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Abstract

The episodic transient fault slips called slow slip events (SSEs) have been observed in many subduction zones. These slips

often occur in regions adjacent to the seismogenic zone during the interseismic period, making monitoring SSEs significant

for understanding large earthquakes. Various fault slip behaviors, including SSEs and earthquakes, can be explained by the

spatial heterogeneity of frictional properties on the fault. Therefore, estimating frictional properties from geodetic observations

and physics-based models is crucial for fault slip monitoring. In this study, we propose a Physics-Informed Neural Network

(PINN)-based new approach to simulate fault slip evolutions, estimate frictional parameters from observation data, and predict

subsequent fault slips. PINNs, which integrate physical laws and observation data, represent the solution of physics-based

differential equations. As a first step, we validate the effectiveness of the PINN-based approach using a simple single-degree-

of-freedom spring-slider system to model SSEs. As a forward problem, we successfully reproduced the temporal evolution of

SSEs using PINNs and obtained implications on how to choose the appropriate collocation points by analyzing the residuals of

physics-based differential equations. As an inverse problem, we estimated the frictional parameters from synthetic observation

data and demonstrated the ability to obtain accurate values regardless of the choice of first-guess values. Furthermore, we

discussed the potential of the predictability of the subsequent fault slips using limited observation data, taking into account

uncertainties. Our results indicate the significant potential of PINNs for fault slip monitoring.
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parameters from synthetic observation data. 15 

• We investigated the potential of the predictability of subsequent fault slips from limited 16 

observation data including uncertainties. 17 
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Abstract 19 

The episodic transient fault slips called slow slip events (SSEs) have been observed in many 20 

subduction zones. These slips often occur in regions adjacent to the seismogenic zone during the 21 

interseismic period, making monitoring SSEs significant for understanding large earthquakes. 22 

Various fault slip behaviors, including SSEs and earthquakes, can be explained by the spatial 23 

heterogeneity of frictional properties on the fault. Therefore, estimating frictional properties from 24 

geodetic observations and physics-based models is crucial for fault slip monitoring. In this study, 25 

we propose a Physics-Informed Neural Network (PINN)-based new approach to simulate fault slip 26 

evolutions, estimate frictional parameters from observation data, and predict subsequent fault slips. 27 

PINNs, which integrate physical laws and observation data, represent the solution of physics-based 28 

differential equations. As a first step, we validate the effectiveness of the PINN-based approach 29 

using a simple single-degree-of-freedom spring-slider system to model SSEs. As a forward 30 

problem, we successfully reproduced the temporal evolution of SSEs using PINNs and obtained 31 

implications on how to choose the appropriate collocation points by analyzing the residuals of 32 

physics-based differential equations. As an inverse problem, we estimated the frictional parameters 33 

from synthetic observation data and demonstrated the ability to obtain accurate values regardless 34 

of the choice of first-guess values. Furthermore, we discussed the potential of the predictability of 35 

the subsequent fault slips using limited observation data, taking into account uncertainties. Our 36 

results indicate the significant potential of PINNs for fault slip monitoring. 37 

 38 

Plain Language Summary 39 
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Slow slip events (SSEs), which are fault slips characterized by slower velocity and longer duration 40 

compared to earthquakes, have been observed in many subduction zones. Monitoring SSEs is 41 

important for understanding large earthquakes because they occur adjacent to areas where 42 

significant earthquakes could potentially occur. Different types of fault slips, including SSEs and 43 

earthquakes, can be explained by distinct frictional properties on the fault. These frictional 44 

properties can be estimated from physical laws of fault slip and observed crustal deformation. In 45 

this study, we propose a new machine-learning based approach for fault slip monitoring. We 46 

employed Physics-Informed Neural Networks (PINNs), which simultaneously learn the physical 47 

laws and data, to simulate fault slip, estimate the frictional parameters, and predict subsequent 48 

fault slip. As a first step, we utilized a single-degree-of-freedom spring-slider system, which is the 49 

simplest physical model to simulate SSEs. We successfully simulated SSEs, estimated frictional 50 

properties from synthetic observation data, and discussed the potential for fault slip prediction. 51 

Our results suggest the significant potential of PINNs for fault slip monitoring. 52 

 53 

1 Introduction 54 

Recent geophysical observations have revealed that faults episodically slip slowly during 55 

the interseismic period (e.g., Hirose et al., 1999). These episodic slow fault slips, known as slow 56 

slip events (SSEs), have been observed in many subduction zones. SSEs repeatedly occur in 57 

regions adjacent to possible source areas of large earthquakes (Obara & Kato, 2016). Moreover, 58 

SSEs have been considered to share common physical mechanisms with large earthquakes. 59 

Therefore, it is crucial to monitor these slow fault slip phenomena and understand the generation 60 

mechanisms of SSEs.  61 
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Various fault slip behaviors, including SSEs and earthquakes, can be explained by distinct 62 

frictional properties on the fault (e.g., Yoshida & Kato, 2003). For fault slip monitoring, it is crucial 63 

to estimate the frictional properties from current geodetic observations and predict fault slip 64 

evolutions based on physics-based models. Incorporating fault friction in the model enables us to 65 

simulate the spatio-temporal evolution of fault slip on the megathrust. In these simulations, the 66 

quasi-dynamic equation of motion (Rice, 1993), and a rate and state dependent friction (RSF) law  67 

(Dieterich, 1979), derived empirically from laboratory experiments, are frequently employed. 68 

Various fault slips can be reproduced by appropriately setting three frictional parameters (a, a–b, 69 

and dc) that control the frictional properties on the fault in RSF. In such simulations, the frictional 70 

parameters are determined by trial and error to qualitatively reproduce the observed fault slips due 71 

to the difficulty of directly measuring these frictional parameters.  72 

Therefore, for fault slip monitoring, it is vital to determine the appropriate frictional 73 

parameters by combining observations and physics-based models. To achieve this, data 74 

assimilations have been employed to investigate frictional parameters from observed slip velocities 75 

of afterslip (Kano et al., 2015; 2020) and long-term SSEs (Hirahara & Nishikiori, 2019). Kano et 76 

al. (2020) estimated frictional parameters from observed crustal deformation following the 2003 77 

Tokachi-oki earthquake and predicted subsequent fault slips and crustal deformation. These 78 

studies confirmed that data assimilations enable the optimization of unknown frictional parameters 79 

on faults based on observed crustal deformation and physics-based models. It should be noted that 80 

these studies mainly focused on investigating the potential of data assimilations by assuming that 81 

RSF is the true physics of SSEs. However, the physical mechanism of SSEs still remains 82 

controversial with other possible mechanisms such as dilatant strengthening (e.g., Segall et al., 83 
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2010) and the transition from rate-strengthening friction to rate-weakening friction at higher slip 84 

rates (e.g., Im et al., 2020). 85 

In this paper, we propose a new machine learning-based approach to simulate fault slip 86 

evolutions, estimate frictional parameters from observation data, and predict subsequent fault slips 87 

using the estimated frictional parameters. With recent advancements in machine learning, Physics-88 

Informed Neural Networks (PINNs) have been proposed as a new deep learning method for data-89 

driven solutions of partial differential equations as forward problems, as well as for the data-driven 90 

discovery of partial differential equations as inverse problems to investigate parameters that best 91 

describe the observed data (Raissi et al., 2019). This method involves constructing neural networks 92 

capable of solving physics-based equations by minimizing a loss function that incorporates 93 

differential equations and initial/ boundary conditions. This approach has been recently employed 94 

in numerous research fields as it provides a mesh-free framework for forward problems and 95 

provides effective solutions for inverse problems. In seismology, PINNs have been employed in 96 

various problems, including travel time calculation (Smith et al., 2021a and Waheed et al., 2021a), 97 

hypocenter inversion (Smith et al., 2021b), full-waveform inversion (Rasht-Behesht et al., 2022), 98 

seismic tomography (Waheed et al., 2021b and Agata et al., 2023), and modeling crustal 99 

deformation (Okazaki et al., 2022). 100 

The PINN-based method for fault slip monitoring has the advantages of its extendibility 101 

and flexibility compared to conventional data assimilation methods such as adjoint method (Kano 102 

et al., 2015; 2020) and Ensemble Kalman filter (Hirahara and Nishikiori, 2019) and will be 103 

expected especially when we apply to the more realistic subduction zones including crustal 104 

heterogeneity and nonlinear viscoelasticity. The PINN-based calculation under the different 105 

physics models can be completed simply by changing the definition of loss functions, making it 106 
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easy to consider the complex models, especially in the inversion. For example, in the previous 107 

frictional parameter estimation using data assimilation methods (e.g., Kano et al., 2015; 2020 and 108 

Hirahara and Nishikiori, 2019), they used analytical slip response functions available only for 109 

simple media such as the homogeneous elastic half space and ignored the effect of crustal 110 

heterogeneity and nonlinear viscoelasticity in the mantle, whose slip response functions can be 111 

obtained only by fully numerical methods such as finite element methods. In contrast, the PINN-112 

based method can calculate the solution without any slip response functions by learning the physics 113 

considering heterogeneous nonlinear viscoelastic media, providing us with a more simple 114 

inversion method considering the realistic situation than conventional data assimilation techniques.  115 

Taking into consideration such extendibility of the PINN-based inversion, this study first 116 

applies PINNs to the simulation of slip evolution on faults and develops the fundamental 117 

methodology under a simple model. As stated before, there exist a variety of slip evolutions 118 

producing SSEs and earthquakes with fast slip rates. In this paper, we focus on SSEs, because their 119 

slip behaviors are rather stable and can be easily simulated compared to earthquakes. Many 120 

numerical studies on SSEs have so far been executed assuming realistic structures such as 121 

subduction zones. In this study, as a first step, we utilize a single-degree-of-freedom spring-slider 122 

system (Yoshida & Kato, 2003), which is the simplest physical model to calculate temporal 123 

evolutions of SSEs. The objectives of this study are as follows: (i) simulating the temporal 124 

evolutions of SSE as a forward problem, (ii) estimating the frictional parameters from observed 125 

slip velocity data as an inverse problem, and (iii) predicting the future evolution of SSE, including 126 

quantifying the uncertainty associated with each result. Through these calculations, we aim to 127 

verify that our new PINN-based approach is a powerful tool for simulating slip evolutions, 128 

estimating frictional parameters, and predicting fault slip evolutions.  129 
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The paper is organized as follows. Section 2 explains the fault slip model based on the RSF 130 

law and presents the results of conventional numerical calculations. Section 3 demonstrates the 131 

forward calculations of the temporal evolution of SSE using the PINN-based approach. In Section 132 

4, we estimate the frictional parameters from synthetic observation data, considering their 133 

uncertainties. Finally, in Section 5, we attempt to predict subsequent evolution of SSE from limited 134 

observation data and discuss the relationship between the uncertainties of the estimated parameters 135 

and the length of the observation data.  136 

 137 

2 Conventional Numerical Simulation  138 

We initiate the study by conducting a numerical simulation to obtain the temporal evolution 139 

of fault slips. This simulation serves as a reference for comparing results obtained using the PINN-140 

based approach. We adopt a single degree-of-freedom spring-slider model (Yoshida & Kato, 2003), 141 

which comprises a block and a spring (Figure 1a). In this system, the block is loaded with a 142 

constant velocity. By assuming the frictional properties between the block and the surface, we can 143 

represent various fault slips ranging from slow to fast slips on the block. The quasi-dynamic 144 

equation of motion in this model is expressed as: 145 

τ = k �vpl t – x� – ηv, (1) 146 

where τ is the shear stress, k is the stiffness of the spring, vpl is the loading velocity, t is the time, 147 

and x is the accumulated slip of the block. The second term on the right-hand side represents a 148 

radiation damping approximation (Rice, 1993), which was introduced to express the stress-release 149 

by the radiation of seismic waves instead of the inertia term. The coefficient η is expressed as η = 150 
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μ / 2vs = 5 × 106 [Pa s/m], where the shear modulus μ is 3.0 × 1010 [Pa] and shear wave velocity vs 151 

is 3 × 103 [m/s].   152 

 The RSF law (Dieterich, 1979) is often employed to express fault friction. The frictional 153 

stress τ is expressed as 154 

τ = σ�f0 + a log�
v

vpl
�  + b log�

θ vpl

dc
�� ,   (2) 155 

where θ is the state variable, σ is the normal stress, f0 is a frictional coefficient, and a, b, and dc are 156 

the frictional parameters. These frictional parameters express the frictional properties of faults. If 157 

a −b > 0, the friction becomes rate-strengthening and if a–b < 0, the friction becomes rate-158 

weakening, which makes the system unstable. The instability of the model is determined by the 159 

frictional parameters, spring stiffness k, and critical stiffness kcrit (Ruina, 1983) defined as: 160 

kcrit = 
σ (b – a)

dc
. (3) 161 

When k is larger than kcrit, the system exhibits strong instability and behaves like fast earthquakes. 162 

When k < kcrit and k ≈ kcrit, the system shows a slow transient motion like SSEs. The state variable 163 

characterizes the state of the fault surface and several laws were proposed to describe the temporal 164 

evolution of the state variable. Here, we used the aging law (Ruina, 1983) described as: 165 

dθ
dt

 = 1 – 
θv
dc

. (4) 166 

By combining these equations Eqs. (1), (2), and (4), we can calculate the temporal 167 

evolution of slip velocity v and state variable θ. We non-dimensionalized these equations by 168 

defining: 169 
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p = log�
v

vpl
� , (5) 170 

q = log�
θvpl

dc
� . (6) 171 

Then the target equations are written as: 172 

dp
dt

 = �aσ + η vpl ep�
–1 �kvpl(1 – ep) – 

bσvpl

dc
(e–q –  ep)� , (7) 173 

dq
dt

 = 
vpl

dc
(e–q –  ep). (8) 174 

We set the frictional parameters a, b, and dc, and normal stress σ to reproduce the SSE as 175 

a = 1 × 10-4, a–b = –1 × 10-5, dc = 5 × 10-3
 [m], and σ = 107[Pa]. The spring stiffness k is set to 176 

satisfy k / kcrit = 0.9999, which is required to cause the transient motion. We set the loading rate vpl 177 

= 5 [cm/yr] = 1.58 × 10-9 [m/s]. The temporal evolution of slip velocity under these parameters 178 

was calculated by the 5th-order time-adaptive Runge–Kutta (RK) method with a tolerance of 10-8. 179 

Figures 1b and 1c display the temporal evolutions of slip velocity v and state variable θ. The 180 

simulation results showed a maximum slip velocity of ~10-8 [m/s], a cumulative slip of ~10 cm, 181 

and recurrence intervals of SSEs of 2.5 years. These characteristics are similar to the Tokai slow 182 

slip events in the first-order approximation (Miyazaki et al., 2006). Hereafter we will use this result 183 

as a reference, aiming to calculate the temporal evolution of SSE in one cycle.  184 

 185 
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 186 

Figure 1. (a) Schematic illustration of a spring-slider model. (b-e) Results of conventional 187 

numerical calculation. (b)(c) Temporal evolutions of (b) slip velocity v and (c) state variable θ for 188 

several cycles. (d)(e) Enlarged view of (b) and (c) focusing on one cycle indicated by red lines in 189 

(b) and (c). Blue points show the time steps used in the time-adaptive RK method. 190 

 191 

3 Forward Problem  192 

In this section, we describe how to model the fault slips in a spring-slider model using the 193 

PINN-based approach and discuss the results. 194 
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 195 

3.1 Method 196 

A neural network was constructed to model the temporal evolutions of p(t) and q(t) (Figure 197 

2). The network uses an input layer with one node corresponding to time t, and an output layer 198 

with two nodes corresponding to p(t) and q(t). It has a nine-layer fully connected neural network 199 

and uses the hyperbolic tangent as the activation function. The number of intermediate layers is 200 

eight with twenty nodes each. In total, the neural network has 162 biases and 2860 weights, and 201 

we can solve the differential equations by optimizing these neural network parameters. We follow 202 

the original framework of PINNs (Raissi et al., 2019) to construct this neural network 203 

configuration. In this study, the network biases are initialized to zero, and the network weights are 204 

initialized by normal Xavier initialization (Glorot & Bengio, 2010), which is widely used in PINNs. 205 

In this initialization method, the weights are selected from the Gaussian distribution to keep the 206 

variance of the output the same across every layer. 207 

 208 

 209 
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Figure 2. Structure of PINNs. The neural networks have an input, time t, and the corresponding 210 

outputs p(t) and q(t). The loss function L is calculated by using the frictional parameters (f.p.) and 211 

operating the identity function (id) and the time derivation (𝝏𝝏𝒕𝒕) to p and q. In Section 3, we solve 212 

the forward problem using Lini (Eq. (12)) and Lode (Eq. (13)). We introduce Ldata (Eq. (15)) in the 213 

inversion in Sections 4 and 5. Lini, Lode, and Ldata represent the residuals for the initial condition, 214 

governing equation, and observation data, respectively. 215 

 216 

In the PINNs, the neural networks learn the behavior of the equation by defining the loss 217 

function considering the misfit between target equations and derivatives of the network output 218 

calculated by automatic differentiation. In this problem, we define the residuals of the differential 219 

equations as: 220 

rp(t) = 
dpNN

dt
 – �aσ + ηvple pNN�

–1 �kvpl(1 – e pNN) – 
bσvpl

dc
(e–qNN  – e pNN)� , (9) 221 

rq(t) = 
dqNN

dt
 – 

vpl

dc
(e–qNN  – e pNN), (10) 222 

where pNN and qNN are the PINNs outputs. Then the loss function L is defined as: 223 

L = Lini + Lode, (11) 224 

Lini =  (pNN(0) – pini)
2+(qNN(0) – qini)

2, (12) 225 

Lode=   t* � r(ti)2
N

i=1

Δti. (13) 226 

where r(ti)2
 = rp(ti)2 + rq(ti)2, pini and qini are the initial conditions of p and q. As shown in Figures 227 

1b, and 1c, our simple frictional model produces the same repeating SSE cycles after several 228 
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unstable cycles when the numerical effect of the initial conditions disappears.  Focusing on one 229 

cycle (Figures 1d and 1e), we set the initial time t = 0 at the time when the slip velocity is lowest 230 

during one cycle. The initial conditions of pini and qini were evaluated at this time t = 0. Lini and 231 

Lode represent the residuals of the initial conditions and those of the governing equations, 232 

respectively. Lode can be calculated at the arbitrary points ti, which are called collocation points. 233 

Δti indicates time intervals of collocation points and N is the number of collocation points. Lode is 234 

defined as the discretization of the L2 norm: ∫r(t)2dt, representing the residuals of governing 235 

equations. We normalized Lode by multiplying t*, which represents the characteristic time in a 236 

spring-slider system defined as t* = dc / vpl (Segall, 2010). Some previous research introduced the 237 

weight parameter for the loss function as a hyperparameter (e.g., Linka et al., 2022). Instead of 238 

introducing weight, it is generally pointed out that normalization is important in PINNs calculation 239 

(e.g., Raissi et al., 2019; Rasht-Behesht et al., 2022; Okazaki et al., 2022). In our case, by 240 

considering the normalization using t*, the calculation performs well without introducing any 241 

additional weight parameter and we adopted this formulation. We used the L-BFGS method (Liu 242 

& Nocedal, 1989) to optimize the network weights and biases by minimizing the loss function. 243 

Training is finished when the decrease in the loss function per one optimization step becomes less 244 

than the predetermined threshold value of 10-12. 245 

To calculate Lode, the selection of collocation points is required. In this study, we employed 246 

two types of collocation points: equidistant and non-equidistant. Equidistant collocation points 247 

have constant time intervals, while non-equidistant collocation points have adaptive time intervals. 248 

The time steps of the time-adaptive RK method, as shown in Figures 1d and 1e, were chosen as 249 

non-equidistant collocation points. This is based on the idea that a higher density of collocation 250 

points should be selected where the slip behavior in the system equation changes rapidly. However, 251 
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this method can only be applied when the slip behavior is known prior to the calculation. In 252 

practical situations where there is no prior knowledge of the slip behavior, equidistant collocation 253 

points are used. In the RK calculation, the total number of collocation points is 103, with maximum 254 

and minimum intervals of ~870 and ~10 h, respectively. For equidistant collocation points, 255 

intervals are set to be ~100, 200, and 400 h with the corresponding number of points being 187, 256 

94, and 47, respectively. By comparing these results, we investigate the impact of collocation point 257 

sampling on the learning of neural network parameters.  258 

We validate the ability of PINNs to reproduce the SSE by comparing the PINNs outputs 259 

with the results derived from a conventional numerical calculation using the RK method (Figures 260 

1d and 1e). To qualitatively evaluate the misfit between the PINNs outputs and the reference values, 261 

we defined the relative errors (RE) as RE = |vNN – vRK| / v𝑅𝑅𝑅𝑅 or RE = |θNN – θRK| / θRK. Here vRK and 262 

θRK represent the reference values at adaptive time steps used in the RK method, whereas vNN and 263 

θNN represent the PINNs outputs corresponding to those times. Please note that the RE are 264 

calculated at RK time steps.  265 

 266 

3.2 Results and discussion 267 

 We solved the spring-slider problem using PINNs, applying both equidistant and non-268 

equidistant collocation points (Figures 3 and 4). Here, time intervals for equidistant collocation 269 

points were set as 100 h. Note that vNN(t) and θNN(t) in these figures are calculated at time steps 270 

with constant time intervals of 10 h, which are denser than equidistant collocation points of 100 h. 271 

This is used to check the interpolation ability of PINNs. The PINNs successfully reproduced the 272 

temporal evolution of SSE in both cases (Figures 3a, 3b, 4a, and 4b). The neural network 273 



manuscript submitted to Journal of Geophysical Research: Solid Earth 

 

parameters were optimized until the number of iterations reached 11,875 and the loss function 274 

yielded Lini = 3.56 × 10-8 and Lode = 3.19 × 10-6 for the case of equidistant collocation points (Figure 275 

3c). When using non-equidistant collocation points, the number of iterations increased to 17,674, 276 

with loss functions Lini = 5.21 × 10-10 and Lode = 1.94 × 10-6 (Figure 4c).  277 

The maximum values of RE were ~10-1 and ~10-2 for the equidistant and non-equidistant 278 

collocation points case, respectively (Figures 3d and 4d). This suggests that training with non-279 

equidistant collocation points yields more precise results than using equidistant collocation points. 280 

The residuals of the governing equations, represented by r(t)2 (Figures 5a and 5b), help in 281 

elucidating such results. It is important to note that r(t)2 differs from RE: r(t)2 represents the 282 

discrepancy between the time derivatives of pNN and qNN and the governing equations, while RE 283 

represents the misfit between the PINNs outputs (vNN and θNN) and the reference values (vRK and 284 

θRK). The scarcity of collocation points around peak velocity in the case of equidistant collocation 285 

points results in larger r(t)2 values compared to non-equidistant collocation points, thereby 286 

increasing the difference between the output of PINNs and the reference values. These results 287 

suggest that for accurate calculations, a larger number of collocation points are required at timings 288 

when the slip velocity changes dramatically, which aligns with the concept of the time-adaptive 289 

RK method.  290 

While the use of non-equidistant collocation points yields a more accurate RE, the 291 

successful calculation of PINNs with equidistant collocation points is important to apply PINNs 292 

for practical use. This is because the collocation points at peak times of slip velocity are not 293 

collectable in practical use, in which prior knowledge of the solution of the equations is not 294 

available. This approach ensures a feasible methodology when the temporal pattern of changes in 295 

the system is unknown.  296 
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 297 

 298 

Figure 3. Calculation results using equidistant collocation points (with time intervals of 100 h). (a 299 

and b) The temporal evolution of (a) v and (b) θ calculated by PINNs (red line) and the RK method 300 

(blue line). (c) Learning curve for Lini and Lode. The neural network parameters were converged 301 

after 11,875 iterations with Lini = 3.56 × 10-8 and Lode = 3.19 × 10-6. (d) RE of v and θ. 302 
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 303 

Figure 4. Calculation results using non-equidistant collocation points. (a and b) The temporal 304 

evolution of (a) v and (b) θ calculated by PINNs (red line) and the RK method (blue line). (c) 305 

Learning curve for Lini and Lode. The neural network parameters were converged after 17,674 306 

iterations with Lini = 5.21 × 10-10 and Lode = 1.94 × 10-6. (d) RE of v and θ. 307 

 308 

 Next, we solved the spring-slider problem using PINNs, varying the number of equidistant 309 

collocation points, and discussed the relationship between the number of collocation points and 310 

the RE. In principle, increasing the number of collocation points enhances accuracy but slows 311 

down the computation speed. Thus, we explored the level of accuracy we could achieve in training 312 

the neural networks with fewer collocation points. We employed 94 and 47 equidistant collocation 313 
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points corresponding to intervals of 200 and 400 h, respectively, while we used 187 equidistant 314 

collocation points with intervals of 100 h in the previous section. 315 

The results indicate that we can accurately model the temporal evolution of fault slip even 316 

with fewer collocation points (Figures 6a, 6b, 6d, and 6e). The neural network parameters were 317 

optimized after 6,492 iterations with the loss function of Lini = 1.51 × 10-7 and Lode = 2.04 × 10-6 in 318 

the case of 200 h equidistant collocation points. For the case of 400 h equidistant collocation points, 319 

the iteration increased to 9,942, and the loss function is Lini = 9.41 × 10-8 and Lode = 1.45 × 10-6. A 320 

decreasing number of collocation points results in larger RE values after the velocity peak time 321 

(Figures 6c and 6f). The residuals of the governing equations at each time t (Figures 5c and 5d) 322 

indicate that if there are fewer collocation points, the entire r(t)2 is not optimized adequately, and 323 

r(t)2 locally increases, leading to worse RE values. However, even with the number of collocation 324 

points reduced to 47 (Figure 6f), the maximum RE is 10-1, which is noteworthy considering that 325 

the number of collocation points is less than half of that in the non-equidistant collocation point 326 

case. This result demonstrates the high interpolation ability of neural networks and suggests the 327 

potential of PINNs for rapid computation with fewer collocation points in large-scale problems. It 328 

is important to note that the computation speed of PINNs depends not only on the number of 329 

collocation points but also on the number of iterations required for optimization convergence.  330 

 331 
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 332 

Figure 5. Time series of residuals of the governing equations r(t)2 on (a) non-equidistant and (b–333 

d) equidistant collocation points with time intervals of (b) 100, (c) 200, and (d) 400 h. The red 334 

points represent the collocation points. 335 
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 336 

Figure 6. Calculation results using equidistant collocation points with time intervals of (a–c) 200 337 

h and (d–f) 400 h. (a and b) The temporal evolution of (a) v and (b) θ calculated by PINNs (red 338 

line) and the RK method (blue line) for time intervals of 200 h. (c) RE of v and θ. (d–f) Same as 339 

(a–c) but for time intervals of 400 h.  340 

 341 

In summary, the relationship between the number of collocation points and calculation 342 

accuracy can be understood as follows. Firstly, fewer collocation points require long range 343 

interpolation of the residuals of the differential equation, r(t)2, leading to insufficient optimization 344 

of r(t)2. Secondly, large residuals of differential equations result in larger RE values. 345 

Understanding this relationship aids in determining the best collocation points for precise 346 

calculations. When considering problems involving modeling faster slip, more complex 347 

interpolation is required, as the temporal change in slip velocity is more drastic, thus demanding 348 

smaller time intervals for precise calculation. Solving stiff equations also requires smaller intervals 349 

because the residuals of differential equations significantly impact the solution of such equations. 350 
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Due to these reasons, applying PINNs to earthquake models, which involve rapid slips and require 351 

solving very stiff equations, proves challenging. Therefore, in this study, we first calculated the 352 

temporal evolution of SSE at the initial step of applying PINNs to fault slip modeling. However, 353 

some recent studies have tried to develop techniques for solving stiff equations within the 354 

framework of PINNs (e.g., Guo et al., 2022). Leveraging these methods will overcome the 355 

challenges associated with using PINNs to model fast slips or earthquakes in the future.  356 

It is notable that two strategies of non-equidistant and equidistant collocation points were 357 

tested as endmembers to discuss the impact of collocation point sampling. There are some 358 

discussions on the choices of collocation points when we do not know the evolution of physical 359 

variables. For instance, Wu et al. (2023) reported that randomly sampled collocation points 360 

perform better than equidistant collocation points. They also proposed the residual-based adaptive 361 

sampling methods, and the implementation of such advanced sampling methods is useful for future 362 

improvement. 363 

 364 

3.3 Uncertainty quantification in forward problems 365 

 In this subsection, we discuss the uncertainties of PINNs arising from the initial network 366 

parameters. Recent studies have highlighted the importance of uncertainty quantification in PINNs 367 

and have proposed a method for its calculation (e.g., Yang & Perdikaris, 2019). In this study, we 368 

used normal Xavier initialization, and the initial values varied based on the random seed value. 369 

Consequently, the optimized network parameters we eventually obtained are influenced by the 370 

differences in the initial network parameters. We quantified the uncertainties of the converged 371 

network parameters by repeating the optimization process with different values of initial network 372 
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parameters. Figure 7 represents the results optimized from 10 different initial network parameters 373 

using equidistant collocation points with the intervals of 100 h. The maximum relative error ranges 374 

from 10-2 to 10-1, indicating uncertainties due to the selection of initial network parameters.  375 

   376 

 377 

Figure 7. RE of (a) v and (b) θ optimized from 10 different initial network parameters (thin lines) 378 

and their mean values (dark lines).  379 

 380 

4 Inverse Problem 381 

One of the significant advantages of PINNs is their inherent flexibility to extend to the 382 

inverse problems. In this section, we extend a forward problem for simulating fault slips described 383 

in Section 3 to an inverse problem for estimating unknown frictional parameters from the 384 

observation data. 385 

 386 
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4.1 Method and synthetic data 387 

 To extend to the inverse problems, we add a misfit term related to observed data to the loss 388 

function used in the forward problem, allowing us to simultaneously learn from the observation 389 

data and physical laws. We estimate three frictional parameters a, a–b, and dc by giving synthetic 390 

data of the slip velocity including some errors as the observation data into the neural network. 391 

Although the frictional parameters control slip behavior on a fault, it is difficult to measure these 392 

parameters directly on the plate interface. Therefore, if PINNs can effectively solve this inverse 393 

problem, they would become a powerful tool for improving our understanding of fault properties.  394 

 We modified the loss function of Eq. (11) as follows: 395 

L = Lini + Lode + Ldata, (14) 396 

where  397 

Ldata = 
1

Ndata
� (pNN(ti) – pobs(ti))2
Ndata

i=1

. (15) 398 

The third term in Eq. (14) represents a misfit term for observation data defined as the squared 399 

residuals between the observation data for slip velocity pobs and the PINNs output pNN, where Ndata 400 

is the number of data points. Since the orders of magnitude of the frictional parameters vary, we 401 

defined the logarithm of the frictional parameters as α = log a, β = log (–(a–b)) and γ = log dc. Note 402 

that this transformation implicitly assumes that a–b is negative. We simultaneously optimized the 403 

frictional parameters α, β, and γ along with the neural network parameters by minimizing the loss 404 

function L (Figure 2). The true frictional parameters are set to be a = 1.0 × 10-4, a–b = –1.0 × 10-5
, 405 

and dc = 5.0 × 10-3 [m], as used in the previous forward problem. The first-guess values of the 406 

frictional parameters are set to be a = 1.0 × 10-3, a–b = –1.0 × 10-6, and dc = 5.0 × 10-2 [m], assuming 407 
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a prior knowledge of the frictional parameters ranging from × 0.1 to × 10 relative to true values. 408 

We discussed these first-guess values in Section 4.3.  409 

To verify whether we can estimate the frictional parameters using the PINN-based 410 

approach, we utilized synthetic slip velocity data. We generated this synthetic data with the 411 

constant time intervals by adding the observation error to the true values vtrue. Hence, the synthetic 412 

observation data vobs is  413 

vobs= (1 + Er) vtrue, (16) 414 

Where Er is the observation error. In order to generate true values with different constant time 415 

intervals, we utilized PINNs, allowing us to express the continuous function. As conventional 416 

numerical calculation results are discrete, it was necessary to perform calculations again, based on 417 

the specific times of interest whenever we wanted to obtain velocities at new time steps. To avoid 418 

this, we trained the neural network by providing the initial conditions, the governing equations, 419 

and the results calculated by the RK method. Notably, we used the results of conventional 420 

numerical calculations to achieve more precise training, although this is not strictly necessary to 421 

train the PINNs. As a result, the obtained neural network is a continuous function that represents 422 

the solution to this problem, enabling us to obtain the velocity at any arbitrary time without 423 

recalculating the solution. In other words, we can interpolate the discrete outputs of conventional 424 

numerical calculations using the PINN-based approach. We assume the observation error Er 425 

follows a Gaussian distribution with a mean of zero and standard deviations of σer = 0.1 or 0.25. 426 

Time intervals of the observation data are set to be 100, 200, and 400 h.  427 
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In this section, we employ equidistant collocation points with intervals of 100 h. Training 428 

is finished when the change of the frictional parameters per one optimization step becomes smaller 429 

than the threshold value of 10-5.  430 

 431 

4.2 Results 432 

Figure 8 and Table 1 summarize the results of the PINNs outputs and the optimized 433 

frictional parameters when we use the observation data with intervals of 100 h. The neural network 434 

can obtain an output that fits the data well by solving the differential equations (Figures 8a and 435 

8d), and it retrieved the true frictional parameters (Figures 8b, 8e, and Table 1). We successfully 436 

optimized the frictional parameters with residuals smaller than 3.7 % compared to the true values. 437 

These results indicate that the PINN-based approach is useful for estimating the frictional 438 

parameters in inverse problems. 439 

When using the synthetic slip velocity data with σer = 0.1, the network parameters and the 440 

frictional parameters were simultaneously optimized after 2,113 iterations (Figure 8c). All terms 441 

in the loss functions were reduced by learning the physical laws and observation data, ultimately 442 

reaching Lini = 1.31 × 10-6, Lode = 8.49 × 10-5, and Ldata = 1.05 × 10-2. In the case of σer = 0.25, the 443 

optimization was converged after 3,075 iterations and the loss functions of Lini = 8.31 × 10-5, Lode 444 

= 5.01 × 10-4, and Ldata = 9.54 × 10-2 (Figure 8f).  445 

It is worth noting that Ldata did not change significantly during the latter half of optimization 446 

and ultimately converged to a relatively large value compared to Lini and Lode due to the observation 447 

error. Even if the PINNs outputs completely fit the result of conventional numerical calculations, 448 

the values of Ldata were 1.06 × 10-2 and 9.73 × 10-2 in the cases of σer = 0.1 and 0.25, respectively. 449 
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Therefore, this learning curve of Ldata indicates how PINN estimated the frictional parameters. 450 

Initially, the neural network parameters were optimized to fit the observed velocity data, but at 451 

that time, the value of Lode is large because the frictional parameters deviate from the true values, 452 

and they could not reproduce that result. Afterward, PINN searched for the frictional parameters 453 

that could decrease Lode while fixing the velocity output. In other words, PINN initially tried to fit 454 

the data by discarding the governing equations, and then optimized the frictional parameters to 455 

comply with the physics. This disregard for physical laws at the initial stage of optimization is 456 

characteristic of the PINN-based inversion method. 457 

 458 

 459 

Figure 8. (a–c) Results of parameter estimation using the velocity data with the observation error 460 

of σer = 0.1. (a) Temporal evolution of v calculated by PINNs (red line) and the RK method (blue 461 

line). Note that the blue line is invisible because it overlaps the red line. Blue points show the 462 

synthetic data including observation error. (b) Values of estimated frictional parameters 463 

normalized by their true values on each iteration. The red, blue, and green lines represent the value 464 
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of a, a–b, and dc, respectively. (c) Learning curve for Lini, Lode, and Ldata. The parameters converged 465 

after 2,113 iterations with Lini = 1.31 × 10-6, Lode = 8.49 × 10-5, and Ldata = 1.05 × 10-2. (d–f) Same 466 

as (a–c) but for the case of σer = 0.25. The parameters converged after 3,075 iterations with Lini = 467 

8.31 × 10-5, Lode = 5.01 × 10-4, and Ldata = 9.54 × 10-2.   468 

 469 

Table 1. True values, first-guess values, and estimated values of the frictional parameters using 470 

two synthetic data points. Error represents the relative error defined by |True value – Estimated 471 

value| / |True value| and Ratio represents the ratio of first-guess value to the true value. 472 

 True value First-guess value Estimated value 
(Noise: σer = 0.1) 

Estimated value 
(Noise: σer = 0.25) 

a  1 × 10-4  1 × 10-3  
Ratio: × 10 

1.004 × 10-4 

Error: 0.4% 
0.997 × 10-4 

Error: 0.3% 

a–b –1 × 10-5 –1 × 10-6 
Ratio: × 0.1 

–0.998 × 10-5 
Error: 0.1% 

–0.980 × 10-5 
Error: 2.0% 

dc 

[m] 
5 × 10-3 5 × 10-2 

Ratio: × 10 
4.945 × 10-3 
Error: 1.1% 

4.817 × 10-3 
Error: 3.7% 

 473 

 Figure 9 summarizes the results of the PINNs outputs and the optimized frictional 474 

parameters obtained from the observation data with intervals of 200 and 400 h, considering a 475 

standard deviation of σer = 0.1. It is important to note that while it is possible to estimate the 476 

frictional parameters from the observation data with fewer data points, insufficient data points can 477 

lead to inaccurate parameter retrieval. As anticipated, when intervals are 200 h, the true frictional 478 

parameters can be successfully estimated (Figure 9c). However, when intervals are extended to 479 

400 h, the estimate of the true frictional parameters fails (Figure 9f). With the estimated frictional 480 



manuscript submitted to Journal of Geophysical Research: Solid Earth 

 

parameters in the case of 400 h data, the system behaves more drastically, resulting in a peak 481 

velocity larger than the true slip velocity (Figure 9d). This discrepancy arises due to the limited 482 

number of data points available near the peak velocity. Consequently, when using fewer data 483 

points, we are unable to adequately constrain the frictional parameters, highlighting a limitation 484 

imposed by the model. To ensure reliable estimations of the frictional parameters, it is essential to 485 

employ a sufficient amount of data, aligning with our intuitive understanding of the problem.  486 

 487 

 488 

Figure 9. (a–c) Results of parameter estimation using the velocity data with time intervals of 200 489 

h. (a and b) Temporal evolution of (a) v and (b) θ calculated by PINNs (red line) and the RK 490 

method (blue line). Note that the blue line is invisible because it overlaps the red line. Blue points 491 

represent the synthetic data points including the observation errors. (c) Values of estimated 492 

frictional parameters normalized by their true values on each iteration. The red, blue, and green 493 

lines represent the values of a, a–b, and dc, respectively. (d–f) Same as (a–c) but for the case with 494 

time intervals of 400 h. 495 
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 496 

4. 3 Uncertainty quantification in inverse problems 497 

 Quantifying the uncertainties of estimated frictional parameters is essential for evaluating 498 

the robustness of the PINN-based inversion method. Additionally, this uncertainty analysis enables 499 

the evaluation of uncertainties associated with the resulting slip velocities, which is crucial for 500 

understanding the relationship between estimated frictional parameters and slip motion (Ito et al., 501 

2022). To achieve this, we performed the optimization process multiple times using different first-502 

guess values for the frictional parameters and various initial neural network parameters.  503 

We trained the neural networks using eight different first-guess values (cases A–H) for the 504 

frictional parameters, as presented in Table 2. These values cover a range from ×0.1 to ×10 relative 505 

to the true values, assuming some prior knowledge of the frictional parameters. In each case, the 506 

optimization process was repeated using 10 different initial neural network parameters to estimate 507 

the frictional parameters. The neural networks were trained until the change in frictional 508 

parameters per optimization step became smaller than a reference value of 10-5 and Lode was less 509 

than 10-3. Synthetic data with a noise level of σer = 0.1 and intervals of 100 h were utilized. 510 

 Figure 10a illustrates the estimated values for each iteration across all eight cases. Although 511 

the optimization trajectories vary depending on the first-guess values, it was observed that in all 512 

cases, the estimated parameters eventually converged to the true values. Upon closer examination 513 

of each trajectory, it was noticed that dc reaches ~50 % of the true values shortly after the start of 514 

optimization in all cases. This result suggests that estimating the order of magnitude of dc from the 515 

observation data is relatively straightforward, and the gradient of the loss function with respect to 516 

dc is larger compared to the gradients with respect to other frictional parameters. Except for cases 517 
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E and F, respective trajectories of the 10 optimizations are relatively similar. However, the 518 

trajectories of cases E and F differed depending on the initial values of the neural networks. 519 

Furthermore, the trajectories of cases A–B, and cases C, D, G–H were comparable to each other. 520 

These findings indicate that the gradients of the loss function with respect to frictional parameters 521 

are small when the first-guess values of a are small, and they are large when the first-guess values 522 

of a–b are large. Conversely, the gradients are relatively large in other cases.  523 

 Figure 10b represents the distribution of all estimated parameters, with their means and 524 

standard deviations shown in Table 3. The residuals of the estimated parameters reach up to 1.5%, 525 

and the standard deviations are as large as 0.66% of the true values. The uncertainties of the 526 

optimized parameters themselves are similar for all three frictional parameters. Specifically 527 

focusing on a and dc, the residuals of the estimated parameters are larger than their standard 528 

deviations. This suggests that these discrepancies are primarily attributed to observation errors 529 

rather than the effect of initial parameters in the PINNs. 530 

 Figure 10c depicts the means and standard deviations of the estimated parameters for all 531 

cases. The variations in the means of estimated parameters, influenced by different first-guess 532 

values, are smaller compared to the variations caused by variations in the initial values of neural 533 

network parameters. This indicates that the choice of first-guess values for the frictional 534 

parameters does not significantly impact the estimation results. In summary, the estimated 535 

parameters are not significantly influenced by the first-guess values of initial parameters, despite 536 

the fact that the optimization trajectories are affected by the first-guess values. 537 

 538 

Table 2. First-guess values using in frictional parameter estimation.  539 
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 Case A Case B Case C Case D Case E Case F Case G Case H 

a × 10 × 10 × 10 × 10 × 0.1 × 0.1 × 0.1 × 0.1 

a–b × 10 × 10 × 0.1 × 0.1 × 10 × 10 × 0.1 × 0.1 

dc × 10 × 0.1 × 10 × 0.1 × 10 × 0.1 × 10 × 0.1 

 540 

Figure 10. (a) Trajectories of estimated frictional parameters from the 10 different initial network 541 

parameters in cases A–H presented in Table 2, normalized by the true values. The red, blue, and 542 

green lines represent the values of a, a–b, and dc, respectively. (b) The distribution of the estimated 543 

frictional parameters in all cases. Dark and light colors express the results starting the optimization 544 

process from smaller and larger first-guess values. The dashed lines indicate the true values. (c) 545 

Means of estimated frictional parameters in each case with their uncertainties. The length of the 546 
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error bar indicates the standard deviation for each case and the dashed lines represent the means 547 

of estimated frictional parameters for all cases. 548 

 549 

Table 3. Means and standard deviations of the estimated frictional parameters. The Error 550 

represents the relative error defined by |True value – Estimated value| / |True value|. The Ratio 551 

represents the standard deviation normalized by the true values. 552 

 a a–b dc[m] 

Mean  1.010 × 10-4 
Error: 1.0% 

–0.999 × 10-5 
Error: 0.1% 

4.927 × 10-3 
Error: 1.5% 

Standard deviation 6.6 × 10-7 
 Ratio: 0.66% 

6.4 × 10-8 

Ratio: 0.64% 
1.7 × 10-5 

Ratio: 0.34% 

 553 

5. Prediction of SSE evolution 554 

 For fault slip monitoring, it is crucial to predict the future temporal evolution of fault slip 555 

from the observation data. In this section, we attempt to estimate the frictional parameters from 556 

the observation data for an observation period shorter than the whole cycle of SSE and predict 557 

subsequent slip evolution.  558 

 559 

5.1 Method 560 

In Section 4, we estimated the frictional parameters from observation data over a full cycle 561 

(~800 days) by optimizing the neural network parameters and the frictional parameters to minimize 562 

the loss function. In this section, we consider situations where slip velocities are partially observed, 563 
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meaning that SSE is currently ongoing, and we aim to predict its future evolution. This can be 564 

achieved simply by changing the data period in the loss function on observation data Ldata (Eq. 565 

(15)) and by optimizing the neural network parameters and the frictional parameters utilizing the 566 

same loss function L (Eq. (14)). The collocation points are set at a constant time intervals of 100 567 

h during one cycle, which is the same setting used in Section 4. 568 

In this section, we use the observation data for the initial 400, 500, and 600 days of one 569 

cycle. The data period of 400 days corresponds to the timing before the slip velocity reaches the 570 

value of the loading velocity, vpl (~1.58 × 10-9 [m/𝑠𝑠]). We attempt to predict when the next SSE 571 

will occur based on the observations before a large slip occurs. The 500-day data period is the 572 

duration just before the slip velocity reaches its maximum, and we attempt to predict when the 573 

observed ongoing SSE will terminate. The 600-day period indicates the duration after the slip 574 

velocity decreases to the value of vpl, and prediction from this data mainly focuses on estimating 575 

the frictional parameters from observation data after SSE has occurred. We generated three noisy 576 

synthetic data with a standard deviation of σer = 0.1 and intervals of 100 h, following the method 577 

described in Section 4.1.  578 

We optimized the neural network and frictional parameters using eight different first-guess 579 

values (cases A-H) and repeated the optimization with 10 different initial parameters. The neural 580 

networks were trained until the change in the frictional parameters per optimization step was less 581 

than the threshold value of 10-6 or the iteration reached 20,000. Considering the difficulty of 582 

training due to a small number of data, the threshold value was set as 10-6, which is smaller than 583 

the value of 10-5 utilized in Section 4.  584 

 585 
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5.2 Results and discussions 586 

Figures 11a–c demonstrate the cases where future slip evolutions were successfully 587 

predicted using the data for 400, 500, and 600 days, respectively. Even when we use observation 588 

data for a shorter period such as 400 days, we succeeded in estimating the frictional parameters 589 

and predicting the temporal evolution of SSE well. However, we sometimes failed in parameter 590 

estimation as shown in Figures 11d–f. Figure 12 shows the histograms of all the estimated 591 

parameters from each observation data set. Focusing on the distribution of estimated parameters 592 

using observation data for 400 days, we can find a peak that is far from the true values, and the 593 

ratio of successful results is ~35%. Conversely, when using longer observation data, the frequency 594 

at the true values gradually increases, and the success ratio increases to ~50% and ~98% for the 595 

case of 500 and 600 days, respectively.  596 

These results are interpreted as follows: Observation data for shorter periods do not 597 

sufficiently constrain the appropriate frictional parameters. As a result, depending on the first-598 

guess value of the frictional parameters and initial neural network parameters, optimized 599 

parameters are likely to converge to incorrect values, resulting in inaccurate predictions. Figure 12 600 

indicates that the success ratio dramatically increases when we use observation data for 600 days, 601 

suggesting that the observation data after the peak time of slip velocity are important to constrain 602 

the frictional parameters. The difficulty in parameter estimation prior to the SSE peak time has 603 

also been pointed out in the data-assimilation approach (Fujita, 2019) and is not exclusive to the 604 

PINN-based approach. This is inherent in the physics of fault slip and poses a critical problem for 605 

predicting fault slip evolution. Consequently, a stochastic approach is required to predict SSE 606 

before it occurs and, in this study, we evaluated the probability distribution of estimated frictional 607 

parameters by repeating the deterministic optimization with different initial values.  608 
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In this paper, we repeatedly referred to the uncertainties of PINNs in Sections 3.3, 4.3, and 609 

5. For accurate uncertainty quantification of PINNs, Bayesian physics-informed neural networks 610 

(B-PINNs) have been proposed (Yang et al., 2021), and in seismology, they have been applied to 611 

hypocenter inversion (Izzatullah et al., 2022) and seismic tomography (Agata et al., 2023). B-612 

PINNs treat neural network parameters as stochastic variables, enabling us to calculate the 613 

posterior probability parameters using Hamiltonian Monte Carlo or variational inference. 614 

Therefore, the application of B-PINNs in fault slip monitoring will become a powerful tool to 615 

evaluate the uncertainties of neural networks and estimated frictional parameters, enabling a more 616 

accurate stochastic prediction of fault slip evolution.  617 

 Finally, we discuss the comparison between the PINN-based method and data assimilation. 618 

Focusing on the computation cost in the forward calculation, the PINN-based method is inferior 619 

to the data assimilation method. Using a single CPU (Intel Core i5, 1.70 GHz, 12 cores, 16 620 

processors, and 16 GB memory), the calculation shown in Figure 3 took 244 seconds. This 621 

computation time was longer than that for the Runge-Kutta method that can solve this problem in 622 

less than 1 second. Generally, it is reported that the PINN-based method requires more 623 

computation cost than the conventional numerical calculation method (Grossmann et al., 2023). In 624 

the inversion, the calculation shown in Figure 8 (a-c) took 44 seconds. which is less than that of 625 

forward calculation This lower computation cost in the inversion is the characteristic of PINN. The 626 

computation cost here is still larger than that of data assimilation, however, considering more 627 

computationally difficult problems such as 2D fault models, the calculation cost of inversion 628 

would possibly be smaller than data assimilation methods. This is because numerical integration 629 

used in data assimilation requires higher computation cost in the complex models. In addition, 630 

focusing on the simplicity of coding, the PINN-based method is superior to the data assimilation 631 
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methods. In the PINN-based method, physics-based inversion could be done only by optimizing 632 

the defined loss function related to the observation and physics. This simple formulation enables 633 

us to extend to various physics models. 634 

 635 

Figure 11. Examples of prediction results. The red and blue lines indicate the temporal evolution 636 

of v calculated by PINNs and the RK method. The blue points represent the synthetic data points, 637 

including observation errors. (a-c) Examples of successful prediction from observation data for (a) 638 

400, (b) 500, and (c) 600 days. (d–f) Examples of unsuccessful prediction from observation data 639 

for (d–e) 400 and (f) 500 days.  640 

 641 



manuscript submitted to Journal of Geophysical Research: Solid Earth 

 

 642 

Figure 12. Histograms of the estimated frictional parameters from observation data for (a) 400, 643 

(b) 500, and (c) 600 days. 644 

 645 

6. Conclusions 646 

We proposed a new machine learning-based method for simulating, estimating frictional 647 

parameters, and predicting fault slips, and validated the effectiveness of this approach on slow slip 648 

events in a spring-slider system. In the forward simulation, PINNs accurately reproduced the 649 

temporal evolution of SSE, and the appropriate selection of collocation points played a crucial role 650 

in interpolating the residuals of equations. In frictional parameter estimation, the PINN-based 651 

approach successfully estimated the frictional parameters regardless of the first-guess values when 652 

using observation data for one cycle. For fault slip prediction, we achieved the evaluation of the 653 
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probability of future fault slip using the PINN-based approach, and the likelihood of accurate fault 654 

slip prediction increased with longer observation periods. These results indicate that the PINN-655 

based approach is highly effective for simulating fault slips, estimating frictional parameters, and 656 

predicting subsequent fault slips based on estimated parameters. Therefore, we strongly believe 657 

that PINNs have tremendous potential as a powerful tool for fault slip monitoring.  658 
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