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Abstract 18 
Air pollution caused by PM2.5 particles is a major global concern, particularly for human health. 19 
This study used machine learning tools to uncover the social factors influencing PM2.5 emissions. 20 
Text mining techniques were employed to extract key variables from previous research databases 21 
related to the target variable PM2.5 air pollution and its determinants. Four important features were 22 
derived, encompassing a wide range of factors, including PM2.5 air pollution levels, population 23 
metrics, GDP per capita, military expenditure, health expenditure, and environmental features. The 24 
study identifies significant changes in PM2.5 emissions related to health expenditure and economic 25 
contributions, emphasizing the need for interdisciplinary efforts to address this global problem. 26 
From a technical standpoint, machine learning feature extraction was deployed to pinpoint four 27 
critical factors with significant influence on air quality. In terms of model efficacy, the Support 28 
Vector Regression method stood out. This technique excelled in producing accurate predictions 29 
and understanding the correlation between key social factors and global exposure to PM2.5. 30 
 31 

Plain Language Summary 32 
 33 

Classified as the most hazardous air pollutant globally, PM2.5 draws significant interest 34 
from scholars and the public, especially in terms of human health. Leveraging machine learning 35 
techniques, this study investigates the determinants of these emissions in multi-social dimensions. 36 
The conclusions denote that the complexity and implications of airborne particulate pollution are 37 
shaped by multifaceted social variables economically and politically. Machine learning methods 38 
unravel multi-dimensional societal causes in PM2.5 emissions within the context of health 39 
expenditure and economic contributions from urban population growth, agriculture, forestry, and 40 
fishing, value added (% of GDP), manufactures exports (% of merchandise exports),current health 41 
expenditure (% of GDP), asserting the significance of an interdisciplinary approach in combating 42 
this global issue. 43 
 44 

1 Introduction 45 
 46 
Without a crystal ball, it is hard for a research to accurately predict the long-term effects 47 

of climate change, since such predictions involve a degree of complexed social uncertainty. Air 48 
pollution as an indicator of climate change is a pressing global issue that poses significant risks to 49 
human health and the environment(OECD, Awe, 2022). Among the various air pollutants, 50 
particulate matter with a diameter of 2.5 micrometers or less (PM2.5) is classified as the most 51 
hazardous one. Its adverse effects on respiratory and cardiovascular health have been widely 52 
documented, making it a matter of utmost concern for public health authorities and policymakers 53 
worldwide(Cohen et al. 2017). Understanding the determinants of PM2.5 emissions and accurately 54 
predicting their future patterns are crucial for developing effective strategies to mitigate air 55 
pollution and protect human well-being(Karagulian, 2023:1). 56 

Traditionally, the analysis of PM2.5 emissions and their associations with socioeconomic 57 
factors has relied on static linear regression models. However, the complexity of airborne 58 
particulate pollution and its implications extend beyond simple linear relationships.  In recent years, 59 
machine learning techniques have emerged as powerful tools for deciphering the intricate 60 
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dynamics of complex systems, including environmental phenomena. Leveraging the capabilities 61 
of machine learning, this study aims to unravel the determinants of PM2.5 emissions to offer an 62 
example for more policy makers.  63 

The objective of this investigation is to go beyond the limitations of traditional static linear 64 
regression models and provide a more profound understanding of the societal causes of PM2.5 65 
pollution. By applying machine learning methods, reserachers can capture non-linear relationships 66 
and interactions among various social variables, both economically and politically, that shape the 67 
complexity of airborne particulate pollution. This research contributes to the growing body of 68 
knowledge on air pollution by delivering more precise forecasts and shedding light on the 69 
multifaceted factors influencing PM2.5 emissions. 70 

In this study, a novel and efficient method was implemented to facilitate literature reviews 71 
by using text mining techniques and automated database interactions. Leveraging the Biopython 72 
library and the National Center for Biotechnology Information (NCBI) Entrez database, the 73 
employed text mining techniques fetch relevant articles associated with PM2.5 air pollution, 74 
climate change, and global air quality and extract critical variables from the retrieved literature,  75 
leading to the identification of 17 key features that spanned a multitude of factors, including PM2.5 76 
air pollution levels, population metrics, GDP per capita, military expenditure, health expenditure, 77 
and environmental indicators.  78 

Furthermore, this study highlights the significance of an interdisciplinary approach in 79 
addressing the global issue of PM2.5 pollution. By identifying the most pronounced shifts in 80 
PM2.5 emissions within the context of health expenditure and economic contributions from sectors 81 
such as urbanization, economic growth from agriculture, forestry, and fishing, manufactures 82 
exports (% of merchandise exports), and current health expenditure (% of GDP). The study 83 
indicates the need for collaboration between different fields of expertise. Only through a 84 
comprehensive understanding of the societal factors influencing PM2.5 emissions can effective 85 
strategies and policies be developed to combat air pollution and safeguard human health. 86 

 87 
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 88 
Figure 1. The diagram of analysis design. This research design, firstly, an exploration 89 
of multi-dimensional social causes was undertaken using text mining techniques, 90 
allowing for an analysis of numerous academic works, the identification of popular 91 
topics, and their classification into four distinct categories representing different 92 
dimensions of social data. Secondly, machine learning was employed to quantify and 93 
highlight the most critical features. Lastly, a comparative study of commonly used 94 
models was conducted to compare different model fitness.   95 

 96 

2 Materials and Methods 97 

2.1  Data collection and text mining for feature extraction 98 

To investigate the influence of human-induced climate change on global PM2.5 air quality 99 
(Fig.2), a comprehensive dataset was collected from reputable sources such as the World Bank 100 
and the OECD global data.The referenced data from OECD is Air pollution exposure, which 101 
pertains to population exposure levels exceeding 10 micrograms per cubic meter, and these figures 102 

Text M
ining
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are presented as yearly averages. The World Bank development indicator (WDI) encapsulates 103 
information across various domains such as economics, education, environment, health, and more. 104 

 105 

Fig.2.Trend of worldwide exposure to PM2.5 from 2010 to 2019 106 

Text mining techniques were employed to extract key variables from previous research 107 
related to PM2.5 air pollution and its determinants. Four social-important features’ categoorites 108 
are derived, encompassing a wide range of factors including PM2.5 air pollution levels, population 109 
metrics, GDP per capita, military expenditure, health expenditure, and environmental indicators. 110 

The study utilizes the Biopython library to interact with the National Center for 111 
Biotechnology Information (NCBI) Entrez database, retrieving articles related to climate change 112 
and global air quality. The developed code snippet capitalizes on the functionalities of the 113 
Biopython library and the NCBI Entrez database to conduct query-based searches for articles. The 114 
Entrez module from the Bio package is employed, ensuring compliance with NCBI guidelines for 115 
accessing resources. Furthermore, the esearch function from the Entrez module retrieves search 116 
results from the 'pubmed' database in XML format. Detailed information of identified articles is 117 
extracted using the fetch_details function, which takes a list of article IDs as input. The efetch 118 
function from the Entrez module is employed to fetch these details from the 'pubmed' database in 119 
XML format. The practical application of this code is demonstrated by searching for articles 120 
related to "Climate Change, Global Air Quality, and Society", storing the ID list of matching 121 
articles in the id_list variable. The fetch_details function then retrieves the detailed information of 122 
these articles. 123 

Through the process of text mining, pertinent features are classified into four distinct 124 
categories: environmental indicators, military and security indicators, economic indicators, 125 
healthcare indicators. This classification facilitated a more focused analysis of the socio-economic 126 
factors contributing to PM2.5 emissions. Utilizing open data resources such as the World Bank 127 
and OECD open data source, associated sub-indicators were amassed as detailed below:  128 

 129 
 130 
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Environmental Indicators: 131 

• PM2.5 air pollution exposure, mean annual exposure (micrograms per cubic 132 
meter) 133 

• CO2 emissions (kt) 134 

Military and Security Indicators: 135 

• Armed forces personnel, total 136 
• Armed forces personnel (% of total labor force) 137 
• Military expenditure (% of GDP) 138 

Economic Indicators: 139 

• Foreign direct investment, net outflows (% of GDP) 140 
• Urban population 141 
• Urban population growth (annual %) 142 
• Agriculture, forestry, and fishing, value added (% of GDP) 143 
• Services, value added (% of GDP) 144 
• Trade in services (% of GDP) 145 
• GDP per capita (constant 2015 US$) 146 
• GDP per capita growth (annual %) 147 
• Foreign direct investment, net inflows (% of GDP) 148 
• Manufacturing, value added (% of GDP) 149 
• Manufactures exports (% of merchandise exports) 150 
• Exports of goods and services (% of GDP) 151 
• Goods and services expense (% of expense) 152 
• Urban population (% of total population) 153 

Healthcare Indicators: 154 

• Life expectancy at birth, total (years) 155 
• Lifetime risk of maternal death (%) 156 
• Lifetime risk of maternal death (1 in: rate varies by country) 157 
• Current health expenditure (% of GDP) 158 
• Current health expenditure per capita (current US$) 159 
• Current health expenditure per capita, PPP (current international $) 160 
• Domestic general government health expenditure (% of GDP) 161 

Considering the raw data's degree of comprehensiveness and uniformity, 19 sub-indicators 162 
were retained for further analysis (refer to Table 1). 163 

 164 

 165 
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 166 

Table	1	
Basic	information	for	nineteen	sub-inicators		

	

Series	Name	 Series	Code	
PM2.5	air	pollution	exposure		
Agriculture,	forestry,	and	fishing,	value	added	(%	of	GDP)	

ExpoPM2.5	
NV.AGR.TOTL.ZS	

Military	expenditure	(%	of	GDP)	 MS.MIL.XPND.GD.ZS	
Services,	value	added	(%	of	GDP)	 NV.SRV.TOTL.ZS	
Trade	in	services	(%	of	GDP)	 BG.GSR.NFSV.GD.ZS	
CO2	emissions	(kt)	 EN.ATM.CO2E.KT	
GDP	per	capita	(constant	2015	US$)	 NY.GDP.PCAP.KD	
Foreign	direct	investment,	net	inflows	(%	of	GDP)	 BX.KLT.DINV.WD.GD.ZS	
Manufacturing,	value	added	(%	of	GDP)	 NV.IND.MANF.ZS	
Manufactures	exports	(%	of	merchandise	exports)	 TX.VAL.MANF.ZS.UN	
Tariff	rate,	applied,	simple	mean,	manufactured	products	(%)	 TM.TAX.MANF.SM.AR.ZS	
Textiles	and	clothing	(%	of	value	added	in	manufacturing)	 NV.MNF.TXTL.ZS.UN	
Exports	of	goods	and	services	(%	of	GDP)	 NE.EXP.GNFS.ZS	
Goods	and	services	expense	(%	of	expense)	 GC.XPN.GSRV.ZS	
Total	debt	service	(%	of	GNI)	 DT.TDS.DECT.GN.ZS	
Urban	population	growth	(annual	%)	 SP.URB.GROW	
Urban	population	(%	of	total	population)	 SP.URB.TOTL.IN.ZS	
Armed	forces	personnel	(%	of	total	labor	force)	 MS.MIL.TOTL.TF.ZS	
Armed	forces	personnel,	total	 MS.MIL.TOTL.P1	

2.2 Data splitting 167 

The initial steps in the analysis involve splitting the dataset into training and testing subsets.  168 
The `train_test_split` function from the scikit-learn library is employed for this purpose. By 169 
randomly dividing the dataset, models are trained on a portion of the data while their performance 170 
is assessed on unseen data. The study allocates 70% of the data for training and 30% for testing. 171 
A fixed random seed of 19 ensures consistency across iterations, facilitating the development of 172 
robust models and effective assessment of their predictive capabilities (Bisong, 2019:251, 173 
2019:289). 174 

2.3 The distribution and probability property of the data  175 

The distribution properties rely on certain distributional assumptions about the 176 
data(Demirtas & Yucel, 2008). 177 

This analysis aims to delve into the detailed distribution characteristics of our dataset's 178 
variables. The nature of the data is better understood by examining the distribution and quantile-179 
quantile plots for each column in the dataframe(NIST/SEMATECH, 2022).The generated plots 180 
provide insights into the distribution and deviation from normality for each column in the 181 
DataFrame. The histogram and fitted curve show the shape of the distribution, and the probability 182 
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plot helps evaluate how well the data aligns with a normal distribution indicates there is no 183 
significant differences in the distribution of our features between our training and testing 184 
sets.(Fig.3). 185 

 186 

 187 
 188 
Fig.3. The distribution and probability property of the data 189 
 190 
Ensuring that the training and testing sets are similarly distributed guarantees that the 191 

model can effectively learn pertinent patterns during the training phase and accurately apply them 192 
to the test data. (Bisong, 2019). Thus kernel density plots are utilized for the visual examination 193 
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of the distribution of each feature in the training and testing subsets. Kernel Density Estimation 194 
(NIST/SEMATECH, 2022) also works as a method that assists in smoothing a histogram and 195 
facilitates data visualization via a continuous probability density curve across one or more 196 
dimensions. The outcomes from this comparative examination shows that the test data mirrors the 197 
training data properly. Through the analysis of these scatter plots and histograms, the aim is to 198 
identify any intriguing relationships or patterns in the data. There is no significant skewness or 199 
abnormalities in the feature distribution and no additional data cleaning steps or motivate 200 
transformations, thus further training, validation, and assessment procedures could be applied 201 
(Fig.4).  202 

 203 
Figure 4. The distribution and probability property of the data with KDE 204 

 205 

 2.4 The relationships between each feature and the target variable air quality 206 

The method used for the exploratory data analysis is described, with a focus on 207 
understanding the relationships among the variables in the dataset. The data analysis process 208 
involves the construction of correlation matrices to visualize the linear relationships between pairs 209 
of variables to the target variable air quality. The correlation coefficient, ranging from -1 to 1, 210 
indicates negative and positive correlations, with 0 indicating no linear relationship. For the overall 211 
interrelationships among the variables, a heatmap of the correlation matrix is created for air quality 212 
"ExpoPM2.5"(Fig.5). A positive correlation between two variables is represented by a bright color, 213 
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and a negative correlation is a darker color, which expedites the process of feature selection and 214 
helps identify potential collinearity issues. 215 

 216 

Fig.5. Heatmap of the overall interrelationships among the variables 217 

 218 

2.5 Four important features 219 

A correlation threshold of 0.5 is established to streamline the focus. This threshold signifies 220 
the minimum absolute correlation a variable must exhibit with the `ExpoPM2.5` to be considered 221 
significant for the analysis. Variables that possess correlation values less than this threshold with 222 
`ExpoPM2.5` are regarded as less significant and are therefore removed from the dataset. This 223 
elimination process simplifies subsequent analysis and model development. A threshold of 0.5 224 
suggests an interest in variables that possess a moderate to strong positive or negative connection 225 
with `ExpoPM2.5`. This interpretation of correlation strength is based on a common guideline, 226 
although the threshold choice should ideally be influenced by the specifics of the research context 227 
and the nature of the data. After exclusion, four crucial features remain – 'Urban population growth 228 
(annual %)', 'Agriculture, forestry, and fishing, value added (% of GDP)', 'Manufactures exports 229 
(% of merchandise exports)', and 'Current health expenditure (% of GDP)'. These features, which 230 
exhibit a significant correlation with ̀ ExpoPM2.5`, will be the central focus of subsequent analysis 231 
and model construction. In addition, correlation does not equate to causation. A high correlation 232 
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between predictors might suggest multicollinearity, which could influence the performance and 233 
interpretability of certain types of statistical models(Fig.6).  234 

 235 

Fig.6. Four features with significant correlations with air quality 236 

 237 

2.6 Machine learning modeling and analysis 238 

Common machine learning techniques were implemented including Ridge Regression, 239 
Decision Tree Regressor, and Random Forest Regression for the comparasion. These models were 240 
trained and evaluated using appropriate metrics to assess their performance in predicting PM2.5 241 
levels. The scores from the models provided empirical evidence of the validity of the analysis and 242 
the effectiveness of machine learning methods in studying PM2.5 air quality. 243 

2.7 Models evaluation 244 

The study conducted a comparative analysis of different machine learning tools to develop 245 
a predictive model for our dataset. The models were evaluated based on their R-squared scores, 246 
which measure the goodness of fit to the data. Among the models tested, Ridge Regression 247 
achieved the highest R-squared score of 0.989079, closely followed by Support Vector Regression 248 
with a score of 0.988993. These models demonstrated excellent predictive capabilities and 249 
effectively captured the relationships between the features and the target variable. The Decision 250 
Tree Regressor performed moderately well with a score of 0.845267, while the Random Forest 251 
Regression obtained a lower score of 0.685836. Based on these findings, Ridge Regression and 252 
Support Vector Regression are recommended as strong models for predictive modeling in our 253 
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dataset, while further refinement may be needed for the Decision Tree Regressor and Random 254 
Forest Regression models. 255 

Table 2. Machine learning methods performance evaluation. The score herewithin refers 256 
to the term general to the metrics used to evaluate the performance and effectiveness of the 257 
model. (James et al. 2013).  258 

Machine Learning Methods Score 

Ridge Regression 0.989079 

Support Vector Regression 0.988993 

Decision Tree Regressor 0.845267 

Random Forest Regression 0.685836 

The suggestion for opting for one or more models, based on the performance evaluation 259 
provided, is contingent upon a multitude of aspects, which encompass the particular objectives, 260 
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requisites, and limitations associated with the task in question. Here are several points to weigh 261 
when advocating for a machine learning model in this study1 (Table 3) : 262 

           Table 3. The general comparison of four machine learning models used in this study 263 

Option description Mechanics Prons and cons 

Support Vector 
Regression (SVR)  

Employs kernel functions to transform 
data into higher dimensions, and then it 
tries to minimize the error within a 
defined margin. It is an advanced 
regression algorithm that aims to find an 
optimal hyperplane to fit the data points 
in a high-dimensional space. SVR is 
particularly effective for datasets with 
complex, non-linear relationships. 

Pros:High predictive accuracy; 
Effective for complex, non-linear 
relationships. 

Cons: Computationally intensive, 
especially for large datasets; Model 
interpretability is limited. 

 

Ridge Regression Minimizes the sum of squared residuals 
with an added penalty proportional to 
the square of the magnitude of the 
coefficients. 

Pros: Handles multicollinearity well; 
Simpler and computationally efficient. 

Cons: Might not perform well with 
non-linear data; Model complexity can 
be increased due to the introduction of 
regularization. 

Decision Tree 
Regression 

Splits the dataset into subsets based on 
feature values, and this process is 
recursively repeated until the tree 
reaches a predefined depth or purity. 

Pros: High interpretability; Can capture 
non-linear relationships. 

Cons: Prone to overfitting, especially 
with complex datasets; Can create 
overly complex trees. 

Random Forest 
Regression 

Creates a set of decision trees from 
randomly selected subsets of the 
training set and averages their 
predictions. 

Pros: High predictive accuracy; Less 
prone to overfitting compared to a 
single decision tree. 

Cons: computationally more intensive 
than a single decision tree. 
Interpretability is less compared to a 
single decision tree but better than 
SVR. 

 264 

3. Results 265 

3.1 Text mining: uncovering social-environment trends in NCBI Entrez database outputs 266 

Understanding and combating PM2.5 pollution requires a comprehensive understanding of 267 
its societal causes and interdisciplinary collaboration. 268 

In the present scientific investigation, three major contributions were yielded. The first 269 
contribution comprised a comprehensive examination of multi-dimensional social causes utilizing 270 
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text mining methodologies. This comprehensive examination facilitated a rigorous analysis of a 271 
substantial volume of academic literature, leading to the identification of prevailing themes, which 272 
were then systematically classified into four unique categories, each representing a separate 273 
dimension of social data.  274 

The study utilizes the Biopython library and the NCBI Entrez database, provides an 275 
example for literature retrieval and analysis. The execution of this code snippet allows for efficient 276 
retrieval of article details, including titles, from the 'pubmed' database, facilitating in-depth 277 
analysis and synthesis of research findings.It offers a tool for researchers investigating the complex 278 
relationship between climate change and global air quality, enabling the retrieval and analysis of 279 
a large volume of articles. 280 

3.2 Featuring analysis: mapping the dimensions of air quality research outputs. 281 

Stemmed from the utilization of machine learning techniques which were instrumental in 282 
quantifying and underlining the most salient features of the social data under investigation. The 283 
results of the analysis revealed the significant impact of socio-economic factors on global PM2.5 284 
air quality. Through machine learning modeling and feature engineering, the study identified the 285 
four most influential features contributing to PM2.5 emissions: urbanization, agriculture, forestry, 286 
and fishing, value added (% of GDP); Manufactures exports (% of merchandise exports); and 287 
Current health expenditure (% of GDP). 288 

3.3 Modeling evaluation: Ridge Regression and Super Vector Regression 289 

In this research, Ridge Regression was employed as a machine learning method to analyze 290 
the dataset. The Ridge Regression model is a variant of linear regression that includes a 291 
regularization term to control the complexity of the model. By using the scikit-learn library, a 292 
GridSearchCV was performed to find the best value for the regularization parameter, α. The 293 
parameter grid consisted of different α values, and the model was evaluated using a cross-294 
validation strategy with 3 folds. The best parameter value was determined as the one that yielded 295 
the highest coefficient of determination (R2) score. The results showed that the best parameter for 296 
the Ridge Regression model was α=0.01, with a corresponding R2 score of 0.987. This indicates 297 
that the model with the selected α value achieved a high level of prediction accuracy and 298 
effectively captured the underlying patterns in the data. 299 

The Support Vector Regression (SVR) model was trained using various kernel functions, 300 
including linear, polynomial, radial basis function (RBF), and sigmoid. These different kernel 301 
functions allow the SVR model to capture different types of non-linear relationships in the data. 302 
The model was also tuned using GridSearchCV, which systematically explores different 303 
combinations of hyperparameters, such as the regularization parameter (C) and the kernel 304 
coefficient (gamma), to find the best configuration for the SVR model. The performance of the 305 
model was evaluated using the R2 score, which measures the proportion of variance in the target 306 
variable that is explained by the model. Through hyperparameter optimization and R2 score 307 

 
1 The recommendation is not solely based on the score but also on the specific use case and requirements. Often, it is 
advisable to try multiple models and perform cross-validation to see how they perform on unseen data before 
making a final decision. Additionally, considering the interpretability, training time, and complexity in addition to 
accuracy is important in making an informed choice (Linardatos, Papastefanopoulos, & Kotsiantis, 2020). 
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evaluation, the optimal combination of kernel function, regularization parameter, and kernel 308 
coefficient for the SVR model can be determined, resulting in a precise and robust predictive model. 309 

4. Conclusion 310 

The highlights the pressing global issue of PM2.5 air pollution and its detrimental effects 311 
on human health and the environment. Traditional linear regression models have limitations in 312 
capturing the complexity of airborne particulate pollution. To overcome these limitations, machine 313 
learning techniques were employed to analyze the dataset and uncover the determinants of PM2.5 314 
emissions. 315 

Through text mining techniques and automated database interactions, multi-dimentional 316 
variables were extracted from previous research, resulting in the identification of 18 key features 317 
encompassing four socio-economic flevels, economicaly and politically.  318 

Machine learning methods, such as Ridge Regression, Decision Tree Regressor, and 319 
Random Forest Regression, were utilized to predict PM2.5 contributors’ significance and assess 320 
the performance of the models. The results demonstrated the efficacy of Super Vector Regression 321 
and Ridge Regression’s model fitness in understanding and forecasting PM2.5 air pollution. 322 

The study emphasizes the need for an interdisciplinary approach to address the global issue 323 
of PM2.5 pollution. The identified socio-economic factors, such as health expenditure and 324 
economic contributions, provide valuable insights for policymakers and researchers in developing 325 
effective strategies and policies to mitigate air pollution and protect human health. 326 

Overall, this research contributes to the understanding of the complex relationships 327 
between socio-economic variables and PM2.5 emissions. By employing machine learning 328 
techniques and considering multiple dimensions, policymakers can make informed decisions and 329 
implement interventions to combat PM2.5 air pollution on a global scale. 330 
 331 
 332 
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