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Abstract

Floods in ideal landscapes follow a coherent pattern where single water-covered areas expand and afterwards recede following

the inverse sequence but deviate in real landscapes, due to natural or human factors, resulting in flood coverage shifts. Using

remote sensing, we introduced two indices to describe the discrepancies between spatially integrated vs. pixel-level frequency

distributions under maximum flooded conditions (dext) and throughout all flooding conditions (dtot), expressed as the relative

weight of shifts on each landscape’s maximum registered coverage, theoretically ranging between no displacement (<20%) to

maximum displacement (< < inf). Globally, over 36 years floods 26 exhibited redistributions representing, on average, 25%

and 45% of their peak extents 27 revealing previously unnoticed extra flooded areas and rotational movements within flood28

ing events, rising up to 500% in meandering rivers (South America) and irrigated crop29 lands (Central Asia). We also assessed

the influence of natural and human variables and 30 discussed the indices’ potential for advancing flood research.
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Key Points:10

• We developed two complementary indices to describe water cover shifts between11
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dams and channels inhibit it over time16
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Abstract17

Floods in ideal landscapes follow a coherent pattern where single water-covered areas18

expand and afterwards recede following the inverse sequence but deviate in real land-19

scapes, due to natural or human factors, resulting in flood coverage shifts. Using remote20

sensing, we introduced two indices to describe the discrepancies between spatially inte-21

grated vs. pixel-level frequency distributions under maximum flooded conditions (dext)22

and throughout all flooding conditions (dtot), expressed as the relative weight of shifts23

on each landscape’s maximum registered coverage, theoretically ranging between no dis-24

placement (<20%) to maximum displacement (<< inf). Globally, over 36 years floods25

exhibited redistributions representing, on average, 25% and 45% of their peak extents26

revealing previously unnoticed extra flooded areas and rotational movements within flood-27

ing events, rising up to 500% in meandering rivers (South America) and irrigated crop-28

lands (Central Asia). We also assessed the influence of natural and human variables and29

discussed the indices’ potential for advancing flood research.30

Plain Language Summary31

While in ideal landscapes flood events should display the same spatial distribution32

in their expansion and recession stages of any flooding event, real flooding may drift away33

from this expected pattern. We developed two indices based on remote sensing data to34

locate where these shifts are important and understand how they are influenced by na-35

ture and humans. By analyzing data from around the world, we discovered that thanks36

to the displacement from the ideal distributions, floods covered globally an extra quar-37

ter of the area. Natural factors like low terrain ruggedness and high aridity foster much38

larger flooding displacement. In regions hosting rivers that carry large quantities of sed-39

iment and often change their course (e.g., India and Perú), displacement engages five times40

more area in floods than ideally expected. We also found that water infrastructure like41

reservoirs and irrigation also influenced flooding displacement. For instance, displace-42

ment was very relevant in intensely irrigated regions like Central Asia and Australia, re-43

flecting surface water deviation as needed for crop production. Because these variations44

scope flooding spatiotemporal dynamics with important implications for the provision45

of many ecosystem services, their quantification and assessment allow us to monitor and46

understand our ongoing imprint on regional flooding dynamics.47

1 Introduction48

The spatial dynamics of floods, and specifically the pattern of their expansion and49

recession over the territory, is an important aspect of flooding variability. The flood pulse50

concept describes a model of flooding where water increasingly covers adjacent areas of51

already flooded surfaces, and afterward recedes following the exact inverse sequence, along52

what is described as an aquatic-terrestrial transition zone (Junk et al., 1989; Wantzen53

et al., 2008, for a definition extended to lentic systems). This null model of fully coher-54

ent flood expansion/recession implies that the exact locations that are covered by wa-55

ter can be known for any level of flooding (i.e., any given fraction of water coverage) based56

on the distribution of previous floods. However, in real landscapes like those occupied57

by highly meandering rivers, floods do not always proceed in this predictable way, chang-58

ing locations throughout successive events or by following asymmetrical expansion vs.59

recession trajectories (Tockner et al., 2000; Finotello et al., 2020). Though it could give60

important insights into ecosystem functioning at multiple levels, this attribute of flood-61

ing dynamics (hereafter, flooding displacement) has not yet been systematically quan-62

tified, and has been seldom described in the case of shallow lakes. Instead, flooding dis-63

placement has been analyzed in riverbanks through numerical modeling (Camporeale et64

al., 2005), manual and automatized detection of spatial shifts of water-classified pixels65

(Lin et al., 2020; Langhorst & Pavelsky, 2023), or, more commonly, included as a known66
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attribute in the design of field experiments and observations (Constantine & Dunne, 2008;67

Finotello et al., 2020; Walcker et al., 2021) from which a large body of knowledge on the68

physical laws guiding displacement has been generated (Wren et al., 2008; Van Dijk et69

al., 2013).70

The spatiotemporal nature of this phenomenon suggests that it can be explored71

through remote sensing. A key advantage is its ability to uniformly study one attribute72

with low costs. With the development of global water masks from the Landsat satellite73

archive (Pekel et al., 2016a) and cloud processing servers (Gorelick et al., 2017), it is pos-74

sible to analyze flooding displacement globally for more than three decades. Such infor-75

mation has already helped to explore the temporal dynamics of floods, including long-76

term trends (Pekel et al., 2016a; Olthof & Rainville, 2022) and other components of tem-77

poral variability (Pickens et al., 2020, Torre Zaffaroni et al., in review, submitted to Wa-78

ter Resources Research, 2023), and even colorimetric characterizations as a proxy of wa-79

ter quality (Gardner et al., 2021). Moreover, Langhorst and Pavelsky (2023) have shown80

that the displacement of riverbeds can be assessed through remote sensing, quantifying81

the direction of erosion and accretion for water courses wider than 100m with excellent82

results. These studies showcase how optical remote sensing tools can detect detailed as-83

pects of flooding, presenting an opportunity for comprehensive global characterizations84

and studies of geographical drivers, despite their limitations such as data gaps caused85

by cloud coverage and lower resolution for older satellite missions.86

While climate, topography, and water infrastructure have been pointed out as drivers87

of flooding displacement, their relative importance in dictating how floods drift away from88

a coherent regime remains unquantified. In the case of dry regions high runoff and pre-89

cipitation variability translate into spatially heterogeneous flood events (Tooth, 2000;90

Brunsell, 2010). Rivers in plains with high geomorphological activity can carry, remove,91

and deposit large amounts of sediment in their banks fostering migration of courses and92

the formation of oxbow lakes which retain large masses of water (Richardson et al., 1987;93

Constantine & Dunne, 2008; Langhorst & Pavelsky, 2023). Because slope, ruggedness,94

and landforms at a landscape level dictate surface water transport and storage (McGuire95

et al., 2005; Sivapalan et al., 2011; Rudorff et al., 2014), we hypothesize that topographic96

characteristics are important determinants of flooding displacement beyond lotic systems.97

On top of natural drivers, irrigation, particularly in paddy rice cultivation, can contribute98

to flooding displacement due to varying watering practices in different plots, especially99

in regions that practice double and triple cropping systems (Sakamoto et al., 2007; Dong100

et al., 2015). River engineering, such as channelization, canalization, dams, and reser-101

voirs can minimize flooding displacement by altering river geomorphology and sediment102

transport downstream (Ward & Stanford, 1995; Vörösmarty et al., 2010; Tena et al., 2020).103

As flood expansion/recession cycles sustain many ecosystemic functions (Tockner104

& Stanford, 2002; Pi et al., 2022) including the exchange of greenhouse gases with the105

atmosphere (Watts et al., 2014; Saunois et al., 2020; Walcker et al., 2021), it is impor-106

tant to quantify how floods displace over time to better forecast changes in ecosystem107

function as well as global climate. Remote sensing tools make it feasible to monitor the108

response of flooding to increasingly variable precipitation regimes (Kundzewicz, 2008;109

Najibi & Devineni, 2018; Arias et al., 2021), changes in land use and land cover (Twine110

et al., 2004; Loarie et al., 2011; Kuppel et al., 2015), and mitigation-oriented water man-111

agement strategies. It can further improve decision-making for flood management and112

planning by improving the identification of flood-prone areas and their shift across land-113

scapes.114

This work addresses the spatial dynamics of floods focusing on flooding displace-115

ment across events. First, it builds two indices that quantify the degree to which the dis-116

tribution of floods deviates from a fully coherent expansion/recession pattern (i.e., flood-117

ing displacement). Second, it maps flood displacement with these indices over the last118

36 years for the whole globe using remotely sensed data of surface water and evaluates119
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their conjoint performance across gradients of coherence. Finally, it explores how flood-120

ing displacement relates to natural and anthropic factors. The ultimate goal is to set the121

methodological basis for studying flood displacement patterns and trends using long-term122

data of global scope.123

2 Data and Methods124

We based our work on high-resolution, remotely sensed data of surface water cov-125

erage, using spatially aggregated (single pixels within a grid cell) time series vs. tem-126

porally aggregated (single dates across the whole study period) pixel distributions to quan-127

tify displacement. The monthly, 30-meter resolution Global Surface Water Extent dataset128

(Pekel et al., 2016a) is a powerful tool to analyze regional-level flooding processes, with129

available observations going back as far as 1985. Its most recent version (v1.4) extended130

the original version up to 2021, inclusive, and can be found in the Google Earth Engine131

catalog, the latter which allows the processing of such vast amounts of data.132

A spatially coherent development of floods should reflect a bucket-like geometry133

where, as the flooded area increases, places that were already flooded stay covered by134

water, and where one can observe the same distribution of water-covered and water-free135

areas for any given fraction of total water coverage in the region in all flood episodes and136

regardless of being in the expansion or retraction phase (Figure 1b). In such cases, when137

flooded areas are aggregated for a given extent of the territory (e.g., catchment or grid138

cell) the overall floodable area (sum of all the individual pixels that were covered by wa-139

ter at any point in the time period) should match the maximum flooded extent (sum of140

all the pixels that were covered by water when flooding reached its maximum coverage141

in the region), and the recession of flooding should mirror its development exactly with142

the first drying areas being the last ones that got flooded. Taking this hypothetical sit-143

uation as a null model, we measured two aspects through which departures from this pat-144

tern can emerge. The accompanying schematization for three alternative hypothetical145

situations is found in Figure 1 (c-e). First, we defined the extreme displacement (dext)146

as the relative difference between the overall flooded extent (O), which is the sum of all147

pixels that were covered by water at any point in time, and the maximum extent observed148

simultaneously at any particular month in the spatially-aggregated time series (Mx) (Eq.149

1).150

dext =
O −Mx

Mx
(1)151

This index represents the fraction of area that escaped some individual peak events152

but was still engaged in flooding and is assumed to have been gained from the dry frac-153

tion of the landscape. It is easily interpreted as the fraction of the area that missed the154

flood at the time of maximum coverage, providing valuable information about the wetting-155

drying dynamic of the region. For this reason, it should be more sensitive for analyzing156

individual events or dynamics in which different fractions of the landscape engage in each157

flood event, more commonly found in irrigated landscapes (Figure 1c).158

The previous extreme displacement quantification may underestimate flood displace-159

ment taking place at intermediate levels of water coverage or highly rotating floods, such160

as those experienced in high-intensity irrigated landscapes where the flooding sequence161

of plots is erratic (Figure 1d). It could also fall short of capturing flood dynamics where162

engaged areas may converge beyond a certain threshold of water coverage but not be-163

low it (i.e., yielding dext = 0; Figure 1e), and where still the observed apportionment of164

flooding frequency among pixels differs greatly from a coherent pattern. In such cases,165

the exceeding area does not result just from the dry fraction of the landscape but also166

from what we would expect to be highly flooded areas, producing more temporary wa-167
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Figure 1. Four alternative hypothetical configurations of flooding for the same temporal series

of spatially-aggregated water coverage (a). Cases include: (b) coherent flooding dynamic where

the last flooded areas are the first to dry, commonly observed in lakes; (c) incoherent flooding

dynamic where each plot is flooded in a rotative way such that each one is covered by water at

only one time-step, a situation that could take place in low-to-medium intensity irrigated regions;

(d) incoherent flooding dynamic where plots are alternately and variably flooded, a situation

expected in high intensity irrigated regions; (e) incoherent flooding dynamic where the spatial

pattern of the wetting and drying phase diverges, which can be expected in branched and me-

andering rivers and their surrounding floodplains as well as hydrologically connected wetlands.

Coherence and the ability of the two indices (dext and dtot) to capture displacement are indicated

(yes/no).

ter bodies than expected by the information extracted from a spatially aggregated flood168

time series.169

Given the potential underestimation of displacements by the first index presented170

above, we constructed a total displacement index (dtot) by comparing two different flooded171

area frequency distributions. The first one (temporal distribution, T) results from re-172

arranging the time series of monthly surface water extent in a decreasing array. Assum-173

ing a null model where the aggregated monthly flood extent accurately represents the174

flooding dynamics within the region, this rearrangement would show (1) the maximum175

floodable area (i.e., the first observation where all pixels that can be flooded are flooded);176

(2) the minimum flooded area or permanent water fraction (i.e., the lowest extent ob-177

served, which could also be zero); and (3) the flooding frequency distribution per frac-178

tion of area, which is obtained by calculating the difference between observations, start-179

ing from the maximum. For example, a region where the maximum observed event across180

10 years (i.e., 120 monthly observations) accounted for 1% of the area and the next biggest181

event accounted for 0.9% of the area should show 0.1% of its area with a flooding fre-182

quency of 1/120 (0.83%). Then, if the null model is representative of the flooding dy-183

namics in this region, T reflects the relative contribution of pixels with different individ-184

ual flooding frequencies, which can be estimated independently by measuring the dis-185

tribution of the actual flooding frequencies, as the percentage of observations with wa-186

ter, at the pixel level (30x30 m2) (S). The mismatch between T and S can be quantified187

as shown in Eq. 2:188

dtot =

∑100
0 Tn − Sn

Mx
forTn > Sn189
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(2)
190

where Tn and Sn are the nth frequency flooded area according to the temporal and191

spatial distributions, respectively. We standardize the mismatches to the maximum sur-192

face water extent event (Mx) of the region, and thus dtot expresses the equivalent frac-193

tion of Mx that floods as a result of changing water-covered area locations within and194

between flooding events.195

The described phenomenon can be characterized across multiple spatial scales of196

analyses, comparing upper-level behavior’s concordance with their lower-level compo-197

nents’ dynamic (e.g., pixels in remotely sensed data). For this global scope study, we chose198

a large landscape scale as our focal level, arranging a 1-degree grid (˜ 111x111km at the199

Equator). After excluding cells that included the ocean surface (12,500 resulting cells),200

we obtained the landscape-level surface water extent for each cell and month between201

1985 and 2021, and further filtered (i) time series, keeping observations with over 70%202

of data available across the cell, and (ii) grid cells, keeping those with over 0.1% of max-203

imum surface water extent and 30 observations, to reduce noise effects. As a result, we204

analyzed 10,047 cells over all continents except Antarctica. To illustrate how the displace-205

ment indices can be applied, we investigated the impact of natural and human factors206

on flooding location changes within and between events. Boosted regression trees were207

used to relate flooding displacement with topographical, climatological, hydrological, and208

agricultural variables (see Supporting Information for more details). The processing of209

the surface water extent dataset was done in Google Earth Engine, and posterior anal-210

yses were completed in an R environment (R Core Team, 2021).211
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3 Results and Discussion212

3.1 Flooding displacement characterization213

Based on remote sensing data, we developed a novel way to study how floods move214

across land revealing that their displacement, at varying degrees, is a widespread phe-215

nomenon, not only relevant in riverbanks but also important in shallow lakes and irri-216

gated areas worldwide. Both displacement indices developed (dext and dtot) were able217

to capture patterns where flooded areas change location throughout events. Through these218

novel indices, we discovered that close-to-fully coherent flooding patterns (i.e., no dis-219

placement) took place in lotic systems including floodplain sections across the Kunene,220

Ob and Paraguay Rivers in Angola, Russia, and Paraguay, respectively (dext and dtot221

< 0.2), while in other regions displacement was so large that it exposed to flooding up222

to five times more area than expected from a coherent pattern such as in the floodplains223

of the Ucayali and Purús rivers in South America (dext and dtot > 1) known for their224

high sediment load and dynamic geomorphology. In lotic systems, flooding displacement225

could result from different expansion patterns associated with the alternance of water226

source (Tockner et al., 2000), or from hysteretic patterns (i.e. non-symmetrical expan-227

sion/recession trajectories) related with riverine geomorphology (Poole, 2010). Yet, this228

pattern was also extended to lentic systems, for instance those in the northern Undu-229

lating Pampas in Argentina composed of very shallow lakes where there is a delicate, wa-230

ter table-mediated flood-generating mechanism (Kuppel et al., 2015). This suggested the231

usefulness of the indices for discriminating sites in which different flooding mechanisms232

may prevail (Van Dijk et al., 2013; Wu et al., 2023), and even for comparing their ac-233

tual development overtime against the simulations of their expected behavior (Camporeale234

et al., 2005; Rudorff et al., 2014).235

Different flooding regimes fostering displacement became evident after comparing236

the performance of both indices across 10,047, 1°-gridded landscapes (Figure 2). Low val-237

ues of both dext and dtot were indicative of coherent patterns where floods expanded and238

receded following the same geometrical path, such as that in well-defined lake basins (Fig-239

ure 2a & b). Increases in either index could be attributed to redistribution of flooding240

between events or within individual events. For instance, greater differences in favor of241

dtot (Figure 2d-f) suggested shifting patterns with a maximum event that covers all flood-242

able pixels, as a result of intense rainfall, snowmelt, or upstream runoff pulses (as ex-243

emplified in Figure 1e). The overlap of maximum and overall extents was almost per-244

fect, yet as much as 40% of the overall floodable extent alternated over time. In certain245

riverplains (e.g., in sections of the Ob’ River, Figure 2d), this behavior had a marginal246

impact, accounting for less than 20% of water cover shifts. Elsewhere, higher dtot val-247

ues illustrated the evaporative dynamics of the Eyasi Lake and Aral Sea in Eastern Africa248

and Central Asia (Figure 2e-f). This type of displacement was more representative of249

the greatest water-covered landscapes (Figure 2 top-left panel, blue points). Finally, vi-250

sual interpretation of cells with very high values of dext and dtot suggested their sensi-251

tivity to both natural and human imprints on the distribution of flooded areas (Figure252

2g-i).253

Flooding displacement indices complement common flooding attributes, highlight-254

ing the contribution of this novel approach (Figure S2). Typical indicators of flooding255

variability include minimum, mean, and maximum extents, and coefficient of variation256

derived from spatially-aggregated flooded extent time series (e.g., Papa et al., 2008, 2010;257

Pickens et al., 2020). Our quantitative assessment of flooding redistribution appeared258

to complement flooding analysis (i.e., were poorly correlated) based upon the aggrega-259

tion of higher resolution data, independently of their magnitude (i.e., for rarely flooded260

regions as well as for those hosting floods across the entire landscape), or how tempo-261

rally variable they were (i.e., from very stable to highly erratic floods). This was sug-262

gestive of the value of the indices as, for instance, ephemeral and shallow water bodies263

fluctuating in size and volume, but also in location -as the indices capture- tend to be264
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Figure 2. Values assumed for the two proposed flooding displacement indices (extreme dis-

placement, dext, and total displacement, dtot) across 10,047 1-degree landscapes. Top-right panel:

log-log scatter plot coloring cells according to their overall flood extent (i.e., the fraction of area

that has been flooded at least once in the last 36 years), with the gray dotted line reflecting

the equality line between both indices. (a-i) Examples of the (mis)matches between the overall

flooded extent (yellow background) and the geographical contribution of fractions of the land-

scape in five moments (T1 to T5). (a) Lake Viedma, Argentina; (b-c) Diamantina River, Aus-

tralia; (d) Ob’ River, Russia; (e) Eyasi Lake, Tanzania; (f) Aral Sea, Kazakhstan; (g) Zhenjiang,

China (triple cropping hotspot); (h) Salt Flats, United States (partially exploited); (i) Ucayali

River, Perú.
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key contributors to greenhouse gas emissions (Saunois et al., 2020; Walcker et al., 2021),265

and whose wetting/drying dynamics may have been underestimated with current aggre-266

gation approaches (Davidson et al., 2018).267

3.2 Global patterns of flooding displacement268

Regional clusters of high flooding displacement became evident after mapping the269

two indices (dext and dtot) globally (Figure 3). The general similarity between both in-270

dices suggested that the dominant displacement component is the shift of the water masses271

across events (e.g. Figure 1c), while erratic rotation (of river channels or irrigated plots,272

e.g., Figure 1d) has a secondary role and only in a subset of regions. The geographical273

distribution of flooding displacement showed river valleys in South America and Cen-274

tral Asia with the greatest degrees of displacement (captured by both indices, e.g., Fig-275

ure 2g-i), followed by mountainous rivers and irrigation-dense regions further captured276

by the total displacement index (e.g., Figure 1d-e). The highest displacement took place277

in the tropics and subtropics including the Bermejo, Ganges, Orinoco, and Ucayali rivers278

in Argentina, India, Venezuela, and Peru, respectively. All these riverbeds host water279

courses that reach flat humid plains after leaving young mountain ranges with high sed-280

iment production (Chakrapani, 2005). Episodes of overflow in meandering and braided281

rivers that transport high contents of sediments periodically change their main and side282

courses, likely driving massive flood displacements in these areas (Constantine & Dunne,283

2008).284

Besides tropical and subtropical hotspots of displacement fostered by large, and285

geomorphologically dynamic riverplains, the rest of the world appeared less affected by286

shifts in the maximum water-covered area, as captured by dext, with an average of 0.25287

(i.e., 25% more floodable area than that covered by their highest individual event). Yet,288

some regions were characterized by patterns in which displacement at intermediate flood-289

ing levels was more prominent (dtot averaged 0.45) (Figure 2d-f). Examples of this be-290

havior included the tundra shallow lakes region across the Canadian Shield and an irrigation-291

dense area along the northern edge of the Tibetan Plateau. Such cases were indicative292

of flooding patterns where, outside high pulses that covered all floodable areas, there may293

have been shifts overtime between flood pulses, for instance through the alternation of294

single, double, and triple rice cropping in rice-intensive regions (Sakamoto et al., 2007;295

Chen et al., 2012; Tran et al., 2018). The regional imprint of flood irrigation for crop-296

land production was detected through flooded patches shifting along tropical rivers in297

Central Asia as well as in other displacement hotspots found in rivers of other parts of298

central Asia (Yarkand and Aksu), southeastern Australia (Murray), and eastern China299

(Yellow and Yangtze). These areas match some of the most infrastructure-dense land-300

scapes as evidenced in literature and through visual interpretation of high-definition im-301

ages (Siebert et al., 2015; Zeng et al., 2016; Liu, 2022).302

Remarkably, the lowest displacement (dext and dtot < 0.3) was characteristic of most303

of the boreal belt, especially across northern North America, Europe, and the vast ma-304

jority of Russia. Local flooding dynamics were well captured at the landscape level with305

an approximate concentric expansion and retraction dynamic, possibly explained by the306

temperature-dominated (as opposed to precipitation-dominated) timing of floods (Papa307

et al., 2008; Kireeva et al., 2020, Torre Zaffaroni et al., in review, submitted to Water308

Resources Research, 2023) as well as the glacial processes that have shaped the topog-309

raphy of these landscapes in the past (i.e., a currently inactive geomorphological agent)310

that may constrain flooding to well-defined paths water follows (Buttle et al., 2016; Blöschl311

et al., 2020).312
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Figure 3. Global distribution of flooding displacement as described by two indices, (a) by

obtaining the overall flooded area exceeding the maximum observed flooded area at any particu-

lar month (extreme displacement, dext), (b) by quantifying mismatches between the distribution

of flooded frequency pixels and a null model given by the arrangement of landscape-aggregated

time series of flooded extent (total displacement, dtot). An interactive online map is available at

https://torrezaffaroni.users.earthengine.app/view/walking-floods

3.3 Natural vs. human drivers of flooding displacement313

Globally, natural drivers were on average more influential on flooding displacement314

than human drivers related to water management practices as shown by boosted regres-315

sion trees (Figure S3, see Supplementary Information for more details). Across natural316

drivers, lake fraction, and local and regional indicators of ruggedness were the most im-317

portant controls on flooding displacement. Extremely flat regions (regional terrain rugged-318

ness index < 80m), despite pronounced local slopes, foster flooding displacement, align-319

ing with the slower convergence effect observed in the absence of well-defined drainage320

systems (Figure S4) (McGuire et al., 2005; Aragón et al., 2011). The average distance321
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between meanders, a quantitative indicator of river meandering, ranked fourth in influ-322

encing flooding displacement. This corroborated our observation that the indices can de-323

tect these highly dynamic landscapes, which provide numerous important ecosystem ser-324

vices worldwide (Opperman et al., 2010; Angelini et al., 2013; Walcker et al., 2021). Cli-325

mate was strongly related to displacement, with aridity (mean annual precipitation to326

potential evapotranspiration ratio < 0.5) favoring it, perhaps as a result of the higher327

spatial variability of precipitation events causing floods (Tooth, 2000; Acworth et al., 2016;328

Griffin-Nolan et al., 2021).329

Across human drivers, the density of reservoir and irrigation infrastructure dimin-330

ished and enhanced flooding displacement, respectively, with the latter being more in-331

fluential even than paddy for rice and rainfed agriculture (Figure S4). Irrigation man-332

agement’s impact on this aspect of flooding emphasizes the need to consider its role in333

regional hydrology modeling. This can enhance the representation of multiple land and334

atmospheric processes, including greenhouse gas emissions and local climate variability335

(Loarie et al., 2011; Houspanossian et al., 2018; Saunois et al., 2020). Our findings were336

similar for dext (Figure S5), with lake fraction exerting greater influence than river me-337

andering, and floodplain and irrigation coverage, possibly due to the lower capacity of338

this index in capturing such displacement patterns (Figure 1d-e).339

Furthermore, the proposed indices may help in exploring how displacement changes340

in a given landscape as it is modified either gradually (e.g., due to increasing irrigation-341

allocated areas) or more abruptly (e.g., due to dam emplacements). As an example, we342

explored the landscape encompassing two water infrastructure projects in central China343

(Three Gorges Dam, built on the Yangtze River between 1994 and 2003, and the Shuibuya344

Dam built on the Qingjiang River between 2002 and 2008), revealing a sharp decrease345

of flood displacement (dext from 1.42 to 0.43, Figure S6).346

4 Conclusions347

The distribution of floods within a landscape and its variation through time is a348

critical but neglected aspect of hydrological analysis and its significance can be overlooked349

when examining aggregated flooded areas over time. We tackled this gap by develop-350

ing two indices, complementary to those typically employed to assess the temporal at-351

tributes of floods, that capture the disparities between the actual spatiotemporal dis-352

tribution of flooded areas in a landscape and a null model of spatially coherent flood-353

ing in which water-covered areas expand and recede following symmetrical patterns in354

each event. Owing to this type of displacement, landscapes worldwide had 45% more area355

engaged in flooding episodes between 1985 and 2021 than what their single maximum356

flooding levels may have indicated. The highest additions occurred in South American357

and Asian landscapes dominated by large meandering rivers transporting sediments from358

some of the most tectonically active mountain ranges on Earth to their adjacent plains.359

Our results also showed that flat arid and tropical regions experienced the most signif-360

icant displacement of flooded areas due to natural and human influences, while boreal361

regions had the most spatially coherent flooding events, likely due to their glacially-shaped362

landscapes.363

Water coverage displacement characterization and its uniform application world-364

wide with the proposed indices have significant implications for understanding the in-365

fluences of flooding on local and global climate as well as for evaluating the distant ef-366

fects of land use change, such as deforestation and water infrastructure development, on367

hydrological regimes. Our indices demonstrate the potential applications through visual368

correspondence and explorative quantitative assessment. We hope to stimulate further369

research on this topic and contribute to a more comprehensive understanding of the com-370

plex dynamics of flooding in various landscapes. Our study underscores the need for more371

integral approaches to flood modeling and management.372
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Global flooded extent was derived from JRC’s Global Surface Water dataset v1.4374

(Pekel et al., 2016b) available in the Google Earth Engine Data Catalog. Anthromes were375

downloaded from https://dataverse.harvard.edu/dataset.xhtml?persistentId=376

doi:10.7910/DVN/G0QDNQ (Ellis & Klein Goldewijk, 2019). River segment characteri-377

zation was extracted from https://zenodo.org/record/2582500 based on Global River378

Width from Landsat (Frasson et al., 2019). Global Lakes and Wetlands Database Level379

3 (GLWD-3 Lehner & Döll, 2004) was downloaded from https://www.worldwildlife380

.org/publications/global-lakes-and-wetlands-database-lakes-and-wetlands-grid381

-level-3 (Lehner & Döll, 2004). The aridity index was calculated based on TerraCli-382

mate long-term averages of annual precipitation-to-potential evapotranspiration ratios383

(Abatzoglou et al., 2018), while terrain attributes were calculated based on Global Multi-384

resolution Terrain Dataset (USGS), both available in the Google Earth Engine Data Cat-385

alog. The codes for characterizing displacement in Google Earth Engine and analyzing386

it in R, along with the database, with all variables aggregated to the 1-degree grid, can387

be found at https://zenodo.org/record/8083689.388
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Text S1. 

 

Attribution of displacement to natural and induced factors 

One way to test the influence of multiple continuous variables that might have 

interactive and/or non-linear effects is through boosted regression trees, which are 

based on machine learning algorithms capable of determining features’ importance 

while maintaining adequate interpretability (Elith et al., 2008; Radinger et al., 2018). 

Based on the effect of topography on potential energy guiding the stagnancy of surface 

water, and of climate regimes in terms of spatial variability of rainfall events, we 

hypothesized that (1) displacement is fostered by low water convergence, which could be 

the result of largely flat topographies, highly meandering rivers, increasing aridity. Based 

on the different allocation of flooding for crops, decoupled from how flooding spreads 

over a floodplain, and the long-term effect of dam emplacement on the local flooding 

regime of the altered water course, we further hypothesize that (2) flooding 

displacement is enhanced by intensely irrigated regions destined to rice production and 

countered by well-defined lakes, including natural formations and manmade dams and 

emplacements for storing water.  

We selected global datasets related to some of the most relevant aspects in which 

flooding displacement may be influenced by topography, climate, and large-scale 

anthropic activity. Figure S1 gathers the geographical distribution of these variables 

aggregated to each landscape. We obtained information from (1) Global Multi-resolution 

Terrain Elevation Data (GMTED2010, USGS) to derive three topographical variables: (a) 

terrain ruggedness (Riley et al., 1999), and slope integrated at (b) local (250m) and (c) 

regional (5km) levels (Figure S1 a-b); (2) Global database of river width, slope, catchment 

area, meander wavelength, sinuosity, and discharge (Frasson et al., 2019, and based upon 

Global River Width from Landsat, Allen & Pavelsky 2018) to derive the average meander 

wavelength across all riverine segments (between 60°N and 56°S) contained in each 

landscape (Figure S1c); (3) Global Lake and Wetlands Dataset (GLWD; Lehner & Doll 

2004) to derive four hydrological variables: lake, river, floodplain and reservoir coverage 

fractions per landscape (Figure S1 d-g); (4) TerraClimate (Abatzoglou et al., 2018) to 

derive the climatological aridity index as the long-term of annual precipitation-to-

potential evapotranspiration ratio (Figure S1h); (5) 2015 Anthromes 12K (Ellis et al., 2019) 

from which we derived three agricultural variables related with water management: rice, 

irrigated and rainfed coverage fractions per landscape (Figure S1 i-k). We also included 

the fraction covered by remote woodlands and flooded forests (Figure S1 l-m) as a proxy 

of one key passive satellite data caveat which can interfere with the depiction of surface 

water observation by remote sensors onboard satellite platforms.   
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Figure S1. Geographical distribution of the thirteen variables for which we analyzed their 

influence on flooding displacement: (a) Terrain Ruggedness Index; (b) Local-to-Regional 

slope ratio; (c) Mean meandwave length; (d) Lake fraction; (e) River fraction; (f) 

Floodplain fraction; (g) Reservoir fraction; (h) Aridity Index.  
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Figure S1 (cont.). Geographical distribution of the thirteen variables for which we 

analyzed their influence on flooding displacement: (i) Rice fraction; (j) Irrigated cropland 

fraction; (k) Rainfed fraction; (l) Remote woodland fraction; (m) Flooded forest fraction. 
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Figure S2. Correlation matrix of typical flooding descriptors and proposed indicators of 

flooding displacement, all derived from the same dataset (monthly, Landsat-based 

Global Surface Water; Pekel et al., 2016). Color hue reflects the direction of Spearman’s 

rho correlation (red = negative; blue = positive), while color intensity reflects the 

strength of the correlation. maxExt = maximum registered flooded extent per 1-degree 

grid cell at any month between 1985 and 2020; CV = coefficient of variation (mean / sd); 

all-Max = absolute difference between the sum of all pixels having been flooded at any 

point between 1985 and 2020, and the maximum registered flooded event (maxExt); 

mismatches = absolute differences between the null model of coherent flooding 

development and the actual, pixel-level flooding frequency distribution; d_ext = extreme 

displacement index (Eq. 1); d_tot = total displacement index (Eq. 2). 
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Figure S3. Natural (green) and human (violet) relative influences on (a) total and (b) 

extreme flooding displacement. Influence values are averaged across a thousand 

regression tree iterations. 
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Figure S4. Marginal effect of the natural and induced factors of total flooding 

displacement (dtot), fitted through general additive models (gam). Values between 

parenthesis at the x-axis correspond to the relative influence of each variable (averaged 

across 1000 iterations). 
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Figure S5. Marginal effect of the natural and induced factors of extreme flooding 

displacement (dext), fitted through general additive models (gam). Values between 

parenthesis at the x-axis correspond to the relative influence of each variable (averaged 

across 1000 iterations). 
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Figure S6. Example of displacement reduction as a result of water reservoir 

emplacement in a 1°x1° landscape centered at 30.5°N, 110.5°E encompassing the Three 

Gorges Dam (magenta box) and Shuibuiya Dam (red box) which were built and put into 

operation between 1994 and 2008. (a-c) geographical distribution of flooding frequency 

for the periods 1985-2002 (i.e., before the operation of either dam); 2003-2021 (i.e., 

operational period of the TGD but not SD); and 2009-2021 (i.e., operational period of 

both dams). (d-e) comparative Google Earth images over the Yangtze River and 

Qingjiang River, respectively, before and after the emplacement of the dams. 
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