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Abstract

Regardless of the steady increase of computing power during the last decades, 3D numerical models continue to be used in

specific setups to investigate the thermochemical convection of planetary interiors, while the use of 2D geometries is still

favored in most exploratory studies involving a broad range of parameters. The 2D cylindrical and the more recent 2D spherical

annulus geometries are predominantly used in this context, but the extent to how well they reproduce the 3D spherical shell

in comparison to each other, and in which setup, has not yet been extensively studied. Here we performed a thorough and

systematic study in order to assess which 2D geometry reproduces best the 3D one. In a first set of models, we investigated

the effects of the geometry on thermal convection in steady-state setups while varying a broad range of parameters. Additional

thermal evolution models of three terrestrial bodies, respectively Mercury, the Moon, and Mars, which have different interior

structures, were used to compare the 2D and 3D geometries. Our study shows that the spherical annulus geometry improves

results compared to cylindrical geometry when reproducing 3D models. Our results can be used to determine for which setup

acceptable differences are expected when using a 2D instead of a 3D geometry.
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Key Points:5

• Interior dynamics models using the 2D spherical annulus geometry match the re-6

sults of a 3D spherical shell better than the 2D cylinder.7

• The difference between 2D and 3D geometries decreases when models are heated8

from below by the core and from within by radioactive elements.9

• The spherical annulus shows negligible differences to 3D for the thermal evolution10

of Mercury and the Moon, and acceptable values for Mars.11
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Abstract12

Regardless of the steady increase of computing power during the last decades, 3D nu-13

merical models continue to be used in specific setups to investigate the thermochemi-14

cal convection of planetary interiors, while the use of 2D geometries is still favored in most15

exploratory studies involving a broad range of parameters. The 2D cylindrical and the16

more recent 2D spherical annulus geometries are predominantly used in this context, but17

the extent to how well they reproduce the 3D spherical shell in comparison to each other,18

and in which setup, has not yet been extensively studied. Here we performed a thorough19

and systematic study in order to assess which 2D geometry reproduces best the 3D one.20

In a first set of models, we investigated the effects of the geometry on thermal convec-21

tion in steady-state setups while varying a broad range of parameters. Additional ther-22

mal evolution models of three terrestrial bodies, respectively Mercury, the Moon, and23

Mars, which have different interior structures, were used to compare the 2D and 3D ge-24

ometries. Our study shows that the spherical annulus geometry improves results com-25

pared to cylindrical geometry when reproducing 3D models. Our results can be used to26

determine for which setup acceptable differences are expected when using a 2D instead27

of a 3D geometry.28

Plain Language Summary29

In geodynamic modeling, numerical models are used in order to investigate how30

the interior of a terrestrial planet evolves from the earliest stage, after the planetary for-31

mation, up to present day. The mathematical equations that are used to model the phys-32

ical processes in the interior of rocky planets are discretized and solved using geomet-33

ric meshes. The most commonly used geometries are the 3D spherical shell, the 2D cylin-34

der, and the 2D spherical annulus. While being the most accurate and realistic, the 3D35

geometry is expensive in terms of computing power and time of execution. On the other36

hand, 2D geometries provide a reduced accuracy but are computationally faster. Here37

we perform an extensive comparison between 2D and 3D geometries in scenarios of in-38

creasing complexity. The 2D spherical annulus geometry shows much closer results to39

the 3D spherical shell when compared to the 2D cylinder and should be considered in40

2D modeling studies.41

1 Introduction42

Geodynamic modeling is a powerful approach to investigate the dynamics of the43

mantle and lithosphere of terrestrial planets and to explore the evolution of their inte-44

rior that is not directly observable. Such models vary in their complexity and often em-45

ploy different geometries to investigate physical processes such as mantle melting and46

cooling, and the generation of a magnetic field. When using these models to interpret47

specific observations of the Earth and other planets, care must be taken in particular for48

the choice of geometry (see Noack & Tosi, 2012, for an overview of geometries), as this49

may significantly impact quantities such as the mantle temperature, the convection ve-50

locity, and the heat flux of the simulations.51

The role of two-dimensional geometry studies in the field of thermochemical man-52

tle convection modeling is still predominant despite an ever-increasing computing power.53

Although the formulation of 3D grids has seen improvements in previous years with the54

Yin-Yang grid (Kageyama & Sato, 2004) and the spiral grid (Hüttig & Stemmer, 2008a)55

among others; simulations with a full spherical shell geometry remain highly expensive56

in terms of computational power, hence making them inappropriate to study broad ranges57

of parameters or conduct large exploratory studies. As an alternative, geometrical ana-58

logues to the 3D spherical shell have been extensively used, namely the 2D spherical axi-59

symmetric (van Keken & Yuen, 1995) and the more popular cylindrical geometry (Jarvis,60

1993). The 2D axi-symmetric geometry has been used in earlier studies of mantle con-61
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vection (e.g., van Keken & Yuen, 1995; Jarvis et al., 1995), but in addition to the arti-62

ficial boundaries formed by the poles which trap down- and up-wellings, an asymmetry63

between the polar and the equatorial regions exists (van Keken, 2001). The cylindrical64

geometry on the other hand, while resolving the problems of the artificial boundaries at65

the poles imposed by the axi-symmetric geometry, still exhibits an important drawback.66

The ratio of the two surfaces (the planetary surface and the core surface) is different in67

the cylindrical geometry compared to the spherical shell. This leads to a mismatch in68

heat flux values between these geometries, as the heat flux of the core mantle boundary69

(CMB) is underestimated and the surface heat flux is overestimated when comparing to70

a spherical shell with the same ratio between the core and planet radius (i.e., radius ra-71

tio).72

In order to mitigate this problem, van Keken (2001) introduced a re-scaling of the73

2D cylindrical geometry such that the ratio of outer and inner areas of the cylinder matches74

the ratio obtained for the spherical shell. This scaling, however, while correcting the sur-75

face ratio discrepancy of the cylinder, still uses the volume of a cylinder. Additionally,76

this re-scaling creates an artificially smaller core, which in turn modifies the convection77

pattern in the mantle, leading for example to a crowding of the plumes near the CMB,78

a behavior that would not be observed in a 3D spherical shell, when using the original,79

non-scaled radii.80

To overcome this major drawback of the cylindrical geometry, another 2D geom-81

etry called ”spherical annulus” has been proposed by Hernlund and Tackley (2008). This82

geometry effectively uses a second degree of curvature and considers the same surfaces83

and volumes as the 3D geometry. Since no re-scaling is necessary for this geometry, it84

keeps the same radius ratio as the 3D one. In the study of Hernlund and Tackley (2008),85

the spherical annulus showed promising results to approximate the 3D spherical geom-86

etry with mean temperature and Nusselt number well reproduced for steady-state ther-87

mal convection calculations. While these results a highly valuable, there are only for the88

case of an Earth-like radius ratio and only consider thermal convection simulations in89

the Boussinesq approximation.90

More recently, Guerrero et al. (2018) performed a more extensive study with the91

spherical annulus for stagnant lid convection models and compared the temperature dis-92

tribution between the spherical annulus and the spherical shell. However, an extensive93

study investigating the ability of the 2D spherical annulus to reproduce results obtained94

in a 3D spherical shell and a systematic comparison with the 2D cylinder for various se-95

tups has never been conducted so far.96

In this study, we present simulations of thermal convection in the 2D spherical an-97

nulus and compare the results to the 2D cylinder and the 3D spherical shell. In a first98

part we focus on simple steady-state convection models using the Boussinesq approxi-99

mation. We vary the Rayleigh number, the radius ratio, and the heating mode for iso-100

viscous cases and run additional temperature-dependent viscosity models to determine101

which of the two 2D geometries (i.e., cylinder or spherical annulus) is able to best re-102

produce the 3D results. The set of equations that were used for this comparison are de-103

scribed in Section 2.1, the grid geometries are displayed in Section 2.2, and a descrip-104

tion of the cases investigated here is available in Section 2.3. A detailed analysis of the105

results is presented in Section 2.4.106

In a second step, we run more complex simulations of thermal evolution with the107

same geometries in three separate scenarios. We use Moon-like, Mars-like, and Mercury-108

like thermal evolution models to investigate how well the 2D spherical annulus repro-109

duces the results of the 3D spherical shell geometry. The three planetary bodies were110

chosen since they cover a wide range of interior structures and they are all thought to111

have been in a stagnant lid regime over their entire thermal history, which makes them112

comparable in terms of their tectonic regime (Breuer & Moore, 2015). In Section 3.1 we113
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list the equations used for the thermal evolution models. A description of the employed114

parameters and setup of the models is given in Section 3.2. The results are described in115

Section 3.3. A discussion of the steady-state and thermal evolution models is presented116

in Section 4, followed by conclusions in Section 5.117

2 Steady-state mantle convection118

In a first set of calculations we focus on the comparison between steady-state cal-119

culations in 2D and 3D geometries. For this purpose we test a large number of param-120

eter combinations for isoviscous models and temperature-dependent viscosity.121

2.1 Mathematical model122

Fully dynamical models of mantle convection allow us to investigate the spatial and123

temporal evolution of mantle flow. These models solve the conservation equations of mass,124

momentum, and energy. Here, the conservation equations are scaled using the mantle125

thickness D as length scale, the temperature drop across the mantle ∆T as temperature126

scale and the thermal diffusivity κ as time scale. A Table listing the scaling factors is127

available in the Supplementary Information, SI (Table S1). By assuming a Newtonian128

rheology, an infinite Prandtl number, and considering the Boussinesq approximation (Schubert129

et al., 2001; van Zelst et al., 2022), the non-dimensional conservation equations read:130

∇ · u = 0, (1)

∇ ·
(
η
(
∇u + (∇u)T

))
+RaTer −∇P = 0, (2)

DT

Dt
−∇2T −H = 0. (3)

In Equations 1 – 3, u is the velocity vector, η is the viscosity, T is the temperature,131

er is the radial unit vector, P is the dynamic pressure, and t is the time.132

The parameter Ra denotes the thermal Rayleigh number, a non-dimensional num-133

ber, which controls the vigor of the convection in the mantle. H is the internal heating134

rate of the mantle that is given by
RaQ

Ra , where RaQ denotes the Rayleigh number as-135

sociated with internal heating. The Rayleigh numbers Ra and RaQ read:136

Ra =
ρrefgrefαref∆TD3

κrefηref
, RaQ =

ρ2refgrefαrefHD
5

κrefηrefkref
, (4)

where ρref is the reference density, gref is the reference gravitational acceleration, αref137

is the reference thermal expansivity, κref is the reference thermal diffusivity, ηref is the138

reference viscosity, kref is the reference thermal conductivity, and H is the internal heat-139

ing rate in W/kg.140

For the steady-state models, we use a constant or temperature-dependent viscos-141

ity that follows the Frank-Kamenetskii approximation (Frank-Kamenetskii, 1969), which142

is a linearized form of the Arrhenius law:143

η(T ) = exp(∆ηT (Tref − T )), (5)

The parameter ∆ηT is the viscosity contrast due to temperature and Tref is the144

reference temperature at which a non-dimensional viscosity equal to 1 is attained. For145

the thermal evolution simulations presented further in this study, we use another parametriza-146

tion of the viscosity (Eq. 9), which is discussed more in-depth in the Section 3.1.147
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Figure 1: Representation of a cell of the spherical annulus geometry, in red, its effective
volume. The cylindrical geometry is represented in blue, on the equatorial plane. The
red area represented corresponds to the intersection of the spherical annulus cell with the
equatorial plane. When looking at the grid from a polar point of view, its visualization
becomes thus indistinguishable from the cylindrical cell.

2.2 Grid geometries148

We use the numerical code Gaia (Hüttig & Stemmer, 2008a, 2008b; Hüttig et al.,149

2013) to model the mantle convection in the interior of rocky planets. Gaia solves the150

conservation equations (Eq. 1 – 3) in their dimensionless form in 2D and 3D geometries.151

For the 2D geometry, we use both the classical cylindrical geometry (van Keken, 2001)152

and the spherical annulus geometry following the approach of Hernlund and Tackley (2008).153

In the 2D cylindrical geometry, the areas and volumes of the grid cells are typically for-154

mulated using the equations for a cylinder; however, what makes the particularity of the155

spherical annulus geometry, is the addition of a virtual thickness to the cylindrical ge-156

ometry which varies with the radius r. Thus the spherical annulus has a second degree157

of curvature, and uses an effective 3-dimensional formulation for the areas and volumes,158

as represented on Figure 1 (a more detailed description of the spherical annulus geom-159

etry is available in Section S3 of the SI).160

The 2D cylindrical geometry is scaled according to the scaling introduced by van161

Keken (2001), where the inner and outer radii of the cylinder grid (i.e., the core radius162

and the planetary radius, respectively) are changed such that the ratio between the outer163

and inner areas of the cylinder matches the ratio obtained in a 3D spherical shell geom-164

etry. The equations used to correct the inner and outer radii of the cylinder are the fol-165
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lowing:166

roc
ric

=
r2os
r2is

, roc − ric = ros − ris, (6)

where ric and roc are the inner and the outer radius of the cylinder, respectively. The167

inner and outer radii of the spherical shell are denoted by ris and ros, respectively. In168

the following, we will refer to this type of geometry that considers the rescaling of the169

inner and outer radii as the ”scaled cylinder geometry”.170

2.3 Case definition171

In the first part of this study, we performed steady-state simulations in order to172

investigate the effects of the ratio of the inner to outer radius and of heating modes on173

the results obtained with the 2D cylindrical, 2D spherical annulus, and 3D spherical shell174

geometry. Our aim is to compare 2D and 3D geometries and determine for which sce-175

narios does the 2D spherical annulus give closer results to the 3D compared to the 2D176

cylinder. To this end, we use models heated from below (purely bottom-heated), from177

within (purely internally-heated), and from both below and within (mixed heated). We178

use an initial random perturbation of the temperature field with an amplitude of 5%,179

vary the Rayleigh number Ra of our simulations from 104 up to 108, and the radius ra-180

tio f from 0.2 to 0.8 for our isoviscous setup.181

For the 2D geometries, we use between 1.1×104 and 6.7×104 grid points for low182

Rayleigh number simulations and between 4.8×104 and 4.1×105 for simulations with183

a Rayleigh number higher than 106. For the 3D geometries, we use between 2.04×106184

and 2.94×106 grid points. A more in depth description of each grid and its associated185

lateral and radial resolution is available in the SI. A short comparison of our results to186

the ones of Hernlund and Tackley (2008) for isoviscous steady-state cases is presented187

in Section S4 of the SI.188

Each mesh has a prescribed temperature and free-slip velocity as boundary con-189

ditions. The temperature of the upper boundary Tsurf is set to zero, while the one of the190

lower boundary is set to one for the bottom heated and mixed heated cases. For the purely191

internally heated cases we use a zero heat flux at the core-mantle boundary.192

The simulations are ran until a statistical steady-state is reached. Then, output193

quantities such as the average temperature, root-mean-square velocity, and top temper-194

ature gradient are computed using an average over the last 10% of the simulation. While195

for purely steady-state models this is the same as taking the last output, for quasi steady-196

state time-dependent or periodic models this ensures to retrieve representative average197

values. The top temperature gradient here is the temperature gradient at the top of the198

domain, calculated between the last two shells of the grid.199

An additional, more complex set of simulations includes the effect of the temper-200

ature dependence of the viscosity, and leads to the formation of a stagnant lid at the top201

of the convecting domain. These simulation represent simplified Moon-like (f = 0.2),202

Mars-like (f = 0.5), and Mercury-like (f = 0.8) scenarios. We use here thermal and203

radiogenic Ra numbers with values similar to those expected for planetary mantles, i.e.,204

Ra = 5× 106 and RaQ = 5× 107 (see values of Ra and RaQ in Table 1). We use the205

Frank Kamenetskii parametrization for the viscosity (Eq. 5) and set a viscosity contrast206

∆ηT to 108 at a reference temperature Tref of 0.5 to ensure that we are in a stagnant207

lid convection regime. In this setup, the total number of nodes used for the 2D grids lies208

between 4.8×104 and 2.8×105; while for the 3D simulations, the total number of nodes209

is 2.9× 106.210

In total, we run 180 isoviscous simulations and 36 temperature-dependent viscos-211

ity cases. All parameters and the grid resolutions for these steady-state simulations are212

listed in Table S2 in the SI.213
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2.4 Results214

2.4.1 Isoviscous convection215

For the first set, consisting of isoviscous simulations, we provide a thorough and216

systematic comparison between the 3D spherical grid and the two 2D geometries, namely217

the spherical annulus and the cylindrical geometry. A summary of the comparison is shown218

in Figure 2.219

Here, the analysis of the 180 simulations has been summarized into three subplots220

one for each heating mode. Each subplot contains two rows showing for each the annu-221

lus geometry (first row) and the scaled cylindrical geometry (second row), respectively,222

the relative error to the 3D results. The computation details of the relative error can be223

found in the SI (Section S5) along with tables containing the values for each simulation224

in CSV format. Figure 2 shows that the mean domain temperature of the 3D geome-225

try is more accurately reproduced by the spherical annulus geometry than by the cylin-226

drical one in every heating mode, up to values of Ra = 107. This difference is even more227

noticeable in the low radius ratiosetups (i.e., f = 0.2 and 0.4), which can be seen for228

the purely bottom heated and mixed heated scenarios. We also see for the purely inter-229

nal heated cases and high Rayleigh number cases (i.e., Ra = 107 and Ra = 108) that230

this difference is even more dramatic with an overestimation of the temperature in the231

cylindrical geometry by up to ∼ 20% for the small a radius ratio (i.e., f = 2) and re-232

duces to only a few percent in the spherical annulus.233

In the case of the root mean square velocity, we see a general increase of the ac-234

curacy with the spherical annulus geometry, however this increase is less pronounced than235

what is observed for the mean temperature. We see a slightly better match for the purely236

bottom heated and mixed heated setups, where simulations with Ra < 107 go from be-237

ing slightly underestimated by the cylinder to slightly overestimated by the annulus. How-238

ever, the cases with Ra ≥ 107 show a net improvement, with an underestimation de-239

creasing for all the cases with a radius ratio higher than 0.2. For the setup with a purely240

internal heating, however, almost no improvement is visible, with the notable exception241

of the simulation with a Ra = 108 and a radius ratio of 0.2 being overestimated by ∼242

40% in the case of the cylinder, which turns to be overestimated only by ∼ 20% in the243

case of the spherical annulus.244

In comparison to the cylinder, the spherical annulus, gives less conclusive results245

for the top temperature gradient. We can see an improvement in case of small radius ra-246

tios (i.e., f = 0.2) with either purely internal heating or mixed heating, or in the case247

of high Rayleigh numbers (i.e., Ra ≥ 107) for purely internal heated cases. Otherwise,248

for the majority of the setups and heating modes, the spherical annulus does not show249

significant improvement in reproducing the 3D values compared to the scaled cylindri-250

cal geometry. A comparison of the temperature gradient at the top of the mantle shows251

that the spherical annulus is hardly able to reproduce the 3D values more accurately than252

the scaled cylindrical geometry, with the notable exception of low radius ratios of around253

f = 0.2.254

2.4.2 Stagnant lid convection255

In the second part of the steady-state simulations, we modeled stagnant lid con-256

vection while varying the heating mode, the radius ratio, and the geometry in order to257

study the accuracy of the spherical annulus geometry (see SI, Table S2). In this type of258

setup, where the viscosity is strongly dependent on temperature, the convection is ex-259

pected to operate in a stagnant lid regime. This rigid layer that forms at the top of the260

domain restricts convective heat transfer to the deep interior.261

The results are summarized in Figure 3, where we report the relative error of the262

2D cylindrical, 2D scaled cylindrical, and 2D spherical annulus geometry to the 3D spher-263

ical shell. Here we inspect the mean temperature, the root mean square velocity, the top264
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Figure 2: Averaged computed relative error to the 3D geometry with 3 different heat-
ing modes, i.e., purely basal heated (top row), purely internal heated (middle row), or
mixed heated (bottom row) for steady-state isoviscous convection simulations. For each
heating mode the first line of plots shows the relative errors for the spherical annulus and
the second line represents the scaled cylinder. The thermal Rayleigh number and internal
Rayleigh number vary from 104 to 108 and the radius ratio from 0.2 to 0.8. The radius
ratio indicated on the plot is the one corresponding to the reference 3D simulations. In
the case of the cylinder, the radius ratio is scaled, thus a 0.2 radius ratio becomes 0.04 fol-
lowing the scaling formula from van Keken (2001) (eq. 6). For columns from left to right,
relative error of the mean temperature, of the vrms, and of the top temperature gradient
are shown.
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temperature gradient, and the stagnant lid thickness. For each simulation we use a Ra265

of 10× 106 and RaQ of 10× 107.266

In Figure 3, when considering purely basal heating, we see that the spherical an-267

nulus is overall better at reproducing the 3D values compared to the scaled and non-scaled268

cylinder. The highest discrepancy is observed for the radius ratio f = 0.2, with > 50%269

of overestimation on average for the 2D geometries. For the spherical annulus, the mean270

temperature matches best the one of the 3D spherical shell when the radius ratio increases,271

an effect also seen for the vrms. The top temperature gradient does not follow this pat-272

tern, however, while the stagnant lid error is the lowest for f = 0.5. The highest dif-273

ference to the 3D for the low radius ratio setups (f = 0.2) in the purely bottom heated274

setup that we found in our models is in agreement with Guerrero et al. (2018). The study275

by Guerrero et al. (2018) considered stagnant lid convection with only basal heating, and276

observed that for small radius ratio setups, the spherical annulus would systematically277

show a hotter temperature when compared to the 3D. This behavior is indeed confirmed278

by our simulations, where we can observe that the different geometry of plumes between279

the spherical annulus and the spherical shell create considerable differences in temper-280

ature in the low radius ratio and bottom heated simulations. Plumes in a 2D geometry281

are rather sheet-like than column-like as they are in a 3D geometry. This leads to a warmer282

temperature in the 2D geometries compared to the 3D as being the consequence of a topo-283

logical difference between flows in a spherical shell and spherical annulus, as explained284

by Guerrero et al. (2018). Moreover, this difference is strongly accentuated for low ra-285

dius ratios, where the number of plumes is small and such geometrical effects significantly286

affect the results. For a better illustration of this behavior we refer the reader to Fig-287

ure S5 of the SI. The increase of temperature differences with increasing f was also ob-288

served by Guerrero et al. (2018) and is confirmed by our results.289

In the case of a purely internally heated case, we see that the annulus fares remark-290

ably better than the cylindrical geometries and that the average relative error of the mean291

temperature, the vrms, and top temperature gradient diminish as the radius ratio decreases.292

The highest radius ratio (i.e., f = 0.8) shows here the highest discrepancy between 2D293

and 3D, with more than 50% and 20% of overestimation for the vrms and the top tem-294

perature gradient respectively, while the stagnant lid is underestimated on average by295

15%. When taking a closer look at the simulations, it appears that, the internal heat-296

ing simulations in 2D have a tendency to require more convective strength in order to297

transport the same amount of heat in the domain compared to a 3D simulation, as al-298

ready shown in Hernlund and Tackley (2008). This peculiarity when investigating the299

temperature and velocity distribution will apparently create a larger amount of down-300

wellings in the case of a 3D model for a given internal heating rate when compared to301

a 2D one. This can be seen on the Figure S7 of the SI.302

For cases heated both from below and from within (i.e., mixed heated cases), the303

spherical annulus is showing the best results for the mean temperature, the top temper-304

ature gradient, and the stagnant lid thickness when the radius ratio is the lowest (i.e.,305

f = 0.2). For the highest radius ratio considered here (i.e., f = 0.8), the results ob-306

tained with the spherical annulus and the cylinder geometries show similar errors, with307

the exception of vrms that seems to be best reproduced by the scaled cylinder geome-308

try.309

When combining purely basal heating with internal heating, the main discrepancy310

previously arising from the low radius ratio and purely basal heated simulations seems311

to be mitigated by the addition of internal heating. The difference in the temperature312

distribution between the spherical annulus and the spherical shell tends to disappear (see313

Figure S7 of the SI).314

In summary, for the stagnant lid cases presented here, the mean temperature is over-315

all better reproduced by the spherical annulus independently of the radius ratio or heat-316

ing mode. Additionally, in the intermediate to low radius ratio simulations (f ≤ 0.5),317

the spherical annulus can also reproduce the 3D velocities, the top temperature gradi-318

ent, and the stagnant lid better than the cylinder geometry.319
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Figure 3: Averaged computed relative error to the 3D geometry with 3 different heating
modes (i.e., purely basal heated, purely internal heated, and mixed heated) for steady-
state convection simulations with a temperature dependent viscosity. The mean tem-
perature of the domain, the root mean square velocity, the temperature gradient at the
top of the domain, and the stagnant lid thickness are compared here. For each subplot
analyzing the relative error in a given heating mode, every column represents a different
geometry, namely the 2D cylinder, the 2D scaled cylinder, and the 2D spherical annulus.
The thermal Rayleigh number is 5 × 106, the internal Rayleigh number is 5 × 107, and the
investigated radius ratios are 0.2, 0.5, and 0.8.
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3 Thermal evolution models320

In this part we compare the 2D and 3D geometries in a more complex set-up, by321

using thermal evolution models in a stagnant lid regime. Compared to the previously322

discussed steady-state calculations, these models illustrate which of the 2D geometries323

can best reproduce the 3D results when mantle and core cooling are considered.324

3.1 Mathematical model325

For the thermal evolution models we use the Extended Boussinesq Approximation326

(EBA) (Schubert et al., 2001) to account for adiabatic heating and cooling. The energy327

equation (Eq. 3) becomes:328

DT

Dt
−∇ · (k∇T )−Diα(T + Tsurf )ur −

Di

Ra
Φ−H = 0, (7)

where ur is the radial component of the velocity vector, Tsurf is the surface tempera-329

ture, α is the thermal expansivity, and Φ is the viscous dissipation given by Φ = τ :330

ε̇/2, where τ is the deviatoric stress tensor and ε̇ the strain rate tensor. The dissipation331

number Di is defined as follows:332

Di =
αrefgrefD

cp
, (8)

where cp is the mantle heat capacity.333

In the thermal evolution models, we consider a temperature and pressure depen-334

dent viscosity that follows the Arrehnius law of diffusion creep. The non-dimensional equa-335

tion for viscosity reads (Roberts & Zhong, 2006):336

η(T, z) = exp

(
E + zV

T + Tsurf
− E + zrefV

Tref + Tsurf

)
, (9)

where E and V are the activation energy and the activation volume respectively (Karato337

& Wu, 1993; Hirth & Kohlstedt, 2003). Tref and zref are the reference temperature and338

depth, respectively, at which the reference viscosity is attained. The non-dimensional Tref339

and zref values correspond to a dimensional reference temperature of 1600 K and a di-340

mensional reference pressure of 3 GPa, respectively.341

The temperature of the lower boundary TCMB evolves following a 1-D energy bal-342

ance, assuming a core with constant density and heat capacity (Stevenson et al., 1983):343

ccρcVc
dTCMB

dt
= −qcAc, (10)

where cc is the heat capacity of the core, ρc is the core density, Vc is the core volume,344

qc is the heat flux at the core-mantle boundary (CMB), and Ac is the core surface area.345

Here we do not consider core crystallization.346

As appropriate for thermal evolution models, we take into account the decay of the347

heat producing elements (i.e., Ur238, Ur235, Th232, and K40). The amount of radioac-348

tive heat sources is calculated using the concentrations listed in Table 1.349

In thermal evolution models we consider the effect of a 50 km laterally homoge-350

neous crust. This crust is enriched in radiogenic elements while the mantle is depleted351

according to the following mass balance:352

Mtot ·Qtot = Mmantle ·Qmantle +Mcrust ·Qcrust, (11)

where M is the mass and Q is the heating rate. This setup also considers the blanket-353

ing effect of the crust by using a lower thermal conductivity k in the crust compared to354

the mantle.355
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3.2 Case definition356

We test three scenarios for the thermal evolution of a Mars-like, the Moon-like, and357

Mercury-like planet. We model the entire evolution of these planets to determine the vari-358

ations over time of several key output quantities. These three planetary bodies were cho-359

sen because of their different interior structures. In the Mars-like case, the radius ratio360

between core and planetary radius is f = 0.544. The Moon- and Mercury-like scenar-361

ios represent two end-members in terms of their radius ratios, with f = 0.224 and f =362

0.828, respectively.363

In the case of the 2D grids, we use a radial resolution of ∼ 10 km for Mars- and364

Moon-like cases, and a ∼ 5 km radial resolution for the thin mantle of Mercury. In the365

case of the 3D grids, the radial resolution lies between 22 and 9 km, and we use a lat-366

eral resolution of 40962 points per shell. A more detailed list of the resolution for every367

grid is available in Table S2 of the SI.368

In the cylindrical geometry, we use both the classical cylinder and the rescaling of369

van Keken (2001) as done previously in the stagnant lid steady-state simulations. It is370

worth to note that for the peculiar Moon-like interior structure, the scaling of the respec-371

tive radii leads to a radius ratio f = 0.0503. Since this is an extreme case, we test whether372

the rescaling of the cylinder geometry is appropriate for such interior structures in a ther-373

mal evolution scenario.374

It is important to note here that for each planet we use different Rayleigh num-375

bers (i.e., Ra and RaQ). These are calculated self-consistently using the mantle thick-376

ness, internal heat sources, and temperature difference accross the mantle specific for each377

planet. The parameters are listed in Table 1. While for Mars- and Moon-like simulations378

we use a reference viscosity of 1021 Pa s, for the Mercury-like case we perform additional379

tests with a reference viscosity that is lower by two orders of magnitude (i.e., 1019 Pa s).380

Since the thin Mercurian mantle typically leads to a conductive state after a few Gyr381

of evolution, by using a lower reference viscosity we test additional scenarios, in which382

convection can be sustained over most of the evolution. The results for Mercury with383

ηref = 1021 Pa s and 1019 Pa s are also compared between the 3D spherical shell and384

the 2D geometries.385

In all our simulations we consider the presence of a primordial crust with a thick-386

ness of 50 km, which is enriched in radiogenic elements compared to the bulk heat sources387

of the planet by a factor of 2 and has a two times lower thermal conductivity than the388

mantle (see Table 1). While being a representative value for the enrichment of the Mer-389

curian crust (Tosi, Grott, et al., 2013), for the two other scenario it allows to increase390

the complexity of the simulation without having a thermal evolution dominated by the391

enrichment of the crust. A second set of thermal evolution models neglecting the effects392

of the crust is listed in Section S7 of the SI.393

3.3 Results394

In the following, we present the results obtained for the thermal history of Mars,395

the Moon, and Mercury for all geometries. Similar to the steady-state calculations, we396

show in Figure 3 the difference of the 2D cylinder, 2D scaled cylinder, and 2D spheri-397

cal annulus to the 3D results after 4.5 Gyr of evolution (i.e., at present day). In addi-398

tion to the error shown in percent, we also list the difference between the dimensional399

values for mean temperature, CMB temperature, root mean square velocity, lid thick-400

ness, as well as surface and CMB heat fluxes (Figure 4).401

Figure 5 shows the entire evolution over 4.5 Gyr of the output quantities of inter-402

est for all four geometries (2D cylinder, 2D scaled cylinder, 2D spherical annulus, and403

3D spherical shell) for a Mars-like geometry. Our results show clearly that in the case404

of a Mars-like geometry, the values obtained during the entire thermal evolution with405
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Figure 4: Relative error to the 3D in the case of thermal evolution simulations. In each
panel we vary the planet on the y axis and on the x axis we vary the geometry. We in-
vestigate the relative error for: the mean temperature (a), the CMB temperature (b), the
root mean square velocity (c), the stagnant lid thickness (d), the surface heat flux (e), and
the CMB heat flux (f). A color in the blue indicates an underestimation of the results ob-
tained in the 3D geometry whereas a color in the red indicates an overestimation. 2D Cyl
stands for non-scaled 2D cylindrical geometry, 2D Sca Cyl is 2D cylindrical geometry with
the scaling by van Keken (2001), and 2D Ann stands for 2D spherical annulus geometry.
Each panel shows the relative error in % to the 3D and the absolute error in dimensional
unit.
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Symbol Description (Unit) Mars Moon Mercury

Rp Planetary radius (km) 3400 1740 2440
Rc Core radius (km) 1850 390 2020
D Mantle thickness (km) 1550 1350 420
f Radius ratio (-) 0.544 0.224 0.827

Tsurf Surface temperature (K) 220 250 440
TCMB CMB temperature (K) 2000 2000 2000
Tref Reference temperature (K) 1600 1600 1600
∆T Temperature contrast across the mantle (K) 1780 1750 1560
g Gravitational acceleration (m.s−2) 3.7 1.6 3.7
ηref Reference viscosity (Pas) 1021 1021 1021

κ Thermal diffusivity (m2/s) 1× 10−6 1.06× 10−6 1.04× 10−6

α Thermal expansivity (K−1) 2.50× 10−5 2.50× 10−5 2.50× 10−5

Ra Rayleigh number(-) 2.14× 106 5.35× 105 3.49× 104

RaQ Internal heating Rayleigh number (-) 5.91× 107 8.70× 106 8.00× 104

ρcore Core density (kg/m3) 6000 7500 6980
ρmantle Mantle density (kg/m3) 3500 3300 3380
ρcrust Crust density (kg/m3) 2900 2700 2900
cp,m Mantle heat capacity (kgK) 1142 1142 1142
cp,c Core heat capacity (kgK) 850 850 850
V Activation volume (m3/mol) 6.00× 10−6 6.00× 10−6 6.00× 10−6

E Activation energy (J/mol) 3.00× 105 3.00× 105 3.00× 105

km Mantle thermal conductivity (Wm−1K−1) 4 4 4
kcr Crust thermal conductivity (Wm−1K−1) 3 2 3

Dcrust Primordial crust thickness (km) 50 50 50

Heat source concentration (Taylor, 2013) (Taylor, 1982) (Padovan et al., 2017)
CU Uranium concentration (ppb) 16 33 7
CTh Thorium concentration (ppb) 58 125 29
CK Potassium concentration (ppm) 309 83 550

Table 1: Parameters for thermal evolution calculations for Mars, Moon, and Mercury.
Note that the non-dimensional radii are rescaled according to Eq. 6 for the scaled cylinder
geometry.

a 3D geometry are more closely reproduced by the spherical annulus than the cylinder,406

irrespective of whether it is scaled or not. It is to note that the spherical annulus geom-407

etry is reproducing especially well the evolution of the mean and core-mantle boundary408

temperatures (see Figure 4 for the actual present-day error), while the velocities are sys-409

tematically overestimated by the 2D geometries (27.7% for the spherical annulus and 29.6%410

for the rescaled cylinder). This directly affects the calculation of the stagnant lid thick-411

ness, and thus underestimates it by 6.2% for the annulus and 8.1% for the rescaled cylin-412

der. When trying to reproduce the heat fluxes at present day, the spherical annulus is413

somewhat better than the scaled cylinder, with an approximated underestimation of the414

CMB heat flux by 22% compared to 28% for the scaled cylinder, while the surface heat415

flux will be overestimated by 6% and 8% for the annulus and the scaled cylinder, respec-416

tively. While we focus in this part mostly on present-day values, when examining the417

entire thermal evolution of the planet we observe in the early and middle stages (between418

1 and 3 Gyr) a relative error even larger as the one observed at present day, as seen on419

Figure 5c and e. The Mars-like setup is the most challenging setup to reproduce for the420

spherical annulus, and although exhibiting relatively low errors, it still shows the high-421

est discrepancies between the thermal evolution cases with different interior structures.422

The overestimation of the mean temperature, mean velocity, surface heat flow, and un-423

derestimation of the stagnant lid thickness can be linked directly to the mixed heated,424

temperature-dependent viscosity simulation with a radius ratio of 0.5, which shows the425

same type of relative error (see Figure 3)426
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Figure 5: Timeseries of a Mars-like case with an initial crust of 50 km and with 4 differ-
ent geometries (2D non-scaled cylindrical, 2D cylindrical, 2D spherical annulus and 3D
spherical shell). The values shown here are the mean temperature (a), the core-mantle
boundary temperature (b), the surface heat flux (c), the core-mantle boundary heat flux
(d), the averaged root mean square velocity of the domain (e), and the lid thickness (f)
from 4.5 Gyr ago to present day, respectively. The shaded areas show the min.-max. vari-
ations during the evolution. The non-scaled cylinder has been added to show the effect of
the rescaling introduced by van Keken (2001).
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In the case of a Moon-like setup (Figure 6) the differences between the spherical427

annulus and the cylinder are typically larger than in the Mars-like case. However the dif-428

ference between the spherical annulus and the 3D is significantly lower in the case of the429

mean temperature, the stagnant lid thickness and the surface heat flow; as can be seen430

on Figures 6a, c, and f. The temperatures through time are very well reproduced by the431

spherical annulus (less than 2% of error compared to more than 12% for the cylindri-432

cal geometries). Similarly, the surface heat flux and the stagnant-lid thickness show a433

good match between the spherical annulus and the 3D geometries (see Table S5 of the434

SI). Concerning the cylindrical geometries, the effects of the rescaling are plainly visi-435

ble on the overall temperatures and heat fluxes evolution. As van Keken (2001) showed,436

the cylinder tends to overestimate the relative importance of the CMB radius compared437

to planetary radius and requires a rescaling of the radii. However, for the very low aspect-438

ratio of the lunar mantle, even when the rescaling is applied the results are still largely439

different compared to a 3D spherical shell geometry. A better approximation of the 3D440

results is obtained by the spherical annulus, where such rescaling is not needed. We see441

that the CMB heat flux stays at around -1.86 mW m-2 even at present day, meaning that442

the core is actively heated by the mantle, although in the other geometries the core is443

already cooling (see Figure 6b and d), a behavior which is also seen for Mars with the444

non-scaled cylindrical geometry. Similar to what has been seen previously for the low445

aspect-ratio cases with temperature-dependent viscosity combining basal heating and446

internal heating (see Figure 3), the scaled and non-scaled cylindrical geometries show447

large disagreements in all studied metrics. Nevertheless, even in the spherical annulus,448

the mean velocity and the CMB heat flux present the largest errors among the investi-449

gated quantities.450

In Figure 7, we show the results of the thermal evolution for a Mercury-like setup.451

Here we used two sets of simulations in order to illustrate the case of a initially weakly452

convecting mantle with a reference viscosity set as ηref = 1021 Pa s resulting in a Rayleigh453

number of Ra = 3.49×104; and the case of a mantle presenting a stronger initial con-454

vection with a reference viscosity lowered by two orders of magnitude, thus increasing455

the Rayleigh number to Ra = 3.49×106. Here again the global trend previously seen456

for Mars and the Moon emerges. As shown in figure 4, the spherical annulus geometry457

again reproduces best the 3D results with an approximate error of less than 1%, with458

a notable exception for the velocities, which are highly overestimated (more than 90%459

of relative error). The very high relative error of the vrms is explained by the present-460

day state of the Mercurian mantle. In our simulations, a Mercury-like planet falls into461

a quasi-conductive state after a couple of Gyr of evolution irrespective of the geometry462

(Figure 7), which in turn gives very low absolute vrms values. Yet the absolute differ-463

ence of velocity between the geometry is very small (less than 1 × 103 cm/year). De-464

spite these high relative error values in the velocities, the stagnant lid thickness is, how-465

ever, quite well reproduced by the 2D geometries, giving a maximum relative error of466

19 km (or an underestimation of 6.5%).467

4 Discussion468

Our results show that the spherical annulus can reproduce the 3D spherical shell469

geometry better than the cylindrical geometry, consistent with previous studies by Hernlund470

and Tackley (2008). Our systematic study, using simulations of increasing complexity,471

shows for the first time in great detail the difference in using a 2D geometry instead of472

a more realistic 3D spherical shell domain when modeling thermal convection in plan-473

etary mantles.474

When using the cylindrical geometry, whether scaled or not, the results show sub-475

stantial differences to the 3D geometry results in steady-state and thermal evolution sim-476

ulations. The necessity of choosing between a scaled and a non-scaled cylinder in mod-477

eling geodynamic processes inevitably results in a trade-off between an accurate repre-478
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Figure 6: Timeseries of a Moon-like case with an initial crust of 50 km and with 4 differ-
ent geometries (2D non-scaled cylindrical, 2D scaled cylindrical, 2D non-scaled cylindrical,
2D spherical annulus and 3D spherical shell). For a description off the values investigated,
see Figure 5.

–17–



manuscript submitted to Geochemistry, Geophysics, Geosystems

Figure 7: Timeseries of a Mercury-like case with an initial crust of 50 km, with 4 dif-
ferent geometries and 2 different reference viscosities. For a description off the values
investigated, see Figure 5. The dotted lines represent simulations with a reference viscos-
ity of ηref=1019 Pa s while the solid lines represent the cases with a reference viscosity of
ηref=1021 Pa s. The maximum and minimum of the output quantities are not displayed
here, since these variations are negligible.
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sentation of the deep interior structures in the case of the non-scaled cylinder, especially479

important when studying thermochemical structures (Stegman et al., 2003; Nakagawa480

& Tackley, 2004; Yu et al., 2019; Kameyama, 2022), and a correct representation of the481

heat fluxes as well as root mean square velocity in the domain (Deschamps et al., 2010;482

Mulyukova et al., 2015) for the scaled one. To circumvent these inaccuracies, the sys-483

tematic use of the spherical annulus in reproducing thermochemical convection in 3D is484

thus strongly recommended.485

In the case of steady-state simulations, we showed that the spherical annulus has486

the largest error in the high radius ratio scenarios (i.e, f = 0.6 and 0.8). The efficiency487

of the spherical annulus in reducing the error to the 3D (compared to the results of the488

scaled cylinder) is most visible in the case of a low radius ratio configuration (i.e., f =489

0.2), while nonetheless displaying large discrepancies in the mean temperature in the case490

of bottom heated and temperature-dependent setups, as also seen by Guerrero et al. (2018).491

Concerning the heating modes, as reported by Hernlund and Tackley (2008), the492

purely internally heated cases show the largest difference between the 2D and 3D geome-493

tries, while the mixed heating cases (bottom and internal heating) tends to be the heat-494

ing mode for which the spherical annulus exhibits the smallest errors in comparison to495

the spherical shell, as the difference in the temperature distribution between the spher-496

ical annulus and the spherical shell tends to disappear (see Figure S6 of the SI). This497

particularity becomes quite useful when trying to model more realistic processes such498

as thermal evolution models of terrestrial planets, as the silicate mantles of planets will499

invariably show heating induced by both the presence of radiogenic elements in the man-500

tle and by the core. The smaller error between the 2D spherical annulus and 3D spher-501

ical shell observed in mixed heated cases makes the spherical annulus an acceptable al-502

ternative to model more complex scenario (Figure 4), for which a 3D geometry is too ex-503

pensive. The trend of the relative error in the steady-state stagnant lid simulations with504

mixed heating is also observed in the case of thermal evolution models: the errors in the505

surface heat flux and stagnant lid thickness increase with increasing radius ratio (cf. the506

errors obtained for the Moon and Mars in Figure 4). However in the case of Mercury,507

while the steady-state simulations would predict the largest errors, the low Rayleigh num-508

ber in thermal evolution models and the transition to a conductive state during the ther-509

mal evolution strongly reduce the discrepancy between 2D and 3D geometries.510

The results presented here show that the spherical annulus is to be preferred to the511

cylindrical geometry, whether for steady-state simulations or thermal evolution simula-512

tions. However, in the case of the thermal evolution simulations one should question whether513

this geometry is sufficient to approximate the 3D spherical shell. Some observables such514

as the heat flux, the mechanical thickness of the lithosphere and the crust produced by515

partial melting of the mantle are used to evaluate the thermochemical evolution of a planet.516

But an important question is whether the 2D spherical annulus is accurate enough to517

reproduce the results of a 3D spherical shell for the above mentioned quantities, and which518

of these observables can be affected the most.519

Additional post-processing has thus been conducted in order to better character-520

ize the differences of more complex processes in the spherical annulus compared to the521

spherical shell. We exclude from this comparison the cylindrical geometry given its lack522

of accuracy in reproducing 3D. Moreover, the areas and volumes in the 2D cylindrical523

geometry are truly 2D and thus difficult to compare to the 3D spherical shell. Melting524

in the mantle, the thickness of the mechanical lithosphere, and heat fluxes are shown in525

Figure 8 as a function of time. For the calculation of the mechanical lithosphere thick-526

ness, we follow the approach of Grott and Breuer (2008). The calculations involving par-527

tial melting of the mantle are highly simplified and do not include the effects of latent528

heat or mantle depletion. While the quantities presented in Figure 8 are based on sim-529

ple post-processing of the thermal evolution results, they are meant to provide first or-530

der implications for the thermal evolution modeling with 2D and 3D geometries (for ad-531

ditional information concerning the post processing, see S11, S12).532
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When reproducing 3D simulations, the spherical annulus is well suited to replicate533

melting, mechanical thickness and heat fluxes. In particular the heat fluxes, and espe-534

cially the CMB heat flux (Figure 8g, h, i) are especially well reproduced in terms of val-535

ues and trend of evolution. The largest errors were observed for a Mars-like structure536

with an overestimation of less than 1.5 mW m-2 compared to the 3D for the surface heat537

flux and an almost identical CMB heat flux (less than 1 mW m-2 lower values compared538

to the 3D case).539

The mechanical thickness for a Moon-like interior structure will be underestimated540

on average by 5% for the spherical annulus, while the amount of melting will be over-541

estimated by 10% as in the case of Mercury. Since the computation of the amount of par-542

tial melting in the mantle through time relies on the temperature profile of the simula-543

tion, it is not surprising to see on one hand the underestimation of the mechanical thick-544

ness and on the other hand a systematic overestimation of partial melting by the spher-545

ical annulus compared to the 3D. The main reason explaining these differences is that546

the spherical annulus will consistently overestimate the overall mantle temperature, lead-547

ing to a hotter temperature profile, thus directly affecting the degree of melting and the548

thickness of the mechanical lithosphere.549

In the case of a Mars-like structure (Figure 8b, e) the differences between 2D and550

3D are larger, in particular in the case of partial melting, which the annulus will over-551

estimate by a maximum of 30% at around 1.5 Gyr. The mechanical thickness will be un-552

derestimated on average by 10 %. In particular the differences in partial melting could553

lead to an overestimation of the crustal thickness in the 2D spherical annulus geometry.554

This in turn could lead to more crustal production due to a mechanism called ”crustal555

blanketing” (e.g., Schumacher & Breuer, 2006), in which the reduced thermal conduc-556

tivity of the crust will prevent efficient cooling of the mantle. A higher crustal produc-557

tion rate could then lead to a stronger depletion of the mantle in crustal components and558

volatile elements. Hence, care should be taken when the spherical annulus geometry is559

employed to study partial melting and subsequent crust production or degassing in par-560

ticular for planets with an intermediate radius ratio, like Mars or Venus. These processes561

and the differences between 2D and 3D geometries for such scenarios need to be quan-562

tified in future studies.563
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Figure 8: Timeseries of the three scenario investigated (from left to right; the Moon,
Mars and Mercury). First row shows the fraction of molten mantle (in %) at a given time
in the evolution for each planet, second row shows the mechanical thickness of the litho-
sphere (in km) during the evolution, and the third row shows the CMB and surface heat
fluxes (in mW m-2). Since the cylindrical geometry shows the largest difference to the 3D,
it was not included in this comparison. All the equations used in order to compute these
quantities are described in the SI.

5 Conclusions564

The main goal of this study is to provide a systematic comparison between differ-565

ent geometries in order to determine how accurate can 2D geometries reproduce 3D re-566

sults. To this end, we investigated (scaled and non-scaled) 2D cylinder, 2D spherical an-567

nulus, and 3D spherical shell geometries in a series of scenarios. We started with isovis-568

cous steady-state models, included the effects of a temperature dependent viscosity, and569

finally tested the different geometries for thermal evolution setups. Our main findings570

are the following:571

1. While it is obvious that a 3D geometry should be preferred over a 2D one, due to572

the high computational cost, this may not always be feasible. Applying models573

with different complexities, we demonstrated that the 2D spherical annulus ge-574

ometry is able to reproduce the 3D models much better than the 2D cylinder, in575

particular for the low radius ratio setups. The latter is also clearly seen when mod-576

eling the thermal evolution of the Moon.577
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2. For steady-state scenarios, our models show that the 2D geometries will mostly578

overestimate the mean temperature compared to 3D, a result largely explained579

by the geometry of mantle plumes (i.e., sheet-like in 2D vs. columnar-like in 3D).580

This discrepancy decreases with an increasing Rayleigh number but is more ac-581

centuated for low-radius ratio cases, a result already observed by Guerrero et al.582

(2018). The differences in temperature between the 2D and 3D geometries decreases583

for mixed heated cases (i.e., heated both from below and from within). This is es-584

pecially true in the case of the spherical annulus, since the spherical annulus is a585

geometry which uses the same cell volumes as a 3D spherical shell.586

3. We find that for intermediate ratios of the inner to outer radius (e.g., Mars-like587

thermal evolution case), the differences in the results for the 2D and 3D geome-588

tries are larger than for extreme radius ratios. In contrast to the temperature-dependent589

steady-state cases, where the difference in surface heat flux and stagnant lid thick-590

ness between 2D geometries and 3D geometries is largest for high radius ratios,591

the difference obtained for Mercury-like evolution parameters is minimal. This is592

due to the low Rayleigh number of Mercury that leads to the transition to a con-593

ductive state during its thermal history.594

4. Care needs to be taken when studying melting processes with the spherical an-595

nulus in thermal evolution setups with intermediate radius ratios (e.g., Mars and596

Venus), as this geometry might overestimate crustal production by up to 30% com-597

pared to a 3D simulation leading to a different thermal history of the interior.598

Future studies need to test the accuracy of the 2D spherical annulus in reproduc-599

ing the 3D spherical shell geometry in more complex scenarios considering variable ther-600

mal conductivity and expansivity (Tosi, Yuen, et al., 2013), chemical buoyancy (Nakagawa601

et al., 2010), as well as partial melting of the mantle and its influence on thermal evo-602

lution.603
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Abstract12

Regardless of the steady increase of computing power during the last decades, 3D nu-13

merical models continue to be used in specific setups to investigate the thermochemi-14

cal convection of planetary interiors, while the use of 2D geometries is still favored in most15

exploratory studies involving a broad range of parameters. The 2D cylindrical and the16

more recent 2D spherical annulus geometries are predominantly used in this context, but17

the extent to how well they reproduce the 3D spherical shell in comparison to each other,18

and in which setup, has not yet been extensively studied. Here we performed a thorough19

and systematic study in order to assess which 2D geometry reproduces best the 3D one.20

In a first set of models, we investigated the effects of the geometry on thermal convec-21

tion in steady-state setups while varying a broad range of parameters. Additional ther-22

mal evolution models of three terrestrial bodies, respectively Mercury, the Moon, and23

Mars, which have different interior structures, were used to compare the 2D and 3D ge-24

ometries. Our study shows that the spherical annulus geometry improves results com-25

pared to cylindrical geometry when reproducing 3D models. Our results can be used to26

determine for which setup acceptable differences are expected when using a 2D instead27

of a 3D geometry.28

Plain Language Summary29

In geodynamic modeling, numerical models are used in order to investigate how30

the interior of a terrestrial planet evolves from the earliest stage, after the planetary for-31

mation, up to present day. The mathematical equations that are used to model the phys-32

ical processes in the interior of rocky planets are discretized and solved using geomet-33

ric meshes. The most commonly used geometries are the 3D spherical shell, the 2D cylin-34

der, and the 2D spherical annulus. While being the most accurate and realistic, the 3D35

geometry is expensive in terms of computing power and time of execution. On the other36

hand, 2D geometries provide a reduced accuracy but are computationally faster. Here37

we perform an extensive comparison between 2D and 3D geometries in scenarios of in-38

creasing complexity. The 2D spherical annulus geometry shows much closer results to39

the 3D spherical shell when compared to the 2D cylinder and should be considered in40

2D modeling studies.41

1 Introduction42

Geodynamic modeling is a powerful approach to investigate the dynamics of the43

mantle and lithosphere of terrestrial planets and to explore the evolution of their inte-44

rior that is not directly observable. Such models vary in their complexity and often em-45

ploy different geometries to investigate physical processes such as mantle melting and46

cooling, and the generation of a magnetic field. When using these models to interpret47

specific observations of the Earth and other planets, care must be taken in particular for48

the choice of geometry (see Noack & Tosi, 2012, for an overview of geometries), as this49

may significantly impact quantities such as the mantle temperature, the convection ve-50

locity, and the heat flux of the simulations.51

The role of two-dimensional geometry studies in the field of thermochemical man-52

tle convection modeling is still predominant despite an ever-increasing computing power.53

Although the formulation of 3D grids has seen improvements in previous years with the54

Yin-Yang grid (Kageyama & Sato, 2004) and the spiral grid (Hüttig & Stemmer, 2008a)55

among others; simulations with a full spherical shell geometry remain highly expensive56

in terms of computational power, hence making them inappropriate to study broad ranges57

of parameters or conduct large exploratory studies. As an alternative, geometrical ana-58

logues to the 3D spherical shell have been extensively used, namely the 2D spherical axi-59

symmetric (van Keken & Yuen, 1995) and the more popular cylindrical geometry (Jarvis,60

1993). The 2D axi-symmetric geometry has been used in earlier studies of mantle con-61
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vection (e.g., van Keken & Yuen, 1995; Jarvis et al., 1995), but in addition to the arti-62

ficial boundaries formed by the poles which trap down- and up-wellings, an asymmetry63

between the polar and the equatorial regions exists (van Keken, 2001). The cylindrical64

geometry on the other hand, while resolving the problems of the artificial boundaries at65

the poles imposed by the axi-symmetric geometry, still exhibits an important drawback.66

The ratio of the two surfaces (the planetary surface and the core surface) is different in67

the cylindrical geometry compared to the spherical shell. This leads to a mismatch in68

heat flux values between these geometries, as the heat flux of the core mantle boundary69

(CMB) is underestimated and the surface heat flux is overestimated when comparing to70

a spherical shell with the same ratio between the core and planet radius (i.e., radius ra-71

tio).72

In order to mitigate this problem, van Keken (2001) introduced a re-scaling of the73

2D cylindrical geometry such that the ratio of outer and inner areas of the cylinder matches74

the ratio obtained for the spherical shell. This scaling, however, while correcting the sur-75

face ratio discrepancy of the cylinder, still uses the volume of a cylinder. Additionally,76

this re-scaling creates an artificially smaller core, which in turn modifies the convection77

pattern in the mantle, leading for example to a crowding of the plumes near the CMB,78

a behavior that would not be observed in a 3D spherical shell, when using the original,79

non-scaled radii.80

To overcome this major drawback of the cylindrical geometry, another 2D geom-81

etry called ”spherical annulus” has been proposed by Hernlund and Tackley (2008). This82

geometry effectively uses a second degree of curvature and considers the same surfaces83

and volumes as the 3D geometry. Since no re-scaling is necessary for this geometry, it84

keeps the same radius ratio as the 3D one. In the study of Hernlund and Tackley (2008),85

the spherical annulus showed promising results to approximate the 3D spherical geom-86

etry with mean temperature and Nusselt number well reproduced for steady-state ther-87

mal convection calculations. While these results a highly valuable, there are only for the88

case of an Earth-like radius ratio and only consider thermal convection simulations in89

the Boussinesq approximation.90

More recently, Guerrero et al. (2018) performed a more extensive study with the91

spherical annulus for stagnant lid convection models and compared the temperature dis-92

tribution between the spherical annulus and the spherical shell. However, an extensive93

study investigating the ability of the 2D spherical annulus to reproduce results obtained94

in a 3D spherical shell and a systematic comparison with the 2D cylinder for various se-95

tups has never been conducted so far.96

In this study, we present simulations of thermal convection in the 2D spherical an-97

nulus and compare the results to the 2D cylinder and the 3D spherical shell. In a first98

part we focus on simple steady-state convection models using the Boussinesq approxi-99

mation. We vary the Rayleigh number, the radius ratio, and the heating mode for iso-100

viscous cases and run additional temperature-dependent viscosity models to determine101

which of the two 2D geometries (i.e., cylinder or spherical annulus) is able to best re-102

produce the 3D results. The set of equations that were used for this comparison are de-103

scribed in Section 2.1, the grid geometries are displayed in Section 2.2, and a descrip-104

tion of the cases investigated here is available in Section 2.3. A detailed analysis of the105

results is presented in Section 2.4.106

In a second step, we run more complex simulations of thermal evolution with the107

same geometries in three separate scenarios. We use Moon-like, Mars-like, and Mercury-108

like thermal evolution models to investigate how well the 2D spherical annulus repro-109

duces the results of the 3D spherical shell geometry. The three planetary bodies were110

chosen since they cover a wide range of interior structures and they are all thought to111

have been in a stagnant lid regime over their entire thermal history, which makes them112

comparable in terms of their tectonic regime (Breuer & Moore, 2015). In Section 3.1 we113
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list the equations used for the thermal evolution models. A description of the employed114

parameters and setup of the models is given in Section 3.2. The results are described in115

Section 3.3. A discussion of the steady-state and thermal evolution models is presented116

in Section 4, followed by conclusions in Section 5.117

2 Steady-state mantle convection118

In a first set of calculations we focus on the comparison between steady-state cal-119

culations in 2D and 3D geometries. For this purpose we test a large number of param-120

eter combinations for isoviscous models and temperature-dependent viscosity.121

2.1 Mathematical model122

Fully dynamical models of mantle convection allow us to investigate the spatial and123

temporal evolution of mantle flow. These models solve the conservation equations of mass,124

momentum, and energy. Here, the conservation equations are scaled using the mantle125

thickness D as length scale, the temperature drop across the mantle ∆T as temperature126

scale and the thermal diffusivity κ as time scale. A Table listing the scaling factors is127

available in the Supplementary Information, SI (Table S1). By assuming a Newtonian128

rheology, an infinite Prandtl number, and considering the Boussinesq approximation (Schubert129

et al., 2001; van Zelst et al., 2022), the non-dimensional conservation equations read:130

∇ · u = 0, (1)

∇ ·
(
η
(
∇u + (∇u)T

))
+RaTer −∇P = 0, (2)

DT

Dt
−∇2T −H = 0. (3)

In Equations 1 – 3, u is the velocity vector, η is the viscosity, T is the temperature,131

er is the radial unit vector, P is the dynamic pressure, and t is the time.132

The parameter Ra denotes the thermal Rayleigh number, a non-dimensional num-133

ber, which controls the vigor of the convection in the mantle. H is the internal heating134

rate of the mantle that is given by
RaQ

Ra , where RaQ denotes the Rayleigh number as-135

sociated with internal heating. The Rayleigh numbers Ra and RaQ read:136

Ra =
ρrefgrefαref∆TD3

κrefηref
, RaQ =

ρ2refgrefαrefHD
5

κrefηrefkref
, (4)

where ρref is the reference density, gref is the reference gravitational acceleration, αref137

is the reference thermal expansivity, κref is the reference thermal diffusivity, ηref is the138

reference viscosity, kref is the reference thermal conductivity, and H is the internal heat-139

ing rate in W/kg.140

For the steady-state models, we use a constant or temperature-dependent viscos-141

ity that follows the Frank-Kamenetskii approximation (Frank-Kamenetskii, 1969), which142

is a linearized form of the Arrhenius law:143

η(T ) = exp(∆ηT (Tref − T )), (5)

The parameter ∆ηT is the viscosity contrast due to temperature and Tref is the144

reference temperature at which a non-dimensional viscosity equal to 1 is attained. For145

the thermal evolution simulations presented further in this study, we use another parametriza-146

tion of the viscosity (Eq. 9), which is discussed more in-depth in the Section 3.1.147
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Figure 1: Representation of a cell of the spherical annulus geometry, in red, its effective
volume. The cylindrical geometry is represented in blue, on the equatorial plane. The
red area represented corresponds to the intersection of the spherical annulus cell with the
equatorial plane. When looking at the grid from a polar point of view, its visualization
becomes thus indistinguishable from the cylindrical cell.

2.2 Grid geometries148

We use the numerical code Gaia (Hüttig & Stemmer, 2008a, 2008b; Hüttig et al.,149

2013) to model the mantle convection in the interior of rocky planets. Gaia solves the150

conservation equations (Eq. 1 – 3) in their dimensionless form in 2D and 3D geometries.151

For the 2D geometry, we use both the classical cylindrical geometry (van Keken, 2001)152

and the spherical annulus geometry following the approach of Hernlund and Tackley (2008).153

In the 2D cylindrical geometry, the areas and volumes of the grid cells are typically for-154

mulated using the equations for a cylinder; however, what makes the particularity of the155

spherical annulus geometry, is the addition of a virtual thickness to the cylindrical ge-156

ometry which varies with the radius r. Thus the spherical annulus has a second degree157

of curvature, and uses an effective 3-dimensional formulation for the areas and volumes,158

as represented on Figure 1 (a more detailed description of the spherical annulus geom-159

etry is available in Section S3 of the SI).160

The 2D cylindrical geometry is scaled according to the scaling introduced by van161

Keken (2001), where the inner and outer radii of the cylinder grid (i.e., the core radius162

and the planetary radius, respectively) are changed such that the ratio between the outer163

and inner areas of the cylinder matches the ratio obtained in a 3D spherical shell geom-164

etry. The equations used to correct the inner and outer radii of the cylinder are the fol-165

–5–



manuscript submitted to Geochemistry, Geophysics, Geosystems

lowing:166

roc
ric

=
r2os
r2is

, roc − ric = ros − ris, (6)

where ric and roc are the inner and the outer radius of the cylinder, respectively. The167

inner and outer radii of the spherical shell are denoted by ris and ros, respectively. In168

the following, we will refer to this type of geometry that considers the rescaling of the169

inner and outer radii as the ”scaled cylinder geometry”.170

2.3 Case definition171

In the first part of this study, we performed steady-state simulations in order to172

investigate the effects of the ratio of the inner to outer radius and of heating modes on173

the results obtained with the 2D cylindrical, 2D spherical annulus, and 3D spherical shell174

geometry. Our aim is to compare 2D and 3D geometries and determine for which sce-175

narios does the 2D spherical annulus give closer results to the 3D compared to the 2D176

cylinder. To this end, we use models heated from below (purely bottom-heated), from177

within (purely internally-heated), and from both below and within (mixed heated). We178

use an initial random perturbation of the temperature field with an amplitude of 5%,179

vary the Rayleigh number Ra of our simulations from 104 up to 108, and the radius ra-180

tio f from 0.2 to 0.8 for our isoviscous setup.181

For the 2D geometries, we use between 1.1×104 and 6.7×104 grid points for low182

Rayleigh number simulations and between 4.8×104 and 4.1×105 for simulations with183

a Rayleigh number higher than 106. For the 3D geometries, we use between 2.04×106184

and 2.94×106 grid points. A more in depth description of each grid and its associated185

lateral and radial resolution is available in the SI. A short comparison of our results to186

the ones of Hernlund and Tackley (2008) for isoviscous steady-state cases is presented187

in Section S4 of the SI.188

Each mesh has a prescribed temperature and free-slip velocity as boundary con-189

ditions. The temperature of the upper boundary Tsurf is set to zero, while the one of the190

lower boundary is set to one for the bottom heated and mixed heated cases. For the purely191

internally heated cases we use a zero heat flux at the core-mantle boundary.192

The simulations are ran until a statistical steady-state is reached. Then, output193

quantities such as the average temperature, root-mean-square velocity, and top temper-194

ature gradient are computed using an average over the last 10% of the simulation. While195

for purely steady-state models this is the same as taking the last output, for quasi steady-196

state time-dependent or periodic models this ensures to retrieve representative average197

values. The top temperature gradient here is the temperature gradient at the top of the198

domain, calculated between the last two shells of the grid.199

An additional, more complex set of simulations includes the effect of the temper-200

ature dependence of the viscosity, and leads to the formation of a stagnant lid at the top201

of the convecting domain. These simulation represent simplified Moon-like (f = 0.2),202

Mars-like (f = 0.5), and Mercury-like (f = 0.8) scenarios. We use here thermal and203

radiogenic Ra numbers with values similar to those expected for planetary mantles, i.e.,204

Ra = 5× 106 and RaQ = 5× 107 (see values of Ra and RaQ in Table 1). We use the205

Frank Kamenetskii parametrization for the viscosity (Eq. 5) and set a viscosity contrast206

∆ηT to 108 at a reference temperature Tref of 0.5 to ensure that we are in a stagnant207

lid convection regime. In this setup, the total number of nodes used for the 2D grids lies208

between 4.8×104 and 2.8×105; while for the 3D simulations, the total number of nodes209

is 2.9× 106.210

In total, we run 180 isoviscous simulations and 36 temperature-dependent viscos-211

ity cases. All parameters and the grid resolutions for these steady-state simulations are212

listed in Table S2 in the SI.213
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2.4 Results214

2.4.1 Isoviscous convection215

For the first set, consisting of isoviscous simulations, we provide a thorough and216

systematic comparison between the 3D spherical grid and the two 2D geometries, namely217

the spherical annulus and the cylindrical geometry. A summary of the comparison is shown218

in Figure 2.219

Here, the analysis of the 180 simulations has been summarized into three subplots220

one for each heating mode. Each subplot contains two rows showing for each the annu-221

lus geometry (first row) and the scaled cylindrical geometry (second row), respectively,222

the relative error to the 3D results. The computation details of the relative error can be223

found in the SI (Section S5) along with tables containing the values for each simulation224

in CSV format. Figure 2 shows that the mean domain temperature of the 3D geome-225

try is more accurately reproduced by the spherical annulus geometry than by the cylin-226

drical one in every heating mode, up to values of Ra = 107. This difference is even more227

noticeable in the low radius ratiosetups (i.e., f = 0.2 and 0.4), which can be seen for228

the purely bottom heated and mixed heated scenarios. We also see for the purely inter-229

nal heated cases and high Rayleigh number cases (i.e., Ra = 107 and Ra = 108) that230

this difference is even more dramatic with an overestimation of the temperature in the231

cylindrical geometry by up to ∼ 20% for the small a radius ratio (i.e., f = 2) and re-232

duces to only a few percent in the spherical annulus.233

In the case of the root mean square velocity, we see a general increase of the ac-234

curacy with the spherical annulus geometry, however this increase is less pronounced than235

what is observed for the mean temperature. We see a slightly better match for the purely236

bottom heated and mixed heated setups, where simulations with Ra < 107 go from be-237

ing slightly underestimated by the cylinder to slightly overestimated by the annulus. How-238

ever, the cases with Ra ≥ 107 show a net improvement, with an underestimation de-239

creasing for all the cases with a radius ratio higher than 0.2. For the setup with a purely240

internal heating, however, almost no improvement is visible, with the notable exception241

of the simulation with a Ra = 108 and a radius ratio of 0.2 being overestimated by ∼242

40% in the case of the cylinder, which turns to be overestimated only by ∼ 20% in the243

case of the spherical annulus.244

In comparison to the cylinder, the spherical annulus, gives less conclusive results245

for the top temperature gradient. We can see an improvement in case of small radius ra-246

tios (i.e., f = 0.2) with either purely internal heating or mixed heating, or in the case247

of high Rayleigh numbers (i.e., Ra ≥ 107) for purely internal heated cases. Otherwise,248

for the majority of the setups and heating modes, the spherical annulus does not show249

significant improvement in reproducing the 3D values compared to the scaled cylindri-250

cal geometry. A comparison of the temperature gradient at the top of the mantle shows251

that the spherical annulus is hardly able to reproduce the 3D values more accurately than252

the scaled cylindrical geometry, with the notable exception of low radius ratios of around253

f = 0.2.254

2.4.2 Stagnant lid convection255

In the second part of the steady-state simulations, we modeled stagnant lid con-256

vection while varying the heating mode, the radius ratio, and the geometry in order to257

study the accuracy of the spherical annulus geometry (see SI, Table S2). In this type of258

setup, where the viscosity is strongly dependent on temperature, the convection is ex-259

pected to operate in a stagnant lid regime. This rigid layer that forms at the top of the260

domain restricts convective heat transfer to the deep interior.261

The results are summarized in Figure 3, where we report the relative error of the262

2D cylindrical, 2D scaled cylindrical, and 2D spherical annulus geometry to the 3D spher-263

ical shell. Here we inspect the mean temperature, the root mean square velocity, the top264
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Figure 2: Averaged computed relative error to the 3D geometry with 3 different heat-
ing modes, i.e., purely basal heated (top row), purely internal heated (middle row), or
mixed heated (bottom row) for steady-state isoviscous convection simulations. For each
heating mode the first line of plots shows the relative errors for the spherical annulus and
the second line represents the scaled cylinder. The thermal Rayleigh number and internal
Rayleigh number vary from 104 to 108 and the radius ratio from 0.2 to 0.8. The radius
ratio indicated on the plot is the one corresponding to the reference 3D simulations. In
the case of the cylinder, the radius ratio is scaled, thus a 0.2 radius ratio becomes 0.04 fol-
lowing the scaling formula from van Keken (2001) (eq. 6). For columns from left to right,
relative error of the mean temperature, of the vrms, and of the top temperature gradient
are shown.
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temperature gradient, and the stagnant lid thickness. For each simulation we use a Ra265

of 10× 106 and RaQ of 10× 107.266

In Figure 3, when considering purely basal heating, we see that the spherical an-267

nulus is overall better at reproducing the 3D values compared to the scaled and non-scaled268

cylinder. The highest discrepancy is observed for the radius ratio f = 0.2, with > 50%269

of overestimation on average for the 2D geometries. For the spherical annulus, the mean270

temperature matches best the one of the 3D spherical shell when the radius ratio increases,271

an effect also seen for the vrms. The top temperature gradient does not follow this pat-272

tern, however, while the stagnant lid error is the lowest for f = 0.5. The highest dif-273

ference to the 3D for the low radius ratio setups (f = 0.2) in the purely bottom heated274

setup that we found in our models is in agreement with Guerrero et al. (2018). The study275

by Guerrero et al. (2018) considered stagnant lid convection with only basal heating, and276

observed that for small radius ratio setups, the spherical annulus would systematically277

show a hotter temperature when compared to the 3D. This behavior is indeed confirmed278

by our simulations, where we can observe that the different geometry of plumes between279

the spherical annulus and the spherical shell create considerable differences in temper-280

ature in the low radius ratio and bottom heated simulations. Plumes in a 2D geometry281

are rather sheet-like than column-like as they are in a 3D geometry. This leads to a warmer282

temperature in the 2D geometries compared to the 3D as being the consequence of a topo-283

logical difference between flows in a spherical shell and spherical annulus, as explained284

by Guerrero et al. (2018). Moreover, this difference is strongly accentuated for low ra-285

dius ratios, where the number of plumes is small and such geometrical effects significantly286

affect the results. For a better illustration of this behavior we refer the reader to Fig-287

ure S5 of the SI. The increase of temperature differences with increasing f was also ob-288

served by Guerrero et al. (2018) and is confirmed by our results.289

In the case of a purely internally heated case, we see that the annulus fares remark-290

ably better than the cylindrical geometries and that the average relative error of the mean291

temperature, the vrms, and top temperature gradient diminish as the radius ratio decreases.292

The highest radius ratio (i.e., f = 0.8) shows here the highest discrepancy between 2D293

and 3D, with more than 50% and 20% of overestimation for the vrms and the top tem-294

perature gradient respectively, while the stagnant lid is underestimated on average by295

15%. When taking a closer look at the simulations, it appears that, the internal heat-296

ing simulations in 2D have a tendency to require more convective strength in order to297

transport the same amount of heat in the domain compared to a 3D simulation, as al-298

ready shown in Hernlund and Tackley (2008). This peculiarity when investigating the299

temperature and velocity distribution will apparently create a larger amount of down-300

wellings in the case of a 3D model for a given internal heating rate when compared to301

a 2D one. This can be seen on the Figure S7 of the SI.302

For cases heated both from below and from within (i.e., mixed heated cases), the303

spherical annulus is showing the best results for the mean temperature, the top temper-304

ature gradient, and the stagnant lid thickness when the radius ratio is the lowest (i.e.,305

f = 0.2). For the highest radius ratio considered here (i.e., f = 0.8), the results ob-306

tained with the spherical annulus and the cylinder geometries show similar errors, with307

the exception of vrms that seems to be best reproduced by the scaled cylinder geome-308

try.309

When combining purely basal heating with internal heating, the main discrepancy310

previously arising from the low radius ratio and purely basal heated simulations seems311

to be mitigated by the addition of internal heating. The difference in the temperature312

distribution between the spherical annulus and the spherical shell tends to disappear (see313

Figure S7 of the SI).314

In summary, for the stagnant lid cases presented here, the mean temperature is over-315

all better reproduced by the spherical annulus independently of the radius ratio or heat-316

ing mode. Additionally, in the intermediate to low radius ratio simulations (f ≤ 0.5),317

the spherical annulus can also reproduce the 3D velocities, the top temperature gradi-318

ent, and the stagnant lid better than the cylinder geometry.319
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Figure 3: Averaged computed relative error to the 3D geometry with 3 different heating
modes (i.e., purely basal heated, purely internal heated, and mixed heated) for steady-
state convection simulations with a temperature dependent viscosity. The mean tem-
perature of the domain, the root mean square velocity, the temperature gradient at the
top of the domain, and the stagnant lid thickness are compared here. For each subplot
analyzing the relative error in a given heating mode, every column represents a different
geometry, namely the 2D cylinder, the 2D scaled cylinder, and the 2D spherical annulus.
The thermal Rayleigh number is 5 × 106, the internal Rayleigh number is 5 × 107, and the
investigated radius ratios are 0.2, 0.5, and 0.8.
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3 Thermal evolution models320

In this part we compare the 2D and 3D geometries in a more complex set-up, by321

using thermal evolution models in a stagnant lid regime. Compared to the previously322

discussed steady-state calculations, these models illustrate which of the 2D geometries323

can best reproduce the 3D results when mantle and core cooling are considered.324

3.1 Mathematical model325

For the thermal evolution models we use the Extended Boussinesq Approximation326

(EBA) (Schubert et al., 2001) to account for adiabatic heating and cooling. The energy327

equation (Eq. 3) becomes:328

DT

Dt
−∇ · (k∇T )−Diα(T + Tsurf )ur −

Di

Ra
Φ−H = 0, (7)

where ur is the radial component of the velocity vector, Tsurf is the surface tempera-329

ture, α is the thermal expansivity, and Φ is the viscous dissipation given by Φ = τ :330

ε̇/2, where τ is the deviatoric stress tensor and ε̇ the strain rate tensor. The dissipation331

number Di is defined as follows:332

Di =
αrefgrefD

cp
, (8)

where cp is the mantle heat capacity.333

In the thermal evolution models, we consider a temperature and pressure depen-334

dent viscosity that follows the Arrehnius law of diffusion creep. The non-dimensional equa-335

tion for viscosity reads (Roberts & Zhong, 2006):336

η(T, z) = exp

(
E + zV

T + Tsurf
− E + zrefV

Tref + Tsurf

)
, (9)

where E and V are the activation energy and the activation volume respectively (Karato337

& Wu, 1993; Hirth & Kohlstedt, 2003). Tref and zref are the reference temperature and338

depth, respectively, at which the reference viscosity is attained. The non-dimensional Tref339

and zref values correspond to a dimensional reference temperature of 1600 K and a di-340

mensional reference pressure of 3 GPa, respectively.341

The temperature of the lower boundary TCMB evolves following a 1-D energy bal-342

ance, assuming a core with constant density and heat capacity (Stevenson et al., 1983):343

ccρcVc
dTCMB

dt
= −qcAc, (10)

where cc is the heat capacity of the core, ρc is the core density, Vc is the core volume,344

qc is the heat flux at the core-mantle boundary (CMB), and Ac is the core surface area.345

Here we do not consider core crystallization.346

As appropriate for thermal evolution models, we take into account the decay of the347

heat producing elements (i.e., Ur238, Ur235, Th232, and K40). The amount of radioac-348

tive heat sources is calculated using the concentrations listed in Table 1.349

In thermal evolution models we consider the effect of a 50 km laterally homoge-350

neous crust. This crust is enriched in radiogenic elements while the mantle is depleted351

according to the following mass balance:352

Mtot ·Qtot = Mmantle ·Qmantle +Mcrust ·Qcrust, (11)

where M is the mass and Q is the heating rate. This setup also considers the blanket-353

ing effect of the crust by using a lower thermal conductivity k in the crust compared to354

the mantle.355
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3.2 Case definition356

We test three scenarios for the thermal evolution of a Mars-like, the Moon-like, and357

Mercury-like planet. We model the entire evolution of these planets to determine the vari-358

ations over time of several key output quantities. These three planetary bodies were cho-359

sen because of their different interior structures. In the Mars-like case, the radius ratio360

between core and planetary radius is f = 0.544. The Moon- and Mercury-like scenar-361

ios represent two end-members in terms of their radius ratios, with f = 0.224 and f =362

0.828, respectively.363

In the case of the 2D grids, we use a radial resolution of ∼ 10 km for Mars- and364

Moon-like cases, and a ∼ 5 km radial resolution for the thin mantle of Mercury. In the365

case of the 3D grids, the radial resolution lies between 22 and 9 km, and we use a lat-366

eral resolution of 40962 points per shell. A more detailed list of the resolution for every367

grid is available in Table S2 of the SI.368

In the cylindrical geometry, we use both the classical cylinder and the rescaling of369

van Keken (2001) as done previously in the stagnant lid steady-state simulations. It is370

worth to note that for the peculiar Moon-like interior structure, the scaling of the respec-371

tive radii leads to a radius ratio f = 0.0503. Since this is an extreme case, we test whether372

the rescaling of the cylinder geometry is appropriate for such interior structures in a ther-373

mal evolution scenario.374

It is important to note here that for each planet we use different Rayleigh num-375

bers (i.e., Ra and RaQ). These are calculated self-consistently using the mantle thick-376

ness, internal heat sources, and temperature difference accross the mantle specific for each377

planet. The parameters are listed in Table 1. While for Mars- and Moon-like simulations378

we use a reference viscosity of 1021 Pa s, for the Mercury-like case we perform additional379

tests with a reference viscosity that is lower by two orders of magnitude (i.e., 1019 Pa s).380

Since the thin Mercurian mantle typically leads to a conductive state after a few Gyr381

of evolution, by using a lower reference viscosity we test additional scenarios, in which382

convection can be sustained over most of the evolution. The results for Mercury with383

ηref = 1021 Pa s and 1019 Pa s are also compared between the 3D spherical shell and384

the 2D geometries.385

In all our simulations we consider the presence of a primordial crust with a thick-386

ness of 50 km, which is enriched in radiogenic elements compared to the bulk heat sources387

of the planet by a factor of 2 and has a two times lower thermal conductivity than the388

mantle (see Table 1). While being a representative value for the enrichment of the Mer-389

curian crust (Tosi, Grott, et al., 2013), for the two other scenario it allows to increase390

the complexity of the simulation without having a thermal evolution dominated by the391

enrichment of the crust. A second set of thermal evolution models neglecting the effects392

of the crust is listed in Section S7 of the SI.393

3.3 Results394

In the following, we present the results obtained for the thermal history of Mars,395

the Moon, and Mercury for all geometries. Similar to the steady-state calculations, we396

show in Figure 3 the difference of the 2D cylinder, 2D scaled cylinder, and 2D spheri-397

cal annulus to the 3D results after 4.5 Gyr of evolution (i.e., at present day). In addi-398

tion to the error shown in percent, we also list the difference between the dimensional399

values for mean temperature, CMB temperature, root mean square velocity, lid thick-400

ness, as well as surface and CMB heat fluxes (Figure 4).401

Figure 5 shows the entire evolution over 4.5 Gyr of the output quantities of inter-402

est for all four geometries (2D cylinder, 2D scaled cylinder, 2D spherical annulus, and403

3D spherical shell) for a Mars-like geometry. Our results show clearly that in the case404

of a Mars-like geometry, the values obtained during the entire thermal evolution with405
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Figure 4: Relative error to the 3D in the case of thermal evolution simulations. In each
panel we vary the planet on the y axis and on the x axis we vary the geometry. We in-
vestigate the relative error for: the mean temperature (a), the CMB temperature (b), the
root mean square velocity (c), the stagnant lid thickness (d), the surface heat flux (e), and
the CMB heat flux (f). A color in the blue indicates an underestimation of the results ob-
tained in the 3D geometry whereas a color in the red indicates an overestimation. 2D Cyl
stands for non-scaled 2D cylindrical geometry, 2D Sca Cyl is 2D cylindrical geometry with
the scaling by van Keken (2001), and 2D Ann stands for 2D spherical annulus geometry.
Each panel shows the relative error in % to the 3D and the absolute error in dimensional
unit.

–13–



manuscript submitted to Geochemistry, Geophysics, Geosystems

Symbol Description (Unit) Mars Moon Mercury

Rp Planetary radius (km) 3400 1740 2440
Rc Core radius (km) 1850 390 2020
D Mantle thickness (km) 1550 1350 420
f Radius ratio (-) 0.544 0.224 0.827

Tsurf Surface temperature (K) 220 250 440
TCMB CMB temperature (K) 2000 2000 2000
Tref Reference temperature (K) 1600 1600 1600
∆T Temperature contrast across the mantle (K) 1780 1750 1560
g Gravitational acceleration (m.s−2) 3.7 1.6 3.7
ηref Reference viscosity (Pas) 1021 1021 1021

κ Thermal diffusivity (m2/s) 1× 10−6 1.06× 10−6 1.04× 10−6

α Thermal expansivity (K−1) 2.50× 10−5 2.50× 10−5 2.50× 10−5

Ra Rayleigh number(-) 2.14× 106 5.35× 105 3.49× 104

RaQ Internal heating Rayleigh number (-) 5.91× 107 8.70× 106 8.00× 104

ρcore Core density (kg/m3) 6000 7500 6980
ρmantle Mantle density (kg/m3) 3500 3300 3380
ρcrust Crust density (kg/m3) 2900 2700 2900
cp,m Mantle heat capacity (kgK) 1142 1142 1142
cp,c Core heat capacity (kgK) 850 850 850
V Activation volume (m3/mol) 6.00× 10−6 6.00× 10−6 6.00× 10−6

E Activation energy (J/mol) 3.00× 105 3.00× 105 3.00× 105

km Mantle thermal conductivity (Wm−1K−1) 4 4 4
kcr Crust thermal conductivity (Wm−1K−1) 3 2 3

Dcrust Primordial crust thickness (km) 50 50 50

Heat source concentration (Taylor, 2013) (Taylor, 1982) (Padovan et al., 2017)
CU Uranium concentration (ppb) 16 33 7
CTh Thorium concentration (ppb) 58 125 29
CK Potassium concentration (ppm) 309 83 550

Table 1: Parameters for thermal evolution calculations for Mars, Moon, and Mercury.
Note that the non-dimensional radii are rescaled according to Eq. 6 for the scaled cylinder
geometry.

a 3D geometry are more closely reproduced by the spherical annulus than the cylinder,406

irrespective of whether it is scaled or not. It is to note that the spherical annulus geom-407

etry is reproducing especially well the evolution of the mean and core-mantle boundary408

temperatures (see Figure 4 for the actual present-day error), while the velocities are sys-409

tematically overestimated by the 2D geometries (27.7% for the spherical annulus and 29.6%410

for the rescaled cylinder). This directly affects the calculation of the stagnant lid thick-411

ness, and thus underestimates it by 6.2% for the annulus and 8.1% for the rescaled cylin-412

der. When trying to reproduce the heat fluxes at present day, the spherical annulus is413

somewhat better than the scaled cylinder, with an approximated underestimation of the414

CMB heat flux by 22% compared to 28% for the scaled cylinder, while the surface heat415

flux will be overestimated by 6% and 8% for the annulus and the scaled cylinder, respec-416

tively. While we focus in this part mostly on present-day values, when examining the417

entire thermal evolution of the planet we observe in the early and middle stages (between418

1 and 3 Gyr) a relative error even larger as the one observed at present day, as seen on419

Figure 5c and e. The Mars-like setup is the most challenging setup to reproduce for the420

spherical annulus, and although exhibiting relatively low errors, it still shows the high-421

est discrepancies between the thermal evolution cases with different interior structures.422

The overestimation of the mean temperature, mean velocity, surface heat flow, and un-423

derestimation of the stagnant lid thickness can be linked directly to the mixed heated,424

temperature-dependent viscosity simulation with a radius ratio of 0.5, which shows the425

same type of relative error (see Figure 3)426

–14–



manuscript submitted to Geochemistry, Geophysics, Geosystems

Figure 5: Timeseries of a Mars-like case with an initial crust of 50 km and with 4 differ-
ent geometries (2D non-scaled cylindrical, 2D cylindrical, 2D spherical annulus and 3D
spherical shell). The values shown here are the mean temperature (a), the core-mantle
boundary temperature (b), the surface heat flux (c), the core-mantle boundary heat flux
(d), the averaged root mean square velocity of the domain (e), and the lid thickness (f)
from 4.5 Gyr ago to present day, respectively. The shaded areas show the min.-max. vari-
ations during the evolution. The non-scaled cylinder has been added to show the effect of
the rescaling introduced by van Keken (2001).
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In the case of a Moon-like setup (Figure 6) the differences between the spherical427

annulus and the cylinder are typically larger than in the Mars-like case. However the dif-428

ference between the spherical annulus and the 3D is significantly lower in the case of the429

mean temperature, the stagnant lid thickness and the surface heat flow; as can be seen430

on Figures 6a, c, and f. The temperatures through time are very well reproduced by the431

spherical annulus (less than 2% of error compared to more than 12% for the cylindri-432

cal geometries). Similarly, the surface heat flux and the stagnant-lid thickness show a433

good match between the spherical annulus and the 3D geometries (see Table S5 of the434

SI). Concerning the cylindrical geometries, the effects of the rescaling are plainly visi-435

ble on the overall temperatures and heat fluxes evolution. As van Keken (2001) showed,436

the cylinder tends to overestimate the relative importance of the CMB radius compared437

to planetary radius and requires a rescaling of the radii. However, for the very low aspect-438

ratio of the lunar mantle, even when the rescaling is applied the results are still largely439

different compared to a 3D spherical shell geometry. A better approximation of the 3D440

results is obtained by the spherical annulus, where such rescaling is not needed. We see441

that the CMB heat flux stays at around -1.86 mW m-2 even at present day, meaning that442

the core is actively heated by the mantle, although in the other geometries the core is443

already cooling (see Figure 6b and d), a behavior which is also seen for Mars with the444

non-scaled cylindrical geometry. Similar to what has been seen previously for the low445

aspect-ratio cases with temperature-dependent viscosity combining basal heating and446

internal heating (see Figure 3), the scaled and non-scaled cylindrical geometries show447

large disagreements in all studied metrics. Nevertheless, even in the spherical annulus,448

the mean velocity and the CMB heat flux present the largest errors among the investi-449

gated quantities.450

In Figure 7, we show the results of the thermal evolution for a Mercury-like setup.451

Here we used two sets of simulations in order to illustrate the case of a initially weakly452

convecting mantle with a reference viscosity set as ηref = 1021 Pa s resulting in a Rayleigh453

number of Ra = 3.49×104; and the case of a mantle presenting a stronger initial con-454

vection with a reference viscosity lowered by two orders of magnitude, thus increasing455

the Rayleigh number to Ra = 3.49×106. Here again the global trend previously seen456

for Mars and the Moon emerges. As shown in figure 4, the spherical annulus geometry457

again reproduces best the 3D results with an approximate error of less than 1%, with458

a notable exception for the velocities, which are highly overestimated (more than 90%459

of relative error). The very high relative error of the vrms is explained by the present-460

day state of the Mercurian mantle. In our simulations, a Mercury-like planet falls into461

a quasi-conductive state after a couple of Gyr of evolution irrespective of the geometry462

(Figure 7), which in turn gives very low absolute vrms values. Yet the absolute differ-463

ence of velocity between the geometry is very small (less than 1 × 103 cm/year). De-464

spite these high relative error values in the velocities, the stagnant lid thickness is, how-465

ever, quite well reproduced by the 2D geometries, giving a maximum relative error of466

19 km (or an underestimation of 6.5%).467

4 Discussion468

Our results show that the spherical annulus can reproduce the 3D spherical shell469

geometry better than the cylindrical geometry, consistent with previous studies by Hernlund470

and Tackley (2008). Our systematic study, using simulations of increasing complexity,471

shows for the first time in great detail the difference in using a 2D geometry instead of472

a more realistic 3D spherical shell domain when modeling thermal convection in plan-473

etary mantles.474

When using the cylindrical geometry, whether scaled or not, the results show sub-475

stantial differences to the 3D geometry results in steady-state and thermal evolution sim-476

ulations. The necessity of choosing between a scaled and a non-scaled cylinder in mod-477

eling geodynamic processes inevitably results in a trade-off between an accurate repre-478
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Figure 6: Timeseries of a Moon-like case with an initial crust of 50 km and with 4 differ-
ent geometries (2D non-scaled cylindrical, 2D scaled cylindrical, 2D non-scaled cylindrical,
2D spherical annulus and 3D spherical shell). For a description off the values investigated,
see Figure 5.
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Figure 7: Timeseries of a Mercury-like case with an initial crust of 50 km, with 4 dif-
ferent geometries and 2 different reference viscosities. For a description off the values
investigated, see Figure 5. The dotted lines represent simulations with a reference viscos-
ity of ηref=1019 Pa s while the solid lines represent the cases with a reference viscosity of
ηref=1021 Pa s. The maximum and minimum of the output quantities are not displayed
here, since these variations are negligible.
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sentation of the deep interior structures in the case of the non-scaled cylinder, especially479

important when studying thermochemical structures (Stegman et al., 2003; Nakagawa480

& Tackley, 2004; Yu et al., 2019; Kameyama, 2022), and a correct representation of the481

heat fluxes as well as root mean square velocity in the domain (Deschamps et al., 2010;482

Mulyukova et al., 2015) for the scaled one. To circumvent these inaccuracies, the sys-483

tematic use of the spherical annulus in reproducing thermochemical convection in 3D is484

thus strongly recommended.485

In the case of steady-state simulations, we showed that the spherical annulus has486

the largest error in the high radius ratio scenarios (i.e, f = 0.6 and 0.8). The efficiency487

of the spherical annulus in reducing the error to the 3D (compared to the results of the488

scaled cylinder) is most visible in the case of a low radius ratio configuration (i.e., f =489

0.2), while nonetheless displaying large discrepancies in the mean temperature in the case490

of bottom heated and temperature-dependent setups, as also seen by Guerrero et al. (2018).491

Concerning the heating modes, as reported by Hernlund and Tackley (2008), the492

purely internally heated cases show the largest difference between the 2D and 3D geome-493

tries, while the mixed heating cases (bottom and internal heating) tends to be the heat-494

ing mode for which the spherical annulus exhibits the smallest errors in comparison to495

the spherical shell, as the difference in the temperature distribution between the spher-496

ical annulus and the spherical shell tends to disappear (see Figure S6 of the SI). This497

particularity becomes quite useful when trying to model more realistic processes such498

as thermal evolution models of terrestrial planets, as the silicate mantles of planets will499

invariably show heating induced by both the presence of radiogenic elements in the man-500

tle and by the core. The smaller error between the 2D spherical annulus and 3D spher-501

ical shell observed in mixed heated cases makes the spherical annulus an acceptable al-502

ternative to model more complex scenario (Figure 4), for which a 3D geometry is too ex-503

pensive. The trend of the relative error in the steady-state stagnant lid simulations with504

mixed heating is also observed in the case of thermal evolution models: the errors in the505

surface heat flux and stagnant lid thickness increase with increasing radius ratio (cf. the506

errors obtained for the Moon and Mars in Figure 4). However in the case of Mercury,507

while the steady-state simulations would predict the largest errors, the low Rayleigh num-508

ber in thermal evolution models and the transition to a conductive state during the ther-509

mal evolution strongly reduce the discrepancy between 2D and 3D geometries.510

The results presented here show that the spherical annulus is to be preferred to the511

cylindrical geometry, whether for steady-state simulations or thermal evolution simula-512

tions. However, in the case of the thermal evolution simulations one should question whether513

this geometry is sufficient to approximate the 3D spherical shell. Some observables such514

as the heat flux, the mechanical thickness of the lithosphere and the crust produced by515

partial melting of the mantle are used to evaluate the thermochemical evolution of a planet.516

But an important question is whether the 2D spherical annulus is accurate enough to517

reproduce the results of a 3D spherical shell for the above mentioned quantities, and which518

of these observables can be affected the most.519

Additional post-processing has thus been conducted in order to better character-520

ize the differences of more complex processes in the spherical annulus compared to the521

spherical shell. We exclude from this comparison the cylindrical geometry given its lack522

of accuracy in reproducing 3D. Moreover, the areas and volumes in the 2D cylindrical523

geometry are truly 2D and thus difficult to compare to the 3D spherical shell. Melting524

in the mantle, the thickness of the mechanical lithosphere, and heat fluxes are shown in525

Figure 8 as a function of time. For the calculation of the mechanical lithosphere thick-526

ness, we follow the approach of Grott and Breuer (2008). The calculations involving par-527

tial melting of the mantle are highly simplified and do not include the effects of latent528

heat or mantle depletion. While the quantities presented in Figure 8 are based on sim-529

ple post-processing of the thermal evolution results, they are meant to provide first or-530

der implications for the thermal evolution modeling with 2D and 3D geometries (for ad-531

ditional information concerning the post processing, see S11, S12).532
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When reproducing 3D simulations, the spherical annulus is well suited to replicate533

melting, mechanical thickness and heat fluxes. In particular the heat fluxes, and espe-534

cially the CMB heat flux (Figure 8g, h, i) are especially well reproduced in terms of val-535

ues and trend of evolution. The largest errors were observed for a Mars-like structure536

with an overestimation of less than 1.5 mW m-2 compared to the 3D for the surface heat537

flux and an almost identical CMB heat flux (less than 1 mW m-2 lower values compared538

to the 3D case).539

The mechanical thickness for a Moon-like interior structure will be underestimated540

on average by 5% for the spherical annulus, while the amount of melting will be over-541

estimated by 10% as in the case of Mercury. Since the computation of the amount of par-542

tial melting in the mantle through time relies on the temperature profile of the simula-543

tion, it is not surprising to see on one hand the underestimation of the mechanical thick-544

ness and on the other hand a systematic overestimation of partial melting by the spher-545

ical annulus compared to the 3D. The main reason explaining these differences is that546

the spherical annulus will consistently overestimate the overall mantle temperature, lead-547

ing to a hotter temperature profile, thus directly affecting the degree of melting and the548

thickness of the mechanical lithosphere.549

In the case of a Mars-like structure (Figure 8b, e) the differences between 2D and550

3D are larger, in particular in the case of partial melting, which the annulus will over-551

estimate by a maximum of 30% at around 1.5 Gyr. The mechanical thickness will be un-552

derestimated on average by 10 %. In particular the differences in partial melting could553

lead to an overestimation of the crustal thickness in the 2D spherical annulus geometry.554

This in turn could lead to more crustal production due to a mechanism called ”crustal555

blanketing” (e.g., Schumacher & Breuer, 2006), in which the reduced thermal conduc-556

tivity of the crust will prevent efficient cooling of the mantle. A higher crustal produc-557

tion rate could then lead to a stronger depletion of the mantle in crustal components and558

volatile elements. Hence, care should be taken when the spherical annulus geometry is559

employed to study partial melting and subsequent crust production or degassing in par-560

ticular for planets with an intermediate radius ratio, like Mars or Venus. These processes561

and the differences between 2D and 3D geometries for such scenarios need to be quan-562

tified in future studies.563
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Figure 8: Timeseries of the three scenario investigated (from left to right; the Moon,
Mars and Mercury). First row shows the fraction of molten mantle (in %) at a given time
in the evolution for each planet, second row shows the mechanical thickness of the litho-
sphere (in km) during the evolution, and the third row shows the CMB and surface heat
fluxes (in mW m-2). Since the cylindrical geometry shows the largest difference to the 3D,
it was not included in this comparison. All the equations used in order to compute these
quantities are described in the SI.

5 Conclusions564

The main goal of this study is to provide a systematic comparison between differ-565

ent geometries in order to determine how accurate can 2D geometries reproduce 3D re-566

sults. To this end, we investigated (scaled and non-scaled) 2D cylinder, 2D spherical an-567

nulus, and 3D spherical shell geometries in a series of scenarios. We started with isovis-568

cous steady-state models, included the effects of a temperature dependent viscosity, and569

finally tested the different geometries for thermal evolution setups. Our main findings570

are the following:571

1. While it is obvious that a 3D geometry should be preferred over a 2D one, due to572

the high computational cost, this may not always be feasible. Applying models573

with different complexities, we demonstrated that the 2D spherical annulus ge-574

ometry is able to reproduce the 3D models much better than the 2D cylinder, in575

particular for the low radius ratio setups. The latter is also clearly seen when mod-576

eling the thermal evolution of the Moon.577
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2. For steady-state scenarios, our models show that the 2D geometries will mostly578

overestimate the mean temperature compared to 3D, a result largely explained579

by the geometry of mantle plumes (i.e., sheet-like in 2D vs. columnar-like in 3D).580

This discrepancy decreases with an increasing Rayleigh number but is more ac-581

centuated for low-radius ratio cases, a result already observed by Guerrero et al.582

(2018). The differences in temperature between the 2D and 3D geometries decreases583

for mixed heated cases (i.e., heated both from below and from within). This is es-584

pecially true in the case of the spherical annulus, since the spherical annulus is a585

geometry which uses the same cell volumes as a 3D spherical shell.586

3. We find that for intermediate ratios of the inner to outer radius (e.g., Mars-like587

thermal evolution case), the differences in the results for the 2D and 3D geome-588

tries are larger than for extreme radius ratios. In contrast to the temperature-dependent589

steady-state cases, where the difference in surface heat flux and stagnant lid thick-590

ness between 2D geometries and 3D geometries is largest for high radius ratios,591

the difference obtained for Mercury-like evolution parameters is minimal. This is592

due to the low Rayleigh number of Mercury that leads to the transition to a con-593

ductive state during its thermal history.594

4. Care needs to be taken when studying melting processes with the spherical an-595

nulus in thermal evolution setups with intermediate radius ratios (e.g., Mars and596

Venus), as this geometry might overestimate crustal production by up to 30% com-597

pared to a 3D simulation leading to a different thermal history of the interior.598

Future studies need to test the accuracy of the 2D spherical annulus in reproduc-599

ing the 3D spherical shell geometry in more complex scenarios considering variable ther-600

mal conductivity and expansivity (Tosi, Yuen, et al., 2013), chemical buoyancy (Nakagawa601

et al., 2010), as well as partial melting of the mantle and its influence on thermal evo-602

lution.603
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istry of Education and Research.614

References615

Breuer, D., & Moore, W. B. (2015). Dynamics and Thermal History of the Terres-616

trial Planets, the Moon, and Io. Treatise on Geophysics, 10 (Second Ed.), 299–617

348. doi: 10.1016/B978-0-444-53802-4.00173-1618

Deschamps, F., Tackley, P. J., & Nakagawa, T. (2010, July). Temperature and619

heat flux scalings for isoviscous thermal convection in spherical geometry. Geo-620

physical Journal International , 182 (1), 137-154. doi: 10.1111/j.1365-246X.2010621

.04637.x622

Frank-Kamenetskii, D. (1969). Diffusion and Heat Transfer in Chemical Kinetics.623

Grott, M., & Breuer, D. (2008, 01). The evolution of the martian elastic lithosphere624

and implications for crustal and mantle rheology. Icarus: International Journal625

of Solar System Studies, 193 , 503-515.626

Guerrero, J. M., Lowman, J. P., Deschamps, F., & Tackley, P. J. (2018). The627

influence of curvature on convection in a temperature-dependent viscosity628

fluid: Implications for the 2-d and 3-d modeling of moons. Journal of Geo-629

physical Research: Planets, 123 (7), 1863-1880. Retrieved from https://630

agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2017JE005497 doi:631

https://doi.org/10.1029/2017JE005497632

Hernlund, J. W., & Tackley, P. J. (2008). Modeling mantle convection in the spher-633

ical annulus. Physics of the Earth and Planetary Interios, 171 , 48-54. doi: 10634

.1016/j.pepi.2008.07.037635

Hirth, G., & Kohlstedt, D. (2003, January). Rheology of the upper mantle and the636

mantle wedge: A view from the experimentalists. Washington DC American637

Geophysical Union Geophysical Monograph Series, 138 , 83-105. doi: 10.1029/638

138GM06639
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Introduction
In Section S1 we present the scaling factors used in this study, as listed in Table S1. Sec-
tion S2 displays in Table S2 all the parameters used to create the grids employed in this
study for the thermal convection model GAIA. Section S3 details the differences between
the cylindrical and the spherical annulus geometries used in our thermal convection code
GAIA. Section S4 provides a short comparison between the study from Hernlund and Tack-
ley (2008) and this study for isoviscous stead-state cases. Section S5 presents how the
relative error is calculated. In Section S6 we give briefly the equations used for internal
heating and the decay of heat producing elements in our model. In Sections S7 and S8
we list the tables displaying all the present-day values of the investigated output quantities
for the thermal evolution scenario in an homogeneous setup (S7) and in a setup with a
50 km crust (S8); these data are available as CSV files provided at . Section S9 presents
the temperature profiles at present day and at 1 Gyr into the evolution for each thermal
evolution scenario with a 50 km crust. Section S10 shows the calculation of the stagnant
lid thickness for the thermal evolution models. Section S11 displays the calculation of the
partial melting in the mantle, as a post processing step for the thermal evolution models.
Section S12 gives the formulation to calculate the thickness of the mechanical lithosphere
as a post processing step. In the Section S13, three different comparisons of stagnant lid
simulations (see Section 4), are displayed as slices for both the 3D spherical shell and the
2D spherical annulus geometry, with the 3D on the left and the 2D geometry on the right.
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S1 Scaling table
The conservation equations used to model mantle convection are expressed in non-dimensional
form. The non-dimensionalisation is obtained by multiplying the parameters by a well-
suited scaling factor. Parameters with a star represent the non-dimensional ones and are
calculated as follows:

Quantity Non dimensional

Temperature T ∗ = T−T0
∆T

Length x∗ = x
D

Time t∗ = κ0
D2 t

Velocity u∗ = uD
κ0

Pressure P ∗ = PD2

η0κ0

Stress σ∗ = σ D2

η0κ0
Density ρ∗ = ρ

ρ0
Thermal expansivity α∗ = α

α0

Heat production rate H∗ = HD2

κ0cp∆T

Viscosity η∗ = η
η0

Activation energy E∗ = E
∆TR

Activation volume V ∗ = V ρ0Dg
∆TR

Table S1: Table of the non dimensional values used in the study

In the remainder of this study, all the non-dimensional parameters are used without the
star for better readability.
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Setup Geometry Aspect ratio Radial resolution Lateral resolution Total points Rayleigh number

2−D 0.2 48 shells 227 p.per.shell 11350 104 − 105 − 106

2−D 0.4 48 shells 352 p.per.shell 17600 104 − 105 − 106

2−D 0.6 48 shells 604 p.per.shell 30200 104 − 105 − 106

2−D 0.8 48 shells 1358 p.per.shell 67900 104 − 105 − 106

2−D 0.2 120 shells 556 p.per.shell 69052 107 − 108

2−D 0.4 120 shells 880 p.per.shell 107360 107 − 108

2−D 0.6 120 shells 1508 p.per.shell 183976 107 − 108

Isoviscous 2−D 0.8 120 shells 3393 p.per.shell 413946 107 − 108

3−D 0.2 48 shells 40962 p.per.shell 2048100 104 − 105 − 106

3−D 0.4 48 shells 40962 p.per.shell 2048100 104 − 105 − 106

3−D 0.6 48 shells 40962 p.per.shell 2048100 104 − 105 − 106

3−D 0.8 48 shells 40962 p.per.shell 2048100 104 − 105 − 106

3−D 0.2 70 shells 40962 p.per.shell 2949264 107 − 108

3−D 0.4 70 shells 40962 p.per.shell 2949264 107 − 108

3−D 0.6 70 shells 40962 p.per.shell 2949264 107 − 108

3−D 0.8 70 shells 40962 p.per.shell 2949264 107 − 108

2−D 0.2 100 shells 472 p.per.shell 48144 Ra = 5× 106;RaQ = 5× 107

2−D 0.5 100 shells 943 p.per.shell 96186 −
T-dependent 2−D 0.8 100 shells 2828 p.per.shell 288456 −

3−D 0.2 70 shells 40962 p.per.shell 2949264 −
3−D 0.5 70 shells 40962 p.per.shell 2949264 −
3−D 0.8 70 shells 40962 p.per.shell 2949264 −
2−D Mars → 0.544117 155 shells 1 650 p.per.shell 259050 Ra = 2.14× 106;RaQ = 5.91× 107

3−D - 70 shells 40962 p.per.shell 2949264 −
Thermal 2−D Moon → 0.224137 135 shells 670 p.per.shell 91790 Ra = 5.35× 105;RaQ = 8.70× 106

evolution 3−D - 64 shells 40962 p.per.shell 2703492 −
2−D Mercury → 0.827868 84 shells 2803 p.per.shell 241058 Ra = 3.49× 104;RaQ = 8.00× 104

3−D - 46 shells 40962 p.per.shell 1884252 −

Table S2: Grid parameters for each simulation in this study. For each grid, the number
of shells displayed is the number of layers in the ”active” part of the grid, meaning that it
does not account for the two ghost layers at the base and at the top of the grid, which are
used to set the boundary conditions.

S2 Grid parameters
This table provides all the grid parameters used in this study for the steady state simulations
as well as the thermal evolution models.
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Figure S1: Representation of the elementary volumes of the cylinder in blue and of the
spherical annulus in red. In a regular two dimensional representation of the spherical annulus
grid, we only see the area of the elementary volume bisected by the equatorial plane (red
filled areas).

S3 Spherical annulus geometry
The principal difference between the 2D spherical annulus and the 2D cylindrical geometry
lies in the formulation of the areas and volumes for each grid. The cylindrical geometry
will have a purely 2D formulation of its areas and volume whereas the spherical annulus
use the same formulation as a 3D spherical shell. The effective degree of curvature for each
cell goes then from 1 in the case of the cylinder to 2 in the case of the spherical annulus.
For the mathematical formulation of the grid geometry, we refer to Hernlund and Tackley ,
2008
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S4 Comparison to results of Hernlund and Tackley 2008
This table presents the comparison between the study from Hernlund and Tackley , 2008 and
this study for isoviscous steady state cases considering basal heating and internal heating,
respectively, with Rayleigh numbers between Ra = 104 to Ra = 105. For the radius
an Earth-like value is used (f= 0.55) for the 3D spherical shell and the annulus, while the
scaled cylinder uses f= 0.3025. The values are averaged over the last 20% of the simulations.
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Bottom heated

Ra = 104 Geometry 3D Spherical annulus Scaled cylindrical

vrms 42.3 37.7 35.6
Hernlund vrms peak-peak 0 0 0

& <Nu> 3.85 4.18 3.99
Tackley 2008 <Nu> peak-peak steady steady steady

vrms 42.1 43.1 37.3
This vrms peak-peak 0 0 0
study <Nu> 3.84 4.12 4.08

<Nu> peak-peak steady steady steady

Ra = 105

vrms 160 160 165
Hernlund vrms peak-peak 11 14 90

& <Nu> 7.27 7.39 6.2
Tackley 2008 <Nu> peak-peak 0.5 0.3 2.1

vrms 163.9 160.0 158.1
This vrms peak-peak 1 10 0
study <Nu> 6.62 7.16 7.75

<Nu> peak-peak 0.03 0.4 0.2

Internal heated

Ra = 104 RaQ= 3.4× 104

Hernlund vrms 23.3 23.5 22.8
& vrms peak-peak 0 0 0

Tackley 2008 <T> 0.311 0.308 0.319

vrms 22.6 23.3 21.4
This vrms peak-peak 0 0 0
study <T> 0.311 0.312 0.334

Ra = 105 RaQ= 6.6× 105

Hernlund vrms 60.5 78.5 77.0
& vrms peak-peak 7 36 75

Tackley 2008 <T> 0.322 0.349 0.384

vrms 76.7 84.6 79.7
This vrms peak-peak 2.2 9 10.5
study <T> 0.337 0.3443 0.387

Table S3: Comparison of the spherical annulus used in this study and the study of Hern-
lund and Tackley , 2008. The top part of the table are the results from Hernlund and
Tackley , 2008 and the bottom part of the table present the results from this study. The
values displayed are the root mean square velocity (vrms), mean temperature (<T>), and
Nusselt numbers (Nu), which are computed once a statistical steady state is attained.
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S5 Error computation
The error presented in the main manuscript to illustrate the difference between 2D and 3D
geometries was computed as follows:

Error = − (3Dvalue − 2Dvalue)

max(3Dvalue; 2Dvalue)
× 100 (S1)

The absolute error for the thermal evolution simulations on the other hand is calculated as:

Error = 2Ddimensionalvalue − 3Ddimensionalvalue (S2)

in order to determine whether a 2D geometry over or under-estimates the 3D geometry
results.
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S6 Internal heating and heat producing elements decay
In our thermal evolution scenarii, we also take into account the decay of the heat producing
elements, here being the Ur238, Ur235, Th232 and theK40, thus giving us the heat production
rate which is determined from present day amounts of heat sources and is given by equation
28 from Breuer (2009).
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S7 Table of results for the thermal evolution simulations without crust
This table gives all the present-day values in a dimensional form for the thermal evolution
simulations without crust.

Planet Parameter (Unit) 3D sph. shell 2D sph. annulus 2D scaled cylinder 2D cylinder

Mars Tmean (K) 1697.1 1713.9 1752.8 1846.3
TCMB (K) 2146.8 2150.2 2189.3 2171.1
vrms (cm/yr) 0.767 1.04 1.05 1.32
qtop (mW/m2) 21.68 22.95 24.10 27.12
qbot (mW/m2) 2.10 2.12 1.91 1.07
Dlid (km) 302.5 297.1 281.52 247.7

Moon Tmean (K) 1367.6 1372.7 1552.6 1661.8
TCMB (K) 2379.7 2403.6 2473.2 2287.9
vrms (cm/yr) 0.216 0.374 0.527 0.472
qtop (mW/m2) 14.533 14.47 17.05 18.15
qbot (mW/m2) 0.959 0.910 0.723 -3.35
Dlid (km) 415.1 427.5 377.2 358.5

Mercury Tmean (K) 1049.3 1048.0 1069.8 1155.6
TCMB (K) 1689.0 1685.1 1715.9 1829.2
vrms (cm/yr) 5.7E-4 3.1E-07 5.9E-07 7.7E-05
qtop (mW/m2) 12.85 12.83 13.56 15.29
qbot (mW/m2) 10.20 10.15 10.10 10.74
Dlid (km) 294.9 252.9 248.2 244.0

Table S4: Output quantities at present day for various geometries and planets in an
homogeneous set.
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S8 Table of results for the thermal evolution simulations with a 50 km crust
This table gives all the present-day values for the thermal evolution simulations with crust.

Planet Parameter (Unit) 3-D sph. shell 2-D sph. annulus 2-D scaled cylinder 2-D cylinder

Tmean (K) 1700.4 1741.8 1774.4 1846.1
TCMB (K) 2123.4 2147.5 2169.2 2109.2

Mars vrms (cm/yr) 0.73 1.00 1.03 0.92
qtop (mW/m2) 21.78 23.22 24.15 26.53
qbot (mW/m2) 1.65 1.29 1.19 -1.68
Dlid (km) 277.00 259.80 254.61 233.17

Tmean (K) 1456.9 1481.6 1658.1 1756.8
TCMB (K) 2404.7 2435.1 2504.9 2296.6

Moon vrms (cm/yr) 0.24 0.35 0.68 0.50
qtop (mW/m2) 14.63 14.53 16.95 17.93
qbot (mW/m2) 0.38 0.30 0.22 -1.86
Dlid (km) 368.2 370.9 327.3 305.7

Tmean (K) 1049.3 1048.7 1070.5 1155.5
TCMB (K) 1689.0 1686.9 1716.7 1830.1

Mercury vrms (cm/yr) 5.7E-04 5.1E-05 6.2E-07 1.6E-3
qtop (mW/m2) 12.8 12.8 13.6 15.2
qbot (mW/m2) 10.2 10.1 10.8 10.1
Dlid (km) 294.8 292.7 275.7 296.5

Table S5: Output quantities at present day for each planet in various geometries for the
thermal evolution simulation with a 50km crust.

All the present day output quantities are available in the online CSV files of this study.
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Figure S2: Profiles of temperature throughout the entire mantle for the Moon, Mars and
Mercury. The profiles are shown at 1 billion years into the evolution and at present day.
Every geometry studied is represented here; in the case of Mercury, only the simulations
with a reference viscosity ηref = 1021 Pa s are shown.

S9 Temperature profiles for thermal evolution simulations
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Figure S3: Calculation of the stagnant lid thickness adapted from the work of Hüttig and
Breuer (2011). The thickness is determined by finding the depth where the derivative of
the averaged velocity profile dV

dR is the highest and intercepting it with the y axis. The
red line is the averaged velocity profile in the domain, the blue line is the derivative of the
velocity profile, the green dashed line is the depth of the stagnant lid, and the black line is
the depth of the absolute value of the velocity derivative is the highest. All units are non
dimensional.

S10 Stagnant lid calculation
In the calculation of the stagnant lid we use two different methods to determine its thick-
ness. The first is from the work of Hüttig and Breuer (2011) and is illustrated by the Figure
S3 The calculation of the stagnant lid becomes difficult with the velocity gradient method
(Hüttig and Breuer , 2011) when the veolocity are too low. Therefore a second method,
relying on the Peclet criterion is used in the case of Mercury when it falls into a quasi con-
ductive state. The determination of the stagnant lid with a Peclet criterion, is determined
with a threshold, that we set here as 5% of the averaged vrms at the studied time step. The
thickness is then the depth at which the vrms profile becomes smaller than our threshold
(or Peclet criterion).
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Figure S4: Melting curves from Takahashi (1990) and the minimum, mean and maximum
temperature profile for a present-day Mars-like case.

S11 Partial melting calculation
We compute the averaged fraction of molten mantle at every time-step during the thermal
evolution of the planet as a post processing step. It is used here as a simple comparison
between the geometries. We use the melting curves from Takahashi (1990), as seen on
Figure S2. However a cutoff is imposed at a depth of 7 GPa in the case of Mars. To
calculate the volumetrically averaged degree of melting, we use eq 20. from Morschhauser
et al. (2011) which is as following :

ma =
1

Va

∫
Va

T (r)− Tsol(r)
Tliq(r)− Tsol(r)

dV, (S3)

with Va being the volume of the meltzone, Tsol the temperature of the solidus, Tliq the
temperature of the liquidus, and T (r) the calculated mantle temperature profile. We then
compute the total volume of melted mantle and compare it with the total mantle volume.
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Parameter Crust Mantle

ε̇ (s−1) 10−17 10−17

Q (kJ mol-1) 488 540
B (Pa-n s-1) 1.1× 10−26 2.4× 10−16

n (-) 4.7 3.5
σy (MPa) 15 15

Table S6: Rheological parameters used in the equation S6, as appropriate for dry diabase
crust and dry olivine mantle, for more information see Plesa et al. (2016), Grott and Breuer
(2008).

S12 Mechanical thickness calculation
In this study we calculate the mechanical thickness, by using the strength envelope for-
malism McNutt (1984) for a structure comprised of a mantle layer and a crust layer. This
mechanical thickness of the lithosphere represents the depth at which the plate looses its
mechanical strength due to ductile flow Grott et al. (2007). This depth, or temperature
equivalent is then calculated as following :

Te =
E

R

[
log

(
σnBA

ε̇

)]−1

, (S4)

in which E, A and n are rheological parameter listed in Table S6, R is the gas constant, σB
the bounding stress, and ε̇ being the strain rate. The total elastic thickness of this system
depends then on whether the two layers act as a single elastic layer or are separated by
an incompetent layer of crust. If the layers are separated, the elastic thickness De is then
calculated as:

De = (D3
e,m +D3

e,c)
1
3 , (S5)

where De,m and De,c are the thicknesses of the elastic parts of crust and mantle, respectively
Burov and Diament (1995). However, if De,c is greater or equals the local crustal thickness,
then no layer of incompetent crust exists between the crust and the mantle and the effective
elastic thickness is given by the sum of the two elastic layers:

De = De,m +De,c (S6)

The decoupling of the system will strongly reduce the total elastic thickness as seen in eq.
S5 and will mostly happen in regions with a thick crust. In the case of our simulations with
a laterally homogeneous crust thickness we don’t have any zone with a local thicker crust.
To compute the local elastic thickness, a strain rate ε̇ profiles of 10−17 s−1 is used. The
parameters used for this calculation are available in the Table S5.
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Figure S5: Temperature slices in a temperature-dependent viscosity case with purely basal
heating, left is 3D spherical shell and right is 2D spherical annulus. Two plumes are present
in both geometries, however the distribution of the temperature is much more diffuse in the
case of the annulus, as seen in Guerrero et al. (2018).

S13 Slices comparison 3D-2D in stagnant lid simulations
The plots presented here show special cases of comparison between 3D and 2D spherical
annulus for different heating mode in temperature-dependent viscosity setups.
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Figure S6: Temperature slices in a temperature-dependent viscosity case with basal and
internal heating. We note the disappearance of the error of the temperature distribution
seen in Figure S1 by the addition of internal heating.

Figure S7: Temperature slices in a temperature-dependent viscosity case with purely
internal heating. The amount of downwellings in a slice for the 3D case is far larger than
what can be seen for the 2D spherical annulus (2D).
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Supplementary datasets
The following datasets are available upon request on Zenodo :
https://doi.org/10.5281/zenodo.8047757

Datasets concerning isoviscous simulations
Tables containing the time averaged (on the last 10% of the run) values for all the outputs
and geometry studied. There is one table per Ra number with a given heating mode. In
total there are 15 tables for each scenarios (i.e., three different heating modes and five dif-
ferent Ra numbers).

Datasets concerning temperature dependent simulations
Tables containing the time averaged (on the last 10% of the run) values for all the outputs
and geometry studied for temperature dependent viscosity simulations. Only one Ra is
investigated. In total three tables, for three heating modes.

Datasets concerning thermal evolution simulations with and without crust
Tables containing dimensional present day values of all the investigated outputs for different
geometries and planet scenarios for cases with and without crust. In total six tables, for
three planets.
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