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Abstract

Modelled geospatial Lagrangian trajectories are widely used in Earth Science, including in oceanography, atmospheric science

and marine biology. The typically large size of these dataset makes them arduous to analyze, and their underlying pathways

challenging to identify. Here, we show that a Machine Learning unsupervised k-means++ clustering method can successfully

identify the pathways of the Labrador Current from a large set of modelled Lagrangian trajectories. The presented method

requires simple pre-processing of the data, including a Cartesian correction on longitudes and a PCA reduction. The clustering

is performed in a kernalized space and uses a larger number of clusters than the number of expected pathways. During post-

processing, similar clusters are grouped into pathway categories by experts in the circulation of the region of interest. We find

that the Labrador Current mainly follows a westward-flowing and an eastward retroflecting pathway (20% and 50% of the flow,

respectively) that compensate each other through time in a see-saw behaviour. These pathways experience a strong variability

of up to 96\%. We find that two thirds of the retroflection occurs at the tip of the Grand Banks, and one quarter at Flemish

Cap. The westward pathway is mostly fed by the on-shelf branch of the Labrador Current, and the eastward pathway by the

shelf-break branch. Pathways of secondary importance feed the Labrador Sea, the Gulf of St. Lawrence through the Belle Isle

Strait, and the subtropics across the Gulf Stream.
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Key Points:7

• Unsupervised clustering can identify the main pathways in geospatial Lagrangian8

trajectories.9

• The clusters provide information on the properties and origin of the pathways.10

• The Labrador Current breaks in an east-west see-saw at the tip of the Grand Banks.11
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Abstract12

Modelled geospatial Lagrangian trajectories are widely used in Earth Science, includ-13

ing in oceanography, atmospheric science and marine biology. The typically large size14

of these dataset makes them arduous to analyze, and their underlying pathways chal-15

lenging to identify. Here, we show that a Machine Learning unsupervised k-means++16

clustering method can successfully identify the pathways of the Labrador Current from17

a large set of modelled Lagrangian trajectories. The presented method requires simple18

pre-processing of the data, including a Cartesian correction on longitudes and a PCA19

reduction. The clustering is performed in a kernalized space and uses a larger number20

of clusters than the number of expected pathways. During post-processing, similar clus-21

ters are grouped into pathway categories by experts in the circulation of the region of22

interest. We find that the Labrador Current mainly follows a westward-flowing and an23

eastward retroflecting pathway (20% and 50% of the flow, respectively) that compen-24

sate each other through time in a see-saw behaviour. These pathways experience a strong25

variability of up to 96%. We find that two thirds of the retroflection occurs at the tip26

of the Grand Banks, and one quarter at Flemish Cap. The westward pathway is mostly27

fed by the on-shelf branch of the Labrador Current, and the eastward pathway by the28

shelf-break branch. Pathways of secondary importance feed the Labrador Sea, the Gulf29

of St. Lawrence through the Belle Isle Strait, and the subtropics across the Gulf Stream.30

Plain language summary31

Lagrangian trajectories, in which we follow a parcel of water or air parcel as it is32

moved around by currents, are widely used in Earth Science, including in oceanography,33

atmospheric science and marine biology. They typically come in very large and chaotic34

dataset, from which it is difficult to identify the main pathways of a flow. Here, we use35

a Machine Learning based algorithm, more specifically an unsupervised clustering algo-36

rithm, to identify the main pathways of the Labrador Current based on a large set of La-37

grangian trajectories obtained from an ocean model. This study shows the power of such38

a method to help analyze this type of data, and provides a detailed description of the39

applied recipe so it can be used by people in the field. We find that, when it reached the40

Grand Banks of Newfoundland, most of the Labrador Current flows either westward to-41

wards the Slope Sea or eastward towards the North Atlantic Ocean, in a see-saw behaviour.42

We also identify a previously unknown minor pathway that brings Labrador Current wa-43

ters south of the Gulf Stream front.44

1 Introduction45

Lagrangian trajectories are diagnostics that are widely used across climate sciences.46

Such trajectories are obtained from the positioning of observational platforms such as47

drifting floats in the ocean (e.g. Argo floats, surface drifters, RAFOS floats) and balloons48

in the atmosphere, as well as from the advection of virtual particles derived from veloc-49

ity fields reconstructed from satellite altimetry or output from numerical simulations (among50

others, A. F. Thompson & Sallée, 2012; van Sebille et al., 2018). Lagrangian trajecto-51

ries are used to study ocean and atmospheric circulations (e.g., Schulze Chretien & Frajka-52

Williams, 2018; Gillard et al., 2016; Bower et al., 2011; Fischer & Schott, 2002) and sea53

ice drift (e.g., Williams et al., 2016; Brunette et al., 2019), to identify the origin and fate54

of water masses (e.g., Kawasaki et al., 2022; Kelly et al., 2019), to assess connectivity55

timescales (e.g., Jönsson & Watson, 2016), and to study the fate of atmospheric and oceanic56

pollutants (e.g., Hertwig et al., 2015; Viikmäe et al., 2013), plastic (e.g., Lebreton et al.,57

2012), larvae (e.g., Ayata et al., 2010; Cetina-Heredia et al., 2015; Phelps et al., 2015;58

Simons et al., 2013), icebergs (e.g., Marson et al., 2018; Merino et al., 2016), and debris59

or people during search and rescue (e.g., Hart-Davis & Backeberg, 2021). Yet, sets of60

Lagrangian trajectories are challenging to analyze. It is often not possible to clearly dis-61
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tinguish pathways given the chaotic nature of geophysical flows, which generally prevents62

the use of simple and objective criteria to produce classification. In oceanography, tra-63

ditional classification methods of Lagrangian trajectories are based on counting parti-64

cles crossing sections based on hydrography (Jutras et al., 2023; Daher et al., 2020; Merino65

et al., 2016; Bower et al., 2011), topography, or dynamic water properties (e.g. on fronts,66

Roach & Speer, 2019; Schulze Chretien & Frajka-Williams, 2018). Apart from passages,67

straits or other clearly defined topographic features that provide non-ambiguous phys-68

ical boundaries for the flow, criteria used for classification of trajectories often appear69

adhoc or subjective (Fig. 1b). Besides, in modelling studies, dataset typically reach up70

to millions of trajectories, making visual inspection overwhelming and non-efficient.71

Machine Learning (ML) offers several algorithms that can help analyze (extremely)72

large and complex Lagrangian datasets. Here, we consider clustering algorithms, which73

automatically classify objects into “clusters”, or groups of elements with similar prop-74

erties. Supervised clustering is trained on a pre-classified dataset, which can be obtained,75

e.g., based on visual inspection. These types of methods are useful when the classifica-76

tion is already known or obvious to the human eye. On the other hand, unsupervised clus-77

tering lets the algorithm identify the clusters itself, removing potential biases in the choice78

of classes. Unsupervised clustering has already successfully been applied to vertical pro-79

files from Conductivity-Temperature-Depth sensors (CTD; Boehme & Rosso, 2021) and80

Argo floats (Houghton & Wilson, 2020; Rosso et al., 2020; Jones et al., 2019), to radar81

data (Tiira & Moisseev, 2020), to cyclones tracks (Kremer et al., 2020) and to air pol-82

lutants (Brankov et al., 1998), as well as to identify mean flows (Koszalka & Lacasce,83

2010), ocean fronts (Thomas et al., 2021), and finite-time (couple of days) coherent struc-84

tures in a flow (Filippi, Hadjighasem, et al., 2021; Wichmann et al., 2021; Schneide et85

al., 2018), to name a few. The above-mentioned studies use various ML clustering meth-86

ods, including Gaussian-Mixture Models (Boehme & Rosso, 2021; Rosso et al., 2020; Jones87

et al., 2019; Thomas et al., 2021), k-means (Houghton & Wilson, 2020; Kremer et al.,88

2020; Schneide et al., 2018; Koszalka & Lacasce, 2010), optimized-parameter spectral meth-89

ods based on k-means (Filippi, Hadjighasem, et al., 2021; Filippi, Rypina, et al., 2021),90

hierarchical clustering, and density-oriented clustering like DBSCAN (Wichmann et al.,91

2021). Yet, to our knowledge, no study has applied unsupervised clustering to large-scale92

(more than a couple of days) geophysical Lagrangian trajectories, nor used such a method93

to identify the main pathways of a geophysical flow. This technique appears especially94

suitable to identify and characterize the pathways of an ocean current, removing the sub-95

jectivity inherent to more traditional methods mentioned earlier.96

In this study, we use such a method to study the Labrador Current (Fig. 1a). The97

Labrador Current is a western boundary current. It forms the western limb of the sub-98

polar gyre, and as such is a critical component of the North Atlantic circulation. The99

Labrador Current is composed of an inshore and a shelf-break branch that flow south100

on and along the Labrador shelf, respectively (Florindo-López et al., 2020; Loder et al.,101

1998; Lazier & Wright, 1993), until the tip of the Grand Banks. Eventually, most of the102

Labrador Current Water is entrained into the subpolar North Atlantic by the North At-103

lantic Current (NAC) and the remainder follows the continental shelf southwestward (Fig. 1a;104

Townsend et al., 2015; Fratantoni & McCartney, 2010; Pérez-Brunius et al., 2004). By105

doing so, the Labrador Current carries cold, relatively fresh and well-oxygenated waters106

from the subarctic to both the subpolar North Atlantic and to the Slope Sea and east-107

ern American continental shelf. Variability in the strength and exact path of the Labrador108

Current therefore affects the water properties in both regions (e.g., Jutras et al., 2023;109

Gonçalves Neto et al., 2021; Chen et al., 2020; Holliday et al., 2020; Claret et al., 2018;110

B. D. Petrie & Drinkwater, 1993) and in connected bodies of water such as the Gulf of111

St. Lawrence Estuary (Jutras et al., 2020; Gilbert et al., 2005; Han et al., 1999) and the112

Gulf of Maine (Whitney et al., 2022; Pershing et al., 2016), with direct consequences on113

marine ecosystems (Poitevin et al., 2019; Chabot & Dutil, 1999) and fisheries (Pershing114

et al., 2016; Mills et al., 2013). Some Labrador Current Waters also leak into the Labrador115
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Figure 1. (a) Region of the Labrador Current. The arrows show the approximate location of

the main currents of the region. The main topographic and oceanographic features are labelled.

FC indicates Flemish Cap. NAC indicates the North Atlantic Current. (b) Example subset of

Lagrangian trajectories launched in the Labrador Current. The colour indicates the distance

from the shore at initialization. The thick black line indicates the launch section. The blue line

indicates the entry point to the Labrador Sea, used in section 3.2.1. (c) Probability density plot

of the complete dataset of Lagrangian trajectories. We stop tracking particles east of 50E.

Sea (Schulze Chretien & Frajka-Williams, 2018; Howatt et al., 2018; Palter et al., 2008;116

Myers, 2005), possibly affecting stratification and modulating deep water formation and117

the Atlantic Meridional Overturning Circulation (AMOC; New et al., 2021). Still, lit-118

tle is known about the spatio-temporal characteristics, magnitude and drivers of these119

pathways, or about other possible pathways (Jutras et al., 2023; Fratantoni & McCart-120

ney, 2010).121

This paper uses the Labrador Current as a case study to demonstrate that unsu-122

pervised clustering can be used to identify pathways in geophysical Lagrangian tracks.123

To do so, we implement an unsupervised kmeans++ clustering method on a large set124

of Lagrangian trajectories within the Labrador Current (Fig. 1b), to identify and char-125

acterize the main and secondary pathways of this current. The trajectories are almost126

impossible to distinguish through traditional methods, being continuously distributed127

in the western North Atlantic (Fig. 1b,c). Section 2 presents a step-by-step description128

of our method intended for non-experts, hoping that this case study can inspire appli-129

cations in other Earth system contexts. Section 3.1 presents the results of the cluster-130

ing, including the identification of the pathways, a characterization of their properties,131

and quantitative comparisons with the literature. Section 3.2 uses the classification of132

the complete dataset to look at the variability of each pathway of the Labrador Current133

on seasonal and decadal time scales. Section 4 offers some concluding remarks on the134

method and the results.135

2 Methods136

2.1 Lagrangian trajectories137

The Lagrangian trajectories are generated from virtual particles advected offline138

by 3D velocity from the GLORYS12V1 ocean reanalysis (Lellouche et al., 2018). GLO-139

RYS12V1 is based on the NEMO3.1 modelling platform (Madec et al., 2019). It has a140

spatial resolution of 1/12◦ on an ORCA grid and 50 levels in the vertical, with thick-141

nesses ranging from 0.5 m at the surface to 160 m at a 1 km depth and with 18 levels142
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in the top 50 m. The simulation covers the 1993 to 2018 period and is forced with the143

ERA-Interim atmospheric reanalysis (ECMWF Re-Analysis, Dee et al., 2011).144

The virtual particles are tracked with the OceanParcels tool for Python (Probably145

A Really Computationally Efficient Lagrangian Simulator; Delandmeter & Van Sebille,146

2019). We use the daily horizontal velocity outputs on a longitude-latitude grid provided147

on the Copernicus Marine Service (CMS) website. The vertical velocities are reconstructed148

from sea surface height. Particles are seeded every 1/12◦ along the (53◦N, 56.7◦W) – (54.3◦N, 52.0◦W)149

line (Fig. 1b) and every 10 m in the vertical, in waters with a salinity lower than 34.8,150

for a total of 966 particles per seeding event. The salinity cut-off is used to delineate the151

Labrador Current from the Labrador Sea (Myers, P., personal communication; Loder et152

al., 1998). Particles are released every week from January 1st 1993 to January 1st 2015153

and are tracked with a 10-minute time step. The complete data set contains 1.2 millions154

trajectories. The seeding temporal and spatial frequencies are chosen so that increas-155

ing the number of particles does not change their general distribution downstream, op-156

timizing the use of computational resources (van Sebille et al., 2018). We stop tracking157

the particles when they hit topography or the boundaries of the domain (Fig. 1c) or af-158

ter 550 days, time after which they have left the Labrador Shelf and reached their final159

export zone. These experiments are also described in Jutras et al. (2023), who look at160

the variability in the retroflection of the Labrador Current. In addition to the position161

and depth of the particles, we track their temperature, salinity and age since release. We162

use a purely advective scheme. Tamsitt et al. (2017) showed that the addition of tur-163

bulent diffusion did non affect Lagrangian trajectories significantly in eddy-resolving mod-164

els. In addition, there is no consensus on a realistic value for diffusive coefficients, espe-165

cially when covering both coastal and open ocean areas (van Sebille et al., 2018).166

2.2 Observational dataset167

We compare the trajectories of the virtual particles with those from actual obser-168

vational platforms, namely surface drifters, Argo floats and RAFOS/SOFAR floats. A169

direct comparison is not possible because virtual particles can move vertically, while floats170

and drifters flow at a fixed depth. In addition, most of the Argo and RAFOS/SOFAR171

floats drift deeper than the virtual particles, more specifically into the Deep Western Bound-172

ary Current. We therefore expect the trajectories to differ, in particular where the Labrador173

Current waters dive as they interact with the Gulf Stream – NAC front. Still, we use the174

observations to validate qualitatively the simulated pathways, as well as to offer a rough175

comparison of the magnitude of each pathway.176

We use surface drifters deployed as part of the Global Drifter Program. These satellite-177

tracked buoys drift at the surface of the ocean and are equipped with 15 m or 1 m drogues.178

We consider the floats that are carried by the Labrador Current by selecting the ones179

that cross the virtual particles seeding line and that enter the Grand Banks area, as de-180

fined by the (55◦W; 41◦W) – (45◦N; 50◦N) box (Fig. 6). Based on this criterion, we iden-181

tify 79 drifters from 2000 to 2018.182

Argo floats are autonomous profilers that drift passively with ocean currents at a183

parking depth (typically 1 km) and profile temperature, salinity and pressure down to184

approximately 2 km every 10 days. RAFOS/SOFAR floats are autonomous platforms185

that drift at a fixed depth between 500 m and 1 km. We select the floats based on the186

same criteria as for the surface drifters, except that we extend the seeding line and the187

box offshore by two degrees (Fig. 6) to account for the fact that floats drift deeper over188

the continental slope. We identify 64 Argo floats fitting these criteria between 2001 and189

2019 and 50 RAFOS/SOFAR floats between 2003 and 2007.190

A visual inspection suggests that the pathways of observational platforms and of191

virtual particles generally agree (Fig. 1b and 6). The small number of drifters and floats192

rules out applying a clustering algorithm to their trajectories. Hence, we manually clas-193

sify the platforms into pathways using the following hydrographic sections (Fig. 6):194
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• Westward-flowing: crosses the 54th meridian south of the Grand Banks;195

• Westward then retroflected: crosses the 54th meridian south of the Grand Banks196

and eventually drifts eastward;197

• Retroflecting: enters the zone from 0◦W to 60◦W and from 47◦N to 65◦N;198

• Southward-flowing: enters the zone from 54◦W to 35◦W and from 35◦N to 47◦N.199

2.3 Clustering algorithm, step by step200

2.3.1 Overview201

Machine Learning unsupervised clustering algorithms build a classification model202

that attributes each object (here, trajectories) to a cluster. The model is characterized203

by parameters called hyperparameters that can include, for instance, the number of trans-204

formations applied to the data, the number of clusters, or criteria on the within-cluster205

maximal distance. Three independent data subsets are used to feed the model, namely206

the training, validation and test sets. These sets must be large (at least hundreds of ob-207

jects) and of high quality (e.g. evenly sampled or without missing values). The train-208

ing set is used to train the model, which is validated with the validation set for a range209

of hyperparameter values. By comparing the results with performance metrics, the most210

performant hyperparameters values are determined. Once the model is ready, its per-211

formance is validated with the test set. To avoid overfitting the model to the subsets,212

the test set must be used only once, to validate the final results. Overfitting would lead213

to a model that offers a good classification of the training subset, but not of new data.214

Finally, once the model is ready, it can be applied to the complete dataset or to new dataset.215

An overview of the method is presented in Figure 2.216

2.3.2 Pre-processing217

Before building this model, we need to prepare the data. Since the goal of the study218

is to identify the various pathways of the Labrador Current as it flows over and along219

the Labrador Shelf, we are interested in the shape of the Lagrangian trajectories. We220

therefore base our classification on latitude and longitude coordinates. Additional vari-221

ables (temperature, salinity and depth) were also considered to be used in the cluster-222

ing algorithm, but showed no significant improvement on the classification results. We223

build the clustering model with a subset of 100 000 trajectories out of a total 1.2 mil-224

lions (Fig. 2). These trajectories are selected randomly every four years, as preliminary225

analyses showed no periodicity in the preferred pathways over that timescale. This sub-226

set is further separated into an 80 000 particle training set, a 10 000 particle validation227

set, and a 10 000 particle test set. While there is no universal rule on the number of ob-228

jects required in each set, an 0.8-0.1-0.1 ratio is commonly used.229

We apply the following pre-processing to each set (Fig. 2):230

• To avoid a bias by which the particles would be clustered based on their initial-231

ization location, we translate all the particles to the same starting point. This trans-232

lation step increases the efficiency of the clustering (not shown).233

• Trajectories shorter than 550 days – e.g. due to the particles reaching the bottom234

of the ocean, the shore, or the boundaries of the domain – are filled with zeros.235

• To account for the sphericity of the Earth, we apply a longitudinal correction. The236

particles flow approximately from 54◦N, where one degree of latitude represents237

65 km, to 30◦N, where one degree of latitude represents 96 km. Because we are238

interested in the shape of the trajectory in a Cartesian space (km) but operate239

the classification in latitude-longitude space, we apply a “cosλ” weight to the lon-240

gitudes, where λ represents the latitude. The resulting Euclidian distance in mod-241

ified latitude-longitude space offers a good approximation of the real (physical)242

Cartesian distance at the surface of the ocean.243

–6–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

co
m

p
le

te
 d

a
ta

se
t

(1
.2

 M
 t

ra
je

ct
o
ri

e
s)

tr
a
in

in
g
 s

e
t

(8
0

 0
0

0
 t

ra
je

ct
o
ri

e
s)

tr
a
n
sl

a
ti

o
n

ca
rt

e
si

a
n
 p

ro
je

ct
io

n
ke

rn
a
liz

e
d

P
C

A
 r

e
d
u
ct

io
n

3
0

 c
lu

st
e
rs

7
 p

a
th

w
a
y
 c

a
te

g
o
ri

e
s

ke
rn

a
liz

e
d

k-
m

e
a
n
s

P
R

E
-P

R
O

C
E
S
S

IN
G

D
A
T
A

S
E
T
 P

R
E
P
A

R
A
T
IO

N
P

R
O

C
E
S
S

IN
G

P
O

S
T-

P
R

O
C

E
S
S

IN
G

F
ig
u
re

2
.

S
ch
em

a
ti
c
d
ia
g
ra
m

o
f
th
e
u
n
su
p
er
v
is
ed

cl
u
st
er
in
g
m
et
h
o
d
.
A

d
et
a
il
ed

d
es
cr
ip
ti
o
n
o
f
th
e
m
et
h
o
d
is

p
ro
v
id
ed

in
S
ec
ti
o
n
2
.3
.
T
h
e
3
0
cl
u
st
er
s
a
re

p
re
-

se
n
te
d
in

F
ig
.
4
a
n
d
th
e
se
v
en

p
a
th
w
ay

ca
te
g
o
ri
es

a
re

p
re
se
n
te
d
in

F
ig
.
5
.

–7–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

• To lower the computational cost of the analysis (the training set has a size of 80 000244

× 550 locations × 2 coordinate variables), it is common practice to reduce the num-245

ber of features by implementing a Principal Component Analysis (PCA). By keep-246

ing the features responsible for 99.99% of the total variance, we reduce the dataset247

to 12% of its original size. We implement the PCA and the k-mean clustering (see248

Section 2.3.3) in a kernalized space, i.e. a transformed variable space. A kernel249

helps convergence when using linear classifiers on non-linear data, by implicitly250

adding non-linearities to the algorithm (Hofmann et al., 2008). Among the tested251

kernels (sigmoid, polynomial, cosinus), the cosinus transformation, defined as fol-252

lows, led to the most efficient clustering:253

k(x, y) =
xyT

||x|| · ||y||
(1)

where x and y are the vectors containing the variables (here, the coordinates of254

the trajectories).255

Computing the kernalized k-means and kernalized PCA requires high RAM, as large ma-256

trices need to be temporarily loaded. In our case, the computation takes about one day257

on a HPC system with 186 GB of RAM. In a non-kernalized space, the clustering algo-258

rithm could run on a regular work station.259

2.3.3 Processing260

We here apply a k-means++ clustering algorithm (Fig. 2), which is common, easy261

to implement, and requires only one hyperparameter: the number of clusters. The k-means262

method classifies the data by minimizing the within-cluster variance of the Euclidean dis-263

tance between each object. More specifically, each cluster is characterized by a centroid,264

or mean vector, to which the distance with each object belonging to that cluster is min-265

imized. In the k-means++, the spread between the initial centroids is maximized by test-266

ing multiple initializations and keeping the one offering the best classification, signifi-267

cantly improving the convergence and speed compared to the traditional k-means method.268

We here implement 20 random initializations. To accelerate the convergence of the clas-269

sification itself, we then fold it 15 times: we randomly split the dataset in 15 pieces, it-270

eratively apply the classification to 14 pieces and evaluate the results on the 15th. The271

results are not sensitive to a higher number of folds or initializations. These steps are272

implemented using the k-means++ functions of the Python scikit-learn package (scikit273

-learn.org/).274

For the value of the hyperparameter, namely the number of clusters, prior knowl-275

edge of the circulation of the Labrador Current suggests two major pathways plus some276

minor ones (see Section 1). The k-means method has difficulty converging in the pres-277

ence of clusters of unequal sizes (i.e. containing unequal number of objects). Using a large278

number of clusters and grouping them afterwards has been shown to improve the per-279

formance of the classification (Echols et al., 2020) and helps reveal secondary pathways.280

To find the optimal number of clusters, we use two performance metrics: the silhouette281

score (Rousseeuw, 1987), and a physics-based metrics that is adapted to our scientific282

question. The silhouette score measures the overall performance of the clustering algo-283

rithm based on the intra and inter cluster distances. This metric is expected to monotonously284

decrease with the number of clusters, since a higher number of clusters necessarily im-285

proves the performance on average (i.e. the intra cluster spread decreases as the num-286

ber of objects per clusters decreases). The number of clusters can therefore be chosen287

based on a stabilization of this score (Fig. 3a). We then define a physics-based metric288

that evaluates the spatial and temporal coherence of the particles. We first define five289

regions that the particles are likely to visit (Fig. 3b). For each cluster, we identify the290

most popular region at each time step, and compute the fraction of particles found in291

that region. This provides a score for each cluster, between 0 and 1. We then average292
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Figure 3. (a) Algorithm’s performances for a varying number of clusters, based on silhouette

and a physics-based scores. (b) Regions used for the physics-based performance metric.

the scores of all clusters to obtain a global score. The model’s performance is highest when293

this metric is maximized, indicating that a high number of particles simultaneously visit294

the same region. Both the numerical and physics base metrics show a plateau around295

30 clusters (Fig. 3a).296

2.3.4 Post-processing297

As expected, a visual inspection of the obtained clusters reveals some redundan-298

cies in the pathways represented in some clusters (Fig. 4). While, as we will show in Sec-299

tion 3.2.3, most of the clusters which look alike actually present differences that are not300

visible in the particle trajectories, it is useful to group the clusters identifying similar path-301

ways. Based on the shape of the trajectories and on their export location, we visually302

identified six pathway categories which are described in detail in Section 3.1.1. The iden-303

tification of these categories was nourished by prior knowledge of the circulation discussed304

in the literature (Section 3.1.3). To avoid biases in the categorization, we invited eight305

experts of the northwestern Atlantic circulation to sort the 30 clusters into the six iden-306

tified pathway categories or to new ones they would discern. The experts overall agree307

on the classification (see Appendix B for details).308

3 Results309

3.1 Pathways310

The unsupervised clustering method successfully classifies the trajectories into 30311

clusters showing similar trajectories (Fig. 4), which were combined into six pathway cat-312

egories (Table 1 and Fig. 5). Note that throughout this section, we display results from313

the test set. We first describe how we identified the pathway categories (section 3.1.1)314

before assessing the qualitative agreement with the scarce observations (section 3.1.2)315

and with the literature (section 3.1.3 and 3.1.4).316

3.1.1 Definition of the pathway categories317

From the 30 clusters, we identify two main pathway categories: particles retroflected318

towards the subpolar North Atlantic (henceforth referred to as retroflected), and par-319

ticles following the shelf westward into the Slope Sea and along the eastern American320

continental shelf (henceforth referred to as westward-flowing, Fig. 4 and 5). These path-321

ways account in total for respectively 48% and 21% of all the trajectories (Table 1), mean-322
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ing that close to 70% of the water from the Labrador Current feeds either the subpo-323

lar North Atlantic or the Slope Sea and eastern American continental shelf. Less than324

1% of the particles first enter the Slope Sea before retroflecting towards the subpolar North325

Atlantic (cluster #22 on Fig. 4). We include these particles in the westward-flowing cat-326

egory, as they first affect the water properties of the Slope Sea and have lost most of their327

Labrador Current water signature once they retroflect. Another significant pathway cat-328

egory comprises the particles that are killed on the Labrador Shelf as they hit the seafloor329

(22% of the trajectories; referred to as Labrador Shelf ). This category does not repre-330

sent a real pathway, and is rather an artifact of the virtual Lagrangian tracking. We also331

identify three secondary pathway categories: the particles that travel southward from332

the tip of the Grand Banks (8%; referred to as southward-flowing), the ones that enter333

the Gulf of St. Lawrence through the Belle Isle Strait (1%; referred to as Belle Isle), and334

the ones that feed the Labrador Sea (<1%; referred to as Labrador Sea, Fig. 4 and 5).335

The uncertainty on this classification comes from two sources: the clustering al-336

gorithm itself (algorithm uncertainty), and the categorization of clusters (human-induced337

uncertainty). The two are not independent, since a large algorithm error will lead to dis-338

agreement in the experts’ classification. First, the algorithm error manifests as trajec-339

tories that are classified into a cluster even if, from a visual inspection, they would have340

fitted better in another. For instance, cluster #17 belongs to the Labrador Shelf path-341

way category, but a few particles still reach the Scotian Shelf, and should have been clas-342

sified in a cluster belonging to the westward-flowing pathway category. There currently343

exists no widely accepted method to evaluate the error from unsupervised clustering al-344

gorithms (e.g., Abdar et al., 2021; Kläs & Vollmer, 2018). We cannot use the within-cluster345

spread to assess the algorithm’s error, because particles can end up quite far from each346

other but still belong to the same cluster (e.g., particles retroflecting eastward can reach347

from 30N to 55N). Hence, we simply report the algorithm’s performance based on the348

physical metric presented in Section 2.3. We find that the score is high for all (> 0.7)349

but some Labrador Shelf clusters, in which a few particles enter the Belle Isle Strait, and350

for the Belle Isle cluster, in which a few particles flow along the Scotian Shelf (Fig. A3).351

Second, for the errors in the categorization of clusters, we find that the experts are352

almost unanimous in classifying the clusters in the Belle Isle, southward-flowing and Labrador353

Sea pathway categories. For other categories, the error ranges between 7 and 10% (Ta-354

ble 1, see also Appendix B and Table B1). Overall, the errors appear sufficiently small355

to go forward with the analysis of the results.356

3.1.2 Comparison against trajectories of observational platforms357

We perform a visual comparison between the obtained pathways and that of Argo358

floats, RAFOS/SOFAR floats, and surface drifters (see Section 2.2). We find that the359

retroflected, westward-flowing and southward-flowing pathways clearly appear in the tra-360

jectories of autonomous platforms (Fig. 6). There is also a significant amount of plat-361

forms going westward and then retroflecting, more than in the virtual particles. We do362

not expect any observational platforms to follow the Labrador Sea pathway because our363

selection criteria filter out these platforms (section 2.2). The same holds for the Labrador364

Shelf pathway, which is an artifact of the virtual Lagrangian tracking, and for the Belle365

Isle pathway, since no autonomous platforms have been launched within the coastal cur-366

rent that feeds this strait. The agreement in the pathways provides confidence in the clus-367

tering. The bulk sizes of the observed and modelled pathway categories generally agree368

(Table 1), keeping in mind that (i) there are too few observational platforms to allow369

a statistically robust comparison and (ii) observational platforms drift at a fixed depth370

while Lagrangian particles can move vertically (see Section 2.2), and (iii) the on-shelf371

category, composing >20% of the virtual particles, is an artifact of the Lagrangian track-372

ing and is absent from the observations. Note that most of the surface drifters retroflect373

eastward (Fig. 6).374
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Figure 4. Density map of the trajectories for each of the 30 clusters identified by the k-

means++ model for the test set (see Section 2.3.3). The numbers on the top right indicate the

number of particles (or trajectories) in each cluster, while the numbers on the bottom left cor-

respond to the cluster identification number. The dark grey line shows the 350 m isobath. The

coloured frames indicate in which pathway category the cluster is classified by the experts:

retroflected (red); westward-flowing (green); Labrador Shelf (purple); Labrador Sea (blue);

southward-flowing (pink); Belle Isle (cyan). The westward-flowing cluster with a dashed con-

tour contains particles that go westward first and are then retroflected. See Section 3.1.1 for a

description of each pathway category.
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Pathway cate-
gory

Cluster ID Percentage:
mean (min-
max)

Exp-
ert’s
error

% of
ob-
serva-
tions

Retroflected 2, 4, 7*, 8*, 9,
10,
11*, 19*, 20, 24,
28*, 30

47.6 %
(24.9-73.7)

10 % 74 %

Westward-
flowing

3, 18, 22, 23, 26 21.0 %
(5.4-42.2)

6 % 10 %

Westward then

retroflected

22 0.6 %

(0.0-2.2)

7 % 4 %

Labrador Sea 27 0.4 %
(0-3.2)

0 % -

Labrador Shelf 1, 5, 6, 13, 14,
15, 16, 17, 21

21.8 %
(12.7-31.3)

9 % -

Southward-
flowing

12, 29 7.8 %
(4.2-13.0)

0 % 16 %

Belle Isle 25 1.4 %
(0.0-6.5)

0 % 0 %

Table 1. Classification of the 30 clusters into the six pathway categories (see Section 3.1.1 for a

description of each pathway category). The first column indicates the name of the pathway cate-

gory; the second column indicates the identity number (ID) of the clusters classified within that

category (see Fig. 4 for the IDs); the third column indicates the mean percentage of trajectories

classified into a given category, computed from the complete dataset, as well as the lowest and

highest percentage over the 1993 to 2018 period; the fourth column indicates the error coming

from the disagreement in the experts’ categorization; the last column indicates the percentage of

observational platforms corresponding to each category (see Section 2.2). In the retroflected cate-

gory, the clusters marked with an asterisk retroflect at Flemish Cap while the others retroflect at

the tip of the Grand Banks.
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Figure 5. Density maps for each of the six pathway categories of the Labrador Current (see

Section 2.3.4). See Figure 4 for a detailed description of the plot. The percentage provides the

average magnitude of each pathway category.

3.1.3 Validation of pathway categories against the literature375

We compare the relative importance of each pathway category with results from376

previous studies. First, many studies also report that the retroflected and westward-flowing377

pathways are, respectively, the main and secondary pathways for the Labrador Current378

(e.g., Gonçalves Neto et al., 2023; Holliday et al., 2020; Han et al., 2014; Fratantoni &379

McCartney, 2010). Fox et al. (2022) also observed that modelled Lagrangian trajecto-380

ries can retroflect after having flowed westward. Our estimate of the Labrador Current381

export towards the Labrador Sea (0 - 3%, Table 1) is in good agreement with observation-382

based studies (0 - 3%; Howatt et al., 2018; Schmidt & Send, 2007) and with model-based383

studies, (6 - 8%; Myers, 2005). We expect an underestimation, because the above-mentioned384

studies focus on the shelf-break branch of the Labrador Current, while we also consider385

the inshore, on-shelf branch of the current (∼15% of the volume transport). The inflow386

of water through the Belle Isle strait has been estimated to range from 0.1 Sv in the spring387

to 0.4 Sv in the winter, based on observations (Shaw & Galbraith, 2023; B. Petrie et al.,388

1988), and from 0.15 Sv to 1 Sv during winter storms, based on a model (Saucier et al.,389

2003). Relative to the mean 8.1 Sv Labrador Current volume transport found in GLO-390

RYS12V1, this represents 1 - 12% of the current, in broad agreement with the results391

of the clustering (0 - 7%). The southward-flowing pathway has not been explicitly de-392

scribed as a Labrador Current pathway in the literature. However, such a pathway has393

been described for the Deep Western Boundary Current (DWBC), which exports Labrador394

Sea Waters equatorward below ∼1500 m (Bower et al., 2009). The virtual particles that395

follow the southward-flowing pathway first sink to a depth of ∼1000 m (see Fig. 11), thus396

reaching the upper limb of the DWBC (Handmann et al., 2018). This pathway could there-397

fore emerge from interactions between the two currents. Overall, the relative importance398

of each pathway obtained from the clustering agrees well with previously model-based399

and observation-based estimates, further supporting the method.400
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Figure 6. Observational platforms drifting within the Labrador Current between year 2000

and 2018 – a time period that overlaps with the GLORYS12V1 reanalysis period – sorted into

four of the pathway categories identified from the clustering algorithm (see Section 2.3.4). The

name of the pathway category is indicated at the bottom right, along with the percentage of plat-

forms classified in this category. The colours of the trajectories refers to the drifting depth of the

platform. For each panel, a pie chart represents the fraction of platforms in depth classes, with

the corresponding number of platforms indicated within each class. The grey contour delineates

the 350 m isobath. The black straight line and the yellow boxes indicate the criteria used to se-

lect the platforms of interest (see section 2.2 for further details).
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Figure 7. (a-f) Potential temperature – salinity diagrams of all the virtual particles classified

according to pathway categories. The color shading represents the density of particles for a given

T-S combination.(g) Potential temperature – salinity diagram of the two main water masses in-

teracting in the region of interest: the North Atlantic Central Waters (NACW) originating from

the Gulf Stream, and the Labrador Current Waters (LCW) formed by the Labrador Current

flowing southward on the Labrador Shelf. Data for these signatures come from the World Ocean

Circulation Experiment (WOCE) climatology (Gouretski, 2018). The LCW is defined as the

waters lying between 150 m and the seafloor on the Labrador Shelf and slope, and the NACW

as the waters lying between 250 and 1300 m within the Gulf Stream jet (see Jutras et al., 2020).

The dashed grey lines show isopycnals (+1000 kg m−3).

3.1.4 Thermohaline signature across pathways401

We further verify the ability of the clustering algorithm to properly classify the tra-402

jectories by comparing the thermohaline properties of each category with what is expected403

for these pathways. The Labrador Sea category clearly and almost exclusively shows the404

signature of Labrador Current Waters (Fig. 7), which makes sense since these waters leave405

the continental shelf before any contamination can occur (see section 3.2.2). All the other406

categories show the signature of the LCW getting fresher as they receive river outflow407

along the Labrador coast. The Belle Isle category contains only the LCW. In addition408

to the signature of the LCW, the retroflected, westward-flowing and southward-flowing409

categories show that of the warm and salty North Atlantic Central Waters (NACW), which410

progressively mix with the LCW along the Labrador Current – NAC front. In the westward-411

flowing category, we only find the signature of the coldest, freshest NACW, as the con-412

tact time with the NAC is shorter than for the retroflected category. Most of the path-413

ways show the additional weak signature (few trajectories) of warm and fresh waters formed414

on the Labrador Shelf during the summer. The fact that each pathway category has a415

thermohaline signature that fits with what can be expected from the circulation supports416

the algorithm and our choice of categories.417

3.2 Spatio-temporal characteristics of the pathway categories418

Now that the different pathways of the Labrador Current are identified and val-419

idated, we document their temporal evolution (section 3.2.1) and spatial characteristics420
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(sections 3.2.2, 3.2.3 and 3.2.4). To do so, we use the classification of the complete dataset421

(1.2 millions trajectories) from 1993 to 2018.422

3.2.1 Temporal variability in the pathways423

The classification provides time series of the relative importance of each identified424

pathway (Fig. 8). The relative importance of the westward-flowing pathway from 1996425

to 1998 fits with a salinification of the subpolar North Atlantic (Holliday et al., 2020),426

while that of the retroflected pathway since 2011 coincides with a strong freshening of427

the subpolar North Atlantic (Holliday et al., 2020), a warming of the eastern American428

continental shelf (Chen et al., 2020), and a deoxygenation of the western North Atlantic429

and adjacent basins (Jutras et al., 2020; Claret et al., 2018).430

We find that the two main pathways display a strong interannual and seasonal vari-431

ability (Fig. 8). Their magnitude varies largely: between 24% and 73% of the particles432

are retroflected and between 4% and 42% flow westward, respectively a 77% and 96%433

variability (variance/mean × 100). The retroflected pathway is always dominant, while434

the westward-flowing pathway can be almost shut down when the retroflection is strong.435

The southward-flowing pathway is the most stable pathway, with a variability of 13%.436

The retroflected and westward-flowing pathway categories are strongly anti-correlated437

(correlation coefficient (c.c.) = -0.97, p-value < 0.001, top panel of Fig. 8a). This agrees438

well with a see-saw behaviour of the Labrador Current at the tip of the Grand Banks439

(Jutras et al., 2023; Han et al., 2019): when the retroflection towards the subpolar North440

Atlantic is strong, little water reaches the Slope Sea or the continental shelf break, and441

vice-versa. The Labrador Sea category is the opposite, being anti-correlated with the westward-442

flowing one (c.c. = -0.64, p < 0.001) and hence correlated with the retroflected one (c.c.443

= 0.55, p < 0.001). These correlations support the idea that the westward-flowing path-444

way is mainly associated with similar branches of the Labrador Current, namely the in-445

shore branch, while the Labrador Sea and retroflected pathways are associated with the446

offshore branch of the current (see Section 3.2.2). The Belle Isle and southward-flowing447

pathway categories show no correlation with other pathways, suggesting that they are448

forced by different mechanisms.449

There is a significant seasonal cycle in the time at which the particles veer west-450

ward or are retroflected at the tip of the Grand Banks (Fig. 8b). The retroflection is strongest451

in late summer (Aug.-Sep.) and generally weakest in the winter (Jan.), although it is strong452

in some winters, while the westward-flowing pathway is greatest in the winter (Feb.) and453

weakest in the summer (Jun.-Aug.). The opposite seasonal cycles between the two main454

pathways suggest that the see-saw behaviour also occurs at a seasonal scale. Seasonal455

variations in the circulation patterns near the Grand Banks are discussed in the liter-456

ature, and are suggested to be driven by seasonal variations in the water temperature457

and salinity (advection of meltwater; Fratantoni & McCartney, 2010; Lazier & Wright,458

1993) affecting stratification (Fratantoni & McCartney, 2010), in the density gradients459

across the shelf-break (Schneider et al., 2015), in the winds (Holliday et al., 2020; Han,460

2005; K. R. Thompson et al., 1986), and to a southern drift of the Gulf Stream in the461

summer (Seidov et al., 2021).462

In addition to the two main pathway categories, there is a marked seasonality in463

the trajectory of the particles leaving the Labrador Shelf towards the Labrador Sea (cross-464

ing the blue line on Fig. 1b). More particles do so in the early summer (Jun.-Jul.) com-465

pared to other seasons (not shown). This behavior agrees with the observations of Howatt466

et al. (2018), who suggest that northward winds, which are only present in the summer,467

drive an offshore Ekman transport that supports the export of freshwater to the Labrador468

Sea.469
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Figure 8. Temporal variability of the pathway categories. (a) Time series of the percentage

of the total number of particles for each of the six pathway categories, with the time recorded at

the seeding time. The time series are smoothed over one year and are presented in three different

panels for readability. Note the differences between y-axes. (b) Seasonal cycle of the retroflected

and westward-flowing pathways, for the time at which the particles reach the tip of the Grand

Banks (i.e. when they cross the 49◦N line, see Fig. 1a). This way of recording the time gives a

better estimate of the local seasonal export variability, given the wide range of propagation times

for the particles (Fig. 10; Fox et al., 2022). The amplitude is normalized. The shaded area shows

the interannual spread in the seasonal cycle, computed from the squared sum of each year differ-

ence.
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3.2.2 Spatial characteristics of the pathways470

We can use the characteristics of the different pathway categories to deduce infor-471

mation about their origin. In the retroflected pathway category, the virtual particles have472

slightly higher velocities on the Labrador Shelf compared to the other pathways (Fig. 9iii),473

and most (though not all) particles originate from and flow within the offshore portion474

of the shelf (Fig. 9i and ii). The retroflected pathway thus seems to be mostly fed by the475

offshore, or shelf-break, faster branch of the Labrador Current. In contrast, the virtual476

particles in the westward-flowing and in the Labrador Shelf pathway categories originate477

equally from across the seeding line (Fig. 9iv), and then most converge towards the in-478

shore section of the shelf (Fig. 9v). Still, more than 5% of particles drifting within the479

shelf-break branch of the Labrador Current join the westward-flowing pathway (Fig. 9v).480

The westward-flowing and Labrador Shelf pathways are also associated with generally481

slower velocities (Fig. 9vi and xii). The Labrador Shelf category overall seems to be fed482

predominantly by the offshore branch of the Labrador Current (Fig. 9xi). The particles483

that end up in the Labrador Sea originate from close to the shelf-break, and are carried484

by the offshore-most and fastest portion of the Labrador Current (Fig. 9viii and ix). In485

contrast, the particles entering the Belle Isle Strait are very slow (Fig. 9xviii). They can486

originate from any location across the shelf, although not from the offshore-most por-487

tion of the current (Fig. 9xvi), and more specifically from shallower depths (< 50 m)488

than the other particles (Supplementary fig. A1). The depth distribution of the parti-489

cles at initialization does not play a role for the other pathways. Finally, similarly to the490

westward-flowing category, the particles associated with the southward-flowing pathway491

do not appear to have a preferred origin and travel across the whole shelf (Fig. 9xiii and492

xiv). They also show a wider range of velocities than the other pathway categories (Fig. 9xv).493

This suggests that the westward-flowing and southward-flowing categories are not fed494

by a particular branch of the Labrador Current. We find that the particles in the southward-495

flowing category show turbulent motion soon after they leave the Grand Banks (Fig. 1b496

and 6). Since that region is located in the transition zone between the Gulf Stream and497

the more stable NAC, we suggest that the southward-flowing pathway emerges as par-498

ticles get caught in small-scale features such as eddies, common in that region (Rossby,499

1999; Brooks, 1987), explaining why these particles do not follow the average circulation500

of the Gulf Stream/NAC, directed northeastward (Bower et al., 2011).501

3.2.3 Specific circulation patterns502

Grouping the different clusters into pathway categories is useful to concentrate on503

the general properties of the pathways of the Labrador Current. Yet, within a pathway504

category, individual clusters often show distinct characteristics. These characteristics re-505

veal important details of the circulation that can refine our view of the Labrador Cur-506

rent pathways. For instance, the particles in different retroflecting clusters veer at dif-507

ferent locations. About one third of the retroflecting particles do so near Flemish Cap,508

and the remainder at the tip of the Grand Banks (Table 1 and Fig. 4). These propor-509

tions do not vary significantly with time. We notice that depending on where the par-510

ticles retroflect, they reach slightly different regions of the North Atlantic. The parti-511

cles that retroflect at Flemish Cap feed the north of the subpolar gyre (∼52–57◦N) and512

the particles that retroflect further downstream, at the tip of the Grand Banks, feed the513

center of the subpolar gyre (∼45–52◦N).514

A more detailed look at the westward-flowing category provides information on the515

specific pathways of Labrador Current Waters. Some of the waters reaching the Slope516

Sea do so through the Avalon Channel (cluster #23), while others flow over the Grand517

Banks (cluster #18). We find that the waters entering the Laurentian Channel and reach-518

ing further south along the Scotian Shelf mostly go through the Avalon Channel (clus-519

ter #3 and 26). We also mentioned in Section 3.1.1 how cluster #22 contains particles520

that first go westward and are then retroflected (Fig. 4).521
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Figure 9. Left: Histograms of the longitudes of origin (along the seeding line), for each path-

way. Middle: Histograms of the longitudes covered during the first 50 days, for each pathway.

The first 50 days represent the portion of the trajectory north of Flemish Cap, where the current

spreads longitudinally because of the presence of the Grand Banks. Right: For each pathway

category, histograms of the average velocity of the particles (degrees of latitude travelled per day;

zero indicates zonal displacement) over their first 100 days, the average time that particles spend

north of the tip of the Grand Banks. The black vertical line indicates the peak of the histogram.

The vertical grey lines in the left and middle panels show the location of the shelf-break. A cut-

off at 0.20 was chosen for clarity, as the focus is on the bulk of the particles.
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Finally, we find that the two clusters that belong to the southward-flowing path-522

way category are actually associated with two slightly different pathways (#12 and 29;523

Fig. 4). A first pathway flows along the Grand Banks shelf-break and, once it detaches524

from the shelf, veers slightly east and reaches deeper depths (maximal depths of 1500 m,525

cluster #12). Another pathway flows over the Grand Banks and, once it detaches from526

the shelf, continues straight to the south and reaches maximal depths of 700 m (clus-527

ter #29).528

When looking at individual clusters, we also notice that the algorithm classified529

particles based on their propagation time (Fig. 10). This is not surprising, since it clas-530

sified them based on their location at every time step, which implicitly contains infor-531

mation on the velocity. For instance, the particles classified in the westward-flowing path-532

way category take about 8 months to reach the Slope Sea from their seeding position,533

except for the particles classified in cluster #18, which take about one year (Fig. 10).534

Similarly, the particles classified in the retroflected pathway category take 2-3 months535

to reach the tip of the Grand Banks, except for the particle classified in clusters #2, 9536

and 24, which take 4-9 months. While, here, our interest is on the various pathways of537

the Labrador Current, information on the propagation time is useful to evaluate how long538

it takes for anomalies carried by the Labrador Current to reach different export zones.539

3.2.4 Characteristic depths of the pathways540

Each identified pathway category has a distinct signature in depth (Fig. 11). The541

particles moving eastward stay at shallow depths, while the particles moving southward542

and westward reach deeper. The southward-flowing particles reach the deepest depths,543

diving on average to maximal depths of ∼1200 m or below 2000 m for 10% of them. These544

particles cross the Gulf Stream front, which acts as a barrier to cross-front flow down545

to 700 m, and as a stirrer below (Palter et al., 2013; Bower et al., 1985). Hence, it is ex-546

pected that the southward-flowing particles travel at such great depths, since only the547

particles that subduct can cross the front and follow this pathway (Fig. 12). The westward-548

flowing particles dive on average to maximal depths of ∼900 m, or even down to 1800 m549

for 10% of them. Cluster #18 however remains above 700 m, gathering the particles that550

are not entrained below the front. Within the retroflected pathway category, particles551

descend once they quit the shelf, near the 50th meridian (Fig. 11b), reaching on aver-552

age depths of ∼500 m, or 1000 m for 10% of them. The particles retroflecting at the tip553

of the Grand Banks (clusters #2 and 10) reach greater depths (∼1500 m) compared to554

particles retroflecting at Flemish Cap (∼700 m). Hence, the latter feed the core of the555

North Atlantic Current (down to ∼800 m, Gouretski, 2018), while the former feed the556

deep ocean. Finally, the particles of the Labrador Sea pathway category remain relatively557

close to the surface (above ∼150 m). This is probably due to the low salinity (33-34.5)558

of these waters compared to the open ocean (34.5-36.5), and suggests that the weak fresh-559

water export from the Labrador Current contributes to increasing the stratification in560

the Labrador Sea (Howatt et al., 2018).561

4 Discussion and conclusion562

In this study, we present a method to classify geophysical Lagrangian trajectories563

using unsupervised clustering. Our results demonstrate that this method is useful and564

efficient to (i) classify Lagrangian tracks that are challenging to classify with more tra-565

ditional methods (e.g. counting particles crossing hydrographic sections), (ii) assist in566

the treatment of huge Lagrangian tracks datasets, (iii) identify the main pathways of an567

ocean current, and (iv) analyze the variability in the magnitude of these pathways. The568

method was applied to 1.2 millions modelled trajectories along the Labrador Current and569

was successful in identifying the different pathways of the Labrador Current, including570

a previously unknown pathway directed southward from the tip of the Grand Banks. The571
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Figure 10. (Histograms, right) For each cluster in four pathway categories, histogram of

the propagation time (in days) of the virtual particles, from the initialization line (thickest black

on the maps on the left) to the entry point to the export zones associated with each category

(medium-thickness black line, maps on the left). The cluster ID is indicated in the top right of

the panel. We do not show the propagation time for the Labrador Shelf pathway category be-

cause they are not exported, and for the Southward-flowing pathway category because the export

zone is not clearly definable. The thin black contour on the maps corresponds to the 350 m iso-

bath.
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Figure 11. (a) Average depth of the particles in each pathway category along the distance

travelled by the particles, using 100 km bins. The size of the dots represent the number of parti-

cles used in the average for each distance bin. This number tends to decrease with the travelled

distance because particles can exit the domain or hit bathymetry. We stop displaying the data

when less than 25% of the particles remain. The vertical black line indicates the approximate

location of the Tip of the Grand Banks. (b) For each pathway category, averaged longitude of

the particles in a given depth bin. In both plots, the shaded areas show the zone encompassing

the 10% and 90% longitude percentile.
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Figure 12. Particle distribution along a transect at 50◦W that runs across the Gulf Stream

front, from the tip of the Grand Banks (43◦N, left) to 32.5◦N (right). The inset shows the loca-

tion of the transect (red line). Colours provide the number of particles passing by. White lines

show isopycnals of potential density (+1000 kg m−3). The strong tilt in the isopycnals around

39◦N is due to the Gulf Stream front.

pre-processing applied here is relatively straightforward to implement, and the k-means++572

algorithm is simple to use and converges well (Section 2.3). The use of a larger number573

of clusters than the expected number of pathways proves adequate, as it leads to a good574

performance of the clustering and to the identification of details of the circulation that575

we were initially not hoping to resolve. The choice of the number of clusters relies on two576

metrics: the silhouette score and an ad hoc “physics-based” metrics tailored to our sci-577

entific question. Overall, the algorithm is relatively cheap to run, except for the kernal-578

ized PCA step (see Section 2.3), which requires a lot of computational resources (here,579

186 GB of RAM for one day, on a HPC system).580

The results of the clustering confirm that the Labrador Current splits into two main581

branches: a branch retroflecting east towards the subpolar North Atlantic, representing582

∼50% of the Labrador Current water, and a branch flowing west along the eastern Amer-583

ican continental shelf-break and into the Slope Sea, representing ∼20% of it (Fig. 13).584

Two-thirds of the eastward retroflection occurs at the tip of the Grand Banks, and a quar-585

ter at Flemish Cap. The waters retroflecting at the tip of the Grand Banks reach deeper586

and get close to the Northeast corner, while the water retroflecting at Flemish Cap stay587

shallower and reach higher north. Secondary pathways of the Labrador Current include588

one exporting water from the Labrador Shelf to the Labrador Sea, one entering the Gulf589

of St. Lawrence through the Strait of Belle Isle, and one retroflecting after vising the Slope590

Sea (Fig. 13). In addition to these pathways, which were already documented in the lit-591

erature, the clustering reveals a pathway bringing waters southwards from the tip of the592

Grand Banks and representing on average 8% of the Lagrangian trajectories. This path-593

way has been described for the underlying Deep Western Boundary Current (Bower et594

al., 2011, 2009) and suggests a connection between the two currents.595

The variability of the two main branches is strong, reaching up to 96% of the mean596

state. These two branches strongly compensate each other through time, which is char-597

acteristic of a see-saw system. The time series of the magnitude of each pathway can be598

very useful to study what drives their variability. For instance, Jutras et al. (2023) in-599
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troduce an index for the retroflection of the Labrador Current and use it to study the600

drivers of the retroflection and its impact on the physical and biogeochemical proper-601

ties of the northwestern Atlantic. That index is based on counting the number of par-602

ticles reaching a hydrographic line south of the Grand Banks, therefore not discriminat-603

ing the particles going southward from the tip of the Grand Banks, or reaching the Labrador604

Sea, from those actually retroflected towards the subpolar North Atlantic. The time se-605

ries of the magnitude of the retroflected pathway obtained in the present study through606

unsupervised clustering represent a more precise estimate of the magnitude of the retroflec-607

tion of the Labrador Current.608

Finally, by analyzing the origin of each pathway and the associated water masses609

(section 3.1.1), we can discuss what influences water properties in the export regions of610

each pathway. The two main pathways, retroflected and westward-flowing, are fed by both611

the inshore and shelf-break branches of the Labrador Current, but the shelf-break branch612

contributes slightly more to the retroflected pathway (about 30%) and the inshore branch613

slightly more to the westward-flowing pathway (about 90%, Fig. 13). The inshore branch614

is fed by Arctic outflow through Davis Strait and by river outflow along the Labrador615

Shelf, while the shelf-break branch is mostly fed by the Greenland Current (section 1,616

Florindo-López et al., 2020). Hence, variations in the magnitude of rivers outflow along617

the Labrador Shelf likely affect salinity in the Slope Sea slightly more than in the sub-618

polar North Atlantic. In contrast, variations in salinity in the Greenland Current, due619

to changes in the Arctic freshwater outflow (de Steur et al., 2018) or to Greenland ice620

sheet melt (Marson et al., 2021), will affect salinity in the subpolar North Atlantic slightly621

more than in the Slope Sea. These variations would also likely affect salinity in the Labrador622

Sea through the Labrador Sea pathway, fed exclusively by this pathway. The southward-623

flowing pathway has a weak variability and is not associated with a particular branch624

of the Labrador Current. Hence, its variability does not contribute to that in western625

North Atlantic Ocean water properties, but changes in its water properties could. Fi-626

nally, we also find that the pathways exporting water to the Labrador Sea and to the627

subpolar North Atlantic supply the surface ocean (Fig. 11 and 13). Since the Labrador628

Current carries freshwater, variations in these exports would likely affect the stratifica-629

tion in these regions, including the occurrence and intensity of deep convection, with po-630

tential effects on the Atlantic Meridional Overturning Circulation (AMOC; Lozier, 2012),631

carbon uptake (Fontela et al., 2016), and on oxygen repletion of the deep North Atlantic632

waters (Koelling et al., 2022; Atamanchuk et al., 2021).633

To finish, this paper offers first and foremost methodological advancements for the634

geophysical community. The method, extensively described in this paper, could be ap-635

plied to other oceanic currents or other types of geophysical Lagrangian trajectories.636

5 Open Research637

The Lagrangian tracking experiments can be reproduced by downloading the pub-638

licly available GLORYS12V1 outputs from the Copernicus Marine Environment Mon-639

itoring Service (CMS) website: resources.marine.copernicus.eu/product-detail/640

GLOBAL MULTIYEAR PHY 001 030/INFORMATION. Information about the OceanParcels tool641

for Python is available at oceanparcels.org. The scripts used to run the Lagrangian642

tracking experiments can be found as a supplementary material to Jutras et al. (2023).643

The ML tools are available through the Python scikit-learn package (scikit-learn644

.org/). The scripts of the unsupervised clustering method are available at https://github645

.com/noemieplanat/Clustering Lagragian particles.646

The data from the Global drifter program was obtained from the Atlantic Oceano-647

graphic and Meteorological Laboratory of the National Oceanic and Atmospheric Ad-648

ministration (AOML/NOAA, ftp.aoml.noaa.gov/phod/pub/buoydata). The RAFOS/SOFAR649

subsurface float trajectories are compiled from 52 experiments by the WOCE Subsur-650

face Float Data Assembly Center (WFDAC, www.aoml.noaa.gov/phod/float traj/).651
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Figure 13. Summary of the pathways of the Labrador Current as identified by the unsuper-

vised clustering of Lagrangian trajectories. The dashed arrows indicate the shelf-branch (green)

and the shelf-break (blue) branches of the Labrador Current. The full arrows indicate the differ-

ent pathways, and are identified with a letter: (A) Labrador Sea, (B) Labrador Shelf, (C) Belle

Isle, (D) westward-flowing, (E) southward-flowing, (F) retroflected eastward, (D2) westward-

flowing and then retroflected. Pathway (B) ends with a bar because it contains particles that

die on the shelf after they hit bathymetry. For each pathway, the width of the arrow indicates

its averaged magnitude (corresponding to the fraction of the particles classified in that pathway

category), and the color of the arrows indicates which of the Labrador Current branches mainly

feeds the pathway. Colored triangles indicate the depth reached by the particles. The month

labels indicate the average transit time from initialization to the export zone. The insert in the

bottom-right illustrates the see-saw behaviour of the two main pathways (westward-flowing and

retroflected): one weakens as the other strengthens, and vice-versa. The thin gray line indicates

the 250 m isobath.
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The Argo data were collected and made freely available by the International Argo Pro-652

gram and the national programs that contribute to it (argo.ucsd.edu, https://www.ocean653

-ops.org). The Argo Program is part of the Global Ocean Observing System.654
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Appendix A Supplementary material655

Figure A1. Histograms of the initialization depth of the particles associated with the differ-

ent pathways.
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Figure A2. Trajectories in each cluster, for the test set. The color indicates the depth of the

particles.

Figure A3. Same as Figure 4, but indicating in the top right the score of the physical metrics

(P.S.) defined in section 2.3 and the internal spread (Spr).
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1 67% 11 90% 21 100%
2 70% 12 100% 22 66%
3 90% 13 90% 23 90%
4 90% 14 100% 24 60%
5 90% 15 100% 25 100%
6 90% 16 100% 26 50%
7 100% 17 55% 27 90%
8 100% 18 90% 28 100%
9 90% 19 55% 29 100%
10 90% 20 100% 30 100%

Table B1. Agreement rate during the expert’s classification into the different pathway cate-

gories, for each cluster (section 2.3.4).

Appendix B Clusters grouping exercise656

The agreement rate between the consulted experts is of 100% in 12 clusters, all agree657

but one or two in 10 clusters, and is above 60% in 5 clusters (Table B1). The agreement658

rate is of 55% for the westward-flowing cluster #17, that 45% of the experts assign to659

the Labrador Shelf category. We assign this cluster to the Labrador Shelf category, be-660

cause the strong majority of the particles remain on the Labrador Shelf. Disagreement661

regarding the Labrador Sea pathway is probably due to a lack of clear distinction be-662

tween the Labrador Sea and the north of the subpolar North Atlantic. For the retroflected663

cluster #19, 45% of the experts assign to the Labrador Sea category. We assign cluster664

it to the retroflected category because, even if some of the particles in this cluster cross665

the southern portion of the Labrador Sea, they eventually feed the subpolar North At-666

lantic, where they will affect the water properties. For similar reasons, we go against the667

expert agreement on cluster #11 (which was categorized as belonging to the Labrador668

Sea category), because the particles are retroflected at Flemish Cap before aiming North.669

Finally, there is equality in the vote for cluster #26, between the Belle Isle and westward-670

flowing categories. An analysis of the individual trajectories, as opposed to a density view,671

reveals that while a fair amount of particles enter Belle Isle Strait, most go around New-672

foundland and some around the Grand Banks (not shown). We therefore assign this clus-673

ter to the westward-flowing category.674
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.ca) and Compute Canada (computecanada.ca). MJ was supported by the The Nat-683

ural Sciences and Engineering Research Council of Canada (NSERC), the Fonds de recherche684
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