164 

receiver dipoles (Gehrmann, Dettmer, et al., 2015) with offsets of 150 m, 250 m, 400 m, and 650 165 

m. The CSEM measurements were obtained at 267 stationary waypoints spaced every 500 m 166 

along lines 2, 4, and 5, and every 1 km along line 7, at a sampling rate of 10 kHz. Collected MCS 167 

data was acquired using a GeoEel Digital seismic streamer (Geometrics). The streamer consisted 168 

of 24 channels with a group interval of 12.5 m and offsets between 22 m and 308 m. The seismic 169 

source was a single mini GI-gun (13/35 cubic inch) towed at 1.5 m below the sea-surface. 170 

Resistivity models derived from a 2-D deterministic inversion of the acquired CSEM data 171 

are presented by Micallef et al. (2020) using a time-domain extension of MARE2DEM (Haroon, 172 

Hölz, et al., 2018; Key, 2016). Moreover, Micallef et al. (2020) interpreted the MCS reflection 173 
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profiles in terms of geological facies clay, silt, fine sand, coarse sand, and gravel, respectively. 174 

For conducting hydrogeological modeling, they assigned porosities of 45 percent to clay and 175 

silty material, 40 percent to fine sands, 35 percent to coarse sands, and 20 percent to gravel. 176 

However, it is important to note that these values represent mean first-order estimates, and their 177 

uncertainty is likely to increase at greater distances from the borehole U1353. This is due to 178 

limitations in the interpretation bias in seismic facies classification, inadequate information on 179 

sediment sorting and compaction, and local heterogeneities.  180 

According to Micallef et al. (2020), the most prominent resistivity anomaly (> 25 Ωm) is 181 

identified north of the borehole on the coast perpendicular line 4 and along the coast parallel line 182 

7 (cf., Figure 4 in Micallef et al., 2020) This anomaly is significant as marine sediments in the 183 

region typically exhibit resistivity values ranging from 0.3 Ωm to 3 Ωm when fully saturated 184 

with seawater (Fulthorpe et al., 2011). Therefore, the identified resistivity anomalies suggest the 185 

presence of a large OFG body to the north of the borehole. The results of Micallef et al. (2020) 186 

also indicate that site U1353 serves as the southern boundary of a substantial OFG system that 187 

extends northwards up to line 5. Micallef et al. (2020) estimated pore-water salinities from the 2-188 

D resistivity models by applying Archie’s relationship assuming constant porosities of 20, 30, 189 

and 40 percent to define plausible upper and lower limits of the potential OFG volumes. Their 190 

results suggest that the volume of OFG may increase by a factor of four as porosity increases 191 

from 20 to 40 percent.  192 

To enhance the accuracy of the salinity estimates and address associated uncertainties, we 193 

selected waypoints on line 2, intersecting with the borehole, and on line 4, which features the 194 

identified resistivity anomaly, for a Bayesian analysis. The workflow of this analysis is explained 195 

in the following section. 196 
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 197 

Figure 1. (a) Map of the Canterbury Basin displaying the locations of acquired CSEM and seismic profiles. 198 

The yellow circles illustrate the locations of the IODP boreholes. CSEM line 2 intersects with the location 199 

of IODP site U1353, for which (b) salinity and (c) porosity measurements up to a depth of 300 mbsf are 200 

available (Fulthorpe et al., 2011) 201 

3 Methods 202 

To quantify pore-water salinity with corresponding uncertainty estimates using CSEM 203 

data, we employ a 1-D trans-dimensional Markov Chain Monte Carlo (MCMC) modeling 204 

approach (e.g., Mosegaard & Tarantola, 1995; Sambridge & Mosegaard, 2002) based on a 205 

Metropolis-Hastings algorithm (Green, 1995; Hastings, 1970; Metropolis et al., 1953). Following 206 

the concepts of previous publications (Blatter et al., 2019; Gehrmann, Dettmer, et al., 2015; 207 

Gehrmann, Schwalenberg, et al., 2015; Ray & Key, 2012), we compute the posterior probability 208 

density (PPD) of resistivity models that are constrained by measured CSEM data and 209 

independent prior information about the site. These probabilities are then converted to 210 

probabilities of pore-water salinity by applying Archie’s relationship (Archie, 1942). 211 

3.1 Bayesian formulation 212 

Here, Bayesian inversion employs MCMC sampling to estimate the PPD. The 213 

computational cost for Bayesian inversion can be large and therefore limits its applications 214 

mainly to 1-D layered resistivity models that are computationally less expensive compared to 2-215 

D/3-D modeling. However, the predominantly horizontal stratigraphy observed in the CSEM 216 

experiment’s scale enables a 1-D inversion. 217 
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The PPD combines prior knowledge about the model parameters and data information 218 

(e.g., Gelman et al., 2014), as expressed by Bayes’ theorem. 219 

𝑝(𝐦|𝐝) =
𝑝(𝐝|𝐦)𝑝(𝐦)

𝑝(𝐝) ,									 
(1) 

where d and m are the vectors of data and model parameters, respectively, and p 220 

represents the probability density functions (PDF). The PPD is the conditional probability of 221 

model parameters given the observed data, p(m|d). The term p(d|m) is the conditional 222 

probability of the data given the model, which is interpreted as the likelihood of the model, L(m), 223 

for observed data. The prior p(m) is a probability density function of model parameters and is 224 

independent of the data. In this study, uniform distributions with parameter bounds are chosen as 225 

priors so that the solution is primarily constrained by the data. The probability p(d) is the 226 

Bayesian evidence and normalizes the probability to unity. It can be ignored in this work (e.g., 227 

Sambridge et al., 2006). 228 

For the likelihood function L(m), we assume that data errors are zero-mean and Gaussian 229 

distributed with covariance matrix Cd, see equation. (2), where χ2 is the data misfit, equation (3), 230 

𝑝(𝐝|𝐦) ∝ exp.−
𝜒!

2 2,				 
(2) 

where χ2quantifies the fit of predicted data f(m) and observed data d. 231 

𝜒! = 3𝐝 − 𝑓(𝐦)5"𝐂#$%3𝐝 − 𝑓(𝐦)5.      (3) 

In this study, we use 1-D trans-dimensional MCMC algorithm with parallel tempering 232 

(Dettmer & Dosso, 2012), which efficiently samples the parameter space by incorporating a 233 

variable number of sub-seafloor resistivity layers. The algorithm adds and deletes layers 234 

depending on the data required using the Metropolis-Hastings-Green acceptance criterion 235 

(Metropolis et al., 1953). To improve the starting model for MCMC sampling, we use a non-236 

linear hybrid optimization technique (Dosso et al., 2001) 237 

The PPD relies on the selection of appropriate data errors and minimum errors. If the data 238 

errors are large, the model resolution will decline, leading to large uncertainties. Conversely, 239 

small data errors can cause overfitting, resulting in unrealistically low uncertainty. Here, we 240 

assign a minimum relative error of one percent to account for systematic errors such as 241 
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inaccurate array geometry or timing errors between transmitter and receiver signals. The one 242 

percent value is close to the data error derived during the CSEM data processing step, stacking. It 243 

is important to note that the applied minimum errors are smaller than the minimum allowed 244 

relative errors of four percent that were assumed for the deterministic 2-D inversion in Micallef 245 

et al. (2020; Figure 2a). This larger error was employed in the 2-D inversion as it searches for a 246 

vertically and laterally smoothed model over all data collected along the profile, whereas a 1-D 247 

layered model uses only data measured at one predefined waypoint. To better understand the 248 

impact of the applied error model on the PPDs and allow for a more coherent comparison with 249 

the 2-D inversion, we also provide PPDs for an assumed minimum error of four percent in the 250 

appendix (cf., Figure A 1). 251 

3.2 Probability density of resistivity models 252 

Inherent to CSEM data inversion is that the product between resistivity and layer 253 

thickness is often better resolved than the parameters themselves (Edwards, 1997). One major 254 

advantage of implementing a trans-dimensional inversion is therefore the assessment of the 255 

uncertainty of the resistivity and the layer thickness. We present these in terms of interface 256 

probabilities as a function of depth (Figure 2b, left) and PPD profiles for a layered sub-seafloor 257 

resistivity (Figure 2b, right). To illustrate the PPDs, we create depth grids and generate 258 

normalized histograms for resistivity values at predefined depth intervals (Figure 2b). The 259 

histogram values within each depth bin represent the corresponding probability density with 260 

higher values indicating a higher probability, represented by warmer colors. Cooler and grey 261 

colors represent low probability density while white indicates no models within the grid cell. The 262 

posterior median model is presented by a dashed black line, and the uncertainties in the model 263 

parameters are quantified with 95 percent credibility intervals (CI). To show the Bayesian results 264 

as interface-depth probabilities, we create a depth grid and calculate normalized histograms for 265 

the number of interfaces estimated at each depth interval. Additionally, to facilitate comparison 266 

we extract resistivity-depth profiles from the 2-D inversion of Micallef et al. (2020) at the 267 

collected locations (represented by black circular markers). 268 
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3.3 Conversion of resistivity to pore-water salinity probability distribution  269 

After obtaining the ensemble of seafloor resistivity models through Bayesian inversion, 270 

we convert them into pore-fluid salinity values using the Fofonoff & Millard (1983) algorithm. 271 

We then apply Archie’s relationship (Archie, 1942) to link the bulk resistivity (ρb) to the pore-272 

fluid resistivity (ρf) using the following equation. 273 

𝜌& = 𝑎𝜙$'𝜌( .																	 (4) 

Here, ϕ is the porosity of sediments, a is the tortuosity factor and m is the formation 274 

cementation factor, indicating the degree of interconnection of the pore spaces and generally 275 

assumed to be constant for a given geological structure. Pore-water salinity can be derived from 276 

pore-water resistivity, temperature, and pressure based on the Practical Salinity Scale (PSS –78) 277 

conversion (Fofonoff & Millard, 1983). We assume that porosity values at each depth are 278 

normally distributed, with a standard deviation of 0.05. Our incomplete knowledge of Archie’s 279 

parameter coefficients a and m is encapsulated in the workflow by assuming a uniform 280 

distribution in the range of 0.8 to 1.2 and 1.9 to 2.3, respectively. This uniform distribution best 281 

captures the variation in Archie’s parameters due to interbedding of silty and sandy material, 282 

which has been observed in the borehole core and seismic data (cf., Figure 3). 283 

At the borehole U1353 location, porosity values obtained from in-situ measurements are 284 

available (Fulthorpe et al., 2011). For locations away from the borehole, we extract the porosity-285 

depth profile at any desired waypoint from the seismically interpreted facies presented by 286 

Micallef et al. (2020; Figure 3) along the survey lines. To compute pore-water salinity 287 

distributions as a function of depth, we generate a salinity-depth grid with a vertical resolution of 288 

5 m and translate the ensemble of resistivity models onto the grids. At each depth interval, a 289 

random generator selects corresponding ρb, ϕ, m, and 2 values from the individual distributions 290 

to obtain ρf, which is subsequently converted into a pore-water salinity profile. Normalized 291 

histograms of the salinity distributions at each depth interval are computed and illustrated as 292 

probability density functions. Here we classify pore-water as fresh for salinities below 1 psu, 293 

fresh to brackish for salinities ranging from 1 to 10 psu, and brackish for salinities ranging from 294 

10 and 30 psu. 295 
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3.4 Workflow calibration  296 

We execute the above-outlined sequences to three key waypoints of the survey area. The 297 

following steps are chronologically applied and presented: 298 

1- Execute a Bayesian inversion at the waypoint located nearest to borehole U1353 (WP9 on 299 

line 2) to verify, validate and calibrate our approach, where we have in-situ control.  300 

We derive the PPD of resistivity at WP9, as illustrated in Figure 2b, and transform it to pore-301 

water salinity estimates (cf., Figure 4) using a) the porosity distribution over depth obtained from 302 

the porosity-depth profile collected at the borehole and subsequently compare it to b) the 303 

porosity estimates derived from the interpreted seismic facies (cf., Figure 3c). 304 

2- Repeat the procedure at WP12 and WP60 along line 4, where the most prominent resistivity 305 

anomaly is detected but no borehole data are available to constrain the pore-water salinity 306 

conversion (cf., Figure 5 and Figure 6).  307 

4 Results 308 

4.1 CSEM-derived salinity conversion at borehole U1353 309 

Figure 2a shows the 2-D inversion results of line 2 presented by Micallef et al. (2020). 310 

The interface probability (left panel in Figure 2b) at WP9 (line 2) indicates that the CSEM data 311 

can resolve two layers over a half-space with interfaces at approximately 14 and 80 mbsf. The 312 

upper boundary of a subtle resistivity increase is well resolved, while the lower boundary is less 313 

decisive, which is typical for CSEM resolution characteristics. The resistivity PPD (right panel in 314 

Figure 2b) denotes that the resistivity of the upper two layers is well-constrained at 0.8 ± 0.5 and 315 

2 ± 0.8 Ωm, respectively, down to approximately 80 mbsf. However, at greater depth, the 316 

credibility intervals are wider, implying that the CSEM data do not constrain the model 317 

resistivity beneath the second layer. The resistivity profile derived by the smoothed deterministic 318 

2-D inversion at this location also shows changes in vertical resistivity-depth gradient. For the 319 

second layer, the 2-D resistivities model coincides with the resistivity of the highest probability 320 

in the Bayesian inversion. For the layer above and the region below the second layer, the 2-D 321 

model predicts higher resistivities than the resistivities at the center of the probability 322 

distribution, yet maintains the 95 percent credibility interval of the PPD. 323 
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The pore-water salinity probability density computed for porosity measurements taken in 324 

borehole U1353 (Figure 4a) shows a salinity-depth variation with decreased salinity values 325 

within the second layer. Above layer two, the predicted salinities approach normal seawater 326 

values. Below layer two, the range of possible salinities widens and ranges from brackish to 327 

hypersaline (> 30 psu) water. Yet, the highest probabilities are shown for seawater salinity of 328 

around 34 psu. The median pore-water salinity model follows the salinity trend over depth 329 

measured at the borehole (pink circular markers). The salinity profile converted from the 2-D 330 

inversion model fits well to the center of the salinity PPD for both borehole-based and 331 

seismically derived porosity estimates within the aquiferous layer. Salinity predictions based on 332 

porosity distribution extracted from interpreted seismic facies (Figure 4b) show almost identical 333 

results, validating that seismically derived porosities distributions are applicable to capture the 334 

in-situ porosity profile, particularly if we assume a Gaussian porosity distribution at each depth 335 

for seismic-derived porosities. 336 

 337 

Figure 2. (a) 2-D resistivity model from the acquired CSEM data along line 2 as overlain on the 338 

corresponding seismic reflection profile (Micallef et al., 2020). Black triangles indicate stationary 339 

waypoints. The location of borehole U1353 and the closest waypoint (WP9) to that is marked by an 340 

arrow. (b) The result of 1-D Bayesian inversion at WP9. The left panel shows interface probability as a 341 
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function of depth. The right panel presents the resistivity marginal probability profile. The color indicates 342 

the probability. Credibility intervals contain 95 percent of the model samples evaluated at each depth 343 

interval. The 2-D resistivity model is shown by black circular markers. 344 

 345 

 346 

Figure 3. Seismically interpreted facies along (a) line 2 and (b) line 4 from Micallef et al. (2020). (c) 347 

Porosity profile measured at borehole U1353 (blue circular markers) and porosity profile extracted from 348 

interpreted facies (yellow circular markers) at the borehole location. The assumed probability distribution 349 

of porosities over depth at (d) WP9, (e) WP12, and (f) WP60. 350 

 351 

Figure 4. (a) Distribution of pore-water salinity as a function of depth at WP9 derived from Bayesian 352 

resistivity probability density (Figure 2b) by applying Archie’s relationship using (a) porosities derived 353 

from in-situ measurements at U1353 and (b) porosities derived from interpreted seismic facies. Pore-354 
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water salinity measurements at borehole U1353 and salinity estimates converted from 2-D inversion 355 

resistivity models are shown in pink and black circular markers, respectively. 356 

4.2 Characteristics of salinity anomalies at the center of the survey area 357 

The PPD of resistivity at WP12 in Figure 5b shows two well-identified interfaces at 358 

depths of approximately 20 and 40 mbsf, each associated with a distinct increase in resistivity 359 

reaching a maximum resistivity of around 200 Ωm in the third layer. The resistivity decreases 360 

again at greater depths (with elevated interface probabilities between 110 and 200 mbsf). The 361 

large range of resistivities at depths greater than 150 mbsf indicates a decrease in the sensitivity 362 

of the data with the highest probabilities for resistivity values greater than 20 Ωm. In 363 

comparison, the 2-D inversion model in Figure 5a shows only a continuous smooth increase in 364 

resistivity with depth. While resistivities of the upper two layers and lower half-space coincide 365 

with the median resistivity of the 1-D inversion results, the 2-D inversion model does not include 366 

the highly resistive intermediate layer. We attribute the difference in resolution to the lower 367 

minimum relative error of one percent assumed in the Bayesian inversion compared to the 368 

minimum relative error of four percent applied in the deterministic 2-D inversion. This 369 

hypothesis is corroborated by the fact that a rerun of the Bayesian inversion at WP12 with an 370 

error level of four percent leads to a simple two-layer model consisting of a conductive layer 371 

over a resistive half-space with no resistive anomaly (cf., Figure A 1a). 372 

At WP60, the PPD of resistivity (Figure 5c) exhibits three layers over a half-space. The 373 

Bayesian inversion places a resistive layer between 30 and 75 mbsf (with the highest probability 374 

for a resistivity value of 15 Ωm) over a conductive layer (with resistivity values of less than 1 375 

Ωm) between 75 and 100 mbsf. Note that the resistivity value within the underlying half-space is 376 

poorly constrained, allowing for values greater than 3 Ωm. The 2-D inversion model at this 377 

waypoint shows a smoothed version of the Bayesian-derived model, including the more 378 

conductive layer at around 75 m depth. 379 

Overall, we observe a decrease in resistivity values within our Bayesian resistivity 380 

distributions from the near coastal site WP12 to the farther coastal site WP60. 381 

 382 
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 383 

Figure 5. (a) 2-D inversion results along line 4 overlain on the seismic reflection profile (Micallef et al., 384 

2020). Black triangles indicate the stationary waypoints. Left panels in (b) and (c) present interface 385 

probability at WP12 and WP60, respectively. The right panels in (b) and (c) illustrate probability density 386 

distributions of resistivity indicated by colors at WP12 and WP60, respectively.  387 

The pore-water salinity distribution derived from the resistivity PPDs at WP12 (Figure 388 

6a) indicates that the salinity values at the seafloor are around 34 psu, which is typical of the 389 

seawater salinity of the survey area. A layer of very low salinity appears between approximately 390 

40 and 150 mbsf, with a thickness of 110 m and salinity variations between 0.1 and 0.5 psu 391 

indicating freshened pore-water. This layer of fresh pore-water roughly corresponds to the 392 

vertical extent of low-porosity (35 per cent) coarse-grained sand deposits in the interpreted 393 

seismic section (orange zone in Figure 3b). The correlation of the resistive anomaly with coarse 394 

sand structure further raises confidence in our results and that the CSEM data can resolve a layer 395 

with freshened pore-water when using an error level of one percent. At a depth between 110 and 396 

200 mbsf, salinities increase (between 0.1 and 10 psu) indicating fresh to brackish pore-water, 397 

which extends to greater depths. 398 

At WP60, there is a seawater-saturated shallow layer that is approximately 20 m thick, 399 

which is underlain by a low salinity layer extending down to about 75 mbsf. Pore-water salinity 400 
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in this layer is concentrated around 3 psu, suggesting the presence of a freshened zone between 401 

25 and 75 mbsf (Figure 6b). Note that the depth interval of the freshwater zone occurs at a 402 

similar depth interval of the freshened groundwater body identified in the borehole on line 2. The 403 

freshened layer is followed by a highly saline layer between 75 m and 100 mbsf, with salinity 404 

values ranging between approximately 30 and 100 psu. Pore-water salinity decreases again at 405 

depths greater than 100 mbsf, showing a variation between 0.3 and 30 psu, suggesting a fresh to 406 

brackish groundwater body. These values are slightly higher than the predicted salinities within 407 

the lower freshwater body identified beneath WP12 at depths greater than 110 mbsf (Figure 6a). 408 

 409 

Figure 6. Probability distribution of pore-water salinity converted from posterior probability density at (a) 410 

WP12 and (b) WP60. The pore-water salinity distributions are derived based on the posterior probability 411 

density of resistivity (Figure 5b–c) and interpreted seismic facies derived porosity distributions at the 412 

respective waypoints (Figure 3e–f).    413 

5 Discussion 414 

Understanding salinity distributions of pore-fluid using CSEM data requires an 415 

understanding of electrical resistivity uncertainty, as well as a statistical analysis of the host-rock 416 

porosity and Archie's parameters. Deterministic inversion approaches fail to provide a 417 

quantitative uncertainty estimate of the resistivity. In contrast, Bayesian inversion algorithms 418 

result in PPD of resistivity, from which uncertainty in pore-water salinity estimates can be 419 

addressed. In this study, we present a workflow that converts sub-seafloor resistivity models to a 420 
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PPD of pore-water salinity by incorporating seismic attribute data and considering uncertainties 421 

in sediment porosity and Archie’s parameters in equation (4). 422 

5.1 Comparing 2-D deterministic and 1-D Bayesian inversion results 423 

At the borehole location (WP9 of line 2), the probability distribution of resistivity and 2-424 

D resistivity model coincide very well, which validates our 1-D Bayesian approach and enhances 425 

our confidence in the quality of the CSEM data. Similarly, at the eastern WP60 on line 4, where 426 

the resistivity cross-section along the profile exhibits 2-D resistivity variations, the PPD of 427 

resistivity shows good congruence with the 2-D inversion model indicating that the 1-D 428 

Bayesian approach can work in regions of temperate 2-D model variations. Surprisingly, at the 429 

western part of line 4 (WP12), where the sub-seafloor appears to be 1-D, there are clear 430 

disparities between the deterministic 2-D resistivity model and the probability distribution of 431 

resistivity between approximately 40 and 150 mbsf. The differences can be reconciled when 432 

applying a consistent minimum relative error of four percent in the Bayesian and 2-D inversion 433 

(cf., Figure A 1a). The resistivity model obtained from the 2-D inversion and the PPD of 434 

resistivity at WP12 in Figure A 1 show similar behavior, although the 2-D resistivity model 435 

indicates lower values as compared to resistivity estimates from Bayesian inversion. This shows 436 

that deterministic inversion approaches do not resolve sudden changes in resistivity due to the 437 

smoothing regularization of the method. The comparison between the probability distribution of 438 

resistivity depicted in Figure 5 with a minimum relative error of one percent and Figure A 1 with 439 

a minimum relative error of four percent reveals that the PPD of resistivity is highly dependent 440 

on the choice of error. Furthermore, increasing the data error leads to a decrease in model 441 

resolution. While we have verified the implementation of the one percent minimum relative error 442 

on data at the borehole location, it cannot be ascertained that we are not overfitting systematic 443 

errors in our data by choosing a small error of one percent compared to error estimates from 444 

stacking during CSEM data processing. The local error at one waypoint is usually smaller than 445 

the overall assumed error on the entire study area. Therefore, assuming a smaller minimum 446 

relative error and applying the Bayesian approach improves the model resolution. The difference 447 

between the probability distribution of resistivity and the 2-D model underlines the need for 448 

local, more stochastic inversion methods at points of interest identified by the 2-D inversion 449 

results. Nevertheless, a significant limitation of the Bayesian inversion approach is the high 450 
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computational time required to calculate the PPD. Consequently, this approach is currently only 451 

suitable for a few investigation points and is dependent on a multi-dimensional deterministic 452 

inversion to guide the choice of points for stochastic inversions. 453 

5.2 Statistical derivation of pore-water salinity from PPD of resistivity 454 

Estimating the pore-water salinity from the probability distribution of sub-seafloor 455 

resistivity is challenging due to uncertainties in Archie’s coefficients. Borehole U1353 comprises 456 

lithological units that include interlayered clay, silt, and sand horizons, each characterized by 457 

different Archie's parameters (a and m in equation (4)). To address this issue, we adopt an 458 

approach in which we choose a uniform probability distribution for each of these parameters 459 

while converting the PPD of resistivity to the probability distribution of pore-water salinity. This 460 

approach results in broader salinity probability distributions (cf., Figure 4), allowing us to 461 

identify potential uncertainties due to our lack of detailed in-situ knowledge to calibrate Archie's 462 

parameters. 463 

The salinity-depth measurements at borehole U1353 (indicated by pink circular markers 464 

in Figure 4) align with the high probability range of the predicted pore-water salinity 465 

distribution, although they do not coincide with the median salinity model. Specifically, salinities 466 

between 20 and 60 mbsf are higher compared to the salinity probability distribution’s center, 467 

while salinities in the region below 120 mbsf are lower due to the presence of a different 468 

lithological unit  (cf., Expedition 317 Scientists 2011). These results suggest that the uncertainty 469 

in Archie’s parameters may impact the pore-water salinity estimation. 470 

5.3 Correlation between pore-water salinity distribution and seismic facies 471 

The agreement between the probability density distributions of pore-water salinity 472 

obtained from resistivity models employing seismically-derived porosity estimates and the in-473 

situ porosity measurements at borehole U1353 (Figure 4a and Figure 4b) supports the suitability 474 

of using interpreted seismic facies for porosity estimation at distant locations from the borehole. 475 

It is important to note that the seismic facies classification needs to be extrapolated from a 476 

borehole and may lose accuracy at larger distances to the borehole. 477 

The pore-water salinity PPD at the borehole location (WP9) overlaid on MCS line 2 478 

demonstrates that the first and second interfaces at 14 and 80 mbsf correspond with two seismic 479 
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reflectors at the same depths (cf., Figure 7a). This alignment suggests that the salinity decrease 480 

occurs within an onlap sedimentary package that comprises fine-grained sand, which is both 481 

over- and underlain by fine silt and clay material. Towards the shore, the onlap sedimentary 482 

package pinches out, making it unlikely that there is a connection or feeding mechanism from 483 

current onshore groundwater bodies at U1353. In contrast, the sandy deposit extends horizontally 484 

to the east. However, at borehole U1354, which is located approximately 8 km seaward of 485 

U1353 along line 2, the subtle salinity variations are not detectable (cf., Figure 2c in Micallef et 486 

al., 2020). Overall, the geometry of the sedimentary unit and estimated salinity variations suggest 487 

that the freshened OFG body along line 2 is most likely a patchy remnant of a paleo groundwater 488 

body that formed during previous glacial low stands (U1353 is located landward of the paleo-489 

shelf during the last glacial low stand). This remnant body may currently experience 490 

salinification due to saltwater diffusion from the seaward side. 491 

Line 4 presents salinity anomalies with greater variations and deeper depths compared to 492 

line 2 (cf., Figure 2a and Figure 5a). Pore-water salinity PPD profile obtained from the eastern 493 

part of line 4 (WP60) reveals the occurrence of a shallow freshwater zone between 15 to 70 mbsf 494 

(cf., Figure 6b). This OFG body is located at a depth similar to the one observed at U1353, but 495 

with significantly lower salinity values. The OFG body is situated within fine-grained sandy 496 

sediments, which are underlain and overlain by clay and silty material. As with line 2, the 497 

seismic reflector that corresponds to the upper limit of the sediment package pinches out 498 

landwards. This observation is further supported by the 2-D resistivity section, which shows the 499 

extension of the resistivity anomaly from approximately 24 km from the beginning of line 4 to 500 

the end of the profile (Figure 5a). We interpret this feature as a remnant OFG body that likely 501 

formed during the last (and possibly preceding) glacial seawater low-stand, similar to line 2. A 502 

possible geological explanation for the zone of high conductivity is the presence of a clay-rich 503 

sediment layer consisting of very fine-grained particles located directly beneath the shallow 504 

OFG. However, we also acknowledge the possibility of inversion artifacts resulting from 2-D 505 

effects, which could provide an alternative explanation. 506 

At greater depths (> 100 mbsf) beneath WP60, a second low salinity layer has been 507 

identified within silt/fine sand facies (Figure 6b). The upper limit of this OFG body coincides 508 

with a seismic reflector located at approximately 100 mbsf, which is present throughout the 509 

entire profile and rises landward (cf., Figure 7b). The Bayesian inversion results suggest that the 510 
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shallow and deep OFG bodies are not interconnected. This is further supported by both the 2-D 511 

inversion results and the seismic data, corroborating the absence of hydraulic continuity between 512 

these two distinct OFG bodies. The resolution of CSEM data decreases with depth and is limited 513 

below 100 mbsf, and as a result, we are unable to accurately constrain the depth of the base of 514 

the OFG body and variations in salinity at greater depths. Yet, our results indicate that pore-515 

water salinities in this region are below 10 psu. 516 

The deeper low-salinity body represents a somewhat different scenario from the 517 

shallower OFG bodies that are geometrically constrained and associated with onlap sediment 518 

packages. At the western part of line 4 (WP12), a freshwater OFG body with salinities below 0.5 519 

psu is predicted between approximately 40 to 150 mbsf (cf., Figure 6a). This zone extends 520 

slightly above the top of a coarse sand sediment package (orange zone in Figure 3b), and is 521 

associated with a prominent seismic reflector that slopes eastwards along the profile, indicating 522 

the top of the deeper OFG body beneath WP60 (cf., Figure 7b). The base of the freshwater body 523 

is aligned with the base of the coarse-grained sand sediments at a depth of approximately 150 524 

mbsf.  Below the coarser sand zone, the pore-water salinity slightly increases while remaining in 525 

the freshwater range below 10 psu.  526 

5.4 Interpreting an extensive OFG body 527 

The correlation between the observed pore-water salinity variations at WP12 and WP60 528 

ranging from 0.1 to 10 psu strongly suggests a hydraulic connection between the lower OFG 529 

body beneath WP60 and the freshwater OFG body to the west at WP12 (cf., Figure 7b). Our 530 

Bayesian inversion models, 2-D inversion results, and seismic data all support the possibility of a 531 

continuous freshwater body that may be hydrologically linked to a land-based aquifer. Although 532 

CSEM data is missing crossing the shallow water coastal transition zone, which would provide 533 

continuous coverage to confirm the land-sea groundwater connection, an EM/GPR study 534 

conducted along the Ashburton coast (north of line 4) by Weymer et al. (2020) that it is likely the 535 

onshore-offshore groundwater system is connected. The onshore aquifer is situated within gravel 536 

layers of sediment sequences (Dommisse, 2006) that were transported by high-energy braided 537 

rivers during the last glacial period (Rowan et al., 2012). Unconnected sand and silt/clay layers 538 

within these sequences serve as aquitards (Browne & Naish, 2003) Given that line 4 is located in 539 

an area with modern estuaries of various rivers (cf., Micallef et al., 2020), which are likely 540 
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remnants of the formerly high-energy braided rivers, and considering the seaward regional 541 

groundwater flow, it is plausible that the deep OFG body observed at line 4 is a continuation of 542 

the onshore aquifer extending seaward. Furthermore, onshore borehole information in the survey 543 

area (cf., Davey, 2004, 2006) provides approximate depths of the onshore multi-layer aquifers 544 

between 0 to 50 m, 50 to 90 m, and greater than 90 m. These depth ranges show a reasonable 545 

agreement with the depths of the OFG body along line 4 which strengthens the possibility of an 546 

onshore-offshore groundwater connection.  547 

 5.5 The impact of porosity variation on the pore-water salinity estimates 548 

Porosity estimates for a sequence of silt and fine sand layers along line 4 based on 549 

interpreted seismic facies, are higher compared to those obtained from line 2 as there is a lack of 550 

borehole data for ground-truthing. To account for the uncertainty in porosity values, we integrate 551 

them into the pore-water salinity estimations by assuming normal distributions for seismically-552 

driven porosity over depth. Yet, porosity estimates may vary beyond this range, especially at 553 

lithological transitions (e.g. between approximately 50 and 150 mbsf in Figure 3b and Figure 554 

3e). A lower porosity associated with coarse sand units could result in higher salinities. To 555 

validate that the very low salinities observed are not due to high assumed porosity, we repeated 556 

the conversion of seafloor resistivity to pore-water salinity by reducing the porosity for the 557 

coarse sand facies by 15 percent (cf., Figure 8). The resulting PPD of pore-water salinity 558 

indicates slightly higher salinity values within the depth interval of the coarse sand layer (0.1 to 3 559 

psu), yet still falls within the freshwater region. This is in agreement with Micallef et al. (2020), 560 

who concluded that the resistivity anomalies derived from 2-D inversion cannot be explained by 561 

porosity variations alone, but are indicative of freshened pore-water in the respective sediment 562 

sections.  563 
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 564 

Figure 7. Seismic reflection data along (a) line 2 and (b) line 4 showing seismic reflectors. The white line 565 

in (b) shows the boundary between two seismic profiles along line 4 acquired using different acquisition 566 

equipment and geometry. Probability density distribution of pore-water salinity at (a) WP9 and (b) WP12 567 

and WP60 overlain on the corresponding seismic lines. 568 

 569 

Figure 8. (a) An assumed 15 percent decrease in porosity within the depth range of coarse sand sediments 570 

(indicated by the orange zone in Figure 3b) between approximately 50 and 150 mbsf. The corresponding 571 
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probability density distribution of pore-water salinity is calculated for a porosity value of (b) 35 percent 572 

and (c) 20 percent in the coarse-grained materials.  573 

6 Conclusions 574 

We present a methodology that employs a Bayesian workflow to evaluate uncertainty in 575 

pore-water salinity predictions within the Canterbury Bight. Our approach utilizes resistivity 576 

estimates obtained from CSEM data, in-situ porosity measurements, seismic-facies derived 577 

porosities, and Archie’s rock physics relationship to characterize OFGs. We utilize a trans-578 

dimensional MCMC algorithm to estimate a probability distribution of resistivity models and 579 

interface depth probabilities. By implementing Archie’s relationship, we derive the pore-water 580 

salinity distribution and associated uncertainties from the resistivity models. 581 

The efficacy of our workflow was successfully validated at the IODP borehole location, 582 

where it accurately captured a zone displaying a subtle drop in pore-water salinity values 583 

recorded in borehole U1353. Furthermore, our study reveals that interpreted seismic facies can 584 

serve as reliable proxies for classifying porosity estimates extrapolated from nearby boreholes. 585 

In the center of the survey area, analysis of the correlation between the PPD of pore-586 

water salinity and the seismic reflection profile along coast-perpendicular line 4 suggests the 587 

presence of an OFG body containing brackish to freshened pore-water stored within silty/fine-588 

grained sediments at depths greater than 100 mbsf. Shoreward, the OFG body extends and 589 

transitions into facies comprising coarse sand sediments (west of line 4 at depths below 40 mbsf, 590 

Figure 7b). This freshened OFG likely represents an extension of the onshore aquifer and 591 

appears to be disconnected from a shallower local freshened zone identified in the eastern part of 592 

the profile. 593 

To enhance our understanding of the extent of the salinity anomalies associated with 594 

freshened pore-water, we integrate them with stratigraphy derived from reflection seismic data. 595 

The trans-dimensional approach allows for the identification of abrupt resistivity changes related 596 

to freshened pore-water layers which helped to identify facies possibly connected to onshore 597 

groundwater that a 2-D deterministic approach overlooked. Therefore, we strongly recommend 598 

assessing uncertainties using Bayesian approaches for selected waypoints and estimating 599 

uncertainties for derived salinities to avoid both over and under-interpretation of the 600 

hydrogeological model such as the extent of groundwater within the seafloor. 601 



manuscript submitted to Water Resources Researchal 

 

Acknowledgments 602 

This project has received funding from the European Research Council (ERC) under the 603 

European Union’s Horizon 2020 research and innovation program (grant agreement No 677898; 604 

MARCAN). Ship-time aboard the R/V Tangaroa was partly funded by the New Zealand Ministry 605 

for Business Innovation and Employment through the Tangaroa Reference Group. Zahra Faghih 606 

and Amir Haroon received funding from the European Partnering Project SMART project 607 

(https://www.offshoregroundwater.com). The authors thank the captain, technicians, and 608 

scientific team members of the R/V Tangaroa for their support in data acquisition and processing 609 

during the TAN1703 cruise.  610 

Open Research  611 

The marine controlled source electromagnetic data and multi-channel seismic reflection data for 612 

this research are available at http://doi.org/10.5281/zenodo.8099305.  613 

Access to the 1-D Bayesian inversion code is available upon request from Dr. Romina Gehrmann 614 

(RGehrmann@dal.ca). 615 

References 616 

Abubakar, A., Habashy, T., Druskin, V., Knizhnerman, L., & Alumbaugh, D. (2008). 2.5 D forward and inverse 617 
modeling for interpreting low-frequency electromagnetic measurements. Geophysics, 73, F165–F177. 618 
https://doi.org/10.1190/1.2937466  619 

Archie, G. E. (1942). The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. 620 
Transactions of the AIME, 146(01), 54–62. https://doi.org/10.2118/942054-G  621 

Arévalo-Martínez, D. L., Haroon, A., Bange, H. W., Erkul, E., Jegen, M., Moosdorf, N., … Weymer, B. A. (2023). 622 
Ideas and perspectives: Land-ocean connectivity through groundwater. Biogeosciences, 20(3), 647–662. 623 
https://doi.org/10.5194/bg-20-647-2023  624 

Attias, E., Thomas, D., Sherman, D., Ismail, K., & Constable, S. (2020). Marine electrical imaging reveals novel 625 
freshwater transport mechanism in Hawai‘i. Science Advances, 6(48), eabd4866. 626 
https://doi.org/10.1126/sciadv.abd4866  627 

Bakken, T. H., Ruden, F., & Mangset, L. E. (2012). Submarine Groundwater: A New Concept for the Supply of 628 
Drinking Water. Water Resources Management, 26(4), 1015–1026. https://doi.org/10.1007/s11269-011-9806-629 
1  630 

Blatter, D., Key, K., Ray, A., Gustafson, C., & Evans, R. (2019). Bayesian joint inversion of controlled source 631 
electromagnetic and magnetotelluric data to image freshwater aquifer offshore New Jersey. Geophysical 632 
Journal International, 218(3), 1822–1837. https://doi.org/10.1093/gji/ggz253  633 

Bodin, T., & Sambridge, M. (2009). Seismic tomography with the reversible jump algorithm. Geophysical Journal 634 
International, 178(3), 1411–1436. https://doi.org/10.1111/j.1365-246X.2009.04226.x  635 

Browne, G. H., & Naish, T. R. (2003). Facies development and sequence architecture of a late Quaternary fluvial-636 
marine transition, Canterbury Plains and shelf, New Zealand: implications for forced regressive deposits. 637 
Sedimentary Geology, 158(1), 57–86. https://doi.org/https://doi.org/10.1016/S0037-0738(02)00258-0  638 

Browne, G., & Naish, T. (2003). Facies development and sequence architecture of a late Quaternary fluvial-marine 639 
transition, Canterbury Plains and shelf, New Zealand: Implications for forced regressive deposits. Sedimentary 640 
Geology, 158, 57–86. https://doi.org/10.1016/S0037-0738(02)00258-0  641 



manuscript submitted to Water Resources Researchal 

 

Cambareri, T. C., & Eichner, E. M. (1998). Watershed Delineation and Ground Water Discharge to a Coastal 642 
Embayment. Groundwater, 36(4), 626–634. https://doi.org/https://doi.org/10.1111/j.1745-643 
6584.1998.tb02837.x  644 

Cohen, D., Person, M., Wang, P., Gable, C. W., Hutchinson, D., Marksamer, A., … Lane Jr., J. W. (2010). Origin 645 
and Extent of Fresh Paleowaters on the Atlantic Continental Shelf, USA. Groundwater, 48(1), 143–158. 646 
https://doi.org/https://doi.org/10.1111/j.1745-6584.2009.00627.x  647 

Constable, S. C., Parker, R. L., & Constable, C. G. (1987). Occam’s inversion: A practical algorithm for generating 648 
smooth models from electromagnetic sounding data. GEOPHYSICS, 52(3), 289–300. 649 
https://doi.org/10.1190/1.1442303  650 

Davey, G. (2004). Aquidef, a MS Access Programme to Define Canterbury Plains Aquifers and Aquitards. 651 
Environmental Canterbury Technical Report, No. U04/42. Canterbury . 652 

Davey, G. (2006). Definition of the Canterbury Plains aquifers. Environmental Canterbury Technical Report, No. 653 
U06/10.  654 

Dettmer, J., & Dosso, S. E. (2012). Trans-dimensional matched-field geoacoustic inversion with hierarchical error 655 
models and interacting Markov chains. The Journal of the Acoustical Society of America, 132(4), 2239–2250. 656 
https://doi.org/10.1121/1.4746016  657 

Dettmer, J., Dosso, S. E., & Holland, C. W. (2011). Sequential trans-dimensional Monte Carlo for range-dependent 658 
geoacoustic inversion. The Journal of the Acoustical Society of America, 129(4), 1794–1806. 659 
https://doi.org/10.1121/1.3557052  660 

Dommisse, J. (2006). Hydrogeology of the Hinds Rangitata Plain, and the Impacts of the Mayfield-Hinds Irrigation 661 
Scheme (MSc thesis). University of Canterbury , Canterbury. 662 

Dosso, S. E., Wilmut, M. J., & Lapinski, A. .-L. S. (2001). An adaptive-hybrid algorithm for geoacoustic inversion. 663 
IEEE Journal of Oceanic Engineering, 26(3), 324–336. https://doi.org/10.1109/48.946507  664 

Edwards, R. N. (1997). On the resource evaluation of marine gas hydrate deposits using sea‐floor transient electric 665 
dipole‐dipole methods. GEOPHYSICS, 62(1), 63–74. https://doi.org/10.1190/1.1444146  666 

Evans, R. (2007). Using CSEM techniques to map the shallow section of seafloor: From the coastline to the edges of 667 
the continental slope. Geophysics, 72. https://doi.org/10.1190/1.2434798  668 

Expedition 317 Scientists. (2011). In Proceedings of the IODP, 317. Integrated Ocean Drilling Program. 669 
https://doi.org/10.2204/iodp.proc.317.105.2011  670 

Faghih, Z., Haroon, A., Jegen, M., Gehrmann, R., Schwalenberg, K., Micallef, A., Dettmer, J., Berndt, C., 671 
Mountjoy, J., & Weymer, B. A. (2023). Geophysical data - Canterbury Bight, New Zealand [Dataset]. 672 
Zenodo. https://doi.org/10.5281/zenodo.8099305    673 

Fofonoff, N., & Millard, R. (1983). Algorithms for Computation of Fundamental Properties of Seawater. UNESCO 674 
Tech. Pap. Mar. Sci., 44.  675 

Fulthorpe, C. S., Hoyanagi, K., Blum, P., Guèrin, G., & Scientists, E. 317. (2011). Expedition 317 Scientists, 2011. 676 
Site U1353. In Proceedings of the IODP, 317. Tokyo: Integrated Ocean Drilling Program. 677 
https://doi.org/10.2204/iodp.proc.317.105.2011  678 

Gallagher, K. (2012). Transdimensional inverse thermal history modeling for quantitative thermochronology. 679 
Journal of Geophysical Research: Solid Earth, 117(B2). https://doi.org/https://doi.org/10.1029/2011JB008825  680 

Gehrmann, R., Dettmer, J., Schwalenberg, K., Engels, M., Dosso, S. E., & Özmaral, A. (2015). Trans-dimensional 681 
Bayesian inversion of controlled-source electromagnetic data in the German North Sea. Geophysical 682 
Prospecting, 63(6), 1314–1333. https://doi.org/https://doi.org/10.1111/1365-2478.12308  683 

Gehrmann, R., Schwalenberg, K., Riedel, M., Spence, G., Spiess, V., & Dosso, S. (2015). Bayesian inversion of 684 
marine controlled source electromagnetic data offshore Vancouver Island, Canada. Geophysical Journal 685 
International, 204, 21–38. https://doi.org/https://doi.org/10.1093/gji/ggv437  686 

Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., & Rubin, D. (2014). Bayesian Data Analysis, 3rd Ed. 687 
Green, P. J. (1995). Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination. 688 

Biometrika, 82(4), 711–732. https://doi.org/10.2307/2337340  689 
Gustafson, C., Key, K., & Evans, R. L. (2019). Aquifer systems extending far offshore on the U.S. Atlantic margin. 690 

Scientific Reports, 9(1), 8709. https://doi.org/10.1038/s41598-019-44611-7  691 
Haroon, A., Hölz, S., Weymer, B. A., Tezkan, B., & Jegen, M. (2018). Calculating Time-Domain Controlled Source 692 

Electromagnetic Signals with MARE2DEM. 2018(1), 1–5. https://doi.org/https://doi.org/10.3997/2214-693 
4609.201802663  694 

Haroon, A., Lippert, K., Mogilatov, V., & Tezkan, B. (2018). First application of the marine differential electric 695 
dipole for groundwater investigations: A case study from Bat Yam, Israel. GEOPHYSICS, 83(2), B59–B76. 696 
https://doi.org/10.1190/geo2017-0162.1  697 



manuscript submitted to Water Resources Researchal 

 

Haroon, A., Micallef, A., Jegen, M., Schwalenberg, K., Karstens, J., Berndt, C., … Chidichimo, F. (2021). Electrical 698 
Resistivity Anomalies Offshore a Carbonate Coastline: Evidence for Freshened Groundwater? Geophysical 699 
Research Letters, 48(14), e2020GL091909. https://doi.org/https://doi.org/10.1029/2020GL091909  700 

Hastings, W. K. (1970). Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika, 701 
57(1), 97–109. https://doi.org/10.2307/2334940  702 

Hathaway, J., Poag, C., Valentine, P., Manheim, F., Kohout, F., Bothner, M., … Sangrey, D. (1979). U.S. 703 
Geological Survey Core Drilling on the Atlantic Shelf. Science (New York, N.Y.), 206, 515–527. 704 
https://doi.org/10.1126/science.206.4418.515  705 

Hoefel, F. G., & Evans, R. L. (2001). Impact of Low Salinity Porewater on Seafloor Electromagnetic Data: A Means 706 
of Detecting Submarine Groundwater Discharge? Estuarine, Coastal and Shelf Science, 52(2), 179–189. 707 
https://doi.org/https://doi.org/10.1006/ecss.2000.0718  708 

Hong, W.-L., Lepland, A., Himmler, T., Kim, J.-H., Chand, S., Sahy, D., … Knies, J. (2019). Discharge of Meteoric 709 
Water in the Eastern Norwegian Sea since the Last Glacial Period. Geophysical Research Letters, 46(14), 710 
8194–8204. https://doi.org/https://doi.org/10.1029/2019GL084237  711 

Johnston, R. H. (1983). The saltwater-freshwater interface in the Tertiary limestone aquifer, southeast Atlantic 712 
outer-continental shelf of the U.S.A. Journal of Hydrology, 61(1), 239–249. 713 
https://doi.org/https://doi.org/10.1016/0022-1694(83)90251-2  714 

Key, K. (2016). MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data. 715 
Geophysical Journal International, 207(1), 571–588. https://doi.org/10.1093/gji/ggw290  716 

King, R. B., Danskin, W. R., Constable, S., & Maloney, J. M. (2022). Identification of fresh submarine groundwater 717 
off the coast of San Diego, USA, using electromagnetic methods. Hydrogeology Journal, 30(3), 965–973. 718 
https://doi.org/10.1007/s10040-022-02463-y  719 

Levi, E., Goldman, M., Tibor, G., & Herut, B. (2018). Delineation of Subsea Freshwater Extension by Marine 720 
Geoelectromagnetic Soundings (SE Mediterranean Sea). Water Resources Management, 32(11), 3765–3779. 721 
https://doi.org/10.1007/s11269-018-2018-1  722 

Lippert, K., & Tezkan, B. (2020). On the exploration of a marine aquifer offshore Israel by long-offset transient 723 
electromagnetics. Geophysical Prospecting, 68(3), 999–1015. https://doi.org/https://doi.org/10.1111/1365-724 
2478.12875  725 

Lu, H., & Fulthorpe, C. (2003). Three-dimensional architecture of shelf-building sediment drifts in the offshore 726 
Canterbury Basin, New Zealand. Marine Geology, 193, 19–47. https://doi.org/10.1016/S0025-3227(02)00612-727 
6  728 

Malinverno, A. (2002). Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical 729 
problem. Geophysical Journal International, 151(3), 675–688. https://doi.org/10.1046/j.1365-730 
246X.2002.01847.x  731 

Martin, J., Cable, J., Smith, C., Roy, M., & Cherrier, J. (2007). Magnitudes of submarine groundwater discharge 732 
from marine and terrestrial sources: Indian River Lagoon, Florida. Water Resour. Res, 43. 733 
https://doi.org/10.1029/2006WR005266  734 

Meisler, H., Leahy, P. P., & Knobel, L. L. (1984). The effect of eustatic sea-level changes on saltwater-freshwater 735 
relations in the northern Atlantic Coastal Plain. In Water Supply Paper. https://doi.org/10.3133/wsp2255  736 

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of State 737 
Calculations by Fast Computing Machines. The Journal of Chemical Physics, 21(6), 1087–1092.  738 
https://doi.org/10.1063/1.1699114  739 

Micallef, A., Person, M., Berndt, C., Bertoni, C., Cohen, D., Dugan, B., … Thomas, A. T. (2021). Offshore 740 
Freshened Groundwater in Continental Margins. Reviews of Geophysics, 59(1). 741 
https://doi.org/10.1029/2020RG000706  742 

Micallef, A., Person, M., Haroon, A., Weymer, B. A., Jegen, M., Schwalenberg, K., … Kumar Tiwari, A. (2020). 743 
3D characterisation and quantification of an offshore freshened groundwater system in the Canterbury Bight. 744 
Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-14770-7  745 

Mosegaard, K., & Tarantola, A. (1995). Monte Carlo sampling of solutions to inverse problems. Journal of 746 
Geophysical Research: Solid Earth, 100(B7), 12431–12447. https://doi.org/https://doi.org/10.1029/94JB03097  747 

Person, M., Dugan, B., Swenson, J. B., Urbano, L., Stott, C., Taylor, J., & Willett, M. (2003). Pleistocene 748 
hydrogeology of the Atlantic continental  shelf, New England. GSA Bulletin, 115(11), 1324–1343. 749 
https://doi.org/10.1130/B25285.1  750 

Post, V., Groen, J., Kooi, H., Person, M., Ge, S., & Edmunds, W. (2013). Offshore fresh groundwater as a global 751 
phenomenon. Nature, 504, 71–78. https://doi.org/10.1038/nature12858  752 



manuscript submitted to Water Resources Researchal 

 

Ray, A., Alumbaugh, D., Hoversten, G., & Key, K. (2013). Robust and accelerated Bayesian inversion of marine 753 
controlled-source electromagnetic data using parallel tempering. Geophysics, 78, 271-E280. 754 
https://doi.org/10.1190/geo2013-0128.1  755 

Ray, A., & Key, K. (2012). Bayesian inversion of marine CSEM data with a trans-dimensional self parametrizing 756 
algorithm. Geophysical Journal International, 191(3), 1135–1151. https://doi.org/10.1111/j.1365-757 
246X.2012.05677.x  758 

Rowan, A. V, Roberts, H. M., Jones, M. A., Duller, G. A. T., Covey-Crump, S. J., & Brocklehurst, S. H. (2012). 759 
Optically stimulated luminescence dating of glaciofluvial sediments on the Canterbury Plains, South Island, 760 
New Zealand. Quaternary Geochronology, 8, 10–22. 761 
https://doi.org/https://doi.org/10.1016/j.quageo.2011.11.013  762 

Sambridge, M, Gallagher, K., Jackson, A., & Rickwood, P. (2006). Trans-dimensional inverse problems, model 763 
comparison and the evidence. Geophysical Journal International, 167(2), 528–542. 764 
https://doi.org/10.1111/j.1365-246X.2006.03155.x  765 

Sambridge, Malcolm, & Mosegaard, K. (2002). MONTE CARLO METHODS IN GEOPHYSICAL INVERSE 766 
PROBLEMS. Reviews of Geophysics, 40(3), 3-1-3–29. https://doi.org/https://doi.org/10.1029/2000RG000089  767 

Weymer, B. A., Everett, M. E., Haroon, A., Jegen-Kulcsar, M., Micallef, A., Berndt, C., … Post, V. (2022a). The 768 
coastal transition zone is an underexplored frontier in hydrology and geoscience. Communications Earth & 769 
Environment, 3(1), 323. https://doi.org/10.1038/s43247-022-00655-8  770 

Weymer, B. A., Wernette, P. A., Everett, M. E., Pondthai, P., Jegen, M., & Micallef, A. (2020). Multi-Layered High 771 
Permeability Conduits Connecting Onshore and Offshore Coastal Aquifers. Frontiers in Marine Science, 7. 772 
https://doi.org/10.3389/fmars.2020.531293  773 

Zamrsky, D., Essink, G. H. P. O., Sutanudjaja, E. H., van Beek, L. P. H. (Rens), & Bierkens, M. F. P. (2022). 774 
Offshore fresh groundwater in coastal unconsolidated sediment systems as a potential fresh water source in the 775 
21st century. Environmental Research Letters, 17(1), 014021. https://doi.org/10.1088/1748-9326/ac4073  776 

Zamrsky, D., Karssenberg, M. E., Cohen, K. M., Bierkens, M. F. P., & Oude Essink, G. H. P. (2020). Geological 777 
Heterogeneity of Coastal Unconsolidated Groundwater Systems Worldwide and Its Influence on Offshore 778 
Fresh Groundwater Occurrence. Frontiers in Earth Science, 7. Retrieved from 779 
https://www.frontiersin.org/articles/10.3389/feart.2019.00339  780 

  781 

Appendix A: PPD of Resistivity for a Minimum Relative Error of Four Percent  782 

To assess the impact of error models on the PPD of resistivity obtained through Bayesian 783 

inversion, we perform additional Bayesian inversions at WP12 and WP60 using a minimum 784 

relative error of four percent, as applied by Micallef et al. (2020). Figure A 1 illustrates the 785 

Bayesian inversion results at WP12 and WP60 in terms of interface-depth probabilities and the 786 

marginal probability density profile of the resistivity. The probability distribution of resistivity at 787 

WP12 only resolves the first interface at 25 mbsf, indicating a significant increase in resistivity 788 

to values greater than 100 Ωm. Overall, the data lose resolution at greater depths. At WP60, the 789 

PPD of resistivity shows three distinct layers above the basement, which agrees well with the 2-790 

D inversion model. Nevertheless, interface probabilities as a function of depth suggest only one 791 

distinct interface at 50 mbsf with high uncertainty.   792 

 793 
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 794 

Figure A 1. Probability density distributions of sub-seafloor resistivity at (a) WP12 and (b) WP60 795 

assuming a minimum relative error of four percent, as it was assumed for 2-D deterministic inversion of 796 

CSEM data at the same waypoints. 797 
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