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Abstract

The spatiotemporal evolution of marine heatwaves (MHWs) is explored using a tracking algorithm termed Ocetrac that provides

objective characterization of MHW spatiotemporal evolution. Candidate MHW grid points are defined in detrended gridded sea

temperature data using a seasonally varying temperature threshold. Identified MHW points are collected into spatially distinct

objects using edge detection with weak sensitivity to edge detection and size threshold criteria. These MHW objects are followed

in space and time while allowing objects to split and merge. Ocetrac is applied to monthly satellite sea surface temperature

data from September 1981 through January 2021. The resulting MHWs are characterized by their intensity, duration, and total

area covered. The global analysis shows that MHWs in the Gulf of Maine and Mediterranean Sea evolve within a relatively

small region, while major MHWs in the Pacific and Indian Oceans are linked in space and time. The largest and most long

lasting MHW using this method lasts for 60 months from November 2013 to October 2018, encompassing previously identified

MHW events including those in the Northeast Pacific (2014-2015), the Tasman Sea (2015-2016, 2017-2018), and the Great

Barrier Reef (2016).
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Key Points:8

• MHW objects are defined as spatially isolated areas of non-seasonal anomalous9

positive temperatures anomalies10

• A MHW event is defined by one or more tracked objects allowing for space-time11

connectivity via objects that split and merge12

• The largest MHW lasts from 2013 to 2018, encompassing the Northeast Pacific13

2014-2015 event with a footprint throughout the Indo-Pacific Basin14
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Abstract15

The spatiotemporal evolution of marine heatwaves (MHWs) is explored using a track-16

ing algorithm termed Ocetrac that provides objective characterization of MHW spatiotem-17

poral evolution. Candidate MHW grid points are defined in detrended gridded sea tem-18

perature data using a seasonally varying temperature threshold. Identified MHW points19

are collected into spatially distinct objects using edge detection with weak sensitivity to20

edge detection and size threshold criteria. These MHW objects are followed in space and21

time while allowing objects to split and merge. Ocetrac is applied to monthly satellite22

sea surface temperature data from September 1981 through January 2021. The result-23

ing MHWs are characterized by their intensity, duration, and total area covered. The24

global analysis shows that MHWs in the Gulf of Maine and Mediterranean Sea evolve25

within a relatively small region, while major MHWs in the Pacific and Indian Oceans26

are linked in space and time. The largest and most long lasting MHW using this method27

lasts for 60 months from November 2013 to October 2018, encompassing previously iden-28

tified MHW events including those in the Northeast Pacific (2014-2015), the Tasman Sea29

(2015-2016, 2017-2018), and the Great Barrier Reef (2016).30

Plain Language Summary31

This study introduces a novel method, called Ocetrac, to track the spatiotempo-32

ral evolution of marine heatwaves (MHWs) using sea surface temperature data from 198133

to 2021. The method objectively identifies MHWs using temperature thresholds and edge34

detection, and then tracks them in space and time while allowing for splitting and merg-35

ing. The resulting MHWs are characterized by intensity, duration, and total area cov-36

ered. The study reveals that MHWs in the Gulf of Maine and Mediterranean Sea tend37

to evolve within a limited region, while major MHWs in the Pacific and Indian Oceans38

exhibit linked temporal evolution. The longest MHW identified using this method lasts39

for 60 months from 2013 to 2018, encompassing multiple previously identified MHW events.40

1 Introduction41

Marine heatwaves (MHWs) are defined as periods when the local sea surface tem-42

perature (SST) is significantly higher than typical for the time of year at a specified lo-43

cation. MHWs have occurred throughout the global ocean (Hobday et al., 2016; Holbrook44

et al., 2019). Typically, MHWs are examined through a local lens.Even when the drivers45

of marine heatwaves are well-known for a particular region (e.g., persistent anticyclonic46

atmospheric circulation over the North Pacific), the evolution of individual MHWs in47

these regions have varied considerably (Amaya et al., 2020; Bond et al., 2015; Fewings48

& Brown, 2019).49

The motivation to understand the evolution of MHWs is owed to the vulnerabil-50

ity of marine ecosystems to temperature extremes (Smale et al., 2019). MHWs have led51

to mass mortalities in marine invertebrates(Oliver et al., 2017; Garrabou et al., 2009),52

species range shifts (Mills et al., 2013), habitat destruction including coral bleaching (Hughes53

et al., 2017), and harmful algal blooms (McCabe et al., 2016). Failure to anticipate the54

destructive impacts of MHWs leads to fishery management challenges, including changes55

to the supply chain and loss in value of commercially harvested species (Mills et al., 2013;56

Pershing et al., 2019; Cheung & Frölicher, 2020). Another potential concern is the im-57

pact of MHWs on regional atmospheric circulation that can perturb weather patterns58

over land, especially over densely populated regions. Such events have been associated59

with extreme drought leading to agricultural burdens (Williams et al., 2015; Rodriguez,60

2021) and terrestrial heat extremes (McKinnon & Deser, 2018).61

By definition, MHWs represent the extreme warm end distribution of local sea sur-62

face temperature anomalies. Previous studies have used the 90th (Oliver et al., 2018; Hob-63

–2–



manuscript submitted to JGR: Oceans

day et al., 2016) or 99th (Darmaraki et al., 2019; Frölicher et al., 2018) percentile of the64

SST distribution to define extremes, where a MHW event is identified when SST exceeds65

this threshold relative to a long-term fixed seasonal climatology for at least a certain pe-66

riod of time, e.g., 5-days; (Hobday et al., 2016). The distribution of MHWs is influenced67

by the mean state, natural variability, and long-term anthropogenic change (Frölicher68

et al., 2018; Oliver et al., 2018). Regions with large SST variance, for example in the vicin-69

ity of western boundary currents and their extensions, as well as in the equatorial Pa-70

cific cold tongue, have the highest MHW intensities globally (Oliver et al., 2018). In ad-71

dition, Extremely long duration MHWs can be linked to modes of interannual to decadal72

variability in the climate system (Holbrook et al., 2019; Scannell et al., 2016).73

Natural variability such as El Niño-Southern Oscillation (ENSO) can impact the74

presence and persistence of MHWs in the mid-latitudes through atmospheric telecon-75

nections from the tropics. For example, anomalies in atmospheric deep convection over76

the tropics can initiate atmospheric planetary-scale waves that propagate to the mid-77

latitudes where they generate MHWs through changes in local atmospheric conditions,78

e.g., cloud cover (Hartmann, 2015). Large-scale modes of decadal SST variability that79

have been linked to tropical climate variability, such as the Interdecadal Pacific Oscil-80

lation (Power et al., 1999), can suppress or enhance the likelihood of MHW occurrences81

depending on the phase and amplitude of the mode (Holbrook et al., 2019; Scannell et82

al., 2016). They can influence the severity and duration of MHWs by altering the mean83

strength, direction, and location of ocean currents and heat transport, as well as mod-84

ulate air-sea heat flux (Perkins-Kirkpatrick et al., 2019; Di Lorenzo & Mantua, 2016; Feng85

et al., 2013).86

Interannual and decadal variability within the climate system can be explored us-87

ing an empirical orthogonal function (EOF) decomposition of climate anomalies, with88

the first few EOF modes generally capturing enough of the variability to explain the dom-89

inant patterns of MHWs and their timescales (Di Lorenzo & Mantua, 2016). EOFs have90

been used to explain the spatial patterns and the long-lived persistence of prominent MHWs91

(Amaya et al., 2020; Fewings & Brown, 2019; Oliver et al., 2018; Di Lorenzo & Mantua,92

2016). However, using a limited number of EOFs to describe the spatiotemporal evolu-93

tion of MHWs gives an incomplete picture.94

Retrospective and contemporaneous studies have relied on pointwise metrics (Sen Gupta95

et al., 2020; Hobday et al., 2018; Oliver et al., 2018), fixed region heat budget analyses96

(Xu et al., 2018; Oliver et al., 2017; Bond et al., 2015; Chen et al., 2014), or EOFs (Di Lorenzo97

& Mantua, 2016) to characterize the drivers of specific MHW events and to describe their98

characteristics. These approaches have been widely successful in determining the local99

processes and remote drivers responsible for specific MHWs (Sun et al., 2023). Here, we100

expand this view by characterizing the spatiotemporal evolution of MHWs as they evolve101

globally. This new perspective of MHW evolution takes advantage of the 3D evolving102

field of global SST to detect and track MHWs by characterizing their shape, size, loca-103

tion, duration, and intensity, which may help to identify new patterns in how MHWs evolve.104

We use an object-tracking algorithm, called Ocetrac, to explore the large-scale spatial105

connectivity of MHWs as they evolve in time and describe events as connected compo-106

nents.107

Object tracking has been used in atmospheric sciences of atmospheric and oceanic108

phenomena. For instance, an enhanced watershed method was used to identify hailstorm109

objects using observed gridded radar reflectivity and column integrated graupel mass es-110

timates from a National Weather Prediction (NWP) model (Gagne et al., 2017). The111

enhanced watershed method (Lakshmanan et al., 2009) reduces the volume of data that112

needs to be processed by optimally searching for the local maxima in the storm field and113

growing the storm object until both area and intensity criteria are met. As with Oce-114

trac, the watershed object-identification method is parameter sensitive.115
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The analysis presented here allows an investigation into the spatiotemporal evo-116

lution of MHWs. We use several definitions in our analysis (Table 1). Features are in-117

dividual points where SST is above the locally defined threshold for one month. A MHW118

object is a spatially coherent collection of features. A MHW event is composed of tracked119

and linked objects. We apply Ocetrac to monthly SST data from 1981 through 2021 to120

track the evolution of all MHWs globally and examine the distribution of three key MHW121

metrics (size, intensity, and duration). Four unique MHW case studies are further ex-122

plored using this framework in the North Pacific, North Atlantic, Indian Ocean, and Mediter-123

ranean Sea.124

2 Methods125

2.1 Data and Preprocessing126

We analyze monthly global maps of SST from the 0.25° longitude by 0.25° latitude127

gridded Optimum Interpolation SST version 2.1 (OISSTv2.1) dataset that extends from128

September 1981 through January 2021. The OISSTv2.1 combines satellite Advanced Very129

High Resolution Radiometer (AVHRR-only) with observations from ship, buoy, and in-130

situ measurements (including Argo floats and drifters), while accounting for platform dif-131

ferences and using interpolations to fill gaps in the satellite data (Reynolds et al., 2002,132

2007). We create a mask over the Arctic (>65ºN) and Antarctic (>70ºS) Oceans to re-133

move data in these regions and to avoid influence from seasonal sea ice and where the134

OISSTv2.1 data are less reliable (Figure 1).135

Figure 1. Global distribution of (a) mean SST (SSTm), (b) standard deviation of the anoma-

lies detrended (SSTa), (c) amplitude of the seasonal cycle (SSTs) as the peak minus the trough,

and (d) 30-year trend (SSTt) from 1990 through 2020. Maps in (a-c) have means computed with

respect to September 1981 through January 2021. Hatching over the polar oceans represent re-

gions that are excluded from this analysis.

Using the global maps of SST, we remove the mean, linear trend, and seasonal cy-136

cle from September 1981 through January 2021 to compute anomalies. The total decom-137

position of monthly SST is represented as138

SSTfit = SSTm + SSTs + SSTt (1)139
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where the fit (SSTfit) is the linear combination of the mean (SSTm, Figure 1a),140

linear trend (SSTt), annual and semiannual harmonics (SSTs) at each grid point. The141

coefficients of SSTfit are found using the least squares regression fit to monthly SST com-142

puted over the 473-month time period. We define detrended SST anomalies SSTa as the143

standardized difference between monthly SST and SSTfit, such that144

SSTa = SST − SSTfit (2)145

Our analysis is performed on SSTa to allow us to focus on the processes that un-146

derlay the evolution of MHWs. If the long-term trend is not removed, towards the end147

of the record, most of the global ocean is in MHW conditions year round. The trend is148

largest in mid-latitudes in the subtropical gyres, especially in the Northwest Atlantic,149

western North Pacific, and western South Pacific. This allows an examination the evo-150

lution of the spatial characteristics of MHW evolution (Figure 1d).151

We standardize SSTa by dividing by the respective local monthly standard devi-152

ation of SSTa over the entire period. The resulting standardized anomaly fields (SST ∗
a )153

have uniform variance across the globe. Equal variance of SST ∗
a accounts for non-seasonal154

spatial variability in the magnitude of SSTa that is shown in Figure 1b. High standard155

deviations of SST ∗
a occur in the eastern equatorial Pacific, western boundary currents,156

the region connecting the Indian Ocean to the South Atlantic, and in frontal zones with157

large SST gradients. Comparatively, the subtropics, southern mid-latitudes, equatorial158

Atlantic Ocean, equatorial Indian Ocean, and western tropical Pacific have low standard159

deviations (Figure 1b).160

Figure 2. Monthly time series of (a) SST and (b) SSTa from January 2010 through January

2021 at 46.625ºS, 148.875ºW (star in Figure 1b). The mean, seasonal cycle, and trend in SST

are shown in (a) as SSTfit. SSTa in (b) is defined as SST minus SSTfit. The standardized

SST ∗
a is shown in red and has been divided by its monthly standard deviation. Red circles indi-

cate when the SST ∗
a exceeded the 90th percentile of SST ∗

a (shown by the dashed line) computed

over the entire period from September 1981 through January 2021.
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2.2 Anomaly Detection161

To identify MHWs from the monthly maps of SST ∗
a , we search for candidate MHW162

points when the SSTa exceeds an intensity threshold defined as the local seasonally vary-163

ing 90th percentile of SSTa at each grid point and for each month (as suggested in Hob-164

day et al., 2015). If we apply the same procedure with SST−SSTt, the results will be165

the same because because SSTm + SSTs is a constant for each grid point and month166

of the year. When the SSTa exceeds the threshold, we consider it a MHW candidate.167

2.3 Multiple Object Tracking168

The standardized SSTa maps with the MHW candidate points produced by the169

anomaly detection algorithm in Section 2.2 are transformed into a binary image where170

ones correspond to candidate MHW grid points and zeros correspond to background grid171

points. Each monthly map is treated as a separate image. Our goal is to identify group-172

ings of ones that define a MHW object, which meet the defined spatial characteristics173

in terms of structure and size. Image processing terminology is defined in Table 1 and174

illustrated in Figure 3.175

Table 1. Glossary of terms used in image processing and set theory.

Term Definition

Binary Image A 2D map (x, y) with ones corresponding to candidate MHW
grid points and zeros corresponding to either non-MHW grid
points or land points.

Features Within binary images, features refer to grid points with values
of one.

Objects Within binary images, clusters are features that are connected
in either space or time (x, y, t).

Structuring Element A 2D binary image with unique shape and size applied in the
morphological operations such as erosion and dilation.

Connectivity Element Centrosymmetric 3D binary array to track MHWs in space and
time (x, y, t).

Erosion Contracts the boundary of a binary image and removes small-
scale details.

Dilation Expands the boundary of a binary image by adding a layer of
pixels.

Opening Erosion followed by dilation. Smooths contours by breaking nar-
row isthmuses: eliminates small islands and sharp peaks.

Closing Dilation followed by erosion. Smooths contours by fusing narrow
breaks and long thin gulfs: eliminates small holes.

Centroid The geographic center of each object. A MHW can have multi-
ple centroids if connected objects merge or split.

Sub ID An additional ID given to MHWs with more than one centroid
per month. For example, the 50th MHW with three centroids
would be labeled as 50.1, 50.2 and 50.3 respectively.

We use mathematical morphology operations from the SciPy multidimensional im-176

age processing Python package to remove small, isolated features and to fill small holes177

within feature clusters. A structuring element is defined according to its shape and size.178
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We define the shape of the structuring element (S) by a quadratic surface with a mor-179

phological radius (R), where180

S = x2 + y2 (3)181

Here, x and y are vectors with length 2R and represent longitude and latitude co-182

ordinates. The matrix, S, is transformed into a binary image and is represented by ones183

where S < R2 is satisfied, otherwise the background is zeros (Figure 3). The units of184

S are in degrees per unit resolution of the grid (e.g., an R of 8 on a 1/4° grid is equal185

to 2° latitude or longitude). We iterate through different values of R to explore how the186

size of the structuring element affects MHW characteristics. By design, S represents a187

subset of the binary image with a defined structure and is used to scan over the MHW188

image during morphological opening and closing.189

Figure 3. Illustrations of terminology used in Ocetrac. The (a) binary image contains features

and connected features called objects. The centroid of an object is defined by its geometric center

(dashed grid box in (a)). A (b) 2D structuring element is used in morphological operations with

R=8, and a (c) 3D connectivity element is used in multiple object tracking.

The structuring element is used to scan over the entire image to manipulate fea-190

tures based on the dilation and erosion of the image (Gonzalez & Woods, 2002). Ero-191

sion eliminates isolated and small features by shrinking features. Dilation is the oppo-192

site of erosion and is used to fill small holes within features, gradually enlarging the bound-193

aries of the feature region.194

Erosion and dilation are done for each unique positional element in the image, and195

their operations are performed in succession (Figure 4). For example, morphological open-196

ing is erosion followed by dilation using the same structuring element. Opening is used197

to eliminate small features while preserving the shape and size of larger features in the198

image. Alternatively, morphological closing is the process of eroding a dilated image, again199
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using the identical structuring elements used in the opening procedure. Closing fills small200

holes within features while also preserving the shape and size of other features in the im-201

age. Both opening and closing are used to remove small features and smooth the bor-202

ders of larger features. Here, we implement a series of morphological closing then open-203

ing, as we found this to optimally clean feature images that can be tracked in space and204

time (Figure 4).205

Figure 4. Sequence of morphological operations for closing (Dilation I followed by Erosion

I) then opening (Erosion II followed by Dilation II) using a structuring element with a radius

of 4 grid cells (a-e) and a radius of 8 grid cells (f-j). Orange shading represents the feature area

that the morphological operations are performed on. Red stippling in (e, j) shows the grid cells

identified as potential MHWs before the morphological operations. Green contours outline the

final shape of the identified MHW objects. Data shown here is from February 2011 using the

1/4° resolution OISSTv2 SSTa∗ with the trend removed and 90th percentile as the threshold for

anomaly detection.

Next, we label connected 2D objects from binary images using Scikit-Image’s mea-206

sure module in Python. We define objects when two or more neighboring features with207

the same value are connected either adjacent or diagonal from each other (e.g., orange208

pixels in Figure 3a). The resulting 2D objects are assigned a unique label. This process209

is repeated for each time step. For each unique object, we use the latitude and longitude210

coordinates from the Scikit-Image’s regionprops module to calculate total object area.211

Using the distribution of all object areas from September 1981 through January 2021,212

we calculate the area at a particular percentile threshold (P ) and ignore objects smaller213

than P. For our purposes, we use the 75th percentile of object area (km2) for the value214

of P (Figure 4). We discuss the sensitivity of the chosen size threshold on MHW char-215

acteristics in Section 3.216

After eliminating objects smaller than the size threshold, we convert the images217

back to binary where ones correspond to objects and zeros are considered the background.218

We redefine objects using a 3D centrosymmetric connectivity element, such that two fea-219

tures with similar values that are either adjacent or diagonal to each other and that also220

overlap in time are connected. Objects are again uniquely labeled with an ID and tracked221

sequentially through time. No temporal gaps are allowed and no minimum percent over-222

lap is enforced. We alow multiple objects that merge to have same ID and a single ob-223

ject that splits into multiple objects that retail the ID of the initial object. As a result,224

any objects that have connectivity at some point in their evolution share an ID. This al-225

lows MHWs to contain multiple objects.226

In summary, we describe a new tracking algorithm to detect and follow the evo-227

lution of MHWs. The results depend on the morphological radius (R) and minimum size228
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percentile threshold (P ). We discuss the sensitivities of these choices in Section 3, along229

with useful metrics for characterizing the global spatiotemporal evolution of MHWs.230

3 Sensitivity Analysis231

The representation of MHWs is dependent on the criteria used to define their in-232

tensity, size, duration, and shape. This can be influenced by the horizontal resolution233

of the SST data, and whether or not the trend is removed. We investigate the sensitiv-234

ity of the morphological radius (R) and minimum size percentile threshold (P ) criteria235

implemented in Ocetrac. Specifically, we quantify the effect of these criteria on the num-236

ber of MHW events detected, average MHW duration, minimum MHW area, and the237

percent of MHWs with multiple centroids.238

As R and P increase, fewer MHWs are detected (Figure 5a). Large values of R in-239

crease the connectedness of features in the binary images, resulting in fewer but larger240

MHW events. These well connected MHWs are also likely to persist for longer than 3241

months (Figure 5e). The percentage of MHWs with multiple centroids decreases with242

increasing R (Figure 5d). Fewer MHWs have multiple centroids when R is large as a re-243

sult of increased connectivity among features.244

Figure 5. Sensitivity of MHW characteristics globally with varying smoothing radius (R)

and minimum size percentile (P ), including the (a) number the MHWs detected from September

1981 through April 2020, (b) average monthly duration of MHWs, (c) minimum MHW area, (d)

percent of MHWs with multiple centroids, (e) percent of MHWs longer than 3 months, and (f)

percent of MHW area retained. Data shown here are for 1/4° resolution OISSTv2 with MHWs

defined when detrended SST exceeds the local monthly 90th percentile from September 1981

through April 2020.

The average monthly duration of MHWs initially increases with R and P for val-245

ues of P < 70 (Figure 5b); however, for large R, the average monthly duration peaks246

for R near 75 . This nonlinear behavior is the result of the decline in the number of MHWs247

detected as the minimum size percentile increases. A smaller population size decreases248

the average duration (Figure 5b and e). Duration appears most sensitive to smoothing249

radius, where large radii increases connectivity between neighboring features allowing250

MHWs to persist for longer periods of time.251
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Large minimum thresholds P reduce the percentage of the total MHW area retained.252

Smaller values of P thresholds retain a greater percent of the original MHW area, and253

therefore also produce more MHWs of smaller size (Figure 5a, c, and f). As the size thresh-254

old increases, the percent of total MHW area retained quickly declines to less than 50%255

(Figure 5f). The number of MHWs detected also declines to less than 100 with the small-256

est size events increasing in size. If the size threshold R is held constant, the percent of257

total MHW area retained also decreases and the minimum MHW area increases with in-258

creasing smoothing radius. The larger smoothing radii help join neighboring features and259

fill holes within feature clusters. Thus, a large smoothing radii help to grow MHWs, while260

also decreasing the total number of MHWs detected.261

For a demonstration of the sensitivity of an example MHW to the smoothing ra-262

dius and size percentile threshold, we examine the sensitivity of the 2011 MHW off West-263

ern Australia (Figure 6). The shape and size of the detected objects are noticeably dif-264

ferent between radii of 4 and 8, and the results are independent of area threshold P . A265

smoothing radius of 4 produces objects with sharp and jagged edges and interior holes266

(Figure 6a, d, and g). The object shape difference between an R of 8 and 10 is nearly267

negligible, with the exception of small features disappearing (e.g., Figure 6b vs. Figure 6c).268

As the minimum size threshold P increases, objects disappear when the areas fall be-269

low the threshold. The sensitivities of the radius and size parameters give insight into270

the biases introduced in tracking MHWs. Here, we use a radius of 8 as it provides enough271

detail of the original objects while creating smooth edges. We also choose the 75th per-272

centile for the minimum size threshold as it isolates the well-known MHWs that have273

occurred in the 21st century, including the event of Western Australia in 2011 (Figure 6e).274

The sensitivity analysis reveals the effect that the choice of parameter influences275

basic characteristics of MHWs such as number, duration, and size. To optimize our choice,276

we aim for approximately 20 MHWs per year (approx. 800 from 1982 to 2020), a min-277

imum area roughly the size of Alaska (approximately 2× 106km2), and lasting on av-278

erage 3 months (Holbrook et al., 2019).279

4 Metrics280

Ocetrac allows for the characterization of discrete MHWs in time and space. We281

define a set of measures that are computed over the lifetime of each event and at monthly282

increments (Table 1). To describe the intensity within the MHW, we use the entire SSTa283

field within the object contour (green outlines in Figure 6) to calculate the mean, max-284

imum, and cumulative intensity. These quantities are calculated with respect to the lo-285

cal monthly climatology from 1982-2020 that have been standardized by the local monthly286

standard deviation of the SSTa∗. The MHW anomalies are summed over the area and287

duration of the event to calculate the cumulative intensity. Degree heating weeks (°C-288

weeks) are commonly used to study the impacts of coral bleaching in tropical reef ecosys-289

tems (Kayanne, 2017; Eakin et al., 2010). The cumulative intensity (°C-km2 -months)290

provides a measure of accumulated heating over the lifetime of the MHW and can be in-291

formative when assessing the time, space, and temperature dependence of ecological im-292

pacts related to MHWs.293

MHWs have a discrete start and end date that define the event duration. The start294

date is determined once the SSTa is exceeds the local 90th percentile with a continuous295

area exceeding the minimum size threshold as defined by P . The termination of a MHW296

occurs when either the SST falls below the temperature threshold as defined by P or when297

the area diminishes to less than the minimum size as defined by P . The sampling fre-298

quency is monthly. Events with durations shorter than a month are not considered.299

Area is an important qualifier for a MHW. The area is defined as the sum of grid300

boxes contained within each object and takes into consideration grid resolution and lat-301
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Figure 6. Sensitivity of objects detected from the morphological operations in February 2011

from the 1/4° resolution OISSTv2 with the trend removed and 90th percentile as the threshold

for anomaly detection. Each panel represents a unique combination of radius and minimum size

threshold from 4–10 grid spaces and 65th–90th percentiles respectively. Detected objects are

outlined in green, red stippling indicates grid points where SST exceeds the 90th percentile, and

orange shading represents filled in MHW regions to create closed contour objects outlined in

green.

Table 2. Description of measures used to characterize individual MHW events.

Term Definition Definition

Intensity

Mean °C Average SSTa

Maximum °C Maximum SSTa

Cumulative °C km2

months
Sum of SSTa over the total area for the duration of the
event

Duration months Persistence of MHWs in time

Area

Mean km2 Average MHW grid area over the duration of the event

Maximum km2 Largest MHW grid area over the duration of the event

Cumulative km2 Sum of unique grid area over the duration of the event

Centroid (°lat, °lon) Geometric center of each object for each MHW defined at
each time step
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itude. Since MHW with multiple objects can contain several centroids, we also compute302

the area for each object within the MHW. Given that MHWs evolve in space over their303

lifetime, it is informative to find the total MHW area as the sum of unique grid points304

contained within the MHW over its duration. The mean and maximum areas are com-305

puted for each MHW.306

The distributions of MHW duration and area are heavy-tailed, meaning that short307

lived or small area events occur more frequently than long-lasting or large area events308

(Figure 7). By construction, both duration and area have minimum thresholds of one309

month and 1.85×106km2 respectively. The largest MHW encompassed the 2013-2017310

NE Pacific ”The Blob,” impacting a total area of 2.88×1010km2 and persisting for 60311

months. The MHW off Western Australia a total area and duration covering 1.62×1010km2
312

for 47 months (Table 3). The Gulf of Maine and Mediterranean Sea MHWs were closer313

to the global average duration (2.99 months) and average total area (3.17 × 108km2)314

of all 813 MHWs detected from September 1981 through January 2021.315

Figure 7. Distribution of (a) maximum intensity (mean=2.55ºC, min.=0.20ºC,
max.=9.11°C), (b) duration (mean=2.99 months, minimum=1 month, maximum=60 months),

and (c) total area (mean=3.17x108 km2, minimum=1.47x107 km2, maximum=2.88x1010 km2) for

813 MHWs detected between September 1981 through January 2021. MHWs are identified from

the 1/4º resolution OISSTv2 and defined when the detrended SST exceeds the local monthly

averaged 90th percentile. MHWs have been smoothed with a 8 grid spacing morphological radius

and only events that exceed the 75th percentile (1.85x106 km2) of the initial areal distribution

are considered. Named MHW are indicated by the colored dots using definitions in Table 3.

The maximum MHW intensity has a positively skewed distribution with a mean316

of 2.55°C, maximum of 9.11°C, and minimum of 0.20°C (Figure 7). The 2013-2017 North-317

east Pacific ”The Blob” had maximum SSTa of 7.13°C, which is larger than than the 2009-318

2011 Western Australia (5.96°C), 2012 Gulf of Maine (5.82°C), and 2003 Mediterranean319

Sea (3.62°C) MHWs, although the maximum intensities of all four MHWs were above320

average (Figure 7a, Table 3).321

Measures of Table 1 are useful to describe MHWs and characterize their evolutions322

in both time and space. In the following section, we use Ocetrac to detect and follow four323

well-known MHWs occuring during the 21st century, including the 2013-2017 Northeast324

Pacific (Bond et al., 2015; Di Lorenzo & Mantua, 2016), 2009-2011 Western Australia325

(Pearce & Feng, 2013), 2012 Gulf of Maine (Mills et al., 2013), and 2003 Mediterranean326

Sea MHWs (Black et al., 2004; Sparnocchia et al., 2006).327
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Table 3. Spatiotemporal metrics using Ocetrac to describe four well-known and highly impact-

ful 21st Century marine heatwaves.

Region Start
date

End
date

Duration
(months)

Intensity
(Mean
(°C),
Max. (°C),
Cumula-
tive (°C
months))

Area
(km2)
(Mean,
Max., To-
tal)

Centroids
Total
(max.
per
month)

Northeast Pacific 11/2012 10/2018 60 0.98 4.81x108 195 (7)

7.13 1.50x109

2.82x106 2.88x1010

Gulf of Maine 04/2012 12/2012 9 1.41 5.49x107 9 (1)

5.82 1.03x108

8.91x104 4.94x108

West Coast of Aus. 12/2008 10/2012 47 0.82 3.45x108 151 (7)

5.96 6.98x108

1.38x106 1.62x1010

Mediterranean Sea 06/2003 08/2003 3 1.57 3.30x107 3 (1)

3.62 3.76x107

1.59x104 9.90x107

5 Case Studies328

Ocetrac provides a global dataset of MHW spatiotemporal metrics that we can then329

probe to explore how past events evolved (Table 3). Here, we explore these recent events330

and determine (1) if their representation using Ocetrac is consistent with past literature,331

and (2) if there is anything new that can be learned about MHWs by taking into con-332

sideration their spatial and temporal connectivity. We focus on four events that had ma-333

jor impacts on both socioeconomic and ecological systems and that sample from unique334

geographic regions in both the tropics and mid-latitudes.335

5.1 Northeast Pacific336

A MHW, colloquially referred to as ”The Blob,” in the Northeast Pacific was no-337

torious for its unusually large scale, its persistences magnitude of its temperature anomaly338

(Bond et al., 2015). MHW anomalies that developed in late 2013 were connected to the339

warm SSTs in the western tropical Pacific months prior through the excitement of at-340

mospheric Rossby waves that weakened the mean state of atmospheric circulation over341

the North Pacific (Hartmann, 2015). This resulted in an exceptionally high ridge of at-342

mospheric pressure through the winter of 2014 that weakened surface wind speeds, low-343

ered rates of turbulent heat loss from the ocean to the atmosphere, and reduced the nor-344

mal Ekman transport of cold water from the north (Bond et al., 2015). Offshore SST345

anomalies that formed during the boreal winter of 2013/14 made their way to the U.S.346

West Coast by late spring following the mean circulation of the ocean gyre (Di Lorenzo347

& Mantua, 2016). The MHW lingered for several years along the coast and was strength-348

ened equatorward by an extreme 2015/16 El Niño in the eastern equatorial Pacific (Tseng349

et al., 2017). Pacific anomalies in 2013-2015 were dynamically linked through atmospheric350
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Figure 8. Spatiotemporal evolution of the cumulative intensity (°C-months) over the entire

footprint of (a) the Northeast Pacific ”Blob” (event #692, 11/2012 to 10/2018), (b) the Gulf of

Maine (event #651, 04/2012 to 12/2012), (c) the Western Australia (event #606, 12/2008 to

10/2012) and (d) the Mediterranean Sea (#464, 06/2003 to 08/2003). Data are from the monthly

1/4° resolution OISSTv2 with the trend removed using a minimum area threshold of the 75th

percentile and an edge detection radius of 8 grid spaces (approx. 2° latitude and longitude).

variability and thermodynamic coupling that manifested on top of modes of North Pa-351

cific decadal SST variability (Tseng et al., 2017; Di Lorenzo & Mantua, 2016; Lee et al.,352

2015),.353

We use Ocetrac to explore the spatial connectivity of Pacific anomalies during this354

multi-year event and track its evolution through time (Figure 8a, Supplementary 1). The355

entire footprint of this MHW is 2.88×1010km2. The initial signature appeared in late356

2013 just south of the Gulf of Alaska as described by Bond et al. (2015). The MHW was357

confined to the western and northeast Pacific through late 2014. SST anomalies in the358

Indian Ocean were above average for most of 2014, which played a factor in the failed359

development of a major El Niño event in 2014/2015 (Dong & McPhaden, 2018; McPhaden,360

2015). The warm background SSTs likely enabled the MHW to grow in the Indian Ocean361

and persist through 2015. Meanwhile, the North Pacific portion of this mega MHW re-362

sembled the spatial pattern of the positive Pacific Decadal Oscillation (PDO) in winter363

2015 that extended from the Gulf of Alaska to the eastern tropical Pacific (Supplemen-364

tary 1). Di Lorenzo and Mantua (2016) showed that the weak El Niño of 2014/2015 pro-365

vided the Aleutian Low with enough variability to drive this PDO-like expression of SST366

anomalies. This variability, along with increased heat content in the tropical Pacific, were367

important precursors to the development of the most powerful El Niño on record in 2015/2016.368

Individual snapshots of the monthly evolution of the objects contained within this event369

demonstrate its global reach (Supplementary 1).370

5.2 Gulf of Maine371

The Gulf of Maine MHW in 2012 covered an ocean area from Cape Hatteras, North372

Carolina to Iceland and up into the Labrador Sea (Figure 8b; Mills et al., 2013). A north-373

ward meridional shift in the atmospheric jet stream over North America during the late374

autumn and early winters of 2011/2012 stabilized atmospheric high pressure over the west-375

ern North Atlantic (Chen et al., 2014). This led to an overall reduction in surface wind376

–14–



manuscript submitted to JGR: Oceans

Figure 9. Spatiotemporal evolution of the SSTa (°C) over the entire footprint of the Gulf of

Maine (event #651).

speeds and higher than normal air humidity and temperature, which acted to inhibit tur-377

bulent heat loss from the ocean to the atmosphere and increase water column stratifi-378

cation (Chen et al., 2014). As a result, SSTs systematically warmed over the continen-379

tal shelf from November 2011 through at least June 2012 (Chen et al., 2014). Anoma-380

lous warming in the spring of 2012 was attributed to large-scale atmospheric variabil-381

ity during the winter of 2011/2012, whereas local advective heat flux played a secondary382

role to cool SSTs (Chen et al., 2014, 2015).383

The results from Ocetrac show that the Gulf of Maine MHW a regional event that384

was confined to the Northwest Atlantic. The center of action was centered offshore of385

Newfoundland with maximum cumulative intensities occurring in the Gulf of Maine, Gulf386

of St. Lawrence, and part of the Labrador Sea (Figure 7b). The MHW, which began in387

April 2012, persisted for 9 months and covered a total ocean area of 6.67×107km2 with388

a maximum intensity of 5.82°C (Table 3).389

Scannell et al. (2016) also tracked the 2012 Gulf of Maine MHW using 2°-latitude390

by 2°-longitude resolution monthly detrended SST for three months, between June and391

August 2012, and found its area to be 7.60×106km2 with a maximum intensity exceed392

3°C. They also showed that the likelihood of a MHW this size is enhanced during the393

negative phase of the North Atlantic Oscillation (NAO) and positive phase of the At-394

lantic Multidecadal Oscillation (AMO), with the AMO being more dominant. Unsur-395

prisingly, the AMO had been positive since the early 1990s and the NAO took a neg-396

ative excursion in 2012. The resulting relationship between natural modes of SST vari-397

ability and MHW size may have favored the large-scale nature of the 2012 warm anoma-398

lies (Supplementary 2).399

5.3 West Coast of Australia400

A major, unprecedented MHW occurred in late February 2011 off the coast of West-401

ern Australia (Pearce & Feng, 2013). An important driver of this MHW was the fast phase402

transition from Central Pacific El Niño in 2009/2010 to La Niña in 2010/2011 that was403

in part driven by strong easterly wind stress caused by warm SSTs in the Indian Ocean404

(Kim et al., 2011). Easterly wind anomalies in the western Tropical Pacific and over In-405

donesia excited an eastward upwelling Kelvin wave that quickly terminated warming as-406
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sociated with an el Niño in 2009/2010 (Kim et al., 2011; Kug & Kang, 2006; Yoo et al.,407

2010). An extraordinary La Niña quickly ensued, which increased SSTs and sea level heights408

in the western tropical Pacific and off the northwest coast of Australia. High steric height409

anomalies forced a stronger than normal poleward flowing Leeuwin Current (Feng et al.,410

2013). In addition, northerly wind anomalies associated with low sea level pressure anoma-411

lies off the coast of Western Australia helped to intensity the Leeuwin Current and re-412

duce turbulent heat loss from the ocean (Feng et al., 2013). The poleward advection of413

warm water contributed to two thirds of the warming, while positive air-sea heat fluxes414

into the ocean accounted for approximately the other one third of the warming (J. A. Ben-415

thuysen et al., 2020). The anomalous air-sea heat flux in February 2011 acted to rein-416

force the MHW rather than damp the warming effects from La Niña (Feng et al., 2013).417

The exceptional MHW that resulted along Australia’s western coast was dubbed ’Ninga-418

loo Niño’ for its semblance to other coupled ocean-atmosphere phenomena in the Pacific419

(El Niño) and Atlantic (Benguela Niño) (Feng et al., 2013). After the peak warming in420

March 2011 along the coast, positive sea level and SST anomalies propagated offshore421

following the propagation of mesoscale eddies (J. Benthuysen et al., 2014).422

Indian Ocean SSTs during the following summers of 2012 and 2013 remained anoma-423

lously warm off Western Australia (Caputi et al., 2014) (Supplementary 3). The persis-424

tence of anomalies was part of an increasing trend of Ningaloo Niño conditions since the425

early 1990s (Feng et al., 2013). The trend was driven in part by a change to the nega-426

tive phase of the Interdacadal Pacific Oscillation (IPO) and enhanced ENSO variance,427

the former sustains positive heat content anomalies off Western Australia and favors cy-428

clonic wind anomalies that reduce the prevailing alongshore southerly winds and enhance429

poleward heat transport by the Leeuwin Current (Feng et al., 2013). Further coupling430

between the along-shore winds and coastal SST has been shown to amplify Ningaloo Niño431

events (Kataoka et al., 2014).432

5.4 Mediterranean Sea433

During the summer of 2003, Western Europe experience its worst heatwave in over434

500 years, which caused excessive morbidity throughout the region, especially in hard435

hit France (Luterbacher et al., 2004; Valleron & Boumendil, 2004). The extremely hot436

conditions over land from May through August stemmed from a persistent anticyclonic437

circulation centered over northern France that reduced cloud cover and precipitation (Black438

et al., 2004; Grazzini & Viterbo, 2003). Although short-lived, the anomalous atmospheric439

anomalies quickly warmed SSTs in the central Mediterranean Sea in May before affect-440

ing the entire basin by July, with the exception of the Aegean Sea (Grazzini & Viterbo,441

2003). The Mediterranean Sea MHW warmed passively as a result of increased surface442

air temperatures, reduced surface wind speeds, and lower rates of turbulent and long-443

wave heat loss to the atmosphere (Olita et al., 2006). The MHW dissipated abruptly in444

late August to early September when strong westerly winds cooled surface air temper-445

atures and induced wind-driven turbulent mixing that cooled SSTs (Sparnocchia et al.,446

2006).447

The Mediterranean Sea MHW in Ocetrac during the summer of 2003 started in June448

and persisted through August (Supplementary 4). Due to the nature of the semi-enclosed449

region, MHW anomalies in the Mediterranean Sea did not connect with those in the At-450

lantic and had only one centroid per month. This meant that the MHW was highly lo-451

calized with maximum anomalies over 4°C and a total surface area of 7.76 × 106km2,452

where the maximum cumulative anomalies occurred in the central and western regions453

of the basin (Table 3, Figure 8d). The 2003 Mediterranean Sea MHW was the smallest454

size event of the four case studies examined here, however, was intense enough to dec-455

imate rocky benthic macroinvertebrate species (Table 3; Garrabou et al., 2009).456
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Remote forcing from the northward shift and intensification of the Inter-tropical457

Convergence Zone over West Africa, as well as Rossby waves emanating from tropical458

America that intensified the Azores anticyclone, contributed to the unusual atmospheric459

conditions driving the 2003 Mediterranean Sea MHW (Black et al., 2004). Decadal fluc-460

tuations in North Atlantic SSTs and the thermohaline circulation are known to influ-461

ence European weather over long timescales. During 2003, the AMO index was positive462

and associated with elevated air temperatures and reduced wind stress over western Eu-463

rope (Sutton & Hodson, 2005).464

6 Conclusions465

We present a novel tracking algorithm called Ocetrac that can be used to charac-466

terize the spatiotemporal evolution of MHWs globally. This new software tool has al-467

lowed us to highlight the spatial connectivity and temporal behavior of MHWs. Using468

Ocetrac, we are able to characterize new spatial patterns and behavior of some of the469

most dangerous MHWs of the 21st century. A summary of our approach is as follows:470

1. Proprocess global SSTs to exclude the long-term warming trend and define anoma-471

lies with respect to the local climatology. Anomalies are then standardized by the472

monthly standard deviation of SSTa over the entire climatological period. The cli-473

matological periods should cover at least the most recent 30-years.474

2. Detect MHWs where SSTa exceed a local seasonally varying threshold (e.g., 90th475

percentile) computed over the same climatological period. Connect edges that de-476

fine the perimeter of MHWs larger than a minimum size threshold (e.g., 75th per-477

centile of the anomaly size distribution).478

3. Track MHWs using 3D connectivity in both space (x, y) and time (z) keeping track479

of multiple centroids as MHWs split or merge.480

We demonstrate the usefulness of Ocetrac in following the evolutions of four well-481

known MHWs in the Pacific, Indian, and Atlantic Oceans, and Mediterranean Sea. The482

advantage of using Ocetrac globally, rather than a single regionally focused analysis, is483

that it captures the large-scale and dynamically linked connections between remote SST484

anomalies that connect seemingly disconnected MHWs. In combination with dynami-485

cal studies, Ocetrac can provide a tool to better understand the origin of MHWs and their486

evolution.487

To a large extent, our interpretation of extreme events is dependent on how thresh-488

olds are defined. In many circumstances, extreme events are determined based on the489

space and time scales of their impacts and associated risks. For example, extreme flood-490

ing events are often classified by their extent and frequency in terms of their potential491

for damage (Ten Veldhuis, 2011). It is therefore useful to consider MHWs as tempera-492

ture variance outside the normal range of thermal tolerance to native species. However,493

here, we remove the long term warming trend in order to better isolate the behavior of494

SST variance to be able to describe the spatiotemporal connectedness of MHWs. How-495

ever, when we retain the long-term warming trend, a greater proportion of ocean sur-496

face area experiences a MHW, and thus leads to increases in intensity, duration, and size.497

We also explore the sensitivity of Ocetrac to the resolution of gridded observational498

data, ranging from eddy-permitting (0.25º) to very coarse (2º). The overall large-scale499

spatial patterns agree well among the different resolutions, however the MHWs tracked500

with coarser resolution lacked the intensity and frequency expected with higher resolu-501

tion. These results are consistent with modeling studies (Hayashida et al., 2020; Pilo et502

al., 2019), and agree that greater spatial detail gained from high resolution datasets bet-503

ter represent the changes expected to occur to MHWs in the future. The inclusion of high-504

quality, near real time data remains a challenge for making up-to-date and accurate fore-505
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casts (Schlegel et al., 2019). However, visualizing and quantifying the spatiotemporal con-506

nectivity of MHWs in sea surface temperature forecasts using Ocetrac enhanced the us-507

ability of sea surface tempereature forecasts.508
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Abstract15

The spatiotemporal evolution of marine heatwaves (MHWs) is explored using a track-16

ing algorithm termed Ocetrac that provides objective characterization of MHW spatiotem-17

poral evolution. Candidate MHW grid points are defined in detrended gridded sea tem-18

perature data using a seasonally varying temperature threshold. Identified MHW points19

are collected into spatially distinct objects using edge detection with weak sensitivity to20

edge detection and size threshold criteria. These MHW objects are followed in space and21

time while allowing objects to split and merge. Ocetrac is applied to monthly satellite22

sea surface temperature data from September 1981 through January 2021. The result-23

ing MHWs are characterized by their intensity, duration, and total area covered. The24

global analysis shows that MHWs in the Gulf of Maine and Mediterranean Sea evolve25

within a relatively small region, while major MHWs in the Pacific and Indian Oceans26

are linked in space and time. The largest and most long lasting MHW using this method27

lasts for 60 months from November 2013 to October 2018, encompassing previously iden-28

tified MHW events including those in the Northeast Pacific (2014-2015), the Tasman Sea29

(2015-2016, 2017-2018), and the Great Barrier Reef (2016).30

Plain Language Summary31

This study introduces a novel method, called Ocetrac, to track the spatiotempo-32

ral evolution of marine heatwaves (MHWs) using sea surface temperature data from 198133

to 2021. The method objectively identifies MHWs using temperature thresholds and edge34

detection, and then tracks them in space and time while allowing for splitting and merg-35

ing. The resulting MHWs are characterized by intensity, duration, and total area cov-36

ered. The study reveals that MHWs in the Gulf of Maine and Mediterranean Sea tend37

to evolve within a limited region, while major MHWs in the Pacific and Indian Oceans38

exhibit linked temporal evolution. The longest MHW identified using this method lasts39

for 60 months from 2013 to 2018, encompassing multiple previously identified MHW events.40

1 Introduction41

Marine heatwaves (MHWs) are defined as periods when the local sea surface tem-42

perature (SST) is significantly higher than typical for the time of year at a specified lo-43

cation. MHWs have occurred throughout the global ocean (Hobday et al., 2016; Holbrook44

et al., 2019). Typically, MHWs are examined through a local lens.Even when the drivers45

of marine heatwaves are well-known for a particular region (e.g., persistent anticyclonic46

atmospheric circulation over the North Pacific), the evolution of individual MHWs in47

these regions have varied considerably (Amaya et al., 2020; Bond et al., 2015; Fewings48

& Brown, 2019).49

The motivation to understand the evolution of MHWs is owed to the vulnerabil-50

ity of marine ecosystems to temperature extremes (Smale et al., 2019). MHWs have led51

to mass mortalities in marine invertebrates(Oliver et al., 2017; Garrabou et al., 2009),52

species range shifts (Mills et al., 2013), habitat destruction including coral bleaching (Hughes53

et al., 2017), and harmful algal blooms (McCabe et al., 2016). Failure to anticipate the54

destructive impacts of MHWs leads to fishery management challenges, including changes55

to the supply chain and loss in value of commercially harvested species (Mills et al., 2013;56

Pershing et al., 2019; Cheung & Frölicher, 2020). Another potential concern is the im-57

pact of MHWs on regional atmospheric circulation that can perturb weather patterns58

over land, especially over densely populated regions. Such events have been associated59

with extreme drought leading to agricultural burdens (Williams et al., 2015; Rodriguez,60

2021) and terrestrial heat extremes (McKinnon & Deser, 2018).61

By definition, MHWs represent the extreme warm end distribution of local sea sur-62

face temperature anomalies. Previous studies have used the 90th (Oliver et al., 2018; Hob-63
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day et al., 2016) or 99th (Darmaraki et al., 2019; Frölicher et al., 2018) percentile of the64

SST distribution to define extremes, where a MHW event is identified when SST exceeds65

this threshold relative to a long-term fixed seasonal climatology for at least a certain pe-66

riod of time, e.g., 5-days; (Hobday et al., 2016). The distribution of MHWs is influenced67

by the mean state, natural variability, and long-term anthropogenic change (Frölicher68

et al., 2018; Oliver et al., 2018). Regions with large SST variance, for example in the vicin-69

ity of western boundary currents and their extensions, as well as in the equatorial Pa-70

cific cold tongue, have the highest MHW intensities globally (Oliver et al., 2018). In ad-71

dition, Extremely long duration MHWs can be linked to modes of interannual to decadal72

variability in the climate system (Holbrook et al., 2019; Scannell et al., 2016).73

Natural variability such as El Niño-Southern Oscillation (ENSO) can impact the74

presence and persistence of MHWs in the mid-latitudes through atmospheric telecon-75

nections from the tropics. For example, anomalies in atmospheric deep convection over76

the tropics can initiate atmospheric planetary-scale waves that propagate to the mid-77

latitudes where they generate MHWs through changes in local atmospheric conditions,78

e.g., cloud cover (Hartmann, 2015). Large-scale modes of decadal SST variability that79

have been linked to tropical climate variability, such as the Interdecadal Pacific Oscil-80

lation (Power et al., 1999), can suppress or enhance the likelihood of MHW occurrences81

depending on the phase and amplitude of the mode (Holbrook et al., 2019; Scannell et82

al., 2016). They can influence the severity and duration of MHWs by altering the mean83

strength, direction, and location of ocean currents and heat transport, as well as mod-84

ulate air-sea heat flux (Perkins-Kirkpatrick et al., 2019; Di Lorenzo & Mantua, 2016; Feng85

et al., 2013).86

Interannual and decadal variability within the climate system can be explored us-87

ing an empirical orthogonal function (EOF) decomposition of climate anomalies, with88

the first few EOF modes generally capturing enough of the variability to explain the dom-89

inant patterns of MHWs and their timescales (Di Lorenzo & Mantua, 2016). EOFs have90

been used to explain the spatial patterns and the long-lived persistence of prominent MHWs91

(Amaya et al., 2020; Fewings & Brown, 2019; Oliver et al., 2018; Di Lorenzo & Mantua,92

2016). However, using a limited number of EOFs to describe the spatiotemporal evolu-93

tion of MHWs gives an incomplete picture.94

Retrospective and contemporaneous studies have relied on pointwise metrics (Sen Gupta95

et al., 2020; Hobday et al., 2018; Oliver et al., 2018), fixed region heat budget analyses96

(Xu et al., 2018; Oliver et al., 2017; Bond et al., 2015; Chen et al., 2014), or EOFs (Di Lorenzo97

& Mantua, 2016) to characterize the drivers of specific MHW events and to describe their98

characteristics. These approaches have been widely successful in determining the local99

processes and remote drivers responsible for specific MHWs (Sun et al., 2023). Here, we100

expand this view by characterizing the spatiotemporal evolution of MHWs as they evolve101

globally. This new perspective of MHW evolution takes advantage of the 3D evolving102

field of global SST to detect and track MHWs by characterizing their shape, size, loca-103

tion, duration, and intensity, which may help to identify new patterns in how MHWs evolve.104

We use an object-tracking algorithm, called Ocetrac, to explore the large-scale spatial105

connectivity of MHWs as they evolve in time and describe events as connected compo-106

nents.107

Object tracking has been used in atmospheric sciences of atmospheric and oceanic108

phenomena. For instance, an enhanced watershed method was used to identify hailstorm109

objects using observed gridded radar reflectivity and column integrated graupel mass es-110

timates from a National Weather Prediction (NWP) model (Gagne et al., 2017). The111

enhanced watershed method (Lakshmanan et al., 2009) reduces the volume of data that112

needs to be processed by optimally searching for the local maxima in the storm field and113

growing the storm object until both area and intensity criteria are met. As with Oce-114

trac, the watershed object-identification method is parameter sensitive.115
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The analysis presented here allows an investigation into the spatiotemporal evo-116

lution of MHWs. We use several definitions in our analysis (Table 1). Features are in-117

dividual points where SST is above the locally defined threshold for one month. A MHW118

object is a spatially coherent collection of features. A MHW event is composed of tracked119

and linked objects. We apply Ocetrac to monthly SST data from 1981 through 2021 to120

track the evolution of all MHWs globally and examine the distribution of three key MHW121

metrics (size, intensity, and duration). Four unique MHW case studies are further ex-122

plored using this framework in the North Pacific, North Atlantic, Indian Ocean, and Mediter-123

ranean Sea.124

2 Methods125

2.1 Data and Preprocessing126

We analyze monthly global maps of SST from the 0.25° longitude by 0.25° latitude127

gridded Optimum Interpolation SST version 2.1 (OISSTv2.1) dataset that extends from128

September 1981 through January 2021. The OISSTv2.1 combines satellite Advanced Very129

High Resolution Radiometer (AVHRR-only) with observations from ship, buoy, and in-130

situ measurements (including Argo floats and drifters), while accounting for platform dif-131

ferences and using interpolations to fill gaps in the satellite data (Reynolds et al., 2002,132

2007). We create a mask over the Arctic (>65ºN) and Antarctic (>70ºS) Oceans to re-133

move data in these regions and to avoid influence from seasonal sea ice and where the134

OISSTv2.1 data are less reliable (Figure 1).135

Figure 1. Global distribution of (a) mean SST (SSTm), (b) standard deviation of the anoma-

lies detrended (SSTa), (c) amplitude of the seasonal cycle (SSTs) as the peak minus the trough,

and (d) 30-year trend (SSTt) from 1990 through 2020. Maps in (a-c) have means computed with

respect to September 1981 through January 2021. Hatching over the polar oceans represent re-

gions that are excluded from this analysis.

Using the global maps of SST, we remove the mean, linear trend, and seasonal cy-136

cle from September 1981 through January 2021 to compute anomalies. The total decom-137

position of monthly SST is represented as138

SSTfit = SSTm + SSTs + SSTt (1)139
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where the fit (SSTfit) is the linear combination of the mean (SSTm, Figure 1a),140

linear trend (SSTt), annual and semiannual harmonics (SSTs) at each grid point. The141

coefficients of SSTfit are found using the least squares regression fit to monthly SST com-142

puted over the 473-month time period. We define detrended SST anomalies SSTa as the143

standardized difference between monthly SST and SSTfit, such that144

SSTa = SST − SSTfit (2)145

Our analysis is performed on SSTa to allow us to focus on the processes that un-146

derlay the evolution of MHWs. If the long-term trend is not removed, towards the end147

of the record, most of the global ocean is in MHW conditions year round. The trend is148

largest in mid-latitudes in the subtropical gyres, especially in the Northwest Atlantic,149

western North Pacific, and western South Pacific. This allows an examination the evo-150

lution of the spatial characteristics of MHW evolution (Figure 1d).151

We standardize SSTa by dividing by the respective local monthly standard devi-152

ation of SSTa over the entire period. The resulting standardized anomaly fields (SST ∗
a )153

have uniform variance across the globe. Equal variance of SST ∗
a accounts for non-seasonal154

spatial variability in the magnitude of SSTa that is shown in Figure 1b. High standard155

deviations of SST ∗
a occur in the eastern equatorial Pacific, western boundary currents,156

the region connecting the Indian Ocean to the South Atlantic, and in frontal zones with157

large SST gradients. Comparatively, the subtropics, southern mid-latitudes, equatorial158

Atlantic Ocean, equatorial Indian Ocean, and western tropical Pacific have low standard159

deviations (Figure 1b).160

Figure 2. Monthly time series of (a) SST and (b) SSTa from January 2010 through January

2021 at 46.625ºS, 148.875ºW (star in Figure 1b). The mean, seasonal cycle, and trend in SST

are shown in (a) as SSTfit. SSTa in (b) is defined as SST minus SSTfit. The standardized

SST ∗
a is shown in red and has been divided by its monthly standard deviation. Red circles indi-

cate when the SST ∗
a exceeded the 90th percentile of SST ∗

a (shown by the dashed line) computed

over the entire period from September 1981 through January 2021.
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2.2 Anomaly Detection161

To identify MHWs from the monthly maps of SST ∗
a , we search for candidate MHW162

points when the SSTa exceeds an intensity threshold defined as the local seasonally vary-163

ing 90th percentile of SSTa at each grid point and for each month (as suggested in Hob-164

day et al., 2015). If we apply the same procedure with SST−SSTt, the results will be165

the same because because SSTm + SSTs is a constant for each grid point and month166

of the year. When the SSTa exceeds the threshold, we consider it a MHW candidate.167

2.3 Multiple Object Tracking168

The standardized SSTa maps with the MHW candidate points produced by the169

anomaly detection algorithm in Section 2.2 are transformed into a binary image where170

ones correspond to candidate MHW grid points and zeros correspond to background grid171

points. Each monthly map is treated as a separate image. Our goal is to identify group-172

ings of ones that define a MHW object, which meet the defined spatial characteristics173

in terms of structure and size. Image processing terminology is defined in Table 1 and174

illustrated in Figure 3.175

Table 1. Glossary of terms used in image processing and set theory.

Term Definition

Binary Image A 2D map (x, y) with ones corresponding to candidate MHW
grid points and zeros corresponding to either non-MHW grid
points or land points.

Features Within binary images, features refer to grid points with values
of one.

Objects Within binary images, clusters are features that are connected
in either space or time (x, y, t).

Structuring Element A 2D binary image with unique shape and size applied in the
morphological operations such as erosion and dilation.

Connectivity Element Centrosymmetric 3D binary array to track MHWs in space and
time (x, y, t).

Erosion Contracts the boundary of a binary image and removes small-
scale details.

Dilation Expands the boundary of a binary image by adding a layer of
pixels.

Opening Erosion followed by dilation. Smooths contours by breaking nar-
row isthmuses: eliminates small islands and sharp peaks.

Closing Dilation followed by erosion. Smooths contours by fusing narrow
breaks and long thin gulfs: eliminates small holes.

Centroid The geographic center of each object. A MHW can have multi-
ple centroids if connected objects merge or split.

Sub ID An additional ID given to MHWs with more than one centroid
per month. For example, the 50th MHW with three centroids
would be labeled as 50.1, 50.2 and 50.3 respectively.

We use mathematical morphology operations from the SciPy multidimensional im-176

age processing Python package to remove small, isolated features and to fill small holes177

within feature clusters. A structuring element is defined according to its shape and size.178
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We define the shape of the structuring element (S) by a quadratic surface with a mor-179

phological radius (R), where180

S = x2 + y2 (3)181

Here, x and y are vectors with length 2R and represent longitude and latitude co-182

ordinates. The matrix, S, is transformed into a binary image and is represented by ones183

where S < R2 is satisfied, otherwise the background is zeros (Figure 3). The units of184

S are in degrees per unit resolution of the grid (e.g., an R of 8 on a 1/4° grid is equal185

to 2° latitude or longitude). We iterate through different values of R to explore how the186

size of the structuring element affects MHW characteristics. By design, S represents a187

subset of the binary image with a defined structure and is used to scan over the MHW188

image during morphological opening and closing.189

Figure 3. Illustrations of terminology used in Ocetrac. The (a) binary image contains features

and connected features called objects. The centroid of an object is defined by its geometric center

(dashed grid box in (a)). A (b) 2D structuring element is used in morphological operations with

R=8, and a (c) 3D connectivity element is used in multiple object tracking.

The structuring element is used to scan over the entire image to manipulate fea-190

tures based on the dilation and erosion of the image (Gonzalez & Woods, 2002). Ero-191

sion eliminates isolated and small features by shrinking features. Dilation is the oppo-192

site of erosion and is used to fill small holes within features, gradually enlarging the bound-193

aries of the feature region.194

Erosion and dilation are done for each unique positional element in the image, and195

their operations are performed in succession (Figure 4). For example, morphological open-196

ing is erosion followed by dilation using the same structuring element. Opening is used197

to eliminate small features while preserving the shape and size of larger features in the198

image. Alternatively, morphological closing is the process of eroding a dilated image, again199
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using the identical structuring elements used in the opening procedure. Closing fills small200

holes within features while also preserving the shape and size of other features in the im-201

age. Both opening and closing are used to remove small features and smooth the bor-202

ders of larger features. Here, we implement a series of morphological closing then open-203

ing, as we found this to optimally clean feature images that can be tracked in space and204

time (Figure 4).205

Figure 4. Sequence of morphological operations for closing (Dilation I followed by Erosion

I) then opening (Erosion II followed by Dilation II) using a structuring element with a radius

of 4 grid cells (a-e) and a radius of 8 grid cells (f-j). Orange shading represents the feature area

that the morphological operations are performed on. Red stippling in (e, j) shows the grid cells

identified as potential MHWs before the morphological operations. Green contours outline the

final shape of the identified MHW objects. Data shown here is from February 2011 using the

1/4° resolution OISSTv2 SSTa∗ with the trend removed and 90th percentile as the threshold for

anomaly detection.

Next, we label connected 2D objects from binary images using Scikit-Image’s mea-206

sure module in Python. We define objects when two or more neighboring features with207

the same value are connected either adjacent or diagonal from each other (e.g., orange208

pixels in Figure 3a). The resulting 2D objects are assigned a unique label. This process209

is repeated for each time step. For each unique object, we use the latitude and longitude210

coordinates from the Scikit-Image’s regionprops module to calculate total object area.211

Using the distribution of all object areas from September 1981 through January 2021,212

we calculate the area at a particular percentile threshold (P ) and ignore objects smaller213

than P. For our purposes, we use the 75th percentile of object area (km2) for the value214

of P (Figure 4). We discuss the sensitivity of the chosen size threshold on MHW char-215

acteristics in Section 3.216

After eliminating objects smaller than the size threshold, we convert the images217

back to binary where ones correspond to objects and zeros are considered the background.218

We redefine objects using a 3D centrosymmetric connectivity element, such that two fea-219

tures with similar values that are either adjacent or diagonal to each other and that also220

overlap in time are connected. Objects are again uniquely labeled with an ID and tracked221

sequentially through time. No temporal gaps are allowed and no minimum percent over-222

lap is enforced. We alow multiple objects that merge to have same ID and a single ob-223

ject that splits into multiple objects that retail the ID of the initial object. As a result,224

any objects that have connectivity at some point in their evolution share an ID. This al-225

lows MHWs to contain multiple objects.226

In summary, we describe a new tracking algorithm to detect and follow the evo-227

lution of MHWs. The results depend on the morphological radius (R) and minimum size228
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percentile threshold (P ). We discuss the sensitivities of these choices in Section 3, along229

with useful metrics for characterizing the global spatiotemporal evolution of MHWs.230

3 Sensitivity Analysis231

The representation of MHWs is dependent on the criteria used to define their in-232

tensity, size, duration, and shape. This can be influenced by the horizontal resolution233

of the SST data, and whether or not the trend is removed. We investigate the sensitiv-234

ity of the morphological radius (R) and minimum size percentile threshold (P ) criteria235

implemented in Ocetrac. Specifically, we quantify the effect of these criteria on the num-236

ber of MHW events detected, average MHW duration, minimum MHW area, and the237

percent of MHWs with multiple centroids.238

As R and P increase, fewer MHWs are detected (Figure 5a). Large values of R in-239

crease the connectedness of features in the binary images, resulting in fewer but larger240

MHW events. These well connected MHWs are also likely to persist for longer than 3241

months (Figure 5e). The percentage of MHWs with multiple centroids decreases with242

increasing R (Figure 5d). Fewer MHWs have multiple centroids when R is large as a re-243

sult of increased connectivity among features.244

Figure 5. Sensitivity of MHW characteristics globally with varying smoothing radius (R)

and minimum size percentile (P ), including the (a) number the MHWs detected from September

1981 through April 2020, (b) average monthly duration of MHWs, (c) minimum MHW area, (d)

percent of MHWs with multiple centroids, (e) percent of MHWs longer than 3 months, and (f)

percent of MHW area retained. Data shown here are for 1/4° resolution OISSTv2 with MHWs

defined when detrended SST exceeds the local monthly 90th percentile from September 1981

through April 2020.

The average monthly duration of MHWs initially increases with R and P for val-245

ues of P < 70 (Figure 5b); however, for large R, the average monthly duration peaks246

for R near 75 . This nonlinear behavior is the result of the decline in the number of MHWs247

detected as the minimum size percentile increases. A smaller population size decreases248

the average duration (Figure 5b and e). Duration appears most sensitive to smoothing249

radius, where large radii increases connectivity between neighboring features allowing250

MHWs to persist for longer periods of time.251
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Large minimum thresholds P reduce the percentage of the total MHW area retained.252

Smaller values of P thresholds retain a greater percent of the original MHW area, and253

therefore also produce more MHWs of smaller size (Figure 5a, c, and f). As the size thresh-254

old increases, the percent of total MHW area retained quickly declines to less than 50%255

(Figure 5f). The number of MHWs detected also declines to less than 100 with the small-256

est size events increasing in size. If the size threshold R is held constant, the percent of257

total MHW area retained also decreases and the minimum MHW area increases with in-258

creasing smoothing radius. The larger smoothing radii help join neighboring features and259

fill holes within feature clusters. Thus, a large smoothing radii help to grow MHWs, while260

also decreasing the total number of MHWs detected.261

For a demonstration of the sensitivity of an example MHW to the smoothing ra-262

dius and size percentile threshold, we examine the sensitivity of the 2011 MHW off West-263

ern Australia (Figure 6). The shape and size of the detected objects are noticeably dif-264

ferent between radii of 4 and 8, and the results are independent of area threshold P . A265

smoothing radius of 4 produces objects with sharp and jagged edges and interior holes266

(Figure 6a, d, and g). The object shape difference between an R of 8 and 10 is nearly267

negligible, with the exception of small features disappearing (e.g., Figure 6b vs. Figure 6c).268

As the minimum size threshold P increases, objects disappear when the areas fall be-269

low the threshold. The sensitivities of the radius and size parameters give insight into270

the biases introduced in tracking MHWs. Here, we use a radius of 8 as it provides enough271

detail of the original objects while creating smooth edges. We also choose the 75th per-272

centile for the minimum size threshold as it isolates the well-known MHWs that have273

occurred in the 21st century, including the event of Western Australia in 2011 (Figure 6e).274

The sensitivity analysis reveals the effect that the choice of parameter influences275

basic characteristics of MHWs such as number, duration, and size. To optimize our choice,276

we aim for approximately 20 MHWs per year (approx. 800 from 1982 to 2020), a min-277

imum area roughly the size of Alaska (approximately 2× 106km2), and lasting on av-278

erage 3 months (Holbrook et al., 2019).279

4 Metrics280

Ocetrac allows for the characterization of discrete MHWs in time and space. We281

define a set of measures that are computed over the lifetime of each event and at monthly282

increments (Table 1). To describe the intensity within the MHW, we use the entire SSTa283

field within the object contour (green outlines in Figure 6) to calculate the mean, max-284

imum, and cumulative intensity. These quantities are calculated with respect to the lo-285

cal monthly climatology from 1982-2020 that have been standardized by the local monthly286

standard deviation of the SSTa∗. The MHW anomalies are summed over the area and287

duration of the event to calculate the cumulative intensity. Degree heating weeks (°C-288

weeks) are commonly used to study the impacts of coral bleaching in tropical reef ecosys-289

tems (Kayanne, 2017; Eakin et al., 2010). The cumulative intensity (°C-km2 -months)290

provides a measure of accumulated heating over the lifetime of the MHW and can be in-291

formative when assessing the time, space, and temperature dependence of ecological im-292

pacts related to MHWs.293

MHWs have a discrete start and end date that define the event duration. The start294

date is determined once the SSTa is exceeds the local 90th percentile with a continuous295

area exceeding the minimum size threshold as defined by P . The termination of a MHW296

occurs when either the SST falls below the temperature threshold as defined by P or when297

the area diminishes to less than the minimum size as defined by P . The sampling fre-298

quency is monthly. Events with durations shorter than a month are not considered.299

Area is an important qualifier for a MHW. The area is defined as the sum of grid300

boxes contained within each object and takes into consideration grid resolution and lat-301
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Figure 6. Sensitivity of objects detected from the morphological operations in February 2011

from the 1/4° resolution OISSTv2 with the trend removed and 90th percentile as the threshold

for anomaly detection. Each panel represents a unique combination of radius and minimum size

threshold from 4–10 grid spaces and 65th–90th percentiles respectively. Detected objects are

outlined in green, red stippling indicates grid points where SST exceeds the 90th percentile, and

orange shading represents filled in MHW regions to create closed contour objects outlined in

green.

Table 2. Description of measures used to characterize individual MHW events.

Term Definition Definition

Intensity

Mean °C Average SSTa

Maximum °C Maximum SSTa

Cumulative °C km2

months
Sum of SSTa over the total area for the duration of the
event

Duration months Persistence of MHWs in time

Area

Mean km2 Average MHW grid area over the duration of the event

Maximum km2 Largest MHW grid area over the duration of the event

Cumulative km2 Sum of unique grid area over the duration of the event

Centroid (°lat, °lon) Geometric center of each object for each MHW defined at
each time step
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itude. Since MHW with multiple objects can contain several centroids, we also compute302

the area for each object within the MHW. Given that MHWs evolve in space over their303

lifetime, it is informative to find the total MHW area as the sum of unique grid points304

contained within the MHW over its duration. The mean and maximum areas are com-305

puted for each MHW.306

The distributions of MHW duration and area are heavy-tailed, meaning that short307

lived or small area events occur more frequently than long-lasting or large area events308

(Figure 7). By construction, both duration and area have minimum thresholds of one309

month and 1.85×106km2 respectively. The largest MHW encompassed the 2013-2017310

NE Pacific ”The Blob,” impacting a total area of 2.88×1010km2 and persisting for 60311

months. The MHW off Western Australia a total area and duration covering 1.62×1010km2
312

for 47 months (Table 3). The Gulf of Maine and Mediterranean Sea MHWs were closer313

to the global average duration (2.99 months) and average total area (3.17 × 108km2)314

of all 813 MHWs detected from September 1981 through January 2021.315

Figure 7. Distribution of (a) maximum intensity (mean=2.55ºC, min.=0.20ºC,
max.=9.11°C), (b) duration (mean=2.99 months, minimum=1 month, maximum=60 months),

and (c) total area (mean=3.17x108 km2, minimum=1.47x107 km2, maximum=2.88x1010 km2) for

813 MHWs detected between September 1981 through January 2021. MHWs are identified from

the 1/4º resolution OISSTv2 and defined when the detrended SST exceeds the local monthly

averaged 90th percentile. MHWs have been smoothed with a 8 grid spacing morphological radius

and only events that exceed the 75th percentile (1.85x106 km2) of the initial areal distribution

are considered. Named MHW are indicated by the colored dots using definitions in Table 3.

The maximum MHW intensity has a positively skewed distribution with a mean316

of 2.55°C, maximum of 9.11°C, and minimum of 0.20°C (Figure 7). The 2013-2017 North-317

east Pacific ”The Blob” had maximum SSTa of 7.13°C, which is larger than than the 2009-318

2011 Western Australia (5.96°C), 2012 Gulf of Maine (5.82°C), and 2003 Mediterranean319

Sea (3.62°C) MHWs, although the maximum intensities of all four MHWs were above320

average (Figure 7a, Table 3).321

Measures of Table 1 are useful to describe MHWs and characterize their evolutions322

in both time and space. In the following section, we use Ocetrac to detect and follow four323

well-known MHWs occuring during the 21st century, including the 2013-2017 Northeast324

Pacific (Bond et al., 2015; Di Lorenzo & Mantua, 2016), 2009-2011 Western Australia325

(Pearce & Feng, 2013), 2012 Gulf of Maine (Mills et al., 2013), and 2003 Mediterranean326

Sea MHWs (Black et al., 2004; Sparnocchia et al., 2006).327
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Table 3. Spatiotemporal metrics using Ocetrac to describe four well-known and highly impact-

ful 21st Century marine heatwaves.

Region Start
date

End
date

Duration
(months)

Intensity
(Mean
(°C),
Max. (°C),
Cumula-
tive (°C
months))

Area
(km2)
(Mean,
Max., To-
tal)

Centroids
Total
(max.
per
month)

Northeast Pacific 11/2012 10/2018 60 0.98 4.81x108 195 (7)

7.13 1.50x109

2.82x106 2.88x1010

Gulf of Maine 04/2012 12/2012 9 1.41 5.49x107 9 (1)

5.82 1.03x108

8.91x104 4.94x108

West Coast of Aus. 12/2008 10/2012 47 0.82 3.45x108 151 (7)

5.96 6.98x108

1.38x106 1.62x1010

Mediterranean Sea 06/2003 08/2003 3 1.57 3.30x107 3 (1)

3.62 3.76x107

1.59x104 9.90x107

5 Case Studies328

Ocetrac provides a global dataset of MHW spatiotemporal metrics that we can then329

probe to explore how past events evolved (Table 3). Here, we explore these recent events330

and determine (1) if their representation using Ocetrac is consistent with past literature,331

and (2) if there is anything new that can be learned about MHWs by taking into con-332

sideration their spatial and temporal connectivity. We focus on four events that had ma-333

jor impacts on both socioeconomic and ecological systems and that sample from unique334

geographic regions in both the tropics and mid-latitudes.335

5.1 Northeast Pacific336

A MHW, colloquially referred to as ”The Blob,” in the Northeast Pacific was no-337

torious for its unusually large scale, its persistences magnitude of its temperature anomaly338

(Bond et al., 2015). MHW anomalies that developed in late 2013 were connected to the339

warm SSTs in the western tropical Pacific months prior through the excitement of at-340

mospheric Rossby waves that weakened the mean state of atmospheric circulation over341

the North Pacific (Hartmann, 2015). This resulted in an exceptionally high ridge of at-342

mospheric pressure through the winter of 2014 that weakened surface wind speeds, low-343

ered rates of turbulent heat loss from the ocean to the atmosphere, and reduced the nor-344

mal Ekman transport of cold water from the north (Bond et al., 2015). Offshore SST345

anomalies that formed during the boreal winter of 2013/14 made their way to the U.S.346

West Coast by late spring following the mean circulation of the ocean gyre (Di Lorenzo347

& Mantua, 2016). The MHW lingered for several years along the coast and was strength-348

ened equatorward by an extreme 2015/16 El Niño in the eastern equatorial Pacific (Tseng349

et al., 2017). Pacific anomalies in 2013-2015 were dynamically linked through atmospheric350
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Figure 8. Spatiotemporal evolution of the cumulative intensity (°C-months) over the entire

footprint of (a) the Northeast Pacific ”Blob” (event #692, 11/2012 to 10/2018), (b) the Gulf of

Maine (event #651, 04/2012 to 12/2012), (c) the Western Australia (event #606, 12/2008 to

10/2012) and (d) the Mediterranean Sea (#464, 06/2003 to 08/2003). Data are from the monthly

1/4° resolution OISSTv2 with the trend removed using a minimum area threshold of the 75th

percentile and an edge detection radius of 8 grid spaces (approx. 2° latitude and longitude).

variability and thermodynamic coupling that manifested on top of modes of North Pa-351

cific decadal SST variability (Tseng et al., 2017; Di Lorenzo & Mantua, 2016; Lee et al.,352

2015),.353

We use Ocetrac to explore the spatial connectivity of Pacific anomalies during this354

multi-year event and track its evolution through time (Figure 8a, Supplementary 1). The355

entire footprint of this MHW is 2.88×1010km2. The initial signature appeared in late356

2013 just south of the Gulf of Alaska as described by Bond et al. (2015). The MHW was357

confined to the western and northeast Pacific through late 2014. SST anomalies in the358

Indian Ocean were above average for most of 2014, which played a factor in the failed359

development of a major El Niño event in 2014/2015 (Dong & McPhaden, 2018; McPhaden,360

2015). The warm background SSTs likely enabled the MHW to grow in the Indian Ocean361

and persist through 2015. Meanwhile, the North Pacific portion of this mega MHW re-362

sembled the spatial pattern of the positive Pacific Decadal Oscillation (PDO) in winter363

2015 that extended from the Gulf of Alaska to the eastern tropical Pacific (Supplemen-364

tary 1). Di Lorenzo and Mantua (2016) showed that the weak El Niño of 2014/2015 pro-365

vided the Aleutian Low with enough variability to drive this PDO-like expression of SST366

anomalies. This variability, along with increased heat content in the tropical Pacific, were367

important precursors to the development of the most powerful El Niño on record in 2015/2016.368

Individual snapshots of the monthly evolution of the objects contained within this event369

demonstrate its global reach (Supplementary 1).370

5.2 Gulf of Maine371

The Gulf of Maine MHW in 2012 covered an ocean area from Cape Hatteras, North372

Carolina to Iceland and up into the Labrador Sea (Figure 8b; Mills et al., 2013). A north-373

ward meridional shift in the atmospheric jet stream over North America during the late374

autumn and early winters of 2011/2012 stabilized atmospheric high pressure over the west-375

ern North Atlantic (Chen et al., 2014). This led to an overall reduction in surface wind376
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Figure 9. Spatiotemporal evolution of the SSTa (°C) over the entire footprint of the Gulf of

Maine (event #651).

speeds and higher than normal air humidity and temperature, which acted to inhibit tur-377

bulent heat loss from the ocean to the atmosphere and increase water column stratifi-378

cation (Chen et al., 2014). As a result, SSTs systematically warmed over the continen-379

tal shelf from November 2011 through at least June 2012 (Chen et al., 2014). Anoma-380

lous warming in the spring of 2012 was attributed to large-scale atmospheric variabil-381

ity during the winter of 2011/2012, whereas local advective heat flux played a secondary382

role to cool SSTs (Chen et al., 2014, 2015).383

The results from Ocetrac show that the Gulf of Maine MHW a regional event that384

was confined to the Northwest Atlantic. The center of action was centered offshore of385

Newfoundland with maximum cumulative intensities occurring in the Gulf of Maine, Gulf386

of St. Lawrence, and part of the Labrador Sea (Figure 7b). The MHW, which began in387

April 2012, persisted for 9 months and covered a total ocean area of 6.67×107km2 with388

a maximum intensity of 5.82°C (Table 3).389

Scannell et al. (2016) also tracked the 2012 Gulf of Maine MHW using 2°-latitude390

by 2°-longitude resolution monthly detrended SST for three months, between June and391

August 2012, and found its area to be 7.60×106km2 with a maximum intensity exceed392

3°C. They also showed that the likelihood of a MHW this size is enhanced during the393

negative phase of the North Atlantic Oscillation (NAO) and positive phase of the At-394

lantic Multidecadal Oscillation (AMO), with the AMO being more dominant. Unsur-395

prisingly, the AMO had been positive since the early 1990s and the NAO took a neg-396

ative excursion in 2012. The resulting relationship between natural modes of SST vari-397

ability and MHW size may have favored the large-scale nature of the 2012 warm anoma-398

lies (Supplementary 2).399

5.3 West Coast of Australia400

A major, unprecedented MHW occurred in late February 2011 off the coast of West-401

ern Australia (Pearce & Feng, 2013). An important driver of this MHW was the fast phase402

transition from Central Pacific El Niño in 2009/2010 to La Niña in 2010/2011 that was403

in part driven by strong easterly wind stress caused by warm SSTs in the Indian Ocean404

(Kim et al., 2011). Easterly wind anomalies in the western Tropical Pacific and over In-405

donesia excited an eastward upwelling Kelvin wave that quickly terminated warming as-406
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sociated with an el Niño in 2009/2010 (Kim et al., 2011; Kug & Kang, 2006; Yoo et al.,407

2010). An extraordinary La Niña quickly ensued, which increased SSTs and sea level heights408

in the western tropical Pacific and off the northwest coast of Australia. High steric height409

anomalies forced a stronger than normal poleward flowing Leeuwin Current (Feng et al.,410

2013). In addition, northerly wind anomalies associated with low sea level pressure anoma-411

lies off the coast of Western Australia helped to intensity the Leeuwin Current and re-412

duce turbulent heat loss from the ocean (Feng et al., 2013). The poleward advection of413

warm water contributed to two thirds of the warming, while positive air-sea heat fluxes414

into the ocean accounted for approximately the other one third of the warming (J. A. Ben-415

thuysen et al., 2020). The anomalous air-sea heat flux in February 2011 acted to rein-416

force the MHW rather than damp the warming effects from La Niña (Feng et al., 2013).417

The exceptional MHW that resulted along Australia’s western coast was dubbed ’Ninga-418

loo Niño’ for its semblance to other coupled ocean-atmosphere phenomena in the Pacific419

(El Niño) and Atlantic (Benguela Niño) (Feng et al., 2013). After the peak warming in420

March 2011 along the coast, positive sea level and SST anomalies propagated offshore421

following the propagation of mesoscale eddies (J. Benthuysen et al., 2014).422

Indian Ocean SSTs during the following summers of 2012 and 2013 remained anoma-423

lously warm off Western Australia (Caputi et al., 2014) (Supplementary 3). The persis-424

tence of anomalies was part of an increasing trend of Ningaloo Niño conditions since the425

early 1990s (Feng et al., 2013). The trend was driven in part by a change to the nega-426

tive phase of the Interdacadal Pacific Oscillation (IPO) and enhanced ENSO variance,427

the former sustains positive heat content anomalies off Western Australia and favors cy-428

clonic wind anomalies that reduce the prevailing alongshore southerly winds and enhance429

poleward heat transport by the Leeuwin Current (Feng et al., 2013). Further coupling430

between the along-shore winds and coastal SST has been shown to amplify Ningaloo Niño431

events (Kataoka et al., 2014).432

5.4 Mediterranean Sea433

During the summer of 2003, Western Europe experience its worst heatwave in over434

500 years, which caused excessive morbidity throughout the region, especially in hard435

hit France (Luterbacher et al., 2004; Valleron & Boumendil, 2004). The extremely hot436

conditions over land from May through August stemmed from a persistent anticyclonic437

circulation centered over northern France that reduced cloud cover and precipitation (Black438

et al., 2004; Grazzini & Viterbo, 2003). Although short-lived, the anomalous atmospheric439

anomalies quickly warmed SSTs in the central Mediterranean Sea in May before affect-440

ing the entire basin by July, with the exception of the Aegean Sea (Grazzini & Viterbo,441

2003). The Mediterranean Sea MHW warmed passively as a result of increased surface442

air temperatures, reduced surface wind speeds, and lower rates of turbulent and long-443

wave heat loss to the atmosphere (Olita et al., 2006). The MHW dissipated abruptly in444

late August to early September when strong westerly winds cooled surface air temper-445

atures and induced wind-driven turbulent mixing that cooled SSTs (Sparnocchia et al.,446

2006).447

The Mediterranean Sea MHW in Ocetrac during the summer of 2003 started in June448

and persisted through August (Supplementary 4). Due to the nature of the semi-enclosed449

region, MHW anomalies in the Mediterranean Sea did not connect with those in the At-450

lantic and had only one centroid per month. This meant that the MHW was highly lo-451

calized with maximum anomalies over 4°C and a total surface area of 7.76 × 106km2,452

where the maximum cumulative anomalies occurred in the central and western regions453

of the basin (Table 3, Figure 8d). The 2003 Mediterranean Sea MHW was the smallest454

size event of the four case studies examined here, however, was intense enough to dec-455

imate rocky benthic macroinvertebrate species (Table 3; Garrabou et al., 2009).456
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Remote forcing from the northward shift and intensification of the Inter-tropical457

Convergence Zone over West Africa, as well as Rossby waves emanating from tropical458

America that intensified the Azores anticyclone, contributed to the unusual atmospheric459

conditions driving the 2003 Mediterranean Sea MHW (Black et al., 2004). Decadal fluc-460

tuations in North Atlantic SSTs and the thermohaline circulation are known to influ-461

ence European weather over long timescales. During 2003, the AMO index was positive462

and associated with elevated air temperatures and reduced wind stress over western Eu-463

rope (Sutton & Hodson, 2005).464

6 Conclusions465

We present a novel tracking algorithm called Ocetrac that can be used to charac-466

terize the spatiotemporal evolution of MHWs globally. This new software tool has al-467

lowed us to highlight the spatial connectivity and temporal behavior of MHWs. Using468

Ocetrac, we are able to characterize new spatial patterns and behavior of some of the469

most dangerous MHWs of the 21st century. A summary of our approach is as follows:470

1. Proprocess global SSTs to exclude the long-term warming trend and define anoma-471

lies with respect to the local climatology. Anomalies are then standardized by the472

monthly standard deviation of SSTa over the entire climatological period. The cli-473

matological periods should cover at least the most recent 30-years.474

2. Detect MHWs where SSTa exceed a local seasonally varying threshold (e.g., 90th475

percentile) computed over the same climatological period. Connect edges that de-476

fine the perimeter of MHWs larger than a minimum size threshold (e.g., 75th per-477

centile of the anomaly size distribution).478

3. Track MHWs using 3D connectivity in both space (x, y) and time (z) keeping track479

of multiple centroids as MHWs split or merge.480

We demonstrate the usefulness of Ocetrac in following the evolutions of four well-481

known MHWs in the Pacific, Indian, and Atlantic Oceans, and Mediterranean Sea. The482

advantage of using Ocetrac globally, rather than a single regionally focused analysis, is483

that it captures the large-scale and dynamically linked connections between remote SST484

anomalies that connect seemingly disconnected MHWs. In combination with dynami-485

cal studies, Ocetrac can provide a tool to better understand the origin of MHWs and their486

evolution.487

To a large extent, our interpretation of extreme events is dependent on how thresh-488

olds are defined. In many circumstances, extreme events are determined based on the489

space and time scales of their impacts and associated risks. For example, extreme flood-490

ing events are often classified by their extent and frequency in terms of their potential491

for damage (Ten Veldhuis, 2011). It is therefore useful to consider MHWs as tempera-492

ture variance outside the normal range of thermal tolerance to native species. However,493

here, we remove the long term warming trend in order to better isolate the behavior of494

SST variance to be able to describe the spatiotemporal connectedness of MHWs. How-495

ever, when we retain the long-term warming trend, a greater proportion of ocean sur-496

face area experiences a MHW, and thus leads to increases in intensity, duration, and size.497

We also explore the sensitivity of Ocetrac to the resolution of gridded observational498

data, ranging from eddy-permitting (0.25º) to very coarse (2º). The overall large-scale499

spatial patterns agree well among the different resolutions, however the MHWs tracked500

with coarser resolution lacked the intensity and frequency expected with higher resolu-501

tion. These results are consistent with modeling studies (Hayashida et al., 2020; Pilo et502

al., 2019), and agree that greater spatial detail gained from high resolution datasets bet-503

ter represent the changes expected to occur to MHWs in the future. The inclusion of high-504

quality, near real time data remains a challenge for making up-to-date and accurate fore-505
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casts (Schlegel et al., 2019). However, visualizing and quantifying the spatiotemporal con-506

nectivity of MHWs in sea surface temperature forecasts using Ocetrac enhanced the us-507

ability of sea surface tempereature forecasts.508
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