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Abstract

Pinatubo erupted during the first decadal survey of ocean biogeochemistry, embedding its climate fingerprint into foundational

ocean biogeochemical observations and complicating the interpretation of long-term biogeochemical change. Here, we quan-

tify the influence of the Pinatubo climate perturbation on externally forced decadal and multi-decadal changes in key ocean

biogeochemical quantities using a large ensemble simulation of the Community Earth System Model designed to isolate the

effects of Pinatubo, which cleanly captures the ocean biogeochemical response to the eruption. We find increased uptake of

apparent oxygen utilization and preindustrial carbon over 1993-2003. Nearly 100\% of the forced response in these quantities

are attributable to Pinatubo. The eruption caused enhanced ventilation of the North Atlantic, as evidenced by deep ocean

chlorofluorocarbon changes that appear 10-15 years after the eruption. Our results help contextualize observed change and

contribute to improved constraints on uncertainty in the global carbon budget and ocean deoxygenation.
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Key Points:13

• Using a large ensemble model, we quantify the impact of Pinatubo on observed,14

externally forced decadal changes in ocean biogeochemistry15
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carbon over 1993-2003 are attributable to Pinatubo17

• Impacts of Pinatubo last several decades, affecting interpretation of anthropogenic18

changes from physical and biogeochemical observations19
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Abstract20

Pinatubo erupted during the first decadal survey of ocean biogeochemistry, embedding21

its climate fingerprint into foundational ocean biogeochemical observations and compli-22

cating the interpretation of long-term biogeochemical change. Here, we quantify the in-23

fluence of the Pinatubo climate perturbation on externally forced decadal and multi-decadal24

changes in key ocean biogeochemical quantities using a large ensemble simulation of the25

Community Earth System Model designed to isolate the effects of Pinatubo, which cleanly26

captures the ocean biogeochemical response to the eruption. We find increased uptake27

of apparent oxygen utilization and preindustrial carbon over 1993-2003. Nearly 100%28

of the forced response in these quantities are attributable to Pinatubo. The eruption caused29

enhanced ventilation of the North Atlantic, as evidenced by deep ocean chlorofluorocar-30

bon changes that appear 10-15 years after the eruption. Our results help contextualize31

observed change and contribute to improved constraints on uncertainty in the global car-32

bon budget and ocean deoxygenation.33

Plain Language Summary34

Oceanographers’ understanding of ocean properties comes from research cruises that35

take scientific measurements in the same locations every ten years. However, the first36

of these research cruises were deployed just after a large volcanic eruption in 1991 called37

Pinatubo. The eruption cooled the planet for several years, including the upper ocean.38

Here, we investigate how this eruption affected ocean properties using two collections of39

simulations of the Community Earth System Model which is a mathematical represen-40

tation of the Earth system. The first collection of simulations shows the response to the41

eruption, while the second collection shows how ocean properties would have changed42

if there had been no eruption. The difference thus tell us the influence of the eruption43

on ocean properties. We find an increase of oxygen and preindustrial carbon over 1993-44

2003 due to Pinatubo, as well as an increase of ventilation of the North Atlantic that ap-45

pears years after the eruption.46

1 Introduction47

Large volcanic eruptions have a dramatic impact on Earth’s climate: sulfur aerosols48

from explosive eruptions interact with solar radiation, cooling Earth’s surface [Schnei-49

der et al., 2009]. The 1991 Pinatubo eruption injected approximately 20 megatons of sul-50

fur dioxide into the stratosphere [Robock , 2000]. A massive aerosol cloud circled the globe51

in three weeks, reducing radiative forcing by ∼4.5 W m−2 (relative to typical forcing of52

237 W m−2 reported in Hansen et al. [1992]), and producing a two-year reversal of the53

late 20th century warming trend [Robock , 2000]. Beyond impacts on radiation and sur-54

face temperature, there is a need to quantify and understand how large-magnitude erup-55

tions affect ocean biogeochemistry.56

The first large-scale decadal survey of ocean biogeochemistry occurred in the years57

following the Pinatubo eruption [Boyer et al., 2018]. Prior to 1991, the oceanographic58

community collected somewhere between zero and 1,000 hydrographic biogeochemical59

observations per year (Figure 1). From 1991-1996, however, the World Ocean Circula-60

tion Experiment (WOCE) and the Joint Global Ocean Flux Study (JGOFS) collected61

between 3,000 and 7,000 hydrographic biogeochemical observations per year [Lauvset et al.,62

2022, see Figure 1]. As such, the climatic fingerprint of Pinatubo, which is pronounced63

in ocean circulation during this period [Church et al., 2005; Stenchikov et al., 2009], is64

likely embedded in the ocean biogeochemical observations from this key decadal survey.65

Repeat hydrographic observations provide tremendous insight into the effects of66

anthropogenic climate change on ocean biogeochemistry. Observations collected via pro-67

grams such as WOCE and JGOFS in the 1990s, the Climate and Ocean: Variability, Pre-68
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dictability and Change (CLIVAR) repeat hydrography program in the 2000s, and presently69

by the Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP) pro-70

vide approximately decadal snapshots of ocean biogeochemical state along select tran-71

sects in the Atlantic, Pacific, Indian, and Southern Ocean basins. Analysis of these ob-72

servations provides a global assessment of decadal changes in measured biogeochemical73

quantities, such as nutrient, carbon, and oxygen concentrations, as well as in quantities74

inferred from physical and biogeochemical measurements, including apparent oxygen uti-75

lization (AOU; a measure of biological respiration and ocean circulation), anthropogenic76

carbon, and ocean circulation (inferred from measurements of, e.g., chlorofluorocarbons77

or CFCs). Using repeat hydrographic survey data, Wanninkhof et al. [2010] report large78

changes in AOU between 1989 and 2005 in the interior Atlantic basin, and Johnson and79

Gruber [2007] indicate that ocean ventilation changes are responsible for observed decadal80

AOU variability here. Similarly, Deutsch et al. [2006] attribute the large AOU variabil-81

ity in the interior Pacific basin in part to changes in ventilation. Gruber et al. [2004], Sabine82

et al. [2008], and Gruber et al. [2019] base their estimates of decadal changes and regional83

patterns of anthropogenic carbon storage by comparing sections from decadal hydrographic84

surveys. Finally, multiple studies based on hydrographic CFC data conclude that South-85

ern Ocean meridional overturning accelerated from the 1990s to the 2000s [Waugh et al.,86

2013; Tanhua et al., 2013; Ting and Holzer , 2017]. The effects of Pinatubo on ocean cir-87

culation and biogeochemistry are likely woven into these findings, but have so far remained88

largely unexplored.89

Modeling studies find that volcanic eruptions can affect change in ocean biogeo-90

chemistry. Frölicher et al. [2009] use a small ensemble of simulations in Climate System91

Model version 1.4 to examine the influence of large volcanic eruptions; they find that ocean92

oxygen inventory increases globally in the top 500m and that the perturbation persists93

for up to a decade post-eruption. In a separate study with the same model, Frölicher94

et al. [2011] find that the ocean carbon-climate feedback parameter is affected by large95

eruptions for up to 20 years. Eddebbar et al. [2019] use the Community Earth System96

Model-1 (CESM1) Large Ensemble and the Geophysical Fluid Dynamics Laboratory Earth97

System Model (ESM2M) Large Ensemble to investigate the physical and biogeochem-98

ical ocean response to tropical eruptions throughout the 20th century; they find a large99

uptake of oceanic oxygen and carbon driven by a complex ocean physical response to vol-100

canic perturbations, with important implications for attributing decadal variability in101

the ocean carbon sink. McKinley et al. [2020] find that Pinatubo drove a pronounced102

global ocean carbon uptake anomaly that peaked in 1992-1993. Fay et al. [2023] further103

isolate the effects of Pinatubo on key biogeochemical properties and show oxygen in the104

ocean interior permanently increases by 60 Tmol and ocean carbon uptake increases by105

0.29 ±0.14 Pg yr−1 in 1992 with pronounced changes in the deep ocean for oxygen and106

upper 150 m for carbon. Taken together, these studies suggest that Pinatubo had a sub-107

stantial influence on ocean biogeochemical distributions and cycling, and insinuate that108

the reported, hydrography-based decadal and multi-decadal changes in ocean biogeochem-109

istry may be influenced by the Pinatubo eruption.110

Here, we investigate the impact of the Pinatubo eruption on decadal to multi-decadal111

changes in ocean biogeochemical properties using two ensembles of simulations from a112

state-of-the-art Earth system model. The simulations were designed to explicitly isolate113

the externally forced response of the Earth system due to Pinatubo: the first ensemble114

simulates the period from 1991 to 2025 under historical forcing, and the second ensem-115

ble is identical to the first but excludes the 1991 Pinatubo eruption [Fay et al., 2023].116

The difference in the respective ensemble means allows us to cleanly capture the forced117

response due to the eruption in the presence of internal variability and anthropogenic118

forcing, while the inter-ensemble spread captures the extent of the internal variability119

in the climate system. We sample the simulated ocean at the times and locations of the120

ocean hydrographic observation programs to reveal long-term biogeochemical changes121

associated with the Pinatubo climate perturbation. Our results help contextualize ob-122
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served changes in AOU, preindustrial and anthropogenic carbon, and chlorofluorocarbon-123

12 due to internally generated versus externally driven climate variability associated with124

volcanic eruptions, and contribute to improved constraints on uncertainty in the global125

carbon budget and ocean deoxygenation.126

2 Methods127

Our primary numerical tool is the Community Earth System Model version 1 (CESM1),128

a fully coupled climate model that simulates Earth’s climate system [Hurrell et al., 2013].129

Four component models that each simultaneously simulate Earth’s atmosphere, ocean,130

land, and sea ice are coupled with one central component that exchanges fluxes and bound-131

ary conditions between the individual components [Danabasoglu et al., 2012; Holland et al.,132

2012; Hunke and Lipscomb, 2008; Lawrence et al., 2012]. The ocean component in CESM1133

is named the Parallel Ocean Program version 2 [POP2; Smith et al., 2010]. The model134

is defined at approximately 1◦ horizontal resolution and 60 vertical levels. Ocean car-135

bon biogeochemistry is simulated using the ocean Biogeochemical Elemental Cycling (BEC)136

model, which is coupled to POP2. BEC includes full carbonate system and lower level137

trophic ecosystem dynamics, allowing for computation of inorganic carbon chemistry, oceanic138

pCO2, air-to-sea CO2 and O2 fluxes, and a dynamic iron cycle that reflect physical trans-139

port, solubility variations, net community production, and ocean-atmosphere exchange140

[Moore et al., 2013].141

We analyze output from two sets of large initial-condition ensemble simulations con-142

ducted with CESM1. The first is a 29-member replicate of the CESM1 Large Ensem-143

ble [Kay et al., 2015] for 1990-2025 conducted on the NCAR Cheyenne supercomputer144

[herein referred to as ‘LENS’; Fay et al., 2023]. Each ensemble member is forced iden-145

tically but initialized with a slight modification to surface air temperature, producing146

an ensemble spread that reflects the influence of internal variability on the simulated Earth147

system response to Pinatubo. Recently, a second set of 29 ensemble members were gen-148

erated that are identical to LENS but excluded the radiative forcing of Pinatubo erup-149

tion by removing the volcanic aerosol mass mixing ratio values for January 1991 to De-150

cember 1995 and replacing them with values from a time when no large volcanic erup-151

tions took place, January 1986 to December 1990 [herein referred to as ‘NoPin’; Fay et al.,152

2023].153

Both ensembles compute carbonate chemistry using two different prescribed atmo-154

spheric CO2 boundary conditions: 284.7 parts per million (ppm, from which we derive155

preindustrial dissolved inorganic carbon concentrations), and time-evolving observed his-156

torical and projected Representative Concentration Pathway 8.5 atmospheric CO2 (from157

which we derive contemporary carbon concentrations). Anthropogenic carbon concen-158

tration is calculated by difference between the contemporary and preindustrial concen-159

trations.160

The ensembles are forced with prescribed atmospheric CFC-12 from 1990 to 2005.161

Modeled ocean CFC-12 concentrations were converted to pCFC-12 using the standard162

solubility formulation [Warner and Weiss, 1985]. We also make use of ideal age, an ide-163

alized passive model tracer that records the length of time since a parcel of water was164

last in contact with the atmosphere at the ocean surface [Lester et al., 2020]. Since ideal165

age does not have atmospheric time-varying history, it is used to explore temporal changes166

in ocean circulation.167

In this manuscript, we present the difference in the LENS and NoPin ensemble means,168

which isolates the modeled ocean biogeochemical anomalies associated with the Pinatubo169

eruption. We also present the standard deviation across the ensemble members as rep-170

resentative of internal variability. We use January to December values for the annual means171

in 1993 and 2003. The difference between the LENS and NoPin ensemble means (X) is172
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considered statistically significant at the 95% confidence interval if its ratio with the cross-173

ensemble standard deviation (σ) is greater than 2 divided by the square root of the de-174

grees of freedom [N - 1, here N = 29; Deser et al., 2012; Fay et al., 2023],175

X

σ
≥ 2√

N − 1
. (1)

We subsample the model at the approximate locations of observed GO-SHIP hy-176

drographic sections that, when taken together, follow the path of the global ocean ther-177

mohaline circulation [map inset, Figure 2; Sarmiento and Gruber , 2006]. In the Atlantic,178

we subsample a single meridional section along 25◦W (akin to A16N, Baringer and Bullis-179

ter [2013] and A16S, Wanninkhof and Barbero [2014]). In the Southern Ocean, we sub-180

sample along 63◦S between 29 and 80◦E (akin to S04I, Rosenberg [2006]) and along 67◦S181

between 159◦E and 73◦W (akin to S04P, Macdonald [2018]). In the Pacific, we subsam-182

ple a single meridional section along 150◦W (akin to P16S, Talley [2014] and P16N, Mac-183

donald and Mecking [2015]).184

3 Results185

A substantial fraction of the externally forced change in AOU that occurs from 1993186

to 2003 along the path of the global ocean thermohaline circulation and across each basin187

can be attributed to Pinatubo (Figures 2 and S2). In the subpolar north and subtrop-188

ical north and south Atlantic, LENS produces large (∼10 mmol m−3), externally forced189

increases in AOU from 1993 to 2003 in waters with potential density ≥ 26.5 kg m−3 (Fig-190

ure 2, top). The difference between the LENS and NoPin ensemble mean AOU changes191

(Figure 2, bottom) reveals a remarkable similarity to the LENS ensemble mean AOU192

changes (cf. Figure 2 top and bottom), indicating that Pinatubo is the main driver of193

externally forced decadal increases in AOU in the subpolar north and subtropical At-194

lantic. In the Pacific, the externally forced decadal change in AOU is more complex, with195

decreases in AOU in the northern subpolar region (isopycnal range 26-27 kg m−3) and196

in the upper tropical thermocline(isopycnal range 23-26 kg m−3; Figure 2, top). Again,197

the LENS ensemble mean AOU changes here are remarkably similar in magnitude and198

sign to the difference between the LENS and NoPin ensemble mean AOU changes (cf.199

Figure 2 top and bottom), indicating that Pinatubo played an important role in driv-200

ing these forced AOU changes. Anomalies south of 40◦S are mostly weak or statistically201

insignificant, suggesting weaker Pinatubo effects on AOU in this region. These externally202

forced, decadal changes in AOU occur in the presence of substantial internal variabil-203

ity that can enhance or diminish ensemble mean trends (Figure S1). For example, pos-204

itive value increases in AOU beyond those of the ensemble mean (11 mmol m−3) are ex-205

hibited in ensemble member 21 in the Atlantic transect (14.25 mmol m−3), ensemble mem-206

ber 2 along the Indian transect in the Southern Ocean (13 mmol m−3), and ensemble207

member 10 along the Pacific transect (18 mmol m−3, see Figure S1).208

In contrast to AOU, Pinatubo’s eruption has little-to-no effect on the externally209

forced evolution of the interior ocean anthropogenic carbon distribution (Figure 3; cor-210

responding zonal mean in Figure S3). Most of the change over 1993-2003 occurs in the211

subtropical thermocline in both basins, with additional anthropogenic carbon accumu-212

lation below 1000 m in the subpolar North Atlantic (approximately 40◦N to 60◦N). LENS213

ensemble mean anthropogenic carbon increases by as much as 10.25 mmol m−3 between214

1993 and 2003, with marked increases in the Atlantic within the isopycnal range 24-27215

kg m−3, Southern Ocean along σ=27 kg m−3, and Pacific within 23-26 kg m−3 (Figure 3,216

top). The difference between the LENS and NoPin ensemble mean anthropogenic car-217

bon changes over 1993 to 2003 is an order of magnitude less than the LENS ensemble218

mean changes (cf. Figure 3 top and second rows), suggesting that Pinatubo does not in-219

fluence the externally forced increase in interior ocean anthropogenic carbon.220
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Conversely, nearly all of the externally forced change in preindustrial carbon (car-221

bon not directly affected by rising atmospheric CO2) from 1993 to 2003 is attributable222

to Pinatubo’s eruption (Figure 3; corresponding zonal mean in Figure S5). The largest223

changes in LENS preindustrial carbon also occur in the subtropical thermocline in both224

basins, and closely correspond in sign and magnitude to the changes attributable to Pinatubo225

over this period (cf. Figure 3 bottom two rows). This externally forced, decadal change226

in preindustrial carbon occurs amidst a backdrop characterized by high internal variabil-227

ity (Figure S5), yet the signal of Pinatubo emerges in the ensemble mean (Figure S5)228

and is statistically significant at the 95% confidence interval throughout much of the top229

300m. Pinatubo thus acts to increase preindustrial carbon in the Atlantic pycnocline and230

decrease preindustrial carbon in the Pacific pycnocline when sampling the model along231

our selected cruise path, however zonal mean decadal changes due to Pinatubo are more232

muted, reflecting zonally complex changes in preindustrial carbon distributions associ-233

ated with Pinatubo (cf. Figures 3 and S5).234

Pinatubo has had long-lasting impacts on the deep North Atlantic, as evidenced235

by changes in the pCFC-12 distribution (Figure 4, Figure S7). While a 1995 virtual sur-236

vey reflects little impact of Pinatubo on pCFC-12 in the deep North Atlantic, by the year237

2000 there is a statistically significant 10-20 parts per trillion (ppt) decrease in pCFC-238

12 in the upper 1000 m over 35-60◦N that persists through 2005, and a corresponding239

increase in pCFC-12 from 1000 m to the seafloor in the same region, (Figure 4, Figure S6).240

Ideal age shows similar Pinatubo-driven changes in the deep North Atlantic that extend241

through 2025 (Figure S7, Figure S8; see Methods for an explanation of ideal age). Taken242

together, these figures imply that Pinatubo affected North Atlantic ventilation, driving243

perturbations in water mass properties that persisted for many decades after the erup-244

tion.245

4 Conclusions and Discussion246

Our study uses an ensemble of Earth system model simulations to examine the spatio-247

temporal response of ocean biogeochemistry to the 1991 Pinatubo eruption amid inter-248

nal climate variability, and to estimate the fingerprint of the Pinatubo climate pertur-249

bation in the hydrographic observational record. We find that the effects of the Pinatubo250

eruption manifest more strongly for some ocean biogeochemical variables than others:251

externally driven decadal changes in AOU and preindustrial carbon are strongly affected252

by the eruption, while changes in anthropogenic carbon show no discernible response to253

the eruption. We also find that the eruption has had long-lasting impacts on deep North254

Atlantic transient tracer distributions.255

By investigating the externally forced (ensemble mean) evolution of multiple ocean256

variables in the decade following the eruption, we can begin to understand how Pinatubo257

altered key tracers of physical and biogeochemical processes. Pinatubo drove decadal-258

scale increases in both AOU and preindustrial carbon in the subtropical Atlantic ther-259

mocline, likely as a result of post-eruption cooling and solubility driven increases in dis-260

solved oxygen and carbon [Fay et al., 2023]. Pinatubo’s cooling also drove increases in261

North Atlantic ventilation [Fay et al., 2023], affecting pCFC-12 below the main thermo-262

cline for multiple decades. In the Pacific, CESM responds to the Pinatubo climate per-263

turbation by producing El Niño-like conditions [Eddebbar et al., 2019; Fay et al., 2023].264

This causes reduced upwelling of carbon-rich and oxygen-poor waters, reducing both AOU265

and preindustrial carbon concentrations.266

One of the key findings from this study is that, while the Pinatubo climate per-267

turbation influences the distribution of preindustrial carbon, it has no discernible im-268

pact on the externally forced changes in the anthropogenic carbon distribution. This find-269

ing agrees with previous studies that find an important role for Pinatubo in preindus-270

trial carbon variability [Eddebbar et al., 2019; McKinley et al., 2020; Fay et al., 2023],271
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and gives us additional confidence that observation-based estimates of changing anthro-272

pogenic carbon distribution [e.g., Gruber et al., 2019]; [also Müller, Jens Daniel, Gru-273

ber, Nicolas, Carter, Brendan R., Feely, et al., Decadal Trends in the Oceanic Storage274

of Anthropogenic Carbon from 1994 to 2014, in preparation for Authorea] are relatively275

unaffected by the Pinatubo climate perturbation. This confidence, however, is only valid276

to the extent that the methods employed can accurately separate anthropogenic carbon277

from the much larger preindustrial component.278

Repeat hydrographic observations of physical and biogeochemical ocean proper-279

ties are a powerful tool for quantifying and diagnosing change in the real ocean, but one280

must exercise caution when attributing observed change to externally forced processes281

such as anthropogenic climate warming. Our study uses two ensembles of simulations282

from an Earth system model to explicitly isolate the role of (1) anthropogenic climate283

change and the Pinatubo climate perturbation (LENS ensemble mean), (2) anthropogenic284

climate change alone (NoPin ensemble mean), and by difference (3) the Pinatubo climate285

perturbation alone (LENS ensemble mean minus NoPin ensemble mean) in the tempo-286

ral evolution of these properties. In this framework, the real world hydrographic obser-287

vations represent a single ensemble member in LENS, wherein change over time is af-288

fected by internal climate variability, anthropogenic climate change, and the Pinatubo289

climate perturbation. Our approach thus helps to disentangle the drivers of change in290

the observed record, and points to an important role for Pinatubo.291

Results from our study align with those reported in others studies on the decadal292

impacts of volcanic eruptions on ocean biogeochemistry. We find a zonal-mean increase293

in the oxygen content in the upper 300 m in the decade following the eruption across the294

Atlantic and Pacific sectors, consistent with Frölicher et al. [2009], who report post-eruption295

global oxygen increases in the upper 500 m and Eddebbar et al. [2019] who report anoma-296

lous ocean oxygen uptake immediately following the eruption with long lasting effects297

on subsurface distributions [Fay et al., 2023].298

Our findings come with several caveats. First, the horizontal resolution of our model299

is coarser (∼100 km) than the typical distance between hydrographic measurements (∼20300

km). As such, our model sub-sampling exercise produces an estimate of biogeochemi-301

cal properties averaged over multiple hydrographic stations, and parameterizes the small302

scale variations in biogeochemical properties captured by the observations. Second, the303

micro-nutrients contained in volcanic ash have been shown to impact carbon cycling [Hamme304

et al., 2010; Langman et al., 2010]; ash is not simulated in this experiment. Finally, sev-305

eral studies have commented on the ability to capture the externally forced signal from306

a medium-sized model ensemble [Milinski et al., 2020]. Thus, our experiment with 29307

ensemble members may not represent the true response of the modeled ocean biogeo-308

chemistry to the Pinatubo climate perturbation.309

Despite these caveats, our novel experiment allows for quantification of the impact310

of the Pinatubo climate perturbation on observed decadal changes in ocean biogeochem-311

istry. We show that the impacts of the Pinatubo eruption extend for several decades in312

the ocean, affecting interpretation of anthropogenic changes from physical and biogeo-313

chemical observations and illustrating a need to reference Pinatubo in the interpreta-314

tion of observed water property changes. Because the highest numbers of ocean biogeo-315

chemical observations collected from hydrographic cruises through the WOCE/JGOFS316

[Boyer et al., 2018] were immediately following a large, explosive volcanic eruption (1992317

to 1996; Figure 1), it is logical that our understanding of long-term changes in ocean bio-318

geochemistry has been influenced by the eruption’s impacts. Our work adds to the grow-319

ing body of literature suggesting that the Pinatubo climate perturbation caused large320

changes in ocean biogeochemical properties [Frölicher et al., 2009; Eddebbar et al., 2019;321

McKinley et al., 2020; Fay et al., 2023], and contributes to improved constraints on un-322

certainty in the global carbon budget and ocean deoxygenation.323
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Figure 1. Temporal evolution of the number of ocean biogeochemical observations collected

from hydrographic cruises over 1972-2021 [Lauvset et al., 2022]. Bars are shaded according to the

Pinatubo-driven global sea surface temperature (SST) anomaly (◦C), calculated as the difference

in ensemble mean sea surface temperature between the LENS and NoPin ensembles.
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Figure 2. Externally forced, decadal change in apparent oxygen utilization (AOU; mmol

m−3) from 1993 to 2003 along the cruise paths shown in map inset. (top) Decadal change in the

LENS ensemble mean AOU, and (lower) decadal change attributable to Pinatubo, estimated as

the difference in the decadal changes between the LENS and NoPin ensemble means. Ensemble

mean potential density contours (kg m−3) in 2003 for LENS (NoPin) are shown in black (gray).

Hatching indicates where Pinatubo-driven changes are not significant at the 95% confidence level

[Deser et al., 2012].
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Figure 3. Externally forced, decadal change in (top two rows) anthropogenic and (bottom

two rows) preindustrial carbon (mmol m−3) from 1993 to 2003 along the cruise paths shown in

map inset. (top and third) Decadal change in the LENS ensemble mean anthropogenic carbon,

and (second and bottom) decadal change attributable to Pinatubo, estimated as the difference

in the decadal changes between the LENS and NoPin ensemble means. Ensemble mean poten-

tial density contours (kg m−3) in 2003 for LENS (NoPin) are shown in black (gray). Hatching

indicates where Pinatubo-driven differences are not significant at the 95% confidence level [Deser

et al., 2012].
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Figure 4. Pinatubo-driven difference in annual mean pCFC-12 (parts per trillion, ppt) in

(top) 1995, (middle) 2000, and (bottom) 2005 along the cruise paths shown in map inset, esti-

mated as the difference between the LENS and NoPin ensemble means. Ensemble mean potential

density contours (kg m−3) for the corresponding years in LENS (NoPin) are shown in black

(gray). Hatching indicates where Pinatubo-driven forced differences are not significant at the

95% confidence level [Deser et al., 2012].
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Figure S1. Externally driven, decadal change in apparent oxygen utilization (AOU; mmol

m−3) from 1993 to 2003 along the cruise paths shown in Figure 2 map inset. (top to bottom)

Decadal change in LENS ensemble members 1-29. Lower right corner is the LENS ensemble

mean decadal change, as shown in Figure 2. Ensemble mean potential density contours (kg m−3)

in 2003 for LENS (NoPin) are shown in black (gray).
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basins from 1993 to 2003. Ensemble mean potential density contours (kg m−3) for the corre-
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Figure S4. Externally forced, decadal change in preindustrial carbon (mmol m−3) from 1993

to 2003 along the cruise paths shown in 3 map inset. (left to right) Decadal change in LENS

ensemble members 1-29. Lower right corner is the LENS ensemble mean decadal change as shown

in Figure 3. Ensemble mean potential density contours (kg m−3) in 2003 for LENS (NoPin) are

shown in black (gray).
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Key Points:13
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• Impacts of Pinatubo last several decades, affecting interpretation of anthropogenic18

changes from physical and biogeochemical observations19
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Abstract20

Pinatubo erupted during the first decadal survey of ocean biogeochemistry, embedding21

its climate fingerprint into foundational ocean biogeochemical observations and compli-22

cating the interpretation of long-term biogeochemical change. Here, we quantify the in-23

fluence of the Pinatubo climate perturbation on externally forced decadal and multi-decadal24

changes in key ocean biogeochemical quantities using a large ensemble simulation of the25

Community Earth System Model designed to isolate the effects of Pinatubo, which cleanly26

captures the ocean biogeochemical response to the eruption. We find increased uptake27

of apparent oxygen utilization and preindustrial carbon over 1993-2003. Nearly 100%28

of the forced response in these quantities are attributable to Pinatubo. The eruption caused29

enhanced ventilation of the North Atlantic, as evidenced by deep ocean chlorofluorocar-30

bon changes that appear 10-15 years after the eruption. Our results help contextualize31

observed change and contribute to improved constraints on uncertainty in the global car-32

bon budget and ocean deoxygenation.33

Plain Language Summary34

Oceanographers’ understanding of ocean properties comes from research cruises that35

take scientific measurements in the same locations every ten years. However, the first36

of these research cruises were deployed just after a large volcanic eruption in 1991 called37

Pinatubo. The eruption cooled the planet for several years, including the upper ocean.38

Here, we investigate how this eruption affected ocean properties using two collections of39

simulations of the Community Earth System Model which is a mathematical represen-40

tation of the Earth system. The first collection of simulations shows the response to the41

eruption, while the second collection shows how ocean properties would have changed42

if there had been no eruption. The difference thus tell us the influence of the eruption43

on ocean properties. We find an increase of oxygen and preindustrial carbon over 1993-44

2003 due to Pinatubo, as well as an increase of ventilation of the North Atlantic that ap-45

pears years after the eruption.46

1 Introduction47

Large volcanic eruptions have a dramatic impact on Earth’s climate: sulfur aerosols48

from explosive eruptions interact with solar radiation, cooling Earth’s surface [Schnei-49

der et al., 2009]. The 1991 Pinatubo eruption injected approximately 20 megatons of sul-50

fur dioxide into the stratosphere [Robock , 2000]. A massive aerosol cloud circled the globe51

in three weeks, reducing radiative forcing by ∼4.5 W m−2 (relative to typical forcing of52

237 W m−2 reported in Hansen et al. [1992]), and producing a two-year reversal of the53

late 20th century warming trend [Robock , 2000]. Beyond impacts on radiation and sur-54

face temperature, there is a need to quantify and understand how large-magnitude erup-55

tions affect ocean biogeochemistry.56

The first large-scale decadal survey of ocean biogeochemistry occurred in the years57

following the Pinatubo eruption [Boyer et al., 2018]. Prior to 1991, the oceanographic58

community collected somewhere between zero and 1,000 hydrographic biogeochemical59

observations per year (Figure 1). From 1991-1996, however, the World Ocean Circula-60

tion Experiment (WOCE) and the Joint Global Ocean Flux Study (JGOFS) collected61

between 3,000 and 7,000 hydrographic biogeochemical observations per year [Lauvset et al.,62

2022, see Figure 1]. As such, the climatic fingerprint of Pinatubo, which is pronounced63

in ocean circulation during this period [Church et al., 2005; Stenchikov et al., 2009], is64

likely embedded in the ocean biogeochemical observations from this key decadal survey.65

Repeat hydrographic observations provide tremendous insight into the effects of66

anthropogenic climate change on ocean biogeochemistry. Observations collected via pro-67

grams such as WOCE and JGOFS in the 1990s, the Climate and Ocean: Variability, Pre-68
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dictability and Change (CLIVAR) repeat hydrography program in the 2000s, and presently69

by the Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP) pro-70

vide approximately decadal snapshots of ocean biogeochemical state along select tran-71

sects in the Atlantic, Pacific, Indian, and Southern Ocean basins. Analysis of these ob-72

servations provides a global assessment of decadal changes in measured biogeochemical73

quantities, such as nutrient, carbon, and oxygen concentrations, as well as in quantities74

inferred from physical and biogeochemical measurements, including apparent oxygen uti-75

lization (AOU; a measure of biological respiration and ocean circulation), anthropogenic76

carbon, and ocean circulation (inferred from measurements of, e.g., chlorofluorocarbons77

or CFCs). Using repeat hydrographic survey data, Wanninkhof et al. [2010] report large78

changes in AOU between 1989 and 2005 in the interior Atlantic basin, and Johnson and79

Gruber [2007] indicate that ocean ventilation changes are responsible for observed decadal80

AOU variability here. Similarly, Deutsch et al. [2006] attribute the large AOU variabil-81

ity in the interior Pacific basin in part to changes in ventilation. Gruber et al. [2004], Sabine82

et al. [2008], and Gruber et al. [2019] base their estimates of decadal changes and regional83

patterns of anthropogenic carbon storage by comparing sections from decadal hydrographic84

surveys. Finally, multiple studies based on hydrographic CFC data conclude that South-85

ern Ocean meridional overturning accelerated from the 1990s to the 2000s [Waugh et al.,86

2013; Tanhua et al., 2013; Ting and Holzer , 2017]. The effects of Pinatubo on ocean cir-87

culation and biogeochemistry are likely woven into these findings, but have so far remained88

largely unexplored.89

Modeling studies find that volcanic eruptions can affect change in ocean biogeo-90

chemistry. Frölicher et al. [2009] use a small ensemble of simulations in Climate System91

Model version 1.4 to examine the influence of large volcanic eruptions; they find that ocean92

oxygen inventory increases globally in the top 500m and that the perturbation persists93

for up to a decade post-eruption. In a separate study with the same model, Frölicher94

et al. [2011] find that the ocean carbon-climate feedback parameter is affected by large95

eruptions for up to 20 years. Eddebbar et al. [2019] use the Community Earth System96

Model-1 (CESM1) Large Ensemble and the Geophysical Fluid Dynamics Laboratory Earth97

System Model (ESM2M) Large Ensemble to investigate the physical and biogeochem-98

ical ocean response to tropical eruptions throughout the 20th century; they find a large99

uptake of oceanic oxygen and carbon driven by a complex ocean physical response to vol-100

canic perturbations, with important implications for attributing decadal variability in101

the ocean carbon sink. McKinley et al. [2020] find that Pinatubo drove a pronounced102

global ocean carbon uptake anomaly that peaked in 1992-1993. Fay et al. [2023] further103

isolate the effects of Pinatubo on key biogeochemical properties and show oxygen in the104

ocean interior permanently increases by 60 Tmol and ocean carbon uptake increases by105

0.29 ±0.14 Pg yr−1 in 1992 with pronounced changes in the deep ocean for oxygen and106

upper 150 m for carbon. Taken together, these studies suggest that Pinatubo had a sub-107

stantial influence on ocean biogeochemical distributions and cycling, and insinuate that108

the reported, hydrography-based decadal and multi-decadal changes in ocean biogeochem-109

istry may be influenced by the Pinatubo eruption.110

Here, we investigate the impact of the Pinatubo eruption on decadal to multi-decadal111

changes in ocean biogeochemical properties using two ensembles of simulations from a112

state-of-the-art Earth system model. The simulations were designed to explicitly isolate113

the externally forced response of the Earth system due to Pinatubo: the first ensemble114

simulates the period from 1991 to 2025 under historical forcing, and the second ensem-115

ble is identical to the first but excludes the 1991 Pinatubo eruption [Fay et al., 2023].116

The difference in the respective ensemble means allows us to cleanly capture the forced117

response due to the eruption in the presence of internal variability and anthropogenic118

forcing, while the inter-ensemble spread captures the extent of the internal variability119

in the climate system. We sample the simulated ocean at the times and locations of the120

ocean hydrographic observation programs to reveal long-term biogeochemical changes121

associated with the Pinatubo climate perturbation. Our results help contextualize ob-122
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served changes in AOU, preindustrial and anthropogenic carbon, and chlorofluorocarbon-123

12 due to internally generated versus externally driven climate variability associated with124

volcanic eruptions, and contribute to improved constraints on uncertainty in the global125

carbon budget and ocean deoxygenation.126

2 Methods127

Our primary numerical tool is the Community Earth System Model version 1 (CESM1),128

a fully coupled climate model that simulates Earth’s climate system [Hurrell et al., 2013].129

Four component models that each simultaneously simulate Earth’s atmosphere, ocean,130

land, and sea ice are coupled with one central component that exchanges fluxes and bound-131

ary conditions between the individual components [Danabasoglu et al., 2012; Holland et al.,132

2012; Hunke and Lipscomb, 2008; Lawrence et al., 2012]. The ocean component in CESM1133

is named the Parallel Ocean Program version 2 [POP2; Smith et al., 2010]. The model134

is defined at approximately 1◦ horizontal resolution and 60 vertical levels. Ocean car-135

bon biogeochemistry is simulated using the ocean Biogeochemical Elemental Cycling (BEC)136

model, which is coupled to POP2. BEC includes full carbonate system and lower level137

trophic ecosystem dynamics, allowing for computation of inorganic carbon chemistry, oceanic138

pCO2, air-to-sea CO2 and O2 fluxes, and a dynamic iron cycle that reflect physical trans-139

port, solubility variations, net community production, and ocean-atmosphere exchange140

[Moore et al., 2013].141

We analyze output from two sets of large initial-condition ensemble simulations con-142

ducted with CESM1. The first is a 29-member replicate of the CESM1 Large Ensem-143

ble [Kay et al., 2015] for 1990-2025 conducted on the NCAR Cheyenne supercomputer144

[herein referred to as ‘LENS’; Fay et al., 2023]. Each ensemble member is forced iden-145

tically but initialized with a slight modification to surface air temperature, producing146

an ensemble spread that reflects the influence of internal variability on the simulated Earth147

system response to Pinatubo. Recently, a second set of 29 ensemble members were gen-148

erated that are identical to LENS but excluded the radiative forcing of Pinatubo erup-149

tion by removing the volcanic aerosol mass mixing ratio values for January 1991 to De-150

cember 1995 and replacing them with values from a time when no large volcanic erup-151

tions took place, January 1986 to December 1990 [herein referred to as ‘NoPin’; Fay et al.,152

2023].153

Both ensembles compute carbonate chemistry using two different prescribed atmo-154

spheric CO2 boundary conditions: 284.7 parts per million (ppm, from which we derive155

preindustrial dissolved inorganic carbon concentrations), and time-evolving observed his-156

torical and projected Representative Concentration Pathway 8.5 atmospheric CO2 (from157

which we derive contemporary carbon concentrations). Anthropogenic carbon concen-158

tration is calculated by difference between the contemporary and preindustrial concen-159

trations.160

The ensembles are forced with prescribed atmospheric CFC-12 from 1990 to 2005.161

Modeled ocean CFC-12 concentrations were converted to pCFC-12 using the standard162

solubility formulation [Warner and Weiss, 1985]. We also make use of ideal age, an ide-163

alized passive model tracer that records the length of time since a parcel of water was164

last in contact with the atmosphere at the ocean surface [Lester et al., 2020]. Since ideal165

age does not have atmospheric time-varying history, it is used to explore temporal changes166

in ocean circulation.167

In this manuscript, we present the difference in the LENS and NoPin ensemble means,168

which isolates the modeled ocean biogeochemical anomalies associated with the Pinatubo169

eruption. We also present the standard deviation across the ensemble members as rep-170

resentative of internal variability. We use January to December values for the annual means171

in 1993 and 2003. The difference between the LENS and NoPin ensemble means (X) is172
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considered statistically significant at the 95% confidence interval if its ratio with the cross-173

ensemble standard deviation (σ) is greater than 2 divided by the square root of the de-174

grees of freedom [N - 1, here N = 29; Deser et al., 2012; Fay et al., 2023],175

X

σ
≥ 2√

N − 1
. (1)

We subsample the model at the approximate locations of observed GO-SHIP hy-176

drographic sections that, when taken together, follow the path of the global ocean ther-177

mohaline circulation [map inset, Figure 2; Sarmiento and Gruber , 2006]. In the Atlantic,178

we subsample a single meridional section along 25◦W (akin to A16N, Baringer and Bullis-179

ter [2013] and A16S, Wanninkhof and Barbero [2014]). In the Southern Ocean, we sub-180

sample along 63◦S between 29 and 80◦E (akin to S04I, Rosenberg [2006]) and along 67◦S181

between 159◦E and 73◦W (akin to S04P, Macdonald [2018]). In the Pacific, we subsam-182

ple a single meridional section along 150◦W (akin to P16S, Talley [2014] and P16N, Mac-183

donald and Mecking [2015]).184

3 Results185

A substantial fraction of the externally forced change in AOU that occurs from 1993186

to 2003 along the path of the global ocean thermohaline circulation and across each basin187

can be attributed to Pinatubo (Figures 2 and S2). In the subpolar north and subtrop-188

ical north and south Atlantic, LENS produces large (∼10 mmol m−3), externally forced189

increases in AOU from 1993 to 2003 in waters with potential density ≥ 26.5 kg m−3 (Fig-190

ure 2, top). The difference between the LENS and NoPin ensemble mean AOU changes191

(Figure 2, bottom) reveals a remarkable similarity to the LENS ensemble mean AOU192

changes (cf. Figure 2 top and bottom), indicating that Pinatubo is the main driver of193

externally forced decadal increases in AOU in the subpolar north and subtropical At-194

lantic. In the Pacific, the externally forced decadal change in AOU is more complex, with195

decreases in AOU in the northern subpolar region (isopycnal range 26-27 kg m−3) and196

in the upper tropical thermocline(isopycnal range 23-26 kg m−3; Figure 2, top). Again,197

the LENS ensemble mean AOU changes here are remarkably similar in magnitude and198

sign to the difference between the LENS and NoPin ensemble mean AOU changes (cf.199

Figure 2 top and bottom), indicating that Pinatubo played an important role in driv-200

ing these forced AOU changes. Anomalies south of 40◦S are mostly weak or statistically201

insignificant, suggesting weaker Pinatubo effects on AOU in this region. These externally202

forced, decadal changes in AOU occur in the presence of substantial internal variabil-203

ity that can enhance or diminish ensemble mean trends (Figure S1). For example, pos-204

itive value increases in AOU beyond those of the ensemble mean (11 mmol m−3) are ex-205

hibited in ensemble member 21 in the Atlantic transect (14.25 mmol m−3), ensemble mem-206

ber 2 along the Indian transect in the Southern Ocean (13 mmol m−3), and ensemble207

member 10 along the Pacific transect (18 mmol m−3, see Figure S1).208

In contrast to AOU, Pinatubo’s eruption has little-to-no effect on the externally209

forced evolution of the interior ocean anthropogenic carbon distribution (Figure 3; cor-210

responding zonal mean in Figure S3). Most of the change over 1993-2003 occurs in the211

subtropical thermocline in both basins, with additional anthropogenic carbon accumu-212

lation below 1000 m in the subpolar North Atlantic (approximately 40◦N to 60◦N). LENS213

ensemble mean anthropogenic carbon increases by as much as 10.25 mmol m−3 between214

1993 and 2003, with marked increases in the Atlantic within the isopycnal range 24-27215

kg m−3, Southern Ocean along σ=27 kg m−3, and Pacific within 23-26 kg m−3 (Figure 3,216

top). The difference between the LENS and NoPin ensemble mean anthropogenic car-217

bon changes over 1993 to 2003 is an order of magnitude less than the LENS ensemble218

mean changes (cf. Figure 3 top and second rows), suggesting that Pinatubo does not in-219

fluence the externally forced increase in interior ocean anthropogenic carbon.220
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Conversely, nearly all of the externally forced change in preindustrial carbon (car-221

bon not directly affected by rising atmospheric CO2) from 1993 to 2003 is attributable222

to Pinatubo’s eruption (Figure 3; corresponding zonal mean in Figure S5). The largest223

changes in LENS preindustrial carbon also occur in the subtropical thermocline in both224

basins, and closely correspond in sign and magnitude to the changes attributable to Pinatubo225

over this period (cf. Figure 3 bottom two rows). This externally forced, decadal change226

in preindustrial carbon occurs amidst a backdrop characterized by high internal variabil-227

ity (Figure S5), yet the signal of Pinatubo emerges in the ensemble mean (Figure S5)228

and is statistically significant at the 95% confidence interval throughout much of the top229

300m. Pinatubo thus acts to increase preindustrial carbon in the Atlantic pycnocline and230

decrease preindustrial carbon in the Pacific pycnocline when sampling the model along231

our selected cruise path, however zonal mean decadal changes due to Pinatubo are more232

muted, reflecting zonally complex changes in preindustrial carbon distributions associ-233

ated with Pinatubo (cf. Figures 3 and S5).234

Pinatubo has had long-lasting impacts on the deep North Atlantic, as evidenced235

by changes in the pCFC-12 distribution (Figure 4, Figure S7). While a 1995 virtual sur-236

vey reflects little impact of Pinatubo on pCFC-12 in the deep North Atlantic, by the year237

2000 there is a statistically significant 10-20 parts per trillion (ppt) decrease in pCFC-238

12 in the upper 1000 m over 35-60◦N that persists through 2005, and a corresponding239

increase in pCFC-12 from 1000 m to the seafloor in the same region, (Figure 4, Figure S6).240

Ideal age shows similar Pinatubo-driven changes in the deep North Atlantic that extend241

through 2025 (Figure S7, Figure S8; see Methods for an explanation of ideal age). Taken242

together, these figures imply that Pinatubo affected North Atlantic ventilation, driving243

perturbations in water mass properties that persisted for many decades after the erup-244

tion.245

4 Conclusions and Discussion246

Our study uses an ensemble of Earth system model simulations to examine the spatio-247

temporal response of ocean biogeochemistry to the 1991 Pinatubo eruption amid inter-248

nal climate variability, and to estimate the fingerprint of the Pinatubo climate pertur-249

bation in the hydrographic observational record. We find that the effects of the Pinatubo250

eruption manifest more strongly for some ocean biogeochemical variables than others:251

externally driven decadal changes in AOU and preindustrial carbon are strongly affected252

by the eruption, while changes in anthropogenic carbon show no discernible response to253

the eruption. We also find that the eruption has had long-lasting impacts on deep North254

Atlantic transient tracer distributions.255

By investigating the externally forced (ensemble mean) evolution of multiple ocean256

variables in the decade following the eruption, we can begin to understand how Pinatubo257

altered key tracers of physical and biogeochemical processes. Pinatubo drove decadal-258

scale increases in both AOU and preindustrial carbon in the subtropical Atlantic ther-259

mocline, likely as a result of post-eruption cooling and solubility driven increases in dis-260

solved oxygen and carbon [Fay et al., 2023]. Pinatubo’s cooling also drove increases in261

North Atlantic ventilation [Fay et al., 2023], affecting pCFC-12 below the main thermo-262

cline for multiple decades. In the Pacific, CESM responds to the Pinatubo climate per-263

turbation by producing El Niño-like conditions [Eddebbar et al., 2019; Fay et al., 2023].264

This causes reduced upwelling of carbon-rich and oxygen-poor waters, reducing both AOU265

and preindustrial carbon concentrations.266

One of the key findings from this study is that, while the Pinatubo climate per-267

turbation influences the distribution of preindustrial carbon, it has no discernible im-268

pact on the externally forced changes in the anthropogenic carbon distribution. This find-269

ing agrees with previous studies that find an important role for Pinatubo in preindus-270

trial carbon variability [Eddebbar et al., 2019; McKinley et al., 2020; Fay et al., 2023],271
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and gives us additional confidence that observation-based estimates of changing anthro-272

pogenic carbon distribution [e.g., Gruber et al., 2019]; [also Müller, Jens Daniel, Gru-273

ber, Nicolas, Carter, Brendan R., Feely, et al., Decadal Trends in the Oceanic Storage274

of Anthropogenic Carbon from 1994 to 2014, in preparation for Authorea] are relatively275

unaffected by the Pinatubo climate perturbation. This confidence, however, is only valid276

to the extent that the methods employed can accurately separate anthropogenic carbon277

from the much larger preindustrial component.278

Repeat hydrographic observations of physical and biogeochemical ocean proper-279

ties are a powerful tool for quantifying and diagnosing change in the real ocean, but one280

must exercise caution when attributing observed change to externally forced processes281

such as anthropogenic climate warming. Our study uses two ensembles of simulations282

from an Earth system model to explicitly isolate the role of (1) anthropogenic climate283

change and the Pinatubo climate perturbation (LENS ensemble mean), (2) anthropogenic284

climate change alone (NoPin ensemble mean), and by difference (3) the Pinatubo climate285

perturbation alone (LENS ensemble mean minus NoPin ensemble mean) in the tempo-286

ral evolution of these properties. In this framework, the real world hydrographic obser-287

vations represent a single ensemble member in LENS, wherein change over time is af-288

fected by internal climate variability, anthropogenic climate change, and the Pinatubo289

climate perturbation. Our approach thus helps to disentangle the drivers of change in290

the observed record, and points to an important role for Pinatubo.291

Results from our study align with those reported in others studies on the decadal292

impacts of volcanic eruptions on ocean biogeochemistry. We find a zonal-mean increase293

in the oxygen content in the upper 300 m in the decade following the eruption across the294

Atlantic and Pacific sectors, consistent with Frölicher et al. [2009], who report post-eruption295

global oxygen increases in the upper 500 m and Eddebbar et al. [2019] who report anoma-296

lous ocean oxygen uptake immediately following the eruption with long lasting effects297

on subsurface distributions [Fay et al., 2023].298

Our findings come with several caveats. First, the horizontal resolution of our model299

is coarser (∼100 km) than the typical distance between hydrographic measurements (∼20300

km). As such, our model sub-sampling exercise produces an estimate of biogeochemi-301

cal properties averaged over multiple hydrographic stations, and parameterizes the small302

scale variations in biogeochemical properties captured by the observations. Second, the303

micro-nutrients contained in volcanic ash have been shown to impact carbon cycling [Hamme304

et al., 2010; Langman et al., 2010]; ash is not simulated in this experiment. Finally, sev-305

eral studies have commented on the ability to capture the externally forced signal from306

a medium-sized model ensemble [Milinski et al., 2020]. Thus, our experiment with 29307

ensemble members may not represent the true response of the modeled ocean biogeo-308

chemistry to the Pinatubo climate perturbation.309

Despite these caveats, our novel experiment allows for quantification of the impact310

of the Pinatubo climate perturbation on observed decadal changes in ocean biogeochem-311

istry. We show that the impacts of the Pinatubo eruption extend for several decades in312

the ocean, affecting interpretation of anthropogenic changes from physical and biogeo-313

chemical observations and illustrating a need to reference Pinatubo in the interpreta-314

tion of observed water property changes. Because the highest numbers of ocean biogeo-315

chemical observations collected from hydrographic cruises through the WOCE/JGOFS316

[Boyer et al., 2018] were immediately following a large, explosive volcanic eruption (1992317

to 1996; Figure 1), it is logical that our understanding of long-term changes in ocean bio-318

geochemistry has been influenced by the eruption’s impacts. Our work adds to the grow-319

ing body of literature suggesting that the Pinatubo climate perturbation caused large320

changes in ocean biogeochemical properties [Frölicher et al., 2009; Eddebbar et al., 2019;321

McKinley et al., 2020; Fay et al., 2023], and contributes to improved constraints on un-322

certainty in the global carbon budget and ocean deoxygenation.323
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Figure 1. Temporal evolution of the number of ocean biogeochemical observations collected

from hydrographic cruises over 1972-2021 [Lauvset et al., 2022]. Bars are shaded according to the

Pinatubo-driven global sea surface temperature (SST) anomaly (◦C), calculated as the difference

in ensemble mean sea surface temperature between the LENS and NoPin ensembles.
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Figure 2. Externally forced, decadal change in apparent oxygen utilization (AOU; mmol

m−3) from 1993 to 2003 along the cruise paths shown in map inset. (top) Decadal change in the

LENS ensemble mean AOU, and (lower) decadal change attributable to Pinatubo, estimated as

the difference in the decadal changes between the LENS and NoPin ensemble means. Ensemble

mean potential density contours (kg m−3) in 2003 for LENS (NoPin) are shown in black (gray).

Hatching indicates where Pinatubo-driven changes are not significant at the 95% confidence level

[Deser et al., 2012].
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Figure 3. Externally forced, decadal change in (top two rows) anthropogenic and (bottom

two rows) preindustrial carbon (mmol m−3) from 1993 to 2003 along the cruise paths shown in

map inset. (top and third) Decadal change in the LENS ensemble mean anthropogenic carbon,

and (second and bottom) decadal change attributable to Pinatubo, estimated as the difference

in the decadal changes between the LENS and NoPin ensemble means. Ensemble mean poten-

tial density contours (kg m−3) in 2003 for LENS (NoPin) are shown in black (gray). Hatching

indicates where Pinatubo-driven differences are not significant at the 95% confidence level [Deser

et al., 2012].
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mated as the difference between the LENS and NoPin ensemble means. Ensemble mean potential
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(gray). Hatching indicates where Pinatubo-driven forced differences are not significant at the

95% confidence level [Deser et al., 2012].
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Figure S1. Externally driven, decadal change in apparent oxygen utilization (AOU; mmol

m−3) from 1993 to 2003 along the cruise paths shown in Figure 2 map inset. (top to bottom)

Decadal change in LENS ensemble members 1-29. Lower right corner is the LENS ensemble

mean decadal change, as shown in Figure 2. Ensemble mean potential density contours (kg m−3)

in 2003 for LENS (NoPin) are shown in black (gray).
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Figure S2. Pinatubo-driven difference in annual mean, zonal-mean apparent oxygen utiliza-

tion (AOU; mmol m−3) (LENS minus NoPin ensemble means) in the (left) Atlantic and (right)

Pacific basins from 1993 to 2003. Ensemble mean potential density contours (kg m−3) for the

corresponding years in LENS (NoPin) are shown in black (gray).
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Figure S3. Pinatubo-driven difference in annual mean, zonal-mean anthropogenic carbon

(mmol m−3) (LENS minus NoPin ensemble means) in the (left) Atlantic and (right) Pacific

basins from 1993 to 2003. Ensemble mean potential density contours (kg m−3) for the corre-

sponding years in LENS (NoPin) are shown in black (gray).
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Figure S4. Externally forced, decadal change in preindustrial carbon (mmol m−3) from 1993

to 2003 along the cruise paths shown in 3 map inset. (left to right) Decadal change in LENS

ensemble members 1-29. Lower right corner is the LENS ensemble mean decadal change as shown

in Figure 3. Ensemble mean potential density contours (kg m−3) in 2003 for LENS (NoPin) are

shown in black (gray).
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Figure S5. Pinatubo-driven difference in annual mean, zonal-mean preindustrial carbon

(mmol m−3) (LENS minus NoPin ensemble means) in the (left) Atlantic and (right) Pacific

basins from 1993 to 2003. Ensemble mean potential density contours (kg m−3) for the corre-

sponding years in LENS (NoPin) are shown in black (gray).
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Figure S6. Pinatubo-driven difference in annual mean, zonal-mean pCFC-12 (ppt) (LENS

minus NoPin ensemble means) in the (left) Atlantic and (right) Pacific basins in (top) 1995,

(middle) 2000, and (lower) 2005. Ensemble mean potential density contours (kg m−3) for the

corresponding years in LENS (NoPin) are shown in black (gray).
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Figure S7. Pinatubo-driven difference in annual mean ideal age (years) (LENS minus NoPin

ensemble means) from 1995 to 2025 in 5-year intervals along the cruise paths shown in map in-

set. Ensemble mean potential density contours (kg m−3) for the corresponding years in LENS

(NoPin) are shown in black (gray).
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Figure S8. Pinatubo-driven difference in annual mean, zonal mean ideal age (years; LENS

minus NoPin ensemble means) in the (left) Atlantic and (right) Pacific basins from 1995 to 2025

in 5-year intervals. Ensemble mean potential density contours (kg m−3) for the corresponding

years in LENS (NoPin) are shown in black (gray).
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Figures S1 to S8 

Introduction  

This supporting information provides figures showing annual mean, zonal-means from 
1993 to 2003 for: 

• Apparent oxygen utilization (AOU) 
• Anthropogenic carbon 
• Preindustrial carbon 
• Ideal age (snapshots in 1995, 2000, 2005, 2010, 2015, 2020, 2025) 

Also, annual means for: 

• pCFC-12 (snapshots in 1995, 2000, 2005) 
• Ideal age (snapshots in 1995, 2000, 2005, 2010, 2015, 2020, 2025) 

Additional supporting information includes ensemble members 1-29 of externally 
driven decadal changes in annual means from 1993 to 2003 for: 

• AOU 
• Preindustrial carbon 
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Figure S1. Same as Figure 2 but showing each of the 29 ensemble members.  
Externally driven, decadal change in apparent oxygen utilization (AOU; mmol m-3) from 
1993 to 2003 along the cruise paths shown in Figure 2 map inset. (top to bottom) 
Decadal change in LENS ensemble members 1-29. Lower right corner is the LENS 
ensemble mean decadal change, as shown in Figure 2. Ensemble mean potential density 
contours (kg m-3) in 2003 for LENS (NoPin) are shown in black (gray). 
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Figure S2. Same as Figure 2 but for annual mean, zonal mean AOU. Pinatubo-driven 
difference in annual mean, zonal-mean apparent oxygen utilization (AOU; mmol m-3) 
(LENS minus NoPin ensemble means) in the (left) Atlantic and (right) Pacific basins from 
1993 to 2003. Ensemble mean potential density contours (kg m-3) for the corresponding 
years in LENS (NoPin) are shown in black (gray). 
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Figure S3. Same as Figure 3 (top two panels) but for annual mean, zonal mean 
anthropogenic carbon. Pinatubo-driven difference in annual mean, zonal-mean 
anthropogenic carbon (mmol m-3) (LENS minus NoPin ensemble means) in the (left) 
Atlantic and (right) Pacific basins from 1993 to 2003. Ensemble mean potential density 
contours (kg m-3) for the corresponding years in LENS (NoPin) are shown in black (gray). 
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Figure S4. Same as Figure 3 (bottom panel) but for each of the 29 ensemble 
members. Externally forced, decadal change in preindustrial carbon (mmol m-3) from 
1993 to 2003 along the cruise paths shown in 3 map inset. (left to right) Decadal change 
in LENS ensemble members 1-29. Lower right corner is the LENS ensemble mean decadal 
change as shown in Figure 3. Ensemble mean potential density contours (kg m-3) in 2003 
for LENS (NoPin) are shown in black (gray). 
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Figure S5. Same as Figure 3 (bottom panels) but for annual mean, zonal mean 
preindustrial carbon. Pinatubo-driven difference in annual mean, zonal-mean 
preindustrial carbon (mmol m-3) (LENS minus NoPin ensemble means) in the (left) 
Atlantic and (right) Pacific basins from 1993 to 2003. Ensemble mean potential density 
contours (kg m-3) for the corresponding years in LENS (NoPin) are shown in black (gray). 
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Figure S6. Same as Figure 4 but for annual mean, zonal mean pCFC-12. Pinatubo-
driven difference in annual mean, zonal-mean pCFC-12 (ppt) (LENS minus NoPin 
ensemble means) in the (left) Atlantic and (right) Pacific basins in (top) 1995, (middle) 
2000, and (lower) 2005. Ensemble mean potential density contours (kg m-3) for the 
corresponding years in LENS (NoPin) are shown in black (gray). 
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Figure S7. Pinatubo-driven difference in annual mean ideal age. Pinatubo-driven 
difference in annual mean ideal age (years) (LENS minus NoPin ensemble means) from 
1995 to 2025 in 5-year intervals along the cruise paths shown in map inset. Ensemble 
mean potential density contours (kg m-3) for the corresponding years in LENS (NoPin) are 
shown in black (gray). 
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Figure S8. Same as Figure 7 but for annual mean, zonal mean ideal age. Pinatubo-
driven difference in annual mean, zonal mean ideal age (years; LENS minus NoPin 
ensemble means) in the (left) Atlantic and (right) Pacific basins from 1995 to 2025 in 5-
year intervals. Ensemble mean potential density contours (kg m-3) for the corresponding 
years in LENS (NoPin) are shown in black (gray). 
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