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Abstract

Modelled geospatial Lagrangian trajectories are widely used in Earth Science, including in oceanography, atmospheric science
and marine biology. The typically large size of these dataset makes them arduous to analyze, and their underlying pathways
challenging to identify. Here, we show that a Machine Learning unsupervised k-means++ clustering method can successfully
identify the pathways of the Labrador Current from a large set of modelled Lagrangian trajectories. The presented method
requires simple pre-processing of the data, including a Cartesian correction on longitudes and a PCA reduction. The clustering
is performed in a kernalized space and uses a larger number of clusters than the number of expected pathways. During post-
processing, similar clusters are grouped into pathway categories by experts in the circulation of the region of interest. We find
that the Labrador Current mainly follows a westward-flowing and an eastward retroflecting pathway (20% and 50% of the flow,
respectively) that compensate each other through time in a see-saw behaviour. These pathways experience a strong variability
of up to 96\%. We find that two thirds of the retroflection occurs at the tip of the Grand Banks, and one quarter at Flemish
Cap. The westward pathway is mostly fed by the on-shelf branch of the Labrador Current, and the eastward pathway by the
shelf-break branch. Pathways of secondary importance feed the Labrador Sea, the Gulf of St. Lawrence through the Belle Isle

Strait, and the subtropics across the Gulf Stream.
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Unsupervised clustering of oceanic Lagrangian
particles: identification of the main pathways of the
Labrador Current

M. Jutras!, N. Planat?, C. O. Dufour?, L. C. Talbot?

IDepartment of Earth Sciences, McGill University
2Department of Atmospheric and Oceanic Sciences, McGill University

Key Points:

« Unsupervised clustering can identify the main pathways in geospatial Lagrangian
trajectories.

¢ The clusters provide information on the properties and origin of the pathways.

» The Labrador Current breaks in an east-west see-saw at the tip of the Grand Banks.

Corresponding author: Mathilde Jutras, mathilde. jutras@mail.mcgill.ca



20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Abstract

Modelled geospatial Lagrangian trajectories are widely used in Earth Science, includ-
ing in oceanography, atmospheric science and marine biology. The typically large size

of these dataset makes them arduous to analyze, and their underlying pathways chal-
lenging to identify. Here, we show that a Machine Learning unsupervised k-means++
clustering method can successfully identify the pathways of the Labrador Current from
a large set of modelled Lagrangian trajectories. The presented method requires simple
pre-processing of the data, including a Cartesian correction on longitudes and a PCA
reduction. The clustering is performed in a kernalized space and uses a larger number
of clusters than the number of expected pathways. During post-processing, similar clus-
ters are grouped into pathway categories by experts in the circulation of the region of
interest. We find that the Labrador Current mainly follows a westward-flowing and an
eastward retroflecting pathway (20% and 50% of the flow, respectively) that compen-
sate each other through time in a see-saw behaviour. These pathways experience a strong
variability of up to 96%. We find that two thirds of the retroflection occurs at the tip

of the Grand Banks, and one quarter at Flemish Cap. The westward pathway is mostly
fed by the on-shelf branch of the Labrador Current, and the eastward pathway by the
shelf-break branch. Pathways of secondary importance feed the Labrador Sea, the Gulf
of St. Lawrence through the Belle Isle Strait, and the subtropics across the Gulf Stream.

Plain language summary

Lagrangian trajectories, in which we follow a parcel of water or air parcel as it is
moved around by currents, are widely used in Earth Science, including in oceanography,
atmospheric science and marine biology. They typically come in very large and chaotic
dataset, from which it is difficult to identify the main pathways of a flow. Here, we use
a Machine Learning based algorithm, more specifically an unsupervised clustering algo-
rithm, to identify the main pathways of the Labrador Current based on a large set of La-
grangian trajectories obtained from an ocean model. This study shows the power of such
a method to help analyze this type of data, and provides a detailed description of the
applied recipe so it can be used by people in the field. We find that, when it reached the
Grand Banks of Newfoundland, most of the Labrador Current flows either westward to-
wards the Slope Sea or eastward towards the North Atlantic Ocean, in a see-saw behaviour.
We also identify a previously unknown minor pathway that brings Labrador Current wa-
ters south of the Gulf Stream front.

1 Introduction

Lagrangian trajectories are diagnostics that are widely used across climate sciences.
Such trajectories are obtained from the positioning of observational platforms such as
drifting floats in the ocean (e.g. Argo floats, surface drifters, RAFOS floats) and balloons
in the atmosphere, as well as from the advection of virtual particles derived from veloc-
ity fields reconstructed from satellite altimetry or output from numerical simulations (among
others, A. F. Thompson & Sallée, 2012; van Sebille et al., 2018). Lagrangian trajecto-
ries are used to study ocean and atmospheric circulations (e.g., Schulze Chretien & Frajka-
Williams, 2018; Gillard et al., 2016; Bower et al., 2011; Fischer & Schott, 2002) and sea
ice drift (e.g., Williams et al., 2016; Brunette et al., 2019), to identify the origin and fate
of water masses (e.g., Kawasaki et al., 2022; Kelly et al., 2019), to assess connectivity
timescales (e.g., Jonsson & Watson, 2016), and to study the fate of atmospheric and oceanic
pollutants (e.g., Hertwig et al., 2015; Viikmée et al., 2013), plastic (e.g., Lebreton et al.,
2012), larvae (e.g., Ayata et al., 2010; Cetina-Heredia et al., 2015; Phelps et al., 2015;
Simons et al., 2013), icebergs (e.g., Marson et al., 2018; Merino et al., 2016), and debris
or people during search and rescue (e.g., Hart-Davis & Backeberg, 2021). Yet, sets of
Lagrangian trajectories are challenging to analyze. It is often not possible to clearly dis-
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tinguish pathways given the chaotic nature of geophysical flows, which generally prevents
the use of simple and objective criteria to produce classification. In oceanography, tra-
ditional classification methods of Lagrangian trajectories are based on counting parti-

cles crossing sections based on hydrography (Jutras et al., 2023; Daher et al., 2020; Merino
et al., 2016; Bower et al., 2011), topography, or dynamic water properties (e.g. on fronts,
Roach & Speer, 2019; Schulze Chretien & Frajka-Williams, 2018). Apart from passages,
straits or other clearly defined topographic features that provide non-ambiguous phys-

ical boundaries for the flow, criteria used for classification of trajectories often appear
adhoc or subjective (Fig. 1b). Besides, in modelling studies, dataset typically reach up

to millions of trajectories, making visual inspection overwhelming and non-efficient.

Machine Learning (ML) offers several algorithms that can help analyze (extremely)
large and complex Lagrangian datasets. Here, we consider clustering algorithms, which
automatically classify objects into “clusters”, or groups of elements with similar prop-
erties. Supervised clustering is trained on a pre-classified dataset, which can be obtained,
e.g., based on visual inspection. These types of methods are useful when the classifica-
tion is already known or obvious to the human eye. On the other hand, unsupervised clus-
tering lets the algorithm identify the clusters itself, removing potential biases in the choice
of classes. Unsupervised clustering has already successfully been applied to vertical pro-
files from Conductivity-Temperature-Depth sensors (CTD; Boehme & Rosso, 2021) and
Argo floats (Houghton & Wilson, 2020; Rosso et al., 2020; Jones et al., 2019), to radar
data (Tiira & Moisseev, 2020), to cyclones tracks (Kremer et al., 2020) and to air pol-
lutants (Brankov et al., 1998), as well as to identify mean flows (Koszalka & Lacasce,
2010), ocean fronts (Thomas et al., 2021), and finite-time (couple of days) coherent struc-
tures in a flow (Filippi, Hadjighasem, et al., 2021; Wichmann et al., 2021; Schneide et
al., 2018), to name a few. The above-mentioned studies use various ML clustering meth-
ods, including Gaussian-Mixture Models (Boehme & Rosso, 2021; Rosso et al., 2020; Jones
et al., 2019; Thomas et al., 2021), k-means (Houghton & Wilson, 2020; Kremer et al.,
2020; Schneide et al., 2018; Koszalka & Lacasce, 2010), optimized-parameter spectral meth-
ods based on k-means (Filippi, Hadjighasem, et al., 2021; Filippi, Rypina, et al., 2021),
hierarchical clustering, and density-oriented clustering like DBSCAN (Wichmann et al.,
2021). Yet, to our knowledge, no study has applied unsupervised clustering to large-scale
(more than a couple of days) geophysical Lagrangian trajectories, nor used such a method
to identify the main pathways of a geophysical flow. This technique appears especially
suitable to identify and characterize the pathways of an ocean current, removing the sub-
jectivity inherent to more traditional methods mentioned earlier.

In this study, we use such a method to study the Labrador Current (Fig. 1a). The
Labrador Current is a western boundary current. It forms the western limb of the sub-
polar gyre, and as such is a critical component of the North Atlantic circulation. The
Labrador Current is composed of an inshore and a shelf-break branch that flow south
on and along the Labrador shelf, respectively (Florindo-Lépez et al., 2020; Loder et al.,
1998; Lazier & Wright, 1993), until the tip of the Grand Banks. Eventually, most of the
Labrador Current Water is entrained into the subpolar North Atlantic by the North At-
lantic Current (NAC) and the remainder follows the continental shelf southwestward (Fig. 1a;
Townsend et al., 2015; Fratantoni & McCartney, 2010; Pérez-Brunius et al., 2004). By
doing so, the Labrador Current carries cold, relatively fresh and well-oxygenated waters
from the subarctic to both the subpolar North Atlantic and to the Slope Sea and east-
ern American continental shelf. Variability in the strength and exact path of the Labrador
Current therefore affects the water properties in both regions (e.g., Jutras et al., 2023;
Gongalves Neto et al., 2021; Chen et al., 2020; Holliday et al., 2020; Claret et al., 2018;

B. D. Petrie & Drinkwater, 1993) and in connected bodies of water such as the Gulf of

St. Lawrence Estuary (Jutras et al., 2020; Gilbert et al., 2005; Han et al., 1999) and the
Gulf of Maine (Whitney et al., 2022; Pershing et al., 2016), with direct consequences on
marine ecosystems (Poitevin et al., 2019; Chabot & Dutil, 1999) and fisheries (Pershing

et al., 2016; Mills et al., 2013). Some Labrador Current Waters also leak into the Labrador
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Figure 1. (a) Region of the Labrador Current. The arrows show the approximate location of
the main currents of the region. The main topographic and oceanographic features are labelled.
FC indicates Flemish Cap. NAC indicates the North Atlantic Current. (b) Example subset of
Lagrangian trajectories launched in the Labrador Current. The colour indicates the distance
from the shore at initialization. The thick black line indicates the launch section. The blue line
indicates the entry point to the Labrador Sea, used in section 3.2.1. (¢) Probability density plot

of the complete dataset of Lagrangian trajectories. We stop tracking particles east of 50E.

Sea (Schulze Chretien & Frajka-Williams, 2018; Howatt et al., 2018; Palter et al., 2008;
Myers, 2005), possibly affecting stratification and modulating deep water formation and
the Atlantic Meridional Overturning Circulation (AMOC; New et al., 2021). Still, lit-
tle is known about the spatio-temporal characteristics, magnitude and drivers of these
pathways, or about other possible pathways (Jutras et al., 2023; Fratantoni & McCart-
ney, 2010).

This paper uses the Labrador Current as a case study to demonstrate that unsu-
pervised clustering can be used to identify pathways in geophysical Lagrangian tracks.
To do so, we implement an unsupervised kmeans++ clustering method on a large set
of Lagrangian trajectories within the Labrador Current (Fig. 1b), to identify and char-
acterize the main and secondary pathways of this current. The trajectories are almost
impossible to distinguish through traditional methods, being continuously distributed
in the western North Atlantic (Fig. 1b,c). Section 2 presents a step-by-step description
of our method intended for non-experts, hoping that this case study can inspire appli-
cations in other Earth system contexts. Section 3.1 presents the results of the cluster-
ing, including the identification of the pathways, a characterization of their properties,
and quantitative comparisons with the literature. Section 3.2 uses the classification of
the complete dataset to look at the variability of each pathway of the Labrador Current
on seasonal and decadal time scales. Section 4 offers some concluding remarks on the
method and the results.

2 Methods
2.1 Lagrangian trajectories

The Lagrangian trajectories are generated from virtual particles advected offline
by 3D velocity from the GLORYS12V1 ocean reanalysis (Lellouche et al., 2018). GLO-
RYS12V1 is based on the NEMO3.1 modelling platform (Madec et al., 2019). It has a
spatial resolution of 1/12° on an ORCA grid and 50 levels in the vertical, with thick-
nesses ranging from 0.5 m at the surface to 160 m at a 1 km depth and with 18 levels
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in the top 50 m. The simulation covers the 1993 to 2018 period and is forced with the
ERA-Interim atmospheric reanalysis (ECMWF Re-Analysis, Dee et al., 2011).

The virtual particles are tracked with the OceanParcels tool for Python (Probably
A Really Computationally Efficient Lagrangian Simulator; Delandmeter & Van Sebille,
2019). We use the daily horizontal velocity outputs on a longitude-latitude grid provided
on the Copernicus Marine Service (CMS) website. The vertical velocities are reconstructed
from sea surface height. Particles are seeded every 1/12° along the (53°N, 56.7°W) — (54.3°N, 52.0°W)
line (Fig. 1b) and every 10 m in the vertical, in waters with a salinity lower than 34.8,
for a total of 966 particles per seeding event. The salinity cut-off is used to delineate the
Labrador Current from the Labrador Sea (Myers, P., personal communication; Loder et
al., 1998). Particles are released every week from January 15¢ 1993 to January 15 2015
and are tracked with a 10-minute time step. The complete data set contains 1.2 millions
trajectories. The seeding temporal and spatial frequencies are chosen so that increas-
ing the number of particles does not change their general distribution downstream, op-
timizing the use of computational resources (van Sebille et al., 2018). We stop tracking
the particles when they hit topography or the boundaries of the domain (Fig. 1c¢) or af-
ter 550 days, time after which they have left the Labrador Shelf and reached their final
export zone. These experiments are also described in Jutras et al. (2023), who look at
the variability in the retroflection of the Labrador Current. In addition to the position
and depth of the particles, we track their temperature, salinity and age since release. We
use a purely advective scheme. Tamsitt et al. (2017) showed that the addition of tur-
bulent diffusion did non affect Lagrangian trajectories significantly in eddy-resolving mod-
els. In addition, there is no consensus on a realistic value for diffusive coefficients, espe-
cially when covering both coastal and open ocean areas (van Sebille et al., 2018).

2.2 Observational dataset

We compare the trajectories of the virtual particles with those from actual obser-
vational platforms, namely surface drifters, Argo floats and RAFOS/SOFAR floats. A
direct comparison is not possible because virtual particles can move vertically, while floats
and drifters flow at a fixed depth. In addition, most of the Argo and RAFOS/SOFAR
floats drift deeper than the virtual particles, more specifically into the Deep Western Bound-
ary Current. We therefore expect the trajectories to differ, in particular where the Labrador
Current waters dive as they interact with the Gulf Stream — NAC front. Still, we use the
observations to validate qualitatively the simulated pathways, as well as to offer a rough
comparison of the magnitude of each pathway.

We use surface drifters deployed as part of the Global Drifter Program. These satellite-
tracked buoys drift at the surface of the ocean and are equipped with 15 m or 1 m drogues.
We consider the floats that are carried by the Labrador Current by selecting the ones
that cross the virtual particles seeding line and that enter the Grand Banks area, as de-
fined by the (55°W; 41°W) — (45°N; 50°N) box (Fig. 6). Based on this criterion, we iden-
tify 79 drifters from 2000 to 2018.

Argo floats are autonomous profilers that drift passively with ocean currents at a
parking depth (typically 1 km) and profile temperature, salinity and pressure down to
approximately 2 km every 10 days. RAFOS/SOFAR floats are autonomous platforms
that drift at a fixed depth between 500 m and 1 km. We select the floats based on the
same criteria as for the surface drifters, except that we extend the seeding line and the
box offshore by two degrees (Fig. 6) to account for the fact that floats drift deeper over
the continental slope. We identify 64 Argo floats fitting these criteria between 2001 and
2019 and 50 RAFOS/SOFAR floats between 2003 and 2007.

A visual inspection suggests that the pathways of observational platforms and of
virtual particles generally agree (Fig. 1b and 6). The small number of drifters and floats
rules out applying a clustering algorithm to their trajectories. Hence, we manually clas-
sify the platforms into pathways using the following hydrographic sections (Fig. 6):



105 + Westward-flowing: crosses the 54" meridian south of the Grand Banks;

196 « Westward then retroflected: crosses the 54" meridian south of the Grand Banks
107 and eventually drifts eastward;

108 » Retroflecting: enters the zone from 0°W to 60°W and from 47°N to 65°N;

109 e Southward-flowing: enters the zone from 54°W to 35°W and from 35°N to 47°N.
200 2.3 Clustering algorithm, step by step

201 2.3.1 Overview

202 Machine Learning unsupervised clustering algorithms build a classification model
203 that attributes each object (here, trajectories) to a cluster. The model is characterized
204 by parameters called hyperparameters that can include, for instance, the number of trans-
208 formations applied to the data, the number of clusters, or criteria on the within-cluster
206 maximal distance. Three independent data subsets are used to feed the model, namely
207 the training, validation and test sets. These sets must be large (at least hundreds of ob-
208 jects) and of high quality (e.g. evenly sampled or without missing values). The train-

209 ing set is used to train the model, which is validated with the validation set for a range
210 of hyperparameter values. By comparing the results with performance metrics, the most
o1 performant hyperparameters values are determined. Once the model is ready, its per-

212 formance is validated with the test set. To avoid overfitting the model to the subsets,

213 the test set must be used only once, to validate the final results. Overfitting would lead
214 to a model that offers a good classification of the training subset, but not of new data.
215 Finally, once the model is ready, it can be applied to the complete dataset or to new dataset.
216 An overview of the method is presented in Figure 2.

217 2.3.2 Pre-processing

218 Before building this model, we need to prepare the data. Since the goal of the study
219 is to identify the various pathways of the Labrador Current as it flows over and along

220 the Labrador Shelf, we are interested in the shape of the Lagrangian trajectories. We

21 therefore base our classification on latitude and longitude coordinates. Additional vari-
222 ables (temperature, salinity and depth) were also considered to be used in the cluster-
23 ing algorithm, but showed no significant improvement on the classification results. We
224 build the clustering model with a subset of 100 000 trajectories out of a total 1.2 mil-

25 lions (Fig. 2). These trajectories are selected randomly every four years, as preliminary
226 analyses showed no periodicity in the preferred pathways over that timescale. This sub-
227 set is further separated into an 80 000 particle training set, a 10 000 particle validation
228 set, and a 10 000 particle test set. While there is no universal rule on the number of ob-
229 jects required in each set, an 0.8-0.1-0.1 ratio is commonly used.

230 We apply the following pre-processing to each set (Fig. 2):

231 « To avoid a bias by which the particles would be clustered based on their initial-

23 ization location, we translate all the particles to the same starting point. This trans-
233 lation step increases the efficiency of the clustering (not shown).

23 « Trajectories shorter than 550 days — e.g. due to the particles reaching the bottom
235 of the ocean, the shore, or the boundaries of the domain — are filled with zeros.

236 e To account for the sphericity of the Earth, we apply a longitudinal correction. The
237 particles flow approximately from 54°N, where one degree of latitude represents

238 65 km, to 30°N, where one degree of latitude represents 96 km. Because we are

239 interested in the shape of the trajectory in a Cartesian space (km) but operate

240 the classification in latitude-longitude space, we apply a “cos \” weight to the lon-
211 gitudes, where \ represents the latitude. The resulting Euclidian distance in mod-
242 ified latitude-longitude space offers a good approximation of the real (physical)

213 Cartesian distance at the surface of the ocean.
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244 + To lower the computational cost of the analysis (the training set has a size of 80 000

245 x 550 locations x 2 coordinate variables), it is common practice to reduce the num-
26 ber of features by implementing a Principal Component Analysis (PCA). By keep-
247 ing the features responsible for 99.99% of the total variance, we reduce the dataset
28 to 12% of its original size. We implement the PCA and the k-mean clustering (see
249 Section 2.3.3) in a kernalized space, i.e. a transformed variable space. A kernel
250 helps convergence when using linear classifiers on non-linear data, by implicitly
251 adding non-linearities to the algorithm (Hofmann et al., 2008). Among the tested
252 kernels (sigmoid, polynomial, cosinus), the cosinus transformation, defined as fol-
253 lows, led to the most efficient clustering:
xy”

9 = Tl Tl .
254 where = and y are the vectors containing the variables (here, the coordinates of
255 the trajectories).

256 Computing the kernalized k-means and kernalized PCA requires high RAM, as large ma-

257 trices need to be temporarily loaded. In our case, the computation takes about one day

258 on a HPC system with 186 GB of RAM. In a non-kernalized space, the clustering algo-

259 rithm could run on a regular work station.

260 2.3.3 Processing

261 We here apply a k-means++ clustering algorithm (Fig. 2), which is common, easy
262 to implement, and requires only one hyperparameter: the number of clusters. The k-means
263 method classifies the data by minimizing the within-cluster variance of the Euclidean dis-
264 tance between each object. More specifically, each cluster is characterized by a centroid,
265 or mean vector, to which the distance with each object belonging to that cluster is min-
266 imized. In the k-means++, the spread between the initial centroids is maximized by test-
267 ing multiple initializations and keeping the one offering the best classification, signifi-

268 cantly improving the convergence and speed compared to the traditional k-means method.
269 We here implement 20 random initializations. To accelerate the convergence of the clas-
270 sification itself, we then fold it 15 times: we randomly split the dataset in 15 pieces, it-

o eratively apply the classification to 14 pieces and evaluate the results on the 15th. The

o7 results are not sensitive to a higher number of folds or initializations. These steps are

273 implemented using the k-means++ functions of the Python scikit-learn package (scikit
274 -learn.org/).

215 For the value of the hyperparameter, namely the number of clusters, prior knowl-

276 edge of the circulation of the Labrador Current suggests two major pathways plus some
277 minor ones (see Section 1). The k-means method has difficulty converging in the pres-

o18 ence of clusters of unequal sizes (i.e. containing unequal number of objects). Using a large
279 number of clusters and grouping them afterwards has been shown to improve the per-

280 formance of the classification (Echols et al., 2020) and helps reveal secondary pathways.
281 To find the optimal number of clusters, we use two performance metrics: the silhouette

282 score (Rousseeuw, 1987), and a physics-based metrics that is adapted to our scientific

283 question. The silhouette score measures the overall performance of the clustering algo-

284 rithm based on the intra and inter cluster distances. This metric is expected to monotonously
285 decrease with the number of clusters, since a higher number of clusters necessarily im-

286 proves the performance on average (i.e. the intra cluster spread decreases as the num-

287 ber of objects per clusters decreases). The number of clusters can therefore be chosen

288 based on a stabilization of this score (Fig. 3a). We then define a physics-based metric

289 that evaluates the spatial and temporal coherence of the particles. We first define five

200 regions that the particles are likely to visit (Fig. 3b). For each cluster, we identify the

201 most popular region at each time step, and compute the fraction of particles found in

202 that region. This provides a score for each cluster, between 0 and 1. We then average
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Figure 3. (a) Algorithm’s performances for a varying number of clusters, based on silhouette

and a physics-based scores. (b) Regions used for the physics-based performance metric.

the scores of all clusters to obtain a global score. The model’s performance is highest when
this metric is maximized, indicating that a high number of particles simultaneously visit
the same region. Both the numerical and physics base metrics show a plateau around

30 clusters (Fig. 3a).

2.3.4 Post-processing

As expected, a visual inspection of the obtained clusters reveals some redundan-
cies in the pathways represented in some clusters (Fig. 4). While, as we will show in Sec-
tion 3.2.3, most of the clusters which look alike actually present differences that are not
visible in the particle trajectories, it is useful to group the clusters identifying similar path-
ways. Based on the shape of the trajectories and on their export location, we visually
identified six pathway categories which are described in detail in Section 3.1.1. The iden-
tification of these categories was nourished by prior knowledge of the circulation discussed
in the literature (Section 3.1.3). To avoid biases in the categorization, we invited eight
experts of the northwestern Atlantic circulation to sort the 30 clusters into the six iden-
tified pathway categories or to new ones they would discern. The experts overall agree
on the classification (see Appendix B for details).

3 Results
3.1 Pathways

The unsupervised clustering method successfully classifies the trajectories into 30
clusters showing similar trajectories (Fig. 4), which were combined into six pathway cat-
egories (Table 1 and Fig. 5). Note that throughout this section, we display results from
the test set. We first describe how we identified the pathway categories (section 3.1.1)
before assessing the qualitative agreement with the scarce observations (section 3.1.2)
and with the literature (section 3.1.3 and 3.1.4).

3.1.1 Definition of the pathway categories

From the 30 clusters, we identify two main pathway categories: particles retroflected
towards the subpolar North Atlantic (henceforth referred to as retroflected), and par-
ticles following the shelf westward into the Slope Sea and along the eastern American
continental shelf (henceforth referred to as westward-flowing, Fig. 4 and 5). These path-
ways account in total for respectively 48% and 21% of all the trajectories (Table 1), mean-
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ing that close to 70% of the water from the Labrador Current feeds either the subpo-

lar North Atlantic or the Slope Sea and eastern American continental shelf. Less than

1% of the particles first enter the Slope Sea before retroflecting towards the subpolar North
Atlantic (cluster #22 on Fig. 4). We include these particles in the westward-flowing cat-
egory, as they first affect the water properties of the Slope Sea and have lost most of their
Labrador Current water signature once they retroflect. Another significant pathway cat-
egory comprises the particles that are killed on the Labrador Shelf as they hit the seafloor
(22% of the trajectories; referred to as Labrador Shelf). This category does not repre-
sent a real pathway, and is rather an artifact of the virtual Lagrangian tracking. We also
identify three secondary pathway categories: the particles that travel southward from

the tip of the Grand Banks (8%; referred to as southward-flowing), the ones that enter
the Gulf of St. Lawrence through the Belle Isle Strait (1%; referred to as Belle Isle), and
the ones that feed the Labrador Sea (<1%; referred to as Labrador Sea, Fig. 4 and 5).

The uncertainty on this classification comes from two sources: the clustering al-
gorithm itself (algorithm uncertainty), and the categorization of clusters (human-induced
uncertainty). The two are not independent, since a large algorithm error will lead to dis-
agreement in the experts’ classification. First, the algorithm error manifests as trajec-
tories that are classified into a cluster even if, from a visual inspection, they would have
fitted better in another. For instance, cluster #17 belongs to the Labrador Shelf path-
way category, but a few particles still reach the Scotian Shelf, and should have been clas-
sified in a cluster belonging to the westward-flowing pathway category. There currently
exists no widely accepted method to evaluate the error from unsupervised clustering al-
gorithms (e.g., Abdar et al., 2021; Klés & Vollmer, 2018). We cannot use the within-cluster
spread to assess the algorithm’s error, because particles can end up quite far from each
other but still belong to the same cluster (e.g., particles retroflecting eastward can reach
from 30N to 55N). Hence, we simply report the algorithm’s performance based on the
physical metric presented in Section 2.3. We find that the score is high for all (> 0.7)
but some Labrador Shelf clusters, in which a few particles enter the Belle Isle Strait, and
for the Belle Isle cluster, in which a few particles flow along the Scotian Shelf (Fig. A3).

Second, for the errors in the categorization of clusters, we find that the experts are

almost unanimous in classifying the clusters in the Belle Isle, southward-flowing and Labrador

Sea pathway categories. For other categories, the error ranges between 7 and 10% (Ta-
ble 1, see also Appendix B and Table B1). Overall, the errors appear sufficiently small
to go forward with the analysis of the results.

3.1.2 Comparison against trajectories of observational platforms

We perform a visual comparison between the obtained pathways and that of Argo
floats, RAFOS/SOFAR floats, and surface drifters (see Section 2.2). We find that the
retroflected, westward-flowing and southward-flowing pathways clearly appear in the tra-
jectories of autonomous platforms (Fig. 6). There is also a significant amount of plat-
forms going westward and then retroflecting, more than in the virtual particles. We do
not expect any observational platforms to follow the Labrador Sea pathway because our
selection criteria filter out these platforms (section 2.2). The same holds for the Labrador
Shelf pathway, which is an artifact of the virtual Lagrangian tracking, and for the Belle
Isle pathway, since no autonomous platforms have been launched within the coastal cur-
rent that feeds this strait. The agreement in the pathways provides confidence in the clus-
tering. The bulk sizes of the observed and modelled pathway categories generally agree
(Table 1), keeping in mind that (i) there are too few observational platforms to allow
a statistically robust comparison and (ii) observational platforms drift at a fixed depth
while Lagrangian particles can move vertically (see Section 2.2), and (iii) the on-shelf
category, composing >20% of the virtual particles, is an artifact of the Lagrangian track-
ing and is absent from the observations. Note that most of the surface drifters retroflect
eastward (Fig. 6).

—10—
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Figure 4. Density map of the trajectories for each of the 30 clusters identified by the k-
means++ model for the test set (see Section 2.3.3). The numbers on the top right indicate the
number of particles (or trajectories) in each cluster, while the numbers on the bottom lef