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Abstract

The primary data sources for reconstructing the geomagnetic field of the past millennia are archaeomagnetic and sedimentary

paleomagnetic data. Sediment records, in particular, are crucial in extending the temporal and spatial coverage of global

geomagnetic field models, especially when archaeomagnetic data is sparse. However, the post-depositional detrital remanent

magnetization (pDRM) process is still poorly understood and can cause smoothing of the magnetic signal and offsets with

respect to the sediment age. To make effective use of sedimentary data, it is essential to understand the lock-in process and

its impact on the magnetic signal. In this study, we investigate the lock-in process theoretically and derive a parameterized

lock-in function that can approximate possible lock-in behaviors. Additionally, we demonstrate that a lock-in function that is

independent of absolute parameters can only be applied to the magnetic direction components (declination and inclination), but

not to the relative intensity. Integrating this lock-in function into the ArchKalmag14k modeling procedure (missing citation)

allows including data from sediment records. The parameters of the lock-in function are estimated by the maximum likelihood

method using archaeomagnetic data as a reference. The effectiveness of the proposed method is evaluated through synthetic

tests. Additionally, we apply our technique to sediment records from two lakes in Sweden (Kälksjön and Gyltigesjön) as

first case studies. Our results demonstrate that the proposed method is capable of effectively correcting the distortion caused

by the lock-in process, making data from sedimentary records a more reliable and informative source for geomagnetic field

reconstructions.
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Key Points:6

• We present a theoretical investigation of the pDRM process.7

• A new class of lock-in functions is presented capable of approximating all possi-8

ble lock-in behaviors.9

• The proposed method is evaluated through several synthetic tests.10
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Abstract11

The primary data sources for reconstructing the geomagnetic field of the past millennia12

are archaeomagnetic and sedimentary paleomagnetic data. Sediment records, in partic-13

ular, are crucial in extending the temporal and spatial coverage of global geomagnetic14

field models, especially when archaeomagnetic data is sparse. However, the post-depositional15

detrital remanent magnetization (pDRM) process is still poorly understood and can cause16

smoothing of the magnetic signal and offsets with respect to the sediment age. To make17

effective use of sedimentary data, it is essential to understand the lock-in process and18

its impact on the magnetic signal. In this study, we investigate the lock-in process the-19

oretically and derive a parameterized lock-in function that can approximate possible lock-20

in behaviors. Additionally, we demonstrate that a lock-in function that is independent21

of absolute parameters can only be applied to the magnetic direction components (dec-22

lination and inclination), but not to the relative intensity. Integrating this lock-in func-23

tion into the ArchKalmag14k modeling procedure (Schanner et al., 2022) allows includ-24

ing data from sediment records. The parameters of the lock-in function are estimated25

by the maximum likelihood method using archaeomagnetic data as a reference. The ef-26

fectiveness of the proposed method is evaluated through synthetic tests. Additionally,27

we apply our technique to sediment records from two lakes in Sweden (Kälksjön and Gyltigesjön)28

as first case studies. Our results demonstrate that the proposed method is capable of ef-29

fectively correcting the distortion caused by the lock-in process, making data from sed-30

imentary records a more reliable and informative source for geomagnetic field reconstruc-31

tions.32

Plain Language Summary33

Our paper discusses how to use sedimentary data to reconstruct the geomagnetic34

field in the past. When we study the geomagnetic field of the past, we rely on data from35

archaeological and sedimentary sources. However, there is a problem with sediment records36

called post-depositional detrital remanent magnetization (pDRM), which can make the37

magnetic signal unclear and cause sediment age to be offset.38

To make the sedimentary data more reliable, we developed a new method to cor-39

rect the distortion caused by pDRM. Our method involves creating a mathematical model40

of the lock-in process, which helps to explain the behavior of magnetic particles in sed-41

iments over time. We then use this model and archaeological records to estimate param-42

eters of the lock-in process.43

Once we have determined the parameters of the lock-in process, we can use them44

to correct the distortion caused by pDRM in sedimentary data. We tested our method45

on synthetic data and two sediment records from lakes in Sweden, and our results show46

that it is effective in correcting the distortion caused by pDRM and making sedimen-47

tary data more reliable for reconstructing the geomagnetic field.48

1 Introduction49

Over the last decades many data-based models of the geomagnetic field have been50

developed (e.g. Arneitz et al., 2019; Constable et al., 2016; Hellio & Gillet, 2018; Nils-51

son & Suttie, 2021; Schanner et al., 2022). Based on different data collections and mod-52

eling methods, each model covers different areas and time periods with varying degrees53

of accuracy and uncertainty. One important data set for models of the geomagnetic field54

of the past millennia is provided by archaeomagnetic data. Archaeomagnetic data can55

deliver valuable and useful information about the geomagnetic field. However, the highly56

uneven data coverage, both in space and time poses a great challenge. An additional data57

source that covers larger time periods and improves the spatial coverage is provided by58

sedimentary records.59
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The magnetization process in sediments differs from the magnetization of archae-60

ological materials. In archaeological materials, as well as in lava flows, the fairly well un-61

derstood thermoremanent magnetization (TRM) occurs when the material cools down62

from above the maximum Curie temperature (e.g. Stacey, 2012). When the tempera-63

ture is above the maximum Curie temperature, the magnetic particles in the material64

lose their magnetic properties. When they cool down the magnetic moments align with65

the geomagnetic field, and further cooling causes them to be locked in.66

While the lock-in process in the TRM occurs on short time scales (hours to weeks),67

the lock-in time of magnetic moments in sediment records can be much longer (years to68

centuries). The magnetization in sediments is called detrital remanent magnetization (DRM),69

which was first measured by McNish and Johnson (1938). During the sedimentation pro-70

cess, magnetic particles are deposited in such a way that their magnetic moments tend71

to point in the direction of the geomagnetic field while interaction with other particles72

and the ongoing solidification increasingly impede the particles to fully align. Additional73

sediment particles lead to a consolidation of the underlying layers and thus to a mechan-74

ical lock-in of the magnetic particles. The magnetization in sediments is affected by the75

interaction of the magnetic particles with the substrate at the sediment water interface76

and by dewatering of the sediment (Irving, 1957). The terminology and classification of77

these effects are not completely consistent in the literature. In the following we will be78

using the terminology recommended in the review by Verosub (1977). According to Verosub79

(1977) the term DRM refers to the remanent magnetization found in sediments. By de-80

positional DRM (dDRM) we describe the magnetization acquired by the interaction of81

the particles with the substrate at the sediment/water interface. The term post-depositional82

DRM (pDRM) refers to the longer timescale and describes any magnetization that is ac-83

quired after the particle settled on the sediment/water interface.84

There are various effects that are summarized in the term dDRM. One example85

is the inclination error, which occurs when non-spherical particles settle flat on the sed-86

iment/water interface. This leads to a distortion of the inclination to smaller values (King,87

1955). Another distortion of the inclination can occur when aligned particles roll into88

the nearest depression of the sediment/water interface (Griffiths et al., 1960).89

In this paper, we will focus on the investigation of the post-depositional DRM. In90

general, only coarse-grained fractions are mechanically fixed more or less immediately91

after deposition. Smaller particles which are embedded in water-filled voids or pore spaces92

of the sediment can move freely for a longer period of time (Irving, 1957). With progres-93

sive consolidation and dewatering of the sediment, also these particles become locked in.94

Figure 1 illustrates the complete lock-in process. (A) The lock-in process begins when

Figure 1. Visualization of the lock-in process by three time steps (A) to (C). The blue arrows

indicate the geomagnetic field direction, with a strong change from (A) to (C) for illustration

purposes. The magnetization direction of magnetic sediment particles is indicated by black ar-

rows.

95
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the particles passed the mixed surface layer and reach the lock-in area. Typically, sed-96

iments consist of both magnetic and non-magnetic particles. During the initial stages97

of the lock-in process, all particles are completely free to move. Therefore, the magnetic98

particles align themselves with the geomagnetic field (blue arrows). For visualization rea-99

sons, we have exaggerated the alterations in the geomagnetic field direction during the100

lock-in process. (B) The surrounding material becomes consolidated by the sedimenta-101

tion process, and larger magnetic particles gradually lose their mobility and become locked-102

in, whereas smaller carriers remain mobile and continue to follow the changes in the ge-103

omagnetic field. (C) After sufficient sedimentation and consolidation, the lock-in pro-104

cess reaches completion, with each particle bearing information regarding diverse states105

of the geomagnetic field throughout the lock-in period. Thus, the magnetic moment of106

the entire layer becomes a weighted sum of the geomagnetic field over the lock-in time.107

The different lock-in times of magnetic particles in a layer lead to a delayed and108

smoothed signal of the geomagnetic field in the record. In other words, the magnetic mo-109

ment of a layer is a weighted average of the geomagnetic field signal over the lock-in time110

of all particles contained in the layer. The weights are given by lock-in functions.111

Over the last decades many lock-in functions have been suggested. Exponential lock-112

in functions (e.g. Løvlie, 1976; Kent & Schneider, 1995), constant (e.g. Bleil & Von Dobe-113

neck, 1999), linear (e.g. Meynadier & Valet, 1996), cubic (e.g. Roberts & Winklhofer,114

2004), Gaussian (e.g. Suganuma et al., 2011) and parameterized lock-in functions that115

can cover multiple classes (e.g. Nilsson et al., 2018).116

Inspired by the large variety of possible lock-in functions, we present a theoreti-117

cal investigation of the lock-in process and the derivation of a general parameterized lock-118

in function capable of approximating any possible lock-in function. Additionally, we demon-119

strate that a lock-in function that is independent of absolute parameters can only be ap-120

plied to the magnetic direction components (declination and inclination), but not to the121

relative intensity.122

An advancement of the ArchKalmag14k modeling procedure (Schanner et al., 2022)123

allows including data from sediment records. To estimate the parameters of the lock-in124

function we use maximum likelihood methods where archaeomagnetic data serve as ref-125

erence.126

In section 2 we first briefly outline the geomagnetic field modeling method and then127

develop the pDRM modeling. We test the new method first with synthetic data and then128

apply it to two real data examples in section 3. We discuss some findings and give an129

outlook to future work in section 4 before ending with summarizing conclusions.130

2 Modeling Concept131

2.1 Geomagnetic Field Model132

We will model the geomagnetic field by using a Bayesian approach based on Gaus-133

sian Processes. Every Gaussian Process is uniquely defined by a mean and a covariance134

function (Rasmussen, 2004).135

As in Schanner et al. (2022) we use a Bayesian approach and describe the geomag-
netic field as the realization of a Gaussian Process

B ∼ GP(B̄,KB) (1)

with constant (space, time) mean function B̄ : S2×R → R3 and kernel function KB : (S2×136

R)2 → R3×3, where S2 = {x ∈ R3 | ∥x∥ = 1} denotes the standard 2-sphere associ-137

ated to the space variable. Therefore, the the knowledge about the geomagnetic field and138

its uncertainty is a distribution of functions B : S2×R → R3. In the following we will139

model the lock-in process for a single sediment core sample and treat the space variable140

as a constant, i.e. we will consider B as a Gaussian process of time only.141

We follow the a priori assumptions of Schanner et al. (2022) and use the estimated
hyperparameters given in Table 2 of Schanner et al. (2022). Hence, we assume that all
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Gauss coefficients are a priori uncorrelated at a reference radius R = 2800 km with zero
mean except for the axial dipole. For the axial dipole we assume a constant mean value
of γ0

1 = −38µT (at the Earth’s surface). Further, we assume an a priori variance αDP =
39µT for the dipole and an a priori variance αND = 118.22µT for all higher degrees
(at the reference radius). The temporal correlation of the Gauss coefficients is given by

ρl(∆t) =

(
1 +

|∆t|
τl

)
e
− |∆t|

τl

where the correlation time is given by τl =

{
171.34 yrs l = 1 (dipole)
379.59

l yrs l > 1 (non-dipole)
.142

2.2 Lock-in Process143

The key part of this section is the modeling of the pDRM described in the intro-144

duction. For this purpose we will start by investigating the rotational dynamics of a sin-145

gle particle during the lock-in process. Subsequently, we will expand the results to a whole146

layer and derive a general parameterized lock-in function.147

Let Mp : R → R3 be the time varying magnetic moment of a particle p. During
the sedimentation process, the behavior of a particle strongly depends on its size, shape
and the magnitude of its magnetization. We assume that each particle has a constant
magnitude of magnetization, i.e. for all t ∈ R we assume ∥Mp(t)∥ = Mp ∈ R. This
assumption leads to the first differential equation

Ṁp = ωp ×Mp (2)

where ωp : R → R3 is the angular velocity of particle p and × denotes the cross prod-148

uct.149

Let Ip ∈ R3×3 be the moment of inertia of particle p. We assume that there are
two torques influencing the rotational dynamics of the particle. They are due to the ge-
omagnetic field, denoted by Mp×B, and the surrounding material. For the latter we
assume a simple heuristic viscous frictional law of the form − 1

γωp, where γ is a function
corresponding to the torque generated by the surrounding material which can come from
a variety of sources such as friction, gravity, or other electromagnetic forces. Newton’s
second law of rotational motion states that the net torque acting on a particle is equal
to the product of its moment of inertia and angular acceleration, i.e.

Ipω̇p = Mp ×B− 1

γ
ωp (3)

The larger the function value of γ, the less influence on the rotational dynamics comes150

from the surrounding material. In other words, a larger function value of γ corresponds151

to higher mobility of the particle. In the following the function γ is called the mobility152

function of the particle.153

Since the particle is turning very slowly, the total angular momentum on the left
side of equation (3) may be neglected, and we obtain the following relation

ωp = γMp ×B

Using this solution we can reformulate equation (2) as

Ṁp = −γMp × (Mp ×B)

Since the magnitude of the particle’s magnetization is assumed to be constant, we can
write the magnetic moment as Mp(t) = MeMp

(t) where eMp
: R → S2 is a unit vec-

tor in the direction of the particle’s magnetization. Similarly, but with non-constant mag-
nitude B: R → R, the geomagnetic field can be written as B(t) = B(t)eB(t) where

–5–
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eB : R → S2 is a unit vector in the direction of the geomagnetic field. This leads to

ėMp
= −γeMp

×
(
MeMp

× BeB
)

= −γMBeMp ×
(
eMp × eB

)
= −γB(t)

τp,rτp
eMp

×
(
eMp

× eB
)

where τp ∈ R denotes the time when the particle begins to lock in and τp + rτp ∈ R154

the time when the particle is completely locked in. Note that the lock-in duration, rτp ,155

depends on the sedimentation rate. The new mobility function γ
B(t)
τp,rτp will be described156

in the next paragraph.157

We assume that the particle aligns with the geomagnetic field before the lock-in
process begins. Formally, we have to set γ to infinity for all t ≤ τp. As soon as the lock-
in process begins, γ becomes finite and decreases monotonically to zero. During the lock-
in process the mobility of the particle depends on the magnitude M of its magnetization
and the intensity of the geomagnetic field B(t). With completion of the lock-in process,
the particle becomes immobile, and the mobility function becomes constant zero. There-
fore, we shall consider effective mobility functions of the following form γ

B(t)
τp,rτp : R →

R with

γB(t)
τp,rτp

(t) =


∞ t ≤ τp

MB(t)γ(t) t ∈ (τp, τp + rτp)

0 t ≥ τp + rτp

where γ is a monotonically decreasing function with limt→rτp
γ(τp + t) = 0.158

We want to derive a lock-in function that can be applied to each layer of the sed-159

iment core sample, as it is done in Nilsson et al. (2018). In other words, the lock-in func-160

tion of a whole layer has to be independent of absolute values, such as the absolute time161

or depth when the lock-in process began. The lock-in function of a whole layer will de-162

pend on the individual lock-in functions of the particles contained in the layer. These163

individual lock-in functions will depend on the individual mobility functions. Obviously,164

the derived mobility function is influenced by two parameters that depend on the ab-165

solute time, through the lock-in duration rτp on the one hand, and the intensity of the166

geomagnetic field on the other.167

The first dependency is influenced by the sedimentation rate. By defining the lock-168

in function in depth rather than time we overcome this dependency. The only assump-169

tion we have to make here is that the sedimentation material does not change consid-170

erably. We will first derive the lock-in function in time and convert it to depth afterwards.171

The geomagnetic field’s intensity function must be approximated by a constant value172

in order to overcome the second dependency. This approach will lead to a lock-in func-173

tion that is independent of absolute depth and can therefore be applied to each layer of174

the sediment core sample. However, this assumption prevents us from simulating the in-175

tensity of the geomagnetic field. This is a generic issue for all lock-in functions that are176

independent of absolute parameters. Nevertheless, even with this strong approximation,177

we can still derive a lock-in function that provides a useful model for the directional com-178

ponents.179

We approximate the geomagnetic field intensity by its mean over the absolute time
of the sediment core sample and denote it by B̄. Additionally, we set the time when the
particles’ mobility function becomes finite to the time when the first particle in the layer
begins to lock-in. We denote this time by τ . Furthermore, we set rp,τ = τp + rτp − τ .
Then the mobility function is given by

γτ,rp,τ (t) =


∞ t ≤ τ

MB̄γ(t) t ∈ (τ, τ + rp,τ )

0 t ≥ τ + rp,τ

–6–
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The directions of the particles’ magnetic moment during the lock-in process can then be
described by the solution of the following differential equation with initial condition

ėMp
= −γτ,rp,τeMp

×
(
eMp

× eB
)

eMp
(τ) = eB(τ)

(4)

For all t ≥ τ the differential equation in (4) can be approximated by a first order lin-
ear ordinary differential equation of the form

ṁp = −γτ,rp,τ (mp − b)

mp(τ) = b(τ)
(5)

where mp : [τ,∞) → R2 and b : [τ,∞) → R2.180

The idea of this approximation is to project the three-dimensional unit vectors onto181

the tangent plane of the mean geomagnetic field vector during the lock-in process. For182

a detailed description see Appendix A.183

The solution to the ordinary differential equation in (5) is given by the function
mp : [τ,∞] → R2 with

mp(z) = b(τ)e−Γτ,rp,τ (t) + e−Γτ,rp,τ (t)

∫ t

τ

eΓτ,rp,τ (t
′)γτ,rp,τ (t

′)b (t′) dt′ (6)

where Γτ,rp,τ (t) =
∫ t

τ
γτ,rp,τ (ρ)dρ denotes the antiderivative of γτ,rp,τ .184

For a completely locked in particle, the function mp is constant, since γτ,rp,τ (t) =
0 for t ≥ τ + rp,τ and its antiderivative is constant. Consequently, for t ≥ τ + rp,τ the
solution is constant and given by

mp(t) = mp(τ + rp,τ )

= b(τ)e−Γτ,rp,τ (τ+rp,τ ) + e−Γτ,rp,τ (τ+rp,τ )

∫ τ+rp,τ

τ

eΓτ,rp,τ (t
′)γτ,rp,τ (t

′)b (t′) dt′

To summarize, we have derived an individual lock-in function for each particle of a given185

layer. Because of the sedimentation rate, these lock-in functions depend on the begin-186

ning of the lock-in process. A lower sedimentation rate causes a longer lock-in process,187

whereas a higher sedimentation rate causes a shorter lock-in process. However, we as-188

sume that the sediment layer thickness needed for complete consolidation does not change189

over time. We will thus formulate the previous results in terms of depth rather than time.190

For this purpose, let φ : R → R be an age-depth model. Note that φ is a mono-
tonically decreasing function that maps depths of the sediment core sample to ages. Here
ages describes the time when the particle settled on the sediment-water interface. As de-
scribed above the duration of the lock-in process depends on the time when the lock-in
process began. However, the difference between the depth corresponding to the begin-
ning of the lock-in process φ−1(τ) and the depth corresponding to the end of the lock-
in process φ−1(τ+rp,τ ) is independent of the sedimentation rate and can be assumed
to be constant (time independence of sediment layer thickness needed for complete con-
solidation). Consequently, for each particle p, we can find an rp ∈ R, such that

φ−1(τ + rp,τ )− φ−1(τ) = rp (7)

for all τ ∈ R. Therefore, we can formulate the function mp in depth as

m̃p(z) = e−Γ̂rp (rp)

(
b̃(z) +

∫ rp

0

eΓ̂rp (z
′)γ̂rp(z

′)b̃(z − z′)dz′
)

where γ̂rp denotes the shifted and depth dependent analogue to γτ,rp,τ and b̃ is the depth191

dependent analogue to b. A detailed derivation of this formula can be found in Appendix192

B.193

–7–
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In a next step, we extend this result to a whole layer of the sediment core with a194

collection of different particles. The different behaviors of these particles are described195

by their individual mobility functions. We assume that each of these mobility functions196

can be uniquely defined by n ∈ N shape parameters and their roots. Under this assump-197

tion, we can consider each mobility function as a realization of a random function γ̂S,R,198

where S : Ω → Rn and R : Ω → R are two random variables with probability density199

functions ϕS and ϕR. The root of each mobility function is a realization of the random200

variable R. The random variable S corresponds to the shape parameter of each mobil-201

ity function.202

All particles of a given layer must be locked in after a finite time period. There-203

fore, the support of the random variable R is bounded, i.e. we can find a λ ∈ R>0 such204

that supp(R) = [0, λ] ⊂ R. Here λ denotes the depth where the last particle of a given205

layer is fully locked in.206

We set m̃ : R≥0 → R2 such that for each depth z ∈ R≥0

m̃(z) = ES,R

[
e−Γ̂S,R(R)

(
b̃(z) +

∫ R

0

eΓ̂S,R(z′)γ̂S,R(z
′)b̃ (z − z′) dz′

)]

= ES,R

[
e−Γ̂S,R(R)

(
b̃(z) +

∫ λ

0

eΓ̂S,R(z′)γ̂S,R(z
′)b̃ (z − z′) dz′

)]

= ES,R

[
e−Γ̂S,R(R)

∫ λ

0

δ(z′)b̃ (z − z′) + eΓ̂S,R(z′)γ̂S,R(z
′)b̃ (z − z′) dz′

]

=

∫ λ

0

b̃ (z − z′)ES,R

[
e−Γ̂S,R(R)

(
δ(z′) + eΓ̂S,R(z′)γ̂S,R(z

′)
)]

dz′

where δ denotes the Dirac-delta function and ES,R denotes the expected value with re-207

spect to the random variables S and R, i.e. ES,R[f(S,R)] =
∫ ∫

f(s, r)ϕR(r)ϕS(s)drds.208

For each z ∈ R≥0, m̃(z) ∈ R2 is, by construction, a vector on the tangent plane
of the unit sphere. By projecting m̃(z) back to the unit sphere, we end up with a vec-
tor eM̃proj

(z) ∈ S2 that is approximately the smoothed normalized magnetic moment

of the layer at depth z, denoted by eM̃(z) ∈ S2. Consequently, for each z ∈ R≥0 the
normalized magnetic moment is given by

eM̃(z) =

∫ λ

0

eB̃ (z − z′)ES,R

[
e−Γ̂S,R(R)

(
δ(z′) + eΓ̂S,R(z′)γ̂S,R(z

′)
)]

dz′

To sum up, we derived a lock-in function F : R≥0 → R≥0 defined over depth and given
by

F (z) = ES,R

[
e−Γ̂S,R(R)

(
δ(z) + eΓ̂S,R(z)γ̂S,R(z)

)]
Note that this lock-in function is independent of the absolute depth and can therefore209

be applied to each layer of the sediment core sample. To achieve this independence we210

had to approximate the intensity of the geomagnetic field by a constant. Consequently,211

the derived lock-in function can only be used as a weight function for the directional com-212

ponents. A lock-in function for intensities can, in general, not be independent of abso-213

lute depth or absolute time.214

The derived lock-in function is by construction normalized, i.e.∫ λ

0

F (z′)dz′ = 1 (8)

The lock-in function depends on the distribution of the random variables S and R as well215

as on the mobility function γ̂S,R and therefore also on the dimension of the random vari-216

able S. These parameters are influenced by the individual parameter distributions of the217

sediment core sample, e.g. distribution of grain size, shape, magnetic material etc.218
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However, there are two primary limitations that prevent us from proceeding with219

this general lock-in function. Firstly, the available information on sediment core sam-220

ples is typically incomplete, lacking essential details. Secondly, even if we were to assume221

a meticulously investigated sediment core sample with all necessary information, the im-222

pact of individual sediment core sample parameters on the mobility function remains un-223

certain. To address these challenges, we adopt the following approximation: we fix the224

number of shape parameters and obtain an explicit form of the mobility function.225

We assume that each particle’s mobility decreases linearly with depth. Each lin-
ear function is uniquely characterized by its slope and its root. Therefore, the random
variable S becomes 1-dimensional and the mobility functions of the particles are real-
izations of the following random function and its antiderivative

γ̂S,R(z) = max{S(R− z), 0}

Γ̂S,R(z) = min

{
S

(
Rz − 1

2
z2
)
,
1

2
SR2

}
In a next step we investigate how the shape of the lock-in function changes under dif-226

ferent distributions of the random variables S and R. We conclude that, although the227

distribution of S heavily influences the shape of the individual lock-in functions, the in-228

fluence on the shape of the general lock-in function can be neglected.229

Motivated by these results, we set S = 1 for each mobility function and get for
the random mobility function and its antiderivative

γ̂R(z) = max{R− z, 0}

Γ̂R(z) = min

{
Rz − 1

2
z2,

1

2
R2

}
The general lock-in function is then given by

F (z) = ER

[
e−

1
2R

2
(
δ(z) + eRz− 1

2 z
2

max{R− z, 0}
)]

(9)

In a final step we approximate this function by the following piecewise linear parame-
terized function

Fb1,b2,b3,b4(z) =
2

−b1 − b2 + b3 + b4



0 z ≤ b1
z−b1
b2−b1

b1 < z ≤ b2

1 b2 < z ≤ b3
b4−z
b4−b3

b3 < z ≤ b4

0 b4 ≤ z

(10)

Depending on the four parameters b1, b2, b3, b4 ∈ R≥0 with b1 ≤ b2 ≤ b3 ≤ b4, the230

parameterized function Fb1,b2,b3,b4 can approximate possible lock-in functions.231

In Figure 2 results for four different distributions of the random variable R are vi-232

sualized. The lock-in depths of the individual particles are (A) uniformly distributed over233

the interval [0, 10], (B) exponentially distributed with rate parameter 0, (C) normally234

distributed with mean 8 and variance 1, (D) exponentially distributed with rate param-235

eter 2. In each case, one thousand individual lock-in functions are plotted (gray). These236

individual lock-in functions where used to approximate the expected value associated with237

the general lock-in function (orange). Finally, non-linear least squares is used to fit the238

parameterized lock-in function (green) to the general lock-in function.239

The code to investigate additional examples can be found on our website under https://sec23.git-240

pages.gfz-potsdam.de/korte/pdrm/.241

2.3 Data Model242

In this section we will derive the data model which describes the relation between243

the measured signal in the sedimentary records and the geomagnetic field variations. While244
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Figure 2. Individual lock-in functions of one thousand particles (gray), associated general

lock-in function (orange) and fitted parameterized lock-in function (green) for four different dis-

tributions of the random variable R.

our primary focus here is on the sedimentary records, we need the information from ar-245

chaeological records at a later stage. The model of archeological data is outlined in Schanner246

et al. (2022).247

The first functional, used to describe the data model, is associated with the smooth-
ing caused by the lock-in process and given by

Fz : C(R,R3) → R3
(
z 7→ G(z)

)
7→
∫ λ

0

G(z − z′)

B̄
F (z′)dz′

where F : R → R is the lock-in function defined in section 2.2 and λ > 0 is the lock-248

in depth, i.e. the relative depth where the last particle of the layer at depth z is fully249

locked in. The constant B̄ is the mean of the geomagnetic field intensity over the abso-250

lute time of the sediment core sample, defined in section 2.2. We have to divide by B̄ since251

the lock-in function is defined for the directional components only. The linearity of the252

functional F follows directly from the linearity of the integral.253

Besides the natural smoothing caused by the lock-in process there is a smoothing254

effect caused by the way the magnetization in a sediment core sample is measured. When255

investigating sediment core samples, cubes of different sizes are taken from the core. Af-256

terwards, the magnetization in the extracted cube is measured. The resulting measure-257

ment is then an average of the actual magnetization across the width of the cube. We258

assume that the size of the extracted cubes does not change within a core sample i.e. the259

size of the extracted cube does not depend on the depth where the cube is extracted. There-260

fore, we can define the size of the extracted cubes for one core sample as κ ∈ R>0.261

This results in a second smoothing and can be described by the following measure-
ment smoothing functional

Mz : C(R,R3) → R3
(
z 7→ G(z)

)
7→ 1

κ

∫ z+κ
2

z−κ
2

G(z′)dz′ .

The linearity of the functional M again follows from the linearity of the integral.262

As described in Schanner et al. (2022), the quantities that are measured in labo-
ratory experiments are not provided in Cartesian field vector components (North (N),
East (E), Down (Z)) but as two angles, declination (D) and inclination (I), and inten-
sity (F). The non-linear relationships between these components can be described by three
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observation functionals

HD
z : C(R,R3) → R3

(
z 7→ G(z)

)
7→ arctan

(
GE(z)

GN (z)

)

HI
z : C(R,R3) → R3

(
z 7→ G(z)

)
7→ arctan

 GZ(z)√
G2

N (z) + G2
E(z)


HF

z : C(R,R3) → R3
(
z 7→ G(z)

)
7→
√
G2

E(z) + G2
N (z) + G2

Z(z)

where G(z) =
(
GN (z) GE(z) GZ(z)

)⊤ ∈ R3 for each z ∈ R.263

In the following we will apply these functionals to the Gaussian Process associated
with the geomagnetic field. Note that the lock-in function is defined in depth. There-
fore, we can not directly use the time dependent Gaussian Process given in (1). By switch-
ing from time to depth we end up with a new Gaussian Process

B̃ ∼ GP
(
B̄,KB̃

)
where the mean function coincides with the mean function of the Gaussian Process given264

in (1). This is because the mean function is assumed to be constant. The kernel func-265

tion follows directly by applying the age-depth model to the kernel function of the Gaus-266

sian Process given in (1).267

By applying the functional F to the Gaussian process B̃, we get, for all z ∈ R, the
first part of our data model

o1(z) = Fz

[
B̃
]
=

∫ λ

0

B̃(z − z′)

B̄
F (z′)dz′ .

Since B̃ is a Gaussian Process and by the linearity of the functional F it follows that also268

o1 is a Gaussian Process.269

Applying the measurement functional M to the data model o1, leads, for all z ∈
R, to a new data model

o2(z) = Mz[o1] =
1

κ

∫ z+κ
2

z−κ
2

o1(z
′′)dz′′ .

Note that o2 is also a Gaussian Process.270

Assuming that the lock-in depth λ is significantly larger than the size of the sam-271

ple cube κ, the measurement smoothing is negligible. In other words we can approximate272

o2 by o1, i.e. o2(z) ≈ o1(z).273

By applying the three non-linear functionals HD, HI and HF to the data model o2,
we get a new data model consisting, for all z ∈ R, of the following three components

oD
3 (z) = HD

z [o2], oI
3(z) = HI

z[o2], oZ
3 (z) = HF

z [o2]

The non-linearity results in a data model that is not Gaussian anymore. However, as de-
scribed in Schanner et al. (2022), these functionals can be linearized by a first order Tay-
lor expansion. As the point of expansion we use the smoothed mean of the Gaussian pro-
cess associated with the geomagnetic field

Fz

[
B̄
]
=

∫ λ

0

B̄(z − z′)

B̄
F (z′)dz′ =

B̄

B̄

∫ λ

0

F (z′)dz′ =
B̄

B̄

where B̄ =
(
B̄N B̄E B̄Z

)⊤ ∈ R3.274
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The linearization results in three functionals Hlin
D
z ,Hlin

I
z,Hlin

F
z : C(R,R3) → R3

such that for G ∈ C(R,R3)

Hlin
D
z [G] = B̄D +

B̄

F̃ 2
H

−B̄E

B̄N

0

⊤

G(z)

Hlin
I
z[G] = B̄I +

B̄

F̃H

0
0
1

− B̄Z

F̃

B̄

F̃

⊤

G(z)

Hlin
F
z [G] =

B̄
⊤

F̃
G(z)

where F̃ =

√
B̄

2
N + B̄

2
E + B̄

2
Z , F̃H =

√
B̄

2
N + B̄

2
E .275

By using these linearized functionals we approximate the data model o3 by a Gaus-276

sian Process.277

In conclusion the components of our final data model are given by

oD(z) = oD
3 (z) + ED(z)

= HD
z [o2] + ED(z)

= HD
z

[
1

κ

∫ z+κ
2

z−κ
2

o1(z
′′)dz′′

]
+ ED(z)

= HD
z

[
1

κ

∫ z+κ
2

z−κ
2

∫ λ

0

B̃(z′′ − z′)

B̄
F (z′)dz′dz′′

]
+ ED(z)

≈ HD
z

[∫ λ

0

B̃(z − z′)

B̄
F (z′)dz′

]
+ ED(z)

≈ Hlin
D
z

[∫ λ

0

B̃(z − z′)

B̄
F (z′)dz′

]
+ ED(z)

= B̄D +
1

F̃ 2
H

−B̄E

B̄N

0

⊤ ∫ λ

0

B̃(z − z′)F (z′)dz′ + ED(z)

oI(z) ≈ B̄I +
1

F̃H

0
0
1

− B̄Z

F̃

B̄

F̃

⊤ ∫ λ

0

B̃(z − z′)F (z′)dz′ + EI(z)

oF (z) ≈ 1

B̄
2
B̄F

B̄
⊤
∫ λ

0

B̃(z − z′)F (z′)dz′ + EF (z)

where E =
(
EN EE EZ

)⊤ ∈ R3 indicates the vector of measurement errors.278

2.4 Sequentialization279

Similar to Schanner et al. (2022) we perform a sequentialized inversion. We use the280

same archaeomagnetic data as in Schanner et al. (2022) and, for now, sediment data from281

a single sediment core only. In a later version we will adjust the method such that mul-282

tiple sediment core samples can be used. We restrict the set of free hyperparameters to283

the four shape parameters of the parameterized lock-in function in (10). For the hyper-284

parameters of the geomagnetic field prior, we use the values estimated in Schanner et285

al. (2022). In other words, we use the archaeomagnetic data to estimate the shape of the286

lock-in function. Due to the temporal distribution of the archaeomagnetic data, we rec-287

ommend limiting the time period for the hyperparameter estimation to the last eight thou-288

sand years.289
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We perform a modified version of the Kalman filter inversion (Kalman, 1960) pre-290

sented in Baerenzung et al. (2020); Schanner et al. (2022). In each step, the Kalman fil-291

ter consists of a prediction step followed by a correction step with respect to the new data292

if available. The correction step updates the model which is then used for the predic-293

tion in the next step. By setting a cutoff degree lmax, the model can be described by a294

finite vector of Gauss coefficients and their derivatives z = (gml , ġml ).295

In Schanner et al. (2022) a cutoff degree of lmax = 20 is used. Together with a296

step size of ∆t = 10 yrs, this provides a resolution that is much higher than the reso-297

lution given by the available data. Due to computational reasons we have to decrease298

the cutoff degree to lmax = 8 and the step size to ∆t = 40 yrs. However, several tests299

showed that the resolution is still high enough to capture all information provided by300

the available data.301

We cannot directly use the prediction and correction step formulas presented in Baerenzung
et al. (2020). Because of the lock-in process, the prediction and correction in each step
depends conditionally on the data contained in the maximal lock-in depth n. We over-
come the dependence problem by considering explicit correlation between a finite num-
ber of Kalman filter stepts, corresponding to the maximal lock-in depth n. For each k ∈
[0, T ], where T > n denotes the number of total Kalman filter steps, this leads to a for-
ward operator defined as

Fk = Fk(lmax,∆t) =

(
Fk 01,n−1

1n−1,n−1 0n−1,n

)

where Fk = Fk(lmax,∆t) is the forward operator defined in Baerenzung et al. (2020).302

Since we have chosen a constant step size, the forward operator does not depend on the303

Kalman filter step, i.e. Fk = F for all k.304

The notation 0a,b and 1a,b denote the a×b dimensional zero and identity matrix,305

respectively. Note that Fk is an 2lmax(lmax+2)×2lmax(lmax+2) matrix itself. There-306

fore, Fk is an n×n matrix with 2lmax(lmax +2)× 2lmax(lmax +2) matrices as entries.307

Let z0 ∼ N (µ0,Σ0) be the prior, where µ0 and Σ0 are the prior mean and co-
variance matrices, respectively. For k ∈ [1, T ], the Bayesian filtering equations are re-
cursively defined as

zk = Fzk−1 + σ

ok = Hkzk + ek

where ok is the measurement, σ ∼ N (0,Σ) the process noise and ek ∼ N (0,Ek) the308

measurement noise. The matrix Hk is the operator that projects the model to the data.309

The matrix Σ̃ = Σ0 − FΣ0F =

(
Σ̃ 01,n−1

0n−1,n−1 0n−1,n

)
characterizes the white noise of310

the evolution model. It is independent of the Kalman filter step because of stationar-311

ity.312

For 1 ≤ a < b ≤ n and 1 ≤ c < d ≤ m and an n × m matrix A we denote by313

Aa:b,c:d the matrix entries with row indices between a and b and column indices between314

c and d.315

For k ∈ [1, T ] and with the modified forward operator, the recursive equations of
the prediction step are given by

µ−
k = Fµk−1 =

(
Fµ1

k−1

µ1:n−1
k−1

)
Σ−

k = FΣk−1F
⊤ + Σ̃ =

(
FΣ1,1

k−1F
⊤ + Σ̃ FΣ1,1:n−1

k−1

Σ1:n−1,1
k−1 F⊤ Σ1:n−1,1:n−1

k−1

)
.
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The recursive equations for the update step are given by

Sk = HkΣ
−
k H

⊤
k +Ek

Kk = Σ−
k H

⊤
k S

−1
k

µk = µ−
k +Kk

(
ok −Hkµ

−
k

)
Σk = Σ−

k −KkSkK
⊤
k .

To formulate the backward recursion equations assume that the recursion starts from316

the last time step T . We set µs
T = µT and Σs

T = ΣT .317

The backward recursion equations are given as

µ−
k+1 = Fµk =

(
Fµ1

k

µ1:n−1
k

)
Σ−

k+1 = FΣkF
⊤ + Σ̃ =

(
FΣ1,1

k F⊤ + Σ̃ FΣ1,1:n−1
k

Σ1:n−1,1
k F⊤ Σ1:n−1,1:n−1

k

)

Gk = ΣkF
⊤(Σ−

k+1)
−1 =


0n−1,1 1n−1,n−1

01,1 Σn,1:n−1
k

(
Σ1:n−1,1:n−1

k

)−1

︸ ︷︷ ︸
=Ak∈R1×n−1


µs

k = µk +Gk

(
µs

k+1 − µ−
k+1

)
=

(
µs,2:n−1

k+1

µn
k +Ak

(
µs,2:n

k+1 − µ1:n−1
k

))
Σs

k = Σk +Gk

(
Σs

k+1 −Σ−
k+1

)
G⊤

k

=

(
Σs,2:n,2:n

k+1 Σs,2:n,2:n
k+1 A⊤

k

AkΣ
s,2:n,2:n
k+1 Σn,n

k +Ak

(
Σs,2:n,2:n

k+1 −Σ1:n−1,1:n−1
k

)
A⊤

k

)
.

A detailed derivation of these formulas can be found in Appendix C.318

3 Results319

In this section, we will assess the proposed method by conducting synthetic tests320

and applying it to two lake sediment records from Sweden. The data utilized in this sec-321

tion, along with the method’s implementation, can be found on our website under https://sec23.git-322

pages.gfz-potsdam.de/korte/pdrm/ and in the corresponding GitLab repository (Bohsung323

& Schanner, 2023). Moreover, we have provided scripts for generating synthetic data,324

enabling further testing.325

3.1 Synthetic Data326

We tested the performance of our model on synthetic data. All synthetic data points327

are based on the same reference geomagnetic field time series drawn from the prior de-328

scribed in section 2.1. Three synthetic datasets where generated from this reference time329

series. The first dataset represents the archaeomagnetic data with input locations and330

times being the same as in the archaeomagnetic data used in Schanner et al. (2022). In331

addition, two synthetic sediment datasets where generated. One is located in Sweden (60◦9′3.6′′332

N, 13◦3′18′′ E) and is denoted by sed sweden. The other one, sed rapa, is located on Rapa333

Iti (27◦36′57.6′′ S, 144◦16′58.8′′ W). Both have the same temporal distribution (see Ap-334

pendix D Figure D1). The age-depth model used for both synthetic sediment data sets335

coincides with the age depth model of the lake sediment core KLK described in section 3.2.336

We then applied four different lock-in functions to sed sweden and sed rapa, us-337

ing the lock-in function in Equation (9) based on the lock-in depth distribution of the338

individual particles instead of the parameterized lock-in function in Equation (10). We339

used the four orange lock-in functions illustrated in Figure 2. Since our model does not340

directly infer these lock-in functions but the parameterized lock-in function given in (10),341

it is not a perfect inverse problem.342
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The results for sed sweden (A)-(C) and sed rapa (D)-(F) distorted with the lock-343

in function associated with the normal distribution are given in Figure 3. Panels (A) and344

(D) show comparisons of the lock-in function used to distort the data and the result-345

ing estimated parameterized lock-in function (blue). The estimated parameters b1, . . . , b4346

are given in the legend. The upper panels in (B) and (E) show the reference time se-347

ries (green) which was used to generate the archaeological and sediment data before the348

distortion. Additionally, the resulting posterior mean (blue) and one hundred samples349

from the posterior (blue with small opacity) for declination are shown. The upper pan-350

els of (C) and (F) show the same for inclination. The lower panels show the distorted351

sediment data with errors (orange), i.e. the input data. In addition, the resulting pre-352

dicted sediment observations (purple) are shown. They are generated by applying the353

estimated parameterized lock-in functional to the posterior and the one hundred sam-354

ples.355

Figure 3. Results of modeling the pDRM for sed sweden (left) and sed rapa (right). Syn-

thetic data are created from a reference process (green, (B) and (E) declination, (C) and (F)

inclination) and distorted with the lock-in function (orange function in A and D) to form an

input data series with uncertainties (orange points). Application of our lock-in model gives the

posterior mean and 100 samples (blue in B, C, E, F) and estimated lock-in functions (blue in A,

B). The mean and 100 samples of the posterior curves modified by the estimated lock-in function

are also shown (purple in B, C, E, F).

For the results of the remaining three cases see Appendix D. Consistent outcomes356

are observed across all examined cases. Notably, even in instances where the approxi-357

mation of the lock-in function used for the distortion is not ideal, the posterior distri-358

butions and predicted sediment observations exhibit remarkable accuracy.359

Figure 4 shows the comparison of two posteriors, for the locations of (A) sed sweden360

and (B) sed rapa. The green curve shows the reference process, from which the synthetic361
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data used here were created. Posterior mean and one hundred samples of a model in-362

verted with archaeological data only (pink) and one inverted with archaeological and sed-363

iment data (blue) are shown for the declination (upper panels) and inclination (lower364

panels). The results for sed sweden agree closely. For sed rapa one can observe an im-365

provement in the model inverted with sediment and archaeological records.366

Figure 4. Posterior comparison of models based on archaeological data only (pink) and ar-

chaeological and sediment data (blue). In both cases the mean and 100 samples are shown. In

green is the reference process, used to generate the synthetic data.

The results for the remaining three cases are similar. Please visit our website (https://sec23.git-367

pages.gfz-potsdam.de/korte/pdrm/) to see the remaining results.368

3.2 Real Data369

The proposed method is applied to two lake sediment cores located in Sweden, namely370

Kälksjön (KLK) (Stanton et al., 2010, 2011; Mellström et al., 2015) and Gyltigesjön (GYL)371

(Snowball et al., 2013; Mellström et al., 2013, 2015) as first test cases. Both records are372

composed of more than one core sample, which may lead to inconsistencies due to ro-373

tations or inaccurate samplings of the cores. In Nilsson et al. (2022) a binning method374

is used to eliminate these effects. We followed the same approach and generated two datasets375

KLK binned and GYL binned. However, we apply our method to both the original and376

the binned records.377

The age-depth model used in this study is based on the posterior mean visualized378

in the appendix of Nilsson et al. (2022). Age uncertainties for KLK are set to 300 years,379

except for the two areas with radiocarbon dating where age uncertainties are set to 5 years.380

Similar, age uncertainties of the radiocarbon dated areas of GYL are set to 5 years. For381

records older than 1000 yr BCE and younger than 300 yr BCE, the age uncertainties are382

set to 200 years and 300 years, respectively. A more accurate age-depth model will be383

used in a future study.384

The results for KLK are presented in Figure 5. (A)-(C) show the results for the385

raw data and (D)-(F) show the results for the binned data. The figure is organized as386

Figure 3, but reference curve and real lock-in function are now unknown, and the orange387

symbols are the real data with uncertainty estimates. The results regarding the estimated388

lock-in functions clearly differ whether the original or binned data were used, while the389

estimated posterior curves are very similar most of the time, except for declination around390

1000 yr BCE.391

The similar results for GYL are given in Appendix D in Figure D5.392

4 Discussion393

The strongest assumption in the modeling of the lock-in process is the constancy394

of geomagnetic field intensity. As we have seen, this assumption does not play a major395

role for the directional components (declination and inclination), but impedes the ap-396

plication of our method for the relative paleointensity of the magnetic moment of a sed-397
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Figure 5. Results of modeling the pDRM for the real data series (orange symbols with un-

certainty bars) KLK (B, declination and C, inclination) and KLK binned (E, declination and F,

inclination). Application of our lock-in model gives the posterior curves (B, C, E, F, blue, mean

and 100 samples) and estimated lock-in functions (A, B, blue). The mean and 100 samples of

the posterior curves modified by the estimated lock-in function are also shown in purple.

iment layer. The heuristic explanation is that while changes in geomagnetic intensity can398

alter the distribution of the lock-in times of individual particles, the surrounding ma-399

terial’s influence is much more substantial, making this effect negligible. The correlations400

between the relative paleointensity and the intensity of the geomagnetic field are con-401

siderably more intricate. Further research will be required to explore these relationships.402

Another strong assumption was that the sedimentation material and its composition does403

not change significantly over time. Weakening of this assumption will be part of future404

research.405

In contrast to various lock-in functions found in the literature, the parameterized406

lock-in function presented in this study can approximate all conceivable lock-in behav-407

iors, including those that result in a shift. Higher degree functions or functions with more408

interpolation points could possibly yield better approximations, but would also increase409

the number of hyperparameters.410

The synthetic tests conducted with sed sweden show a remarkable fit of the pos-411

terior to the reference model in all cases, along with a good fit of the smoothed poste-412

rior to the smoothed synthetic sediment data. Notably, these positive results are achieved413

even when the parameterized lock-in function does not accurately approximate the true414

lock-in function. One possible explanation for this phenomenon is the non-uniqueness415

of the inversion performed, which we plan to investigate in more detail in a future study,416

including the uncertainties of the estimated parameters.417

As expected, the results of the synthetic tests performed with sed rapa appear some-418

what inferior due to the scarcity of archaeological data in the vicinity of the sediment419
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data. Nevertheless, the results are surprisingly good, especially in regions with small tem-420

poral errors. Additionally, the sediment records enhance the model prediction compared421

to the model inverted on archaeological records only.422

Also, the application of the method to the KLK and GYL data sets yields promis-423

ing results. It is remarkable that the binning, which is in principle an artificial smooth-424

ing, leads in both cases to a lock-in function which reproduces a strong smoothing. How-425

ever, when we assess the fit of the smoothed posteriors to the actual data, the method426

does not perform as well as it did in the synthetic tests. This can be attributed to sev-427

eral reasons, including inconsistencies in the non-binned data, excessively small measure-428

ment errors, as well as high temporal errors. Moreover, the effects of inclination shal-429

lowing or rotations during core sampling have been disregarded, which may result in a430

variable fit of the smoothed posterior to either inclination or declination. The applica-431

tion of the method to a wider variety of real data will be investigated in more detail in432

a future study.433

5 Conclusion434

Through theoretical investigation, we have first studied the rotational dynamics435

of a single magnetic particle during the sedimentation process. Our findings demonstrate436

that, subject to several assumptions, a lock-in function that is independent of absolute437

parameters can only exist for the directional magnetic field components, but not for rel-438

ative intensity. For these directional components, we derived a lock-in function for sin-439

gle particles, which was then generalized and approximated using a parameterized func-440

tion. Extensive testing on synthetic data sets has demonstrated that our method is highly441

effective in eliminating pDRM effects. While the initial application to real data sets is442

promising, further investigation is required to fully evaluate its potential.443

Appendix A444

In this section, we’ll demonstrate how the first order linear ordinary differential equa-445

tion in (5) can approximate the differential equation in (4), for all t ≥ τ .446

We set ēB = 1
rp,τ

∫ τ+rp,τ
τ

eB (t′) dt′ ∈ S3 as the mean vector of all vectors corre-
sponding to the geomagnetic field during the lock-in process. We choose the coordinate
system in such a way, that the mean vector ēB points to the North Pole of the unit sphere.
For each t ∈ [τ, τ + rp,τ ), we project the three-dimensional vectors em(t) ∈ R3 and
eB(t) ∈ R3 perpendicular onto the tangent plane. This projection is given by P : S2 →
R3 with

P

x
y
z

 =

x
y
1


Alternatively, one can derive the projection as follows. For each t ∈ [τ, τ+rp,τ ] we project
em(t) via

P (em(t)) = em(t) + λēB

with λ ∈ R. We know that the projected vector on the tangent plane is orthogonal to
ēB. Hence,

⟨ēB, em(t) + λēB⟩ = 0 ⇔ ⟨ēB, em(t)⟩+ λ⟨ēB, ēB⟩ = 0

∥ēB∥=1⇔ ⟨ēB, em(t)⟩+ λ = 0

↔ λ = −⟨ēB, em(t)⟩

Therefore the projection is given by

P (em(t)) = em(t)− ⟨ēB, em(t)⟩ēB
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By applying this projection to the vectors em(t) and eB(t) we get for each t ∈ [τ, τ +
rp,τ ]

P (em(t)) =

mx(t)
my(t)
1

 =

(
m(t)
1

)
and P (eB(t)) =

Bx(t)
By(t)
1

 =

(
b(t)
1

)

where m,b ∈ R2 are vectors on the tangent plane. By construction of the tangent plane,
the choice of the coordinate system and under the assumption that the geomagnetic field
only changes its direction by a few degrees in the time period [τ, τ + rp,τ ], the x- and
y-components of the vectors eB(t) are close to zero and the z-components are close to
one. The same holds true for each vector em(t). Therefore, the approximation by the
projection on the tangent plane is justified. After the projection, the differential equa-
tion (4) becomes

d

dt

(
m
1

)
= −γτ,rp,τ

my(mxBy −myBx)− (Bx −mx)
(my − By)−mx(mxBy −myBx)
mx(Bx −mx)−my(my − By)


= −γτ,rp,τ

mymxBy −m2
yBx − Bx +mx

my − By −m2
xBy +mxmyBx

mxBx −m2
x −m2

y +myBy


≈ −γτ,rp,τ

mx − Bx

my − By

0


= −γτ,rp,τ

(
m− b

0

)
where the approximation follows from the fact that the x- and y-coordinates of the vec-447

tors eB(t) and em(t) are close to zero. Therefore, we can approximate products of them448

by zero.449

For t ≥ τ+rp,τ we have γ(t) = 0 and the right-hand side of the differential equa-450

tion in (4) is zero. The same holds true for the differential equation in (5) and the ap-451

proximation is valid.452

Appendix B453

By using the age depth model in (7) we derive a new function defined over depth
as follows

mp(t) = mp(τ + rp,τ )

= e−Γτ,rp,τ (τ+rp,τ )

(
b(τ) +

∫ τ+rp,τ

τ

eΓτ,rp,τ (t
′)γτ,rp,τ (t

′)b(t′)dt′
)

= e−
∫ τ+rp,τ
τ

γτ,rp,τ (ρ)dρ

(
b(τ) +

∫ τ+rp,τ

τ

e
∫ t′
τ

γτ,rp,τ (ρ)dργτ,rp,τ (t
′)b(t′)dt′

)
φ(z′):=t′

= e−
∫ τ+rp,τ
τ

γτ,rp,τ (ρ)dρ

(
b(τ)

+

∫ φ−1(τ+rp,τ )

φ−1(τ)

e
∫ φ(z′)
τ

γτ,rp,τ (ρ)dργτ,rp,τ (φ(z
′))b(φ(z′))φ′(z′)dz′

)
φ(ζ):=ρ
= e

−
∫ φ−1(τ+rp,τ )

φ−1(τ)
γτ,rp,τ (φ(ζ))φ′(ζ)dζ

(
b(τ)

+

∫ φ−1(τ+rp,τ )

φ−1(τ)

e
∫ z′
φ−1(τ)

γτ,rp,τ (φ(ζ))φ′(ζ)dζ
γτ,rp,τ (φ(z

′))b(φ(z′))φ′(z′)dz′

)
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Now we define a new function γ̃φ−1(t)(x) := γt(φ(x))φ
′(x) and get

mp(t) = e
−

∫ φ−1(τ+rp,τ )

φ−1(τ)
γ̃φ−1(τ+rp,τ )(ζ)dζ

(
b(τ)

+

∫ φ−1(τ+rp,τ )

φ−1(τ)

e
∫ z′
φ−1(τ)

γ̃φ−1(τ+rp,τ )(ζ)dζ γ̃φ−1(τ+rp,τ )(z
′)b(φ(z′))dz′

)
ζ:=φ−1(τ)−ζ

= e
∫ φ−1(τ)−φ−1(τ+rp,τ )

0 γ̃φ−1(τ+rp,τ )(φ
−1(τ)−ζ)dζ

(
b(τ)

+

∫ φ−1(τ+rp,τ )

φ−1(τ)

e
−

∫ φ−1(τ)−z′
0 γ̃φ−1(τ+rp,τ )(φ

−1(τ)−ζ)dζ
γ̃φ−1(τ+rp,τ )(z

′)b(φ(z′))dz′

)
(7)
= e

∫ rp
0 γ̃φ−1(τ+rp,τ )(φ

−1(τ)−ζ)dζ

(
b(τ)

+

∫ φ−1(τ+rp,τ )

φ−1(τ)

e
−

∫ φ−1(τ)−z′
0 γ̃φ−1(τ+rp,τ )(φ

−1(τ)−ζ)dζ
γ̃φ−1(τ+rp,τ )(z

′)b(φ(z′))dz′

)
z′:=φ−1(τ)−z′

= e
∫ rP
0 γ̃φ−1(τ+rp,τ )(φ

−1(τ)−ζ)dζ

(
b(τ)

−
∫ rp

0

e
−

∫ z′
0

γ̃φ−1(τ+rp,τ )(φ
−1(τ)−ζ)dζ

γ̃φ−1(τ+rp,τ )(φ
−1(τ)− z′)b(φ(φ−1(τ)− z′))dz′

)
γ̃b(a−x)=γ̃b−a(−x)

= e
∫ rp
0 γ̃−rp (−ζ)dζ

(
b(τ)−

∫ rp

0

e−
∫ z′
0

γ̃−rp (−ζ)dζ γ̃−rP (−z′)b(φ(φ−1(τ)− z′))dz′
)

γ̂rp (x):=−γ̃−rp (−x)
= e−

∫ rp
0 γ̂rp (ζ)dζ

(
b(τ) +

∫ rp

0

e
∫ z′
0

γ̂rp (ζ)dζ γ̂rp(z
′)b(φ(φ−1(τ)− z′))dz′

)
= e−Γ̂rp (rp)

(
b(τ) +

∫ rp

0

eΓ̂rp (z
′)γ̂rp(z

′)b(φ(φ−1(τ)− z′))dz′
)

b̃(x):=b(φ(x))
= e−Γ̂rp (rp)

(
b(τ) +

∫ rp

0

eΓ̂rp (z
′)γ̂rp(z

′)b̃(φ−1(τ)− z′)dz′
)

By setting φ(z) = τ we get a function m̃p : R → R2 with

m̃p(z) = mp(φ(z))

= e−Γ̂rp (rp)

(
b(φ(z)) +

∫ rp

0

eΓ̂rp (z
′)γ̂rp(z

′)b̃(z − z′)dz′
)

= e−Γ̂rp (rp)

(
b̃(z) +

∫ rp

0

eΓ̂rp (z
′)γ̂rp(z

′)b̃(z − z′)dz′
)

Appendix C454

In this section we present the derivations of the formulas used in the section 2.4.

Σ−
k = FΣk−1F

⊤ + Σ̃

=

(
F 01,n−1

1n−1,n−1 0n−1,1

)(
Σ1:n−1,1:n−1

k−1 Σ1:n−1,n
k−1

Σn,1:n−1
k−1 Σn,n

k−1

)(
F⊤ 1n−1,n−1

0n−1,1 01,n−1

)
+ Σ̃

=

(
F 01,n−1

1n−1,n−1 0n−1,1

)(
Σ1:n−1,1

k−1 F⊤ Σ1:n−1,1:n−1
k−1

Σn,1
k−1F

⊤ Σn,1:n−1
k−1

)
+

(
Σ̃ 01,n−1

0n−1,1 0n−1,n−1

)
=

(
FΣ1,1

k−1F
⊤ + Σ̃ FΣ1,1:n−1

k−1

Σ1:n−1,1
k−1 F⊤ Σ1:n−1,1:n−1

k−1

)
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The backward recursion equations are derived as follows

Σ−
k+1 = FΣkF

⊤ + Σ̃ =

(
FΣ1,1

k F⊤ + Σ̃ FΣ1,1:n−1
k

Σ1:n−1,1
k F⊤ Σ1:n−1,1:n−1

k

)
Gk = ΣkF

⊤(Σ−
k+1)

−1

= Σk

(
F⊤ 1n−1,n−1

0n−1,1 01,n−1

) Σ̃−1
(
−Σ̃−1F 01,n−2

)(
−F⊤Σ̃−1

0n−2,1

) (
D−1 + F⊤Σ̃−1F 01,n−2

0n−2,1 0n−2,n−2

)

=


0n−1,1 1n−1,n−1

01,1 Σn,1:n−1
k

(
Σ1:n−1,1:n−1

k

)−1

︸ ︷︷ ︸
=Ak∈R1×n−1


µs

k = µk +Gk

(
µs

k+1 − µ−
k+1

)
= µk +

(
0n−1,1 1n−1,n−1

01,1 Ak

)
ms,1

k+1 − Fm1
k

µs,2
k+1 − µ1

k
...

µs,n
k+1 − µn−1

k


= µk +

(
µs,2:n−1

k+1 − µ1:n−2
k

Ak

(
µs,2:n

k+1 − µ1:n−1
k

))

=

(
µs,2:n−1

k+1

µn
k +Ak

(
µs,2:n

k+1 − µ1:n−1
k

))
Σs

k = Σk +Gk

(
Σs

k+1 −Σ−
k+1

)
G⊤

k

= Σk +

(
0n−1,1 1n−1,n−1

01,1 Ak

)(
Σs,1,1

k+1 − FΣ1,1
k F⊤ − Σ̃ Σs,1,2:n

k+1 − FΣ1,1:n−1
k

Σs,2:n,1
k+1 −Σ1:n−1,1

k F⊤ Σs,2:n,2:n
k+1 −Σ1:n−1,1:n−1

k

)
G⊤

k

= Σk +

(
Σs,2:n,1

k+1 −Σ1:n−1,1
k F⊤ Σs,2:n,2:n

k+1 −Σ1:n−1,1:n−1
k

Ak

(
Σs,2:n,1

k+1 −Σ1:n−1,1
k F⊤

)
Ak

(
Σs,2:n,2:n

k+1 −Σ1:n−1,1:n−1
k

))( 01,n−1 01,1

1n−1,n−1 A⊤
k

)

= Σk +

 Σs,2:n,2:n
k+1 −Σ1:n−1,1:n−1

k

(
Σs,2:n,2:n

k+1 −Σ1:n−1,1:n−1
k

)
A⊤

k

Ak

(
Σs,2:n,2:n

k+1 −Σ1:n−1,1:n−1
k

)
Ak

(
Σs,2:n,2:n

k+1 −Σ1:n−1,1:n−1
k

)
A⊤

k


=

 Σs,2:n,2:n
k+1 Σ1:n−1,n

k +
(
Σs,2:n,2:n

k+1 −Σ1:n−1,1:n−1
k

)
A⊤

k

Σn,1:n−1
k +Ak

(
Σs,2:n,2:n

k+1 −Σ1:n−1,1:n−1
k

)
Σn,n

k +Ak

(
Σs,2:n,2:n

k+1 −Σ1:n−1,1:n−1
k

)
A⊤

k


=

(
Σs,2:n,2:n

k+1 Σ1:n−1,n
k +Σs,2:n,2:n

k+1 A⊤
k −Σ1:n−1,n

k

Σn,1:n−1
k +AkΣ

s,2:n,2:n
k+1 −Σn,1:n−1

k Σn,n
k +Ak

(
Σs,2:n,2:n

k+1 −Σ1:n−1,1:n−1
k

)
A⊤

k

)

=

(
Σs,2:n,2:n

k+1 Σs,2:n,2:n
k+1 A⊤

k

AkΣ
s,2:n,2:n
k+1 Σn,n

k +Ak

(
Σs,2:n,2:n

k+1 −Σ1:n−1,1:n−1
k

)
A⊤

k

)

Where the inverse of the matrix Σ−
k+1 is derived as follows. We define

Σ−
k+1 =

(
FΣ1,1

k−1F
⊤ + Σ̃ FΣ1,1:n−1

k−1

Σ1:n−1,1
k−1 F⊤ Σ1:n−1,1:n−1

k−1

)
=

(
A B
C D

)
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The inverse of Σ−
k+1 is then given by

(Σ−
k+1)

−1 =

( (
A−BD−1C

)−1 −
(
A−BD−1C

)−1
BD−1

−D−1C
(
A−BD−1C

)−1
D−1 +D−1C

(
A−BD−1C

)−1
BD−1

)
(⋆)
=

(
Σ̃−1 −Σ̃−1BD−1

−D−1CΣ̃−1 D−1 +D−1CΣ̃−1BD−1

)
(⋆⋆)
=

 Σ̃−1 −Σ̃−1
(
F 01,n−2

)
−
(

F⊤

0n−2,1

)
Σ̃−1 D−1 +

(
F⊤

0n−2,1

)
Σ̃−1

(
F 01,n−2

)
=

 Σ̃−1
(
−Σ̃−1F 01,n−2

)(
−F⊤Σ̃−1

0n−2,1

) (
D−1 + F⊤Σ̃−1F 01,n−2

0n−2,1 0n−2,n−2

)
where (⋆) follows since

(
A−BD−1C

)−1
=

(
FΣ1,1

k F⊤ + Σ̃− FΣ1,1:n−1
k

(
Σ1:n−1,1:n−1

k

)−1

Σ1:n−1,1
k F⊤

)−1

=
(
FΣ1,1

k F⊤ + Σ̃− FΣ1,1
k F⊤

)−1

= Σ̃−1

and (⋆⋆) follows since

D−1C =
(
Σ1:n−1,1:n−1

k

)−1

Σ1:n−1,1
k F⊤ =

(
F⊤

0n−2,1

)
BD−1 = FΣ1,1:n−1

k

(
Σ1:n−1,1:n−1

k

)−1

=
(
F 01,n−2

)
Appendix D455

Figure D1. Spatial and temporal distribution of synthetic data

Open Research Section456

All data used in this study as well as a python implementation of the method can457

be found in the GitLab repository (Bohsung & Schanner, 2023). On our website (https://sec23.git-458

pages.gfz-potsdam.de/korte/pdrm/) jupyter notebooks have been published that can be459
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Figure D2. Results of modeling the pDRM for sed sweden (left) and sed rapa (right). Syn-

thetic data are created from a reference process (green, (B) and (E) declination, (C) and (F)

inclination) and distorted with the lock-in function (orange function in A and D) to form an

input data series with uncertainties (orange points). Application of our lock-in model gives the

posterior mean and 100 samples (blue in B, C, E, F) and estimated lock-in functions (blue in A,

B). The mean and 100 samples of the posterior curves modified by the estimated lock-in function

are also shown (purple in B, C, E, F).

used to generate more synthetic data or investigate cases which where not discussed in460

this paper. The raw data (KLK and GYL) for the two lakes in Sweden can be found on461

GEOMAGIA (Brown et al., 2015).462
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