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Abstract

Hamiltonian Monte Carlo (HMC) is known to be highly efficient when sampling high-dimensional parameter spaces. This high

efficiency can be attributed to Hamilton’s equations, which guide the sampling of the model space. In the case of weakly

non-linear problems, this efficiency can be increased even further by linearizing the forward problem. In this study, we exploit

this for the purpose of estimating source parameters of a 3.4 magnitude induced event that originated in the Groningen gas

field in 2019. In total, we estimate ten earthquake parameters: centroid (three coordinate components), moment tensor (six

elements), and origin time. We demonstrate that, in the absence of a sufficiently accurate centroid prior, the linearization of

the forward model necessitates multiple initial centroid priors. Here, we consider two sets of initial centroid priors. The first set

is based on the known fault geometry in the Groningen reservoir, whereas the second set is obtained by placing initial centroid

priors on a uniform horizontal grid at a depth of 3 km (the approximate depth of the gas reservoir). In general, the results from

both sets are in good agreement with each other. Most important, however, is their agreement with the geological knowledge of

the area: the posterior peaks for model vectors containing a centroid near a major fault and a moment tensor that corresponds

to normal faulting along a plane which has a strike almost coinciding with the strike of that major fault.
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Key Points:7

• A modified Hamiltonian Monte Carlo (HMC) algorithm is applied to recordings8

of a magnitude 3.4 induced event in the Groningen gas field9

• Meaningful prior information is required to ensure the modified HMC algorithm10

samples the correct mode of the posterior probability11

• Existing knowledge of the subsurface geology can be incorporated into the prior12

information of the algorithm13
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Abstract14

Hamiltonian Monte Carlo (HMC) is known to be highly efficient when sampling15

high-dimensional parameter spaces. This high efficiency can be attributed to Hamilton’s16

equations, which guide the sampling of the model space. In the case of weakly non-linear17

problems, this efficiency can be increased even further by linearizing the forward prob-18

lem. In this study, we exploit this for the purpose of estimating source parameters of a19

3.4 magnitude induced event that originated in the Groningen gas field in 2019. In to-20

tal, we estimate ten earthquake parameters: centroid (three coordinate components), mo-21

ment tensor (six elements), and origin time. We demonstrate that, in the absence of a22

sufficiently accurate centroid prior, the linearization of the forward model necessitates23

multiple initial centroid priors. Here, we consider two sets of initial centroid priors. The24

first set is based on the known fault geometry in the Groningen reservoir, whereas the25

second set is obtained by placing initial centroid priors on a uniform horizontal grid at26

a depth of 3 km (the approximate depth of the gas reservoir). In general, the results from27

both sets are in good agreement with each other. Most important, however, is their agree-28

ment with the geological knowledge of the area: the posterior peaks for model vectors29

containing a centroid near a major fault and a moment tensor that corresponds to nor-30

mal faulting along a plane which has a strike almost coinciding with the strike of that31

major fault.32

Plain Language Summary33

Earthquake source parameters, such as depth, time, and type of faulting, can be34

estimated using the recordings (or seismograms) of this (induced) earthquake. Being able35

to do this such that the uncertainty of the estimated parameters is also quantified is par-36

ticularly valuable. This, however, requires the use of a probabilistic algorithm. A dis-37

advantage of probabilistic algorithms is their computational cost. In this study, we sim-38

plify the relationship between the earthquake source parameters and the seismograms39

to significantly reduce computational costs. Specifically, we demonstrate that the sim-40

plified relation between the earthquake source parameters and the earthquake record-41

ings requires the probabilistic algorithm to be provided with a sufficiently accurate (prior)42

estimate of these very earthquake source parameters. By means of a magnitude 3.4 in-43

duced event that originated in the Groningen gas field in 2019, we show that a geolog-44

ically inspired prior can be helpful to partly overcome this: we use (known) existing faults45

in the reservoir to kick start the probabilistic algorithm. As such, we recover earthquake46

source parameters that are in line with subsurface geological information.47

1 Introduction48

Characterizing an earthquake is essential for a number of reasons. First, its source49

parameters (centroid, magnitude, slip direction, etc.) determine, to a large extent, the50

damage it may cause (Lui et al., 2016). This is because the depth, size, and type of rup-51

ture all affect the amount of shaking produced (Trippetta et al., 2019). Secondly, source52

characterization may help to improve our understanding of an event’s nucleation, which53

is essential for developing reliable earthquake hazard models (Ellsworth et al., 2015). In54

addition, an increased understanding of source characteristics can potentially be used55

to improve earthquake early warning systems by providing (additional) information that56

can be used to generate alerts before strong shaking takes place (Peng et al., 2021).57

Seismologists distinguish between ‘natural’ and ‘induced’ earthquakes. Induced earth-58

quakes usually emit shorter period signals compared to tectonic earthquakes (Dais et al.,59

2018). This is because, on average, induced events have relatively low magnitudes com-60

pared to (stronger) tectonic earthquakes, although some induced events are reported to61

be as high as 5.8 (Foulger et al., 2018). In addition, induced events usually occur at rel-62
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atively shallow depths. Combined, shallower depths and higher frequencies imply that63

induced events may still cause significant damage to buildings and infrastructure (Vlek,64

2018). In addition, ground motions are exacerbated by high amplification factors in some65

areas (Bommer et al., 2017).66

A notable example of induced earthquakes is the events occurring in the Gronin-67

gen gas field, the Netherlands (Sarhosis et al., 2019). The Groningen gas field, located68

in the northern part of the Netherlands, is the largest gas field in Europe. Since the first69

reported induced earthquake in 1986, there has been a gradual increase in seismic ac-70

tivity in the field (van Thienen-Visser & Breunese, 2015). Because of the societal un-71

rest associated with the earthquakes (Nepveu et al., 2016), the Dutch government has72

recently taken steps to reduce the extraction of natural gas from the Groningen gas field.73

The field will close down permanently on October 1, 2024, with production expected to74

be halted on October 1, 2023. Parallel to the production reduction, an extensive array75

of seismometers was installed by the Dutch meteorological institute (KNMI, which stands76

for Koninklijk Nederlands Meteorologisch Instituut), funded by NAM (Nederlandse Aar-77

dolie Maatschappij), which is the major operator in the Groningen gas field (Ntinalexis78

et al., 2019). The array also includes borehole seismometers, enabling improved source79

characterization in the area (Smith et al., 2020), i.e., due to a significant increase of the80

signal-to-noise ratio (SNR) at depth (Ruigrok & Dost, 2019).81

An earthquake source can be parameterized in several ways (Aki & Richards, 2002).82

In this study, we consider a moment tensor (MT) representation (Jost & Herrmann, 1989).83

This implies that the seismic event is collapsed to a single position (point-source repre-84

sentation), which is usually referred to as ‘the centroid’. Such a representation is justi-85

fied in case the waveform data is analyzed at periods for which the seismic source is ef-86

fectively a point source (Aki & Richards, 2002). Additionally, assuming instantaneous87

rupturing, we end up with ten source parameters. The first six are the moment tensor88

components, where the MT’s magnitude is a measure of the amount of energy released.89

This MT can be decomposed into isotropic (ISO), double-couple (DC), and compensated90

linear vector dipole (CLVD) components (Jost & Herrmann, 1989). The other four pa-91

rameters are the event’s east, north, and depth coordinates and the origin time.92

Various datasets and techniques have been utilized to estimate the source charac-93

teristics of Groningen earthquakes. Willacy et al. (2018) adopt a deterministic approach94

to estimate moment tensors and centroids. These authors employed a detailed 3D sub-95

surface model of Groningen but restricted the search space to DC sources. In contrast,96

Dost et al. (2020) used a probabilistic approach to estimate the centroid and full mo-97

ment tensor (implying that they allowed for the ISO and CLVD components as well) but98

employed (locally) 1D models. Deterministic approaches often provide faster computa-99

tions compared to probabilistic approaches. However, probabilistic approaches quantify100

the uncertainty of the different parameters; in this case, these are the uncertainties of101

the ten earthquake source parameters. Also, the use of 3D subsurface models has a clear102

advantage over 1D subsurface models. This is because 3D models take into account the103

subsurface lateral heterogeneity that will affect the shape (amplitude and phase) of the104

seismogram generated from simulating an earthquake event using those 3D models.105

In this study, we investigate the combination of a probabilistic approach with 3D106

subsurface models to estimate the source parameters of a real event in Groningen. To107

mitigate the aforementioned ”inefficiency” of probabilistic approaches, we modify the work-108

flow described in Masfara et al. (2022). This workflow relies on a variant of the Hamil-109

tonian Monte Carlo (HMC) algorithm and has previously been tested using synthetic110

recordings generated using the 3D Groningen subsurface velocity model. For this study,111

we consider the 2019 3.4 local magnitude earthquake below the village of Westerwijtwerd112

(Figure 1). Since we estimate the full moment tensor, our estimation does not limit the113

search space to just DC components but includes the ISO and CLVD components. Also,114

the inclusion of origin time in the estimation quantifies the trade-off between origin time115
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and estimated depth. In what follows, we first describe the theory underlying the work-116

flow. We subsequently introduce and discuss the (retrieval of the) recordings used to es-117

timate the parameters, including the prior information that is used to increase the com-118

putational efficiency of the workflow. Finally, we compare our results to results obtained119

in other studies and draw conclusions, including the outlook of applying the same ap-120

proach to a larger set of events in the Groningen area.121

Figure 1. Map of the research area. The inverted triangles indicate the location of the KNMI

seismometers, and the blue star is the epicenter of the 2019 Westerwijtwerd earthquake, as esti-

mated by the KNMI. Axes indicate location using the Dutch RD coordinate system. This specific

coordinate system gives the geodetic coordinates for European Netherlands and is used in official

national maps. The inset at the bottom right shows the location of the study area.

2 Methodology122

To enable source characterization, the formal relationship between the observed data123

and the source (model) parameters is introduced and detailed in the first subsection. Sub-124

sequently, we introduce Bayes’ theorem and, assuming Gaussianity, cast it in a form al-125

–4–



manuscript submitted to JGR: Solid Earth

lowing us to utilize it. In Subsection 2.3, we then introduce the HMC algorithm. Finally,126

in Subsections 2.4 and 2.5, we then describe how the algorithm’s efficiency can be en-127

hanced via linearization of the forward problem and by choosing meaningful prior infor-128

mation, respectively.129

2.1 The Forward Problem130

In this study, the posterior probability of the model parameters is estimated by means131

of a Markov process. The generation of such a Markov chain is detailed further below132

(Subsection 2.3), but, at this point, it should be understood that for each sample in the133

chain, forward-modeled data is compared against measured data. In the context of our134

problem, a specific model m (or sample) implies assigning a specific value to each of the135

ten aforementioned source parameters (MT, centroid, and origin time). The measured136

data dobs consists of the induced event’s waveform data, which, in our case, are record-137

ings of particle displacement recorded by KNMI instruments. Computation of the like-138

lihood ρ(dobs|m) yields the probability of these recordings given a model m and involves139

quantification of the misfit between the recorded particle displacements and numerically140

modeled particle displacements. The latter is computed by numerically solving the wave141

equation, i.e., they are the result of solving (what is usually referred to as) ‘the forward142

problem’. Mathematically, the forward problem can be written as143

ui

(
x(r), t

)
=

3∑
j=1

3∑
k=1

Mjk(t, T0) ∗Gij,k

(
x(r), t;x(a)

)
, (1)

where ui is the ith component of the particle displacement vector (u = (u1, u2, u3) where144

1, 2, 3, correspond to the east, north, and down direction, respectively), Mjk represents145

an element of the 3 × 3 moment tensor M at position x(a), i.e., the centroid. Note that146

j and k indicate the axis along which the force is acting and the direction in which the147

arm is pointing, respectively (Aki & Richards, 2002). Furthermore, x(r) denotes the po-148

sition where the displacement is recorded, G is the Green’s tensor, ∗ represents tempo-149

ral convolution, and T0 denotes the origin time. The comma after the second subscript150

of an individual element of the 3 × 3 Green’s tensor implies a spatial derivative in the151

k direction with respect to x(a). To make the computation of u
(
x(r), t

)
for a large num-152

ber of potential centroids (i.e., a large number of x(a)) more efficient, we invoke reciprocity153

(Aki & Richards, 2002). In this study, the numerically modeled particle displacements154

are generated using SPECFEM3D (Komatitsch & Tromp, 2002). For this purpose, we155

use the 3D subsurface models of the Groningen gas field by Romijn (2017).156

2.2 Bayes’ Theorem157

The probabilistic workflow used in this study relies on Bayes’ theorem (or rule).158

In general, Bayes’ theorem describes how, in the presence of prior knowledge, the prob-159

ability of a hypothesis (or model) m depends on the available data dobs. The prior knowl-160

edge is accounted for by the prior probability distribution (often simply referred to as161

‘the prior’). Ignoring the marginal probability (or ‘evidence’), Bayes’ theorem can be writ-162

ten as163

ρ(m|dobs) ∝ ρ(dobs|m)ρ(m), (2)

where ρ(m|dobs) is the posterior probability distribution (or simply ‘the posterior’), ρ(dobs|m)164

the likelihood, and ρ(m) the prior probability distribution. The model vector m is a ten-165

component vector containing the centroid x(a) (where a Cartesian east-north-down co-166

ordinate system implies that x(a) = (x
(a)
1 , x

(a)
2 , x

(a)
3 ); hence three model parameters),167

the moment tensor M (six independent elements and hence six model parameters), and168
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the origin time T0 (one model parameter). This implies that ρ(m) represents the prior169

probability of these ten parameters.170

Assuming Gaussian observational errors and a Gaussian distributed prior proba-171

bility, the posterior in equation 2 can be written as (Fichtner & Simutė, 2018; Masfara172

et al., 2022):173

ρ
(
m | dobs

)
∝ exp

(
−1

2

(
d(m) − dobs

)⊤
C−1

d

(
d(m) − dobs

)
− 1

2

(
m−m(0)

)⊤
C−1

m

(
m−m(0)

))
.

(3)
Here, d (m) contains the numerically modeled displacement recordings (solution of equa-174

tion 1) and dobs the observed ones. Explicitly, for a total of Nr three-component instru-175

ments, d (m) is a concatenation of all 3×Nr modeled seismograms and dobs a concate-176

nation of all 3×Nr recorded seismograms. Cd, Cm, and m(0) are the data covariance177

matrix, prior covariance matrix, and prior mean, respectively. Evaluating equation 3 re-178

sults in the (a posteriori) probability of the model parameters, i.e., their probability given179

observations and prior knowledge of the system (Tarantola, 2006).180

2.3 Hamiltonian Monte Carlo181

Although Bayes’ theorem describes how the posterior probability distribution de-182

pends on the available data dobs (through the likelihood) and prior knowledge ρ(m), that183

posterior can usually not be estimated directly (Tarantola & Valette, 1981). In partic-184

ular, a large number of model parameters and non-linearity prohibit this. To overcome185

this, we generate a sequence of specific models (often called ‘samples’) in what is referred186

to as a ‘Markov chain’. The density of these samples reflects the density of the poste-187

rior distribution we seek to find.188

Numerous sampling algorithms are available to estimate ρ(m|dobs), all with their189

own advantages and disadvantages. In this study, we implement a workflow that relies190

on the Hamiltonian Monte Carlo (HMC) algorithm. HMC was derived from classical me-191

chanics, applied to statistical mechanics (Betancourt, 2017), and considered one of the192

most efficient probabilistic algorithms for exploring high-dimensional model spaces. HMC193

relies on the sequential calculation of two quantities. These are the ‘potential energy’194

U, which is a function of the model vector m, and the ‘kinetic energy’ K, which, in our195

framework, is solely a function of the momentum vector p. This momentum vector is196

an auxiliary vector that has the same dimension as m (ten in our case). Together, m197

and p make up what is often referred to as the ‘phase space,’ and their joint probabil-198

ity is described by the ‘canonical distribution’ ρ (p,m).199

The canonical distribution can be written in terms of an invariant function H (p,m),200

i.e.,201

ρ (p,m) = e−H(p,m). (4)

Here, H (p,m) is referred to as ‘the Hamiltonian’, and its value in phase space is usu-202

ally called ‘the energy’ at that point (Neal et al., 2011). As such, a model m can be looked203

upon as the position of a “particle” (Betancourt, 2017).204

Rewriting equation 4, and substituting the posterior probability (i.e., ρ (p,m) →205

ρ(p,m | dobs)), we have206

H
(
p,m | dobs

)
≡ − ln

(
ρ
(
p,m | dobs

))
= = − ln[ρ(p | m)] − ln

[
ρ
(
m | dobs

)]
= K(p,m) + U(m). (5)

Here, U(m) ≡ − ln ρ(m | dobs).207

Equation 5 describes the more general case; in our implementation, K (p,m) is merely208

a function of the momentum vector and hence K (p,m) → K (p). Specifically, it is given209

–6–
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by (Fichtner & Simutė, 2018; Masfara et al., 2022)210

K(p) = pTM−1p/2, (6)

where the mass matrix M acts as a tuning parameter (Fichtner et al., 2019, 2021), al-211

lowing the particle to move through the desired areas of phase space with correspond-212

ing potential and kinetic energy (Betancourt, 2017).213

Starting from an initial estimate of m with some prescribed initial momentum, Hamil-214

ton’s equations, which read215

dm

dτ
=

∂K

∂p
,

dp

dτ
= − ∂U

∂m
, (7)

will efficiently explore areas with relatively low potential energies (corresponding to the216

a posteriori more probable areas of the model space; see equation 5). Here, the quan-217

tity τ is the ‘artificial time’ that is used to propagate (the particle) from the initial model218

along trajectories of constant H. This propagation occurs for some (to-be-determined)219

time τlp, where the subscript ‘lp’ stems from ‘leap’ as we use the leapfrog algorithm to220

evaluate 7. The model reached at τlp, i.e., m(τlp), is subsequently accepted with prob-221

ability222

θ = min

[
1,

ρ (p(τlp),m(τlp))

ρ (p,m)

]
, (8)

which is usually referred to as the ‘metropolis rule’ (Tarantola, 2005). If the model m(τlp)223

is not accepted, the process will be repeated by introducing a new (different) momen-224

tum vector to the initial model. If accepted, the model m(τlp) will serve as the start-225

ing point for a new deterministic trajectory after being endowed with momentum.226

Figure 2. Illustration of model space exploration using Metropolis-Hastings (a) and Hamil-

tonian Monte Carlo (b) algorithms. Note that with a similar number of accepted samples, HMC

explores the distribution more efficiently via a combination of iterative short and long trajec-

tories. This is achieved by prescribing a different momentum for each trajectory and iterative

computation of Hamilton’s equations. Mind that we only show the rejected samples of the first

two moves/accepted samples for both algorithms.
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2.4 Linearization of the Forward Problem227

To ease the computation of the gradient of the potential energy in the model space,228

Fichtner and Simutė (2018) linearize equation 1 by means of a Taylor expansion around229

the prior mean m(0) (see Appendix A). Simutė et al. (2022) use this same modification230

and 3D Earth models to characterize tectonic earthquakes below the Japanese penin-231

sula. In these studies, m(0) is obtained from an earthquake catalog, which is not always232

directly available for induced earthquakes. Replacing, in d(m), the numerically mod-233

eled displacements u(x(r), t) by numerically modeled displacements resulting from a lin-234

ear approximation of equation 1 implies that we assume m(0) to be “sufficiently close”235

to the true model parameters. This merely applies for the centroid x(a) and origin time236

T0. That is, since the particle displacement depends linearly on the moment tensor com-237

ponents, the linearization does not impose an approximation when it comes to the mo-238

ment tensor components. Importantly, “sufficiently close” means that the centroid x(a)
239

and origin time T0 should be at sub-wavelength and sub-period distance from the true240

centroid and origin time, respectively.241

In our case, the assumption that m(0) is sufficiently close to the true model param-242

eters is usually not met. This will render the application of HMC ineffective (to state243

the least). In order to apply HMC (including a linear approximation of equation 1) to244

induced earthquakes, two main challenges, therefore, need to be addressed. First, the245

recorded seismograms are often dominated by high-frequency signals (>1 Hz), increas-246

ing the non-linearity of the forward problem. Second, as mentioned earlier, the prior in-247

formation is often unavailable or rather inaccurate. To address these challenges, in this248

study, we use the multi-stage workflow introduced by Masfara et al. (2022). This means249

that we iteratively update m(0), which is detailed in the remainder of this section. In250

addition, we run this workflow multiple times (in parallel), each starting from a differ-251

ent m(0). This is explained in Section 2.5. In the remainder of this paper, we will refer252

to the HMC variant that involves a linearization of the forward problems as ‘linearized253

HMC’. It should be understood, however, that this does not involve a linearization of254

Hamilton’s equations itself.255

Figure 3 illustrates the embedding of linearized HMC in the proposed multi-stage256

workflow. Iteratively updating m(0) partly overcomes deviations of the estimated pos-257

terior from the true posterior, as such addressing the first challenge. Given a first m(0),258

the three quantities in equations A4-A6 need to be computed only once in order to sam-259

ple a “local posterior” around that m(0). These quantities are used to compute the gra-260

dient of the potential energy and hence evaluate Hamilton’s equations and the Hamil-261

tonian itself (equations 7 and 5, respectively). Importantly, in the absence of a lineariza-262

tion of the forward problem, the computation of equations 7 and 5 requires the forward263

problem to be evaluated during each deterministic trajectory. Linearization of equation264

1, resulting in the three aforementioned quantities, renders this unnecessary for each in-265

dividual stage (Masfara et al., 2022).266

When m(0) does not coincide with the true model parameters, the linearized HMC267

algorithm will explore a “local posterior” that deviates from the true posterior distri-268

bution despite being computationally efficient. This is illustrated in Figure 3(a), where269

the linearized HMC can only explore the area above the orange curve. To obtain a bet-270

ter approximation of the posterior, the workflow uses the result of exploring the local271

posterior in Figure 3(a) to obtain a new m(0) (essentially taking the mean of the local272

posterior and using that as m(0)). Linearization of the forward problem about the up-273

dated m(0) and re-computation of the aforementioned quantities allows for a new explo-274

ration of the model space in Figure 3(b) and (c). After five Taylor expansions about the275

new m(0), six local posteriors are estimated. The associated distributions are, for each276

stage, depicted in Figure 3(d). Having the results from all stages in (d), the workflow277

then uses variance reduction (e.g., Mustać & Tkalčić, 2016; Masfara et al., 2022) as a278
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Figure 3. Illustration of linearized HMC embedded in the multi-stage workflow detailed in

Masfara et al. (2022). Panel (a) to (c) depict the sampling of a local posterior associated with

different m(0). In (a), m(0) is the initial prior mean. In the next stage (b), m(0) is updated using

the results of the exploration of the local posterior associated with this initial prior mean until

m(0) (almost) coincides with the most likely model (c). The workflow’s progression up to five

stages is shown in (d). (e) is the final posterior composed using variance reduction criterion,

which discriminates the first two stages from stages 2 to 5.

criterion to select stages that should be included in the estimate of the final posterior.279

This is depicted in Figure 3(e).280

2.5 The Importance of the Prior281

Having an inaccurate m(0) can only partly be overcome by updating m(0) in pro-282

gressive stages. That is, the multi-stage workflow will still be ineffective when the ini-283

tial m(0) is located in a “local mode” of the posterior distribution (i.e., associated with284

a local minimum of the potential energy). The chance of this happening increases with285

an increase in the non-linearity between the model parameters and the observed displace-286

ment recordings (i.e., higher frequencies). In practice, this happens when the centroid287

x(a) and origin time T0 in m(0) are separated from the true centroid and true origin time288

by more than (approximately) half a wavelength or half a period, respectively. To ad-289

dress this, we additionally use multiple initial m(0) concatenated in a list which we de-290

note by m
(0)
list (the list consists of m

(0)
1 , m

(0)
2 , .... m

(0)
N with N being the total number291

of m(0)). These initial m
(0)
i differ to the extent that the centroid position is different for292

each of them. The use of m
(0)
list is to ensure some of the individual m

(0)
i are contained in293

the global minimum. The same criterion is used to select which (local posterior) distri-294

butions can be included in the final posterior (i.e., which stages). That is, the variance295

reduction is now computed for all stages associated with the individual (initial) m
(0)
i in296

m
(0)
list. We illustrate the process of using multiple m(0) in Figure 4. We depict three ini-297

tial m(0), with one located in the “correct” lobe, that is, m
(0)
2 . Each of the m(0) will then298

be updated in a similar fashion as shown in Figure 3. While m
(0)
1 and m

(0)
3 ended up299

sampling the wrong lobe, the updated m
(0)
2 enables the linearized HMC algorithm to sam-300

ple the correct lobe. In Figure 4(b), we detail the last stage of the multi-stage workflow301

that started with m
(0)
2 in the red circle.302
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Figure 4. (a) Illustration of using multiple initial m(0) while sampling a complex/multimodal

posterior distribution using linearized HMC. (b) zoom of the last stage of the multiple stages

associated with the initial model prior m
(0)
2 .

We end this section by emphasizing that although being very efficient in sampling303

the posterior distribution (through the potential energy), the proposed multi-stage work-304

flow (including the use of multiple initial priors m
(0)
i ) ultimately only results in an ap-305

proximate posterior distribution. This is because the true observational errors are not306

necessarily Gaussian and uncorrelated (which we assume in this study) and because we307

linearized the relation between observed particle displacement and model parameters.308

In addition, the 3D velocity model used to model (numerically) displacement recordings309

(according to equation 1) is assumed to coincide with the true velocity model. Since this310

will not be the case, another “source of error” is introduced, which in practice will re-311

sult in a deviation of the estimated posterior from the true posterior. Moreover, since312

a Markov process only approaches the true posterior asymptotically, a Markov-chain-313

based estimate of the posterior is, by definition, an approximation. Whereas the latter314

two cannot be circumvented (we don’t have the exact subsurface model and also can-315

not run a Markov chain for an infinite amount of time), the linearization is, in princi-316

ple, not necessary, and also Gaussian observational errors do not need to be assumed.317

Not doing so, however, would make the computational demands prohibitively large.318

3 Data319

In this study, dobs contains the 3 × Nr recordings of displacements (uobs) due to320

an induced event that occurred close to the village of Westerwijtwerd in 2019, the province321

of Groningen (see Figure 1). The KNMI estimates the magnitude of the earthquake to322

be 3.4 local magnitude. We collected uobs from ten G-network seismometers. These seis-323

mometers are selected based on their distance and azimuthal coverage with respect to324

the estimated epicenter. In Figure 5(a), we depict the ten seismometers as white inverted325

triangles and the location of the KNMI-estimated epicenter by a blue star. The seismome-326

ters are part of the KNMI borehole network: each borehole contains four vertically-separated327

seismometers. The number at the end of their ID indicates their depth, i.e., their IDs328

run from ..1 to ..4, with the instruments numbered ..1 being at 50 m depth and the in-329

struments numbered ..4 being at 200 m depth. We illustrated the configuration of a string330

of borehole seismometers in Figure 5(b).331

From the four seismometers in each borehole, we solely used the seismograms recorded332

by the deepest seismometers: they have a higher signal-to-noise ratio than the shallower333

seismometers (Dost et al., 2012). Furthermore, all seismometers experience a horizon-334
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Figure 5. (a) Depth of top Rotliegend (reservoir) in area of interest. Solid black dots delin-

eate mapped faults (Bourne & Oates, 2017). The inset at the bottom right shows the location of

the study area. (b) Illustration of borehole seismometers in the G-network.

tal rotation while lowering them in the borehole. Consequently, a rotation needs to be335

carried out for projecting the horizontal recordings to specific preferred orientations, which336

in our case are to the east-west(x1-axis) and north-south(x2-axis) orientations, respec-337

tively. In Figure 5(b), we illustrate the orientation of the deepest borehole seismome-338

ter. The axis H1 and H2 are proxies of east and north. We then rotate the data to the339

true east and north using the angles given in Ruigrok et al. (2019). We depict the orig-340

inal seismograms (obtained from the KNMI) and the rotated seismograms of the selected341

seismometers in Figure 6.342

Dost et al. (2020) have used the same recordings to characterize the Westerwijtwerd343

event probabilistically. These authors, however, use local 1D velocity models to solve the344

forward problem. Furthermore, they separately use 0.5 and 1s windows of P and S waves,345

respectively, where the P-wave is given more weight and evaluated at higher frequencies346

(i.e., 2-4 Hz for P and 1-3 Hz for S-wave). The P-wave waveform is given a higher weight347

because of the higher accuracy of the employed P-wave velocity models (compared to348

the S-wave velocity models). Also, these authors only use the vertical components of the349

recorded P-wave and the transverse component of the recorded S-waves. To account for350

inaccuracy in the velocity models, they allow individual, station-specific shifts of 0.1 s351

for both wave types. Another study in the area is by Smith et al. (2020), which uses a352

coherence method. This study focuses on determining the hypocenter. They find most353

Groningen earthquakes to systematically originate approximately 200 m above the reser-354

voir layer. In this study, we exclusively use P-wave seismograms due to the significantly355

higher accuracy of the P-wave model. Furthermore, we use both the vertical and hor-356

izontal components and filter the recordings using a passband of 1-4 Hz, similar to the357

frequency range used by Dost et al. (2020). As for the length of the measurement win-358

dow, we use 2.5s for all components and taper both ends with a 0.5 s cosine taper. For359

the data covariance, we use a diagonal matrix representing uncorrelated noise and es-360

timate this to be 5% of each component’s maximum amplitude. By taking a certain frac-361

tion of the maximum amplitude, we overestimate the ‘true noise’. The reason for this362

is that we want to account for (part) of the waveform misfit arising from the deviation363

of the employed velocity model Romijn (2017) from the true (unknown) velocity model.364
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Figure 6. Observed seismograms before (green) and after rotation/polarity switch (black).

Recordings are normalized (individually) with respect to maximum particle displacement (written

in blue).

Before applying it to the field data, we perform a synthetic experiment, detailed in the365

next section.366

4 Synthetic Experiment367

In this section, we test the validity of the proposed workflow and data processing368

parameters (i.e., frequency band, length of the measurement window, and noise crite-369

ria) on a synthetic event. For this, we first generate synthetic data using the KNMI-estimated370

hypocenter as the centroid of our synthetic earthquake. We then set T0 to 3 s, and for371

the MT, we use the values of 0.2E13 Nm, 2.86E13 Nm, -3.07E13 Nm, 0.76E13 Nm, -0.45E13372

Nm, -1.71E13 Nm for Mnn, Mee Mdd, Mne, Mnd, and Med respectively. These values373

represent pure shear normal faulting (rake of -90°) along a geological fault with a strike374

of 165°, a dip of 60°, and a moment magnitude of 3. We then corrupt the data in the fre-375

quency domain to simulate the presence of uncorrelated noise. This is implemented us-376

ing the same approach as Mustać and Tkalčić (2016). In the time domain, the uncor-377

related noise results in amplitude variations that affect the estimation of our centroid378

and MT, and shift the observed recordings in time (resulting in uncertainty in T0). To379

effectively test the workflow, we first choose a (single) m(0) that significantly deviates380

from the actual value (i.e., the synthetic earthquake parameters). For the centroid, we381

impose a shift of 200 m along each axis, i.e., the centroid in m(0) deviates 200 m from382

x
(a)
east, x

(a)
north, and x

(a)
depth. For the MT, we simply assign a uniform value to each MT com-383

ponent, and for T0, we impose a shift of 0.5 s. We then run our workflow for 20 stages384

(i.e., the prior mean m(0) is updated twenty times). The results are presented in Fig-385

ure 7.386
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Figure 7. Marginal posterior probabilities obtained through applying the proposed linearized

HMC workflow to synthetic recordings. The stars represent the initial m(0). The black and green

dots represent all accepted samples from all 20 stages and samples from selected stages (i.e., the

VR-score exceeds 0.95) used to compose the final posterior, respectively. The red lines represent

the true (synthetic) model parameters, and the red dots are the samples generated running the

generic (non-linearized) HMC algorithm.

The yellow stars represent the initial m(0), and the red lines represent the true syn-387

thetic earthquake parameters. The black dots are the samples generated from all 20 stages,388

which are equivalent to samples used to build all the histograms from exploring local pos-389

teriors in Figure 3(d). Whereas the green dots are the samples from selected stages based390

on a VR criterion, equivalent to the samples from the selected stages in Figure 3(e). The391

red dots represent samples resulting from a generic HMC run (i.e., HMC without lin-392

earizing the forward problem). This run was terminated as soon as the number of times393

for which the forward problem needed to be solved coincided with the number of times394

the forward problem was solved while running the multi-stage workflow in which the for-395

ward problem was linearized. Mind that each solution of the forward problem involves396

the computation of 3 × 10 seismograms (recall from Section 3 that Nr = 10).397

Let us demonstrate the computational benefit of the multi-stage workflow (in con-398

junction with a linearization of the forward problem) over generic HMC (which does not399

involve this linearization). The number of times the forward problem needs to be solved400

in order to generate four model samples using generic HMC (represented by the star and401

the red dots in Figure 7) is 404. Here, each ‘solution of the forward problem’ in prac-402

tice involves a separate computation of the ui

(
x(r), t

)
in equation 1. We arrive at 404403

as follows: it depends on the number of generated samples Ns (4 in this case), the num-404

ber of leaps Nlp to arrive at m(τlp) (here we use 5), and the number of model param-405

eters Nm (10 in our case). First, with the prescribed five leaps to arrive at a new model406

started from the current model, we evaluate equation 7 five times. Second, the evalu-407

ation of equation 7 requires the computation of ∂U
∂m . For that, we use a central differ-408

ence approximation, which means that for each of the ten parameters in m, we must eval-409

uate U twice. Additionally, after the five leaps, we still have to compute ρ (p(τlp),m(τlp))410

to evaluate equation 8, which requires one additional solution of the forward problem411

per sample. Consequently, the total number of forward problem solutions coincides with412

Ns×Nlp×2Nm+Ns= 404. Linearization of the forward problem reduces this number413

dramatically. In fact, for every stage of the multi-stage workflow, the number of sam-414

ples that can be generated is unlimited in the sense that it does not require additional415
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solutions to the forward problem. The forward problem just needs to be run 2×Nm =416

20 times per stage. This number stems from the (one-time) computation of the deriva-417

tives of U . These derivatives are included in the Apq, bp, and c (equations A4, A5, and418

A6 in appendix Appendix A, respectively). Therefore, to generate all samples for a to-419

tal of 20 stages (i.e., 20 updates of m(0)), the number of times the solution to the for-420

ward problem needs to be computed is just 400.421

Figure 8. Seismograms modeled using the posterior mean (gray) compared to the modeled

observed recordings with noise added (brown) and the modeled observed recordings without noise

(green).

We use the mean of the approximate posterior resulting from our multi-stage work-422

flow to generate displacement recordings. In Figure 8, we compare these recordings with423

the observed (synthetic) recordings. The observed recordings are depicted in brown (re-424

call that noise is added to these seismograms). The recordings associated with the mean425

values of our estimated posterior are depicted in grey and align well with the noise-free426

recordings associated with the true source parameters (depicted in green).427

5 Prior Knowledge428

In Subsection 2.5, we discussed the importance of using m
(0)
list to avoid getting trapped429

in a local mode. For the purpose of generating m
(0)
list, we make use of the available fault430

map of Groningen’s subsurface by Bourne and Oates (2017). This is inspired by research431

that reveals a strong correlation between hypocenters and major faults in Groningen’s432

subsurface (Pickering, 2015; Spetzler & Dost, 2017; Willacy et al., 2018). In this con-433

text, we also evaluate the importance of the displacement along the horizontal compo-434

nents for the estimated posterior. The reason for this is potential errors arising from pos-435

sible incorrect rotations of the horizontal displacements (see Section 3). Combined, we,436
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therefore, investigate three different cases: two centroid prior configurations (i.e., with437

different m
(0)
list) of which one is used in conjunction with both the vertical component record-438

ings and the three-component recordings. The configuration that uses known faults in439

the reservoir as a basis to generate the m
(0)
list, in conjunction with the vertical component440

recordings only, is referred to as ‘1C-fault’. The same configuration, but used to estimate441

the posterior based on the recordings by all three components, is referred to as ‘3C-fault’.442

The other centroid prior configuration we consider consists of a square grid that covers443

not just the fault but also the surrounding area. This configuration of m
(0)
list is only used444

in conjunction with the recordings by all three components and is referred to as the ‘3C-445

grid’. This centroid prior configuration is considered to evaluate whether the recovered446

posterior might peak at a centroid position that deviates from the known fault geom-447

etry. The two different centroid prior configurations are depicted in Figure 9.448

Figure 9. Horizontal positions of the different centroid priors for the two different prior con-

figurations considered. The first configuration is guided by the known fault geometry inside the

green circle and is represented by the yellow stars. This circle has a 1km radius and is centered

at the epicenter estimated by the KNMI (blue star). The second centroid prior configuration uses

a 2 km x 2 km grid with again the KNMI-estimated epicenter at its center. These centroid priors

are depicted as green stars.

To generate the entries (individual m(0)) in m
(0)
list of the two considered prior con-449

figurations, we first draw a circle with a 1 km radius around the epicenter estimated by450

the KNMI. The enclosed area is colored dark green in Figure 9. Next, we discretize the451

fault inside the circle using a spatial sampling criterion based on the approximate seis-452

mic P-wave velocity within the circle and the highest frequency we use while fitting the453

waveforms. This criterion provides a rough estimate of the minimum “wavelength” of454

the posterior distribution. By discretizing the fault such that the individual centroids455

(associated with individual m
(0)
i ) in m

(0)
list are separated by less than half this wavelength,456

we therefore, ensure that at least one of the initial priors is located in the “correct” lobe,457

i.e., similar to what we have illustrated in Figure 4. Given the P-wave velocities at reser-458
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voir depth and a maximum frequency of 4 Hz (recall that we filter the recordings using459

a passband of 1-4 Hz), we arrive at a value of 200 m for this criterion. This is hence the460

separation along the fault at which individual centroid priors are placed. We depict these461

initial centroid priors in Figure 9 as yellow stars. At the same time, the fault orienta-462

tions at these positions are used to determine the six moment tensor entries in the ini-463

tial priors. As for the depth and origin time T0 in the m
(0)
i , we use the values estimated464

by the KNMI for both configurations (i.e., 3 km for the depth and 2019-05-22T03:49:00.075s465

for the origin time). In total, 19 individual m(0) are concatenated in m
(0)
list for 1C-fault466

and 3C-fault. For the third case, we consider a centroid prior configuration consisting467

of a square grid of 2 km × 2 km, with the center again being the epicenter estimated by468

the KNMI. We use the same criterion (200 m) to determine the horizontal spacing be-469

tween the individual centroid priors. In Figure 9, we depict these as green stars. For the470

depth and origin time, we use identical values. Furthermore, for the MT, we assign a uni-471

form value to each MT component for each individual m(0). In total, we obtain 121 ini-472

tial m(0) for this configuration.473

6 Application to Field Data474

For all cases described above (1C-fault, 3C-fault, 3C-grid), our multi-stage work-475

flow consists of 20 stages. For the centroid prior configuration derived from the geom-476

etry of the known faults within the reservoir m
(0)
list contains N = 19 m(0), which implies477

a total of 380 stages. For the 3C-grid, a total of 121 initial priors serve as starting model478

of the 121 multi-stage workflows (see Figure 9), resulting in a total of 2420 stages for this479

configuration. For each stage, we then compute the VR score based on the recordings480

u
(
x(r), t;m

)
associated with the mean model m of all 3000 individual models within that481

stage. Stages for which the VR score exceeds 0.95 are subsequently used to build our fi-482

nal posterior distribution. For each of the three cases considered, and for each of the ini-483

tial centroid prior means, we show in Figure 10 the VR score associated with that m
(0)
i484

of the 20 m(0) in m
(0)
list for which the VR score attains its maximum. Note that this model’s485

centroid is usually not at the location of the initial centroid prior mean (i.e., the centroid486

in m
(0)
0 ) because the models for which the waveforms best fit the observed recordings487

are often found in one of the later stages; see also Figure 3. For all three cases consid-488

ered here, the highest VR scores are obtained in those chains for which the initial cen-489

troid prior mean is close to a fault.490

Figure 10. Maximum VR score in each of the chains associated with the different initial m(0)

for the three different cases considered (from left to right: 1C-fault, 3C-fault, and 3C-grid, re-

spectively). Note that here we represent them by plotting the initial prior means (of the lateral

positions) of the centroid.
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6.1 Estimated Posterior491

In Figure 11, we display the 1D marginal posterior distributions obtained from the492

selected stages of each configuration. In general, the mean value of these posteriors is493

fairly consistent across configurations, especially for 3C-fault and 3C-grid. For the 1C-494

fault case, the mean of the posteriors slightly deviates while at the same time having a495

slightly broader distribution compared to the other two cases. We attribute this to the496

fact that, for 3C-fault and 3C-grid, the additional data reduces the uncertainty of the497

estimates. In Figure 12, and for 3C-fault, we also plot the progression of the different498

stages associated with one of the individual centroid priors included in one of the m(0)
499

in m
(0)
list. Specifically, we show the progression of that workflow (i.e., starting from that500

m
(0)
i ) that contains the stage that results in the overall maximum VR score. The ver-501

tical lines represent the start of different stages, and the red horizontal lines are the pos-502

terior means computed using the selected stages (after evaluating the VR scores for all503

stages). The progression follows a trend identical to the illustration in Figure 3(d), es-504

pecially for the origin time T0 with a slight variation for some others, such as for the depth505

and Mnd that shift monotonically to lower values. It is important to add that an initial506

estimate of T0 was obtained using the envelope of the traces. This is described in detail507

in Section 6.1 of Masfara et al. (2022).508

Figure 11. 1D marginal posterior distributions for the three different cases considered. ’1C-

fault’: initial centroid prior configuration derived from the geometry of the known faults within

the reservoir, and only the vertical particle displacement recordings are used. ’3C-fault’: initial

centroid prior configuration derived from the geometry of the known faults within the reservoir,

but both horizontal and vertical particle displacement recordings are used. ’3C-grid’: initial cen-

troid prior located on a regular grid in a horizontal plane at the approximate (expected) depth of

the event, and both horizontal and vertical particle displacement recordings are again used.

6.2 Traces Associated With the Posterior Distribution509

Using the posterior mean in Figure 11, we generate synthetic data and compare510

these with the observed data in Figure 13. In our workflow, the misfit in equation A1511

is based on 2.5 seconds of the observed particle displacement, bandpass filtered between512

1 and 4 Hz. Here, for consistency, we adopted the same values for these parameters. Ad-513

ditionally, we show in Figure 13 the maximum and minimum bounds using synthetic data514
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Figure 12. Progression of 20 stages from using one of the m(0) in the 3C-fault configuration.

The vertical lines represent different stages, whereas the red lines are the posterior mean (i.e., the

mean of the green distributions in Figure 11) obtained from the selected stages based on the VR

criteria for 3C-fault configuration.

generated from 1000 models drawn from the posterior distribution. We depict those bounds515

as a shaded area in Figure 13.516

6.3 Source Characteristics517

To investigate the source characteristics of the analyzed induced event, we first de-518

compose the MTs of the posteriors shown in Figure 11. In this study, we do not limit519

our solutions to a single mechanism. We, therefore, decompose our moment tensor so-520

lutions into their ISO, DC, and CLVD components. We do this for each case (1C-fault,521

3C-fault, and 3C-grid) and depict the decompositions in the Hudson plots in Figure 14.522

The mean MT for each case is represented by the beachball with the red outline. For523

all cases, the DC “region” is densely clustered (i.e., the center of the plot), with nega-524

tive ISO components clearly outnumbering positive ISO components. This is often at-525

tributed to the compaction due to the gas extraction (Dost et al., 2020). We show the526

posterior distributions of the different MT components in Figure 15 (bottom row). Fur-527

thermore, in the top row, we depict the translation of the MT solutions in Figure 14 to528

distributions of strike, dip, and rake. Here, we only show solutions with strikes between529

90◦ and 180◦, which are in accordance with the orientation of the fault close by (given530

the centroid posterior distributions).531

We visualize the centroid posterior distributions using horizontal and vertical slices532

of the Groningen subsurface (Figure 16). In the top row, we show the depth of the top533

reservoir as a contour map, including the location of faults from Bourne and Oates (2017)534

at that depth. On top of these contour maps, we show the samples used to generate the535

2D marginal posterior distributions of the lateral position of the centroids. We also plot536

the result from Dost et al. (2020) and the KNMI as the black beachball and blue star,537

respectively. The red beachball represents the mean MT which is also depicted in Fig-538

ure 14 (beachball with red outlines). Not only do the posterior means of the (lateral) cen-539

troid positions coincide with the known fault, but also does the moment tensor solution540

agree quite well with the strike of the nearby fault. On the vertical slices (middle and541

bottom rows), we depict the depth of the top reservoir as solid black lines. The location542

of the east-west vertical cross section and the north-south vertical cross section are shown543

as red and blue lines in the contour maps, respectively. For this specific earthquake, we544

find the posterior mean of the centroid to be slightly shallower than the centroid esti-545
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Figure 13. The comparison between observed and numerically modeled seismograms. The

modeled seismograms are generated given the posterior mean for estimated for each of the con-

sidered cases (see Figure 11). The shaded area is within the maximum and minimum bounds of

a total of 1000 waveforms generated using 1000 models drawn from the posterior distributions

in Figure 11. Each seismogram is filtered and tapered using the same parameters used in the

multi-stage HMC workflow. The duration of each trace plotted here is 3.25s.

mated by Dost et al. (2020). In fact, instead of being within the reservoir, we find the546

probability of having the earthquake nucleated above the reservoir is higher. The earth-547

quake (model) parameter that has the strongest trade-off with depth is origin time. This548

is because an earlier origin time can be translated to an earthquake occurring at greater549

deeper and vice versa. In this study, origin time uncertainty is considered, and the re-550

sult shows that the estimated T0 from the KNMI is lagging by a few milliseconds. As551

a caveat, however, we do not consider the uncertainty in the 3D velocity models, which552

may not only introduce amplitude variations but also affect the origin time and/or depth.553

For a more detailed comparison, in Table 1, we list the mean and standard deviation of554

our estimated parameters (for the MTs, we convert these into strike, dip, and rake so-555

lutions) and compare them with the result of Dost et al. (2020) and the KNMI (hypocen-556

ter only).557
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Figure 14. Hudson plot that shows the decomposition of the source mechanisms given the

posterior distributions in Figure 11. The beachball with the red outlines represents the mean

MT.

Figure 15. Top: The distributions of strike, dip, and rake solutions given the beachballs in

Figure 14. Here we only show one part of the solutions closer to the orientation of the nearby

major faults. Bottom: The marginal posterior distributions for different earthquake mechanisms

given the decomposition in Figure 14.

7 Discussion and Conclusion558

Using a probabilistic workflow incorporating the HMC algorithm, we estimate the559

source characteristics of a 3.4 ML induced earthquake associated with gas extraction from560

the Groningen gas field. Specifically, we estimate the posterior probability density of ten561

earthquake parameters using two different sets of initial prior probabilities, of which one562

is used in conjunction with two sets of data: one consisting only of vertical component563

displacement recordings and a second one composed of the particle displacement in all564

three directions (east, north, down). We find that the posteriors estimated using both565

horizontal and vertical components of the seismograms (i.e., the latter data set) have sim-566

ilar shapes. At the same time, the one that only depends on the vertical component record-567

ings yields a posterior that deviates (slightly) from the results of the other two cases while568

simultaneously being slightly broader. However, we find no substantial difference in the569

modeled seismograms associated with the different posterior means. In terms of runtime,570

using an 8-core MacBook Pro (2018 version), it took us a maximum of 3 minutes to run571

the 19 multi-stage workflows of the 1C-fault and 3C-fault case, and 12 minutes for the572

121 multi-stage workflows of 3C-grid.573
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Figure 16. Comparison of samples used to generate centroid posterior distributions in Figure

11 (east, north, and depth) with the centroid estimated by Dost et al. (2020) and the KNMI. The

samples are color coded with the density of centroid posteriors. The black line in the last two

rows represent the top reservoir obtained from slicing the top reservoir map based on the red and

blue line in the top row.

The main factor that affects the shape of the posteriors is uncertainty, which, in574

this case, is formulated as data and model uncertainty. In our study, we choose a uni-575

form distribution for the model parameters to encode a state of ignorance (i.e., σm →576

∞). Whereas the data uncertainty is estimated individually for each component on each577

seismometer (and hence captured by σri in Apq, see Equation A4, where the indices r578

and i are associated with a specific receiver and component, respectively). It is assumed579

that the noise is uncorrelated. Prescribing the noise to be correlated will make the work-580

flow more complex and computationally more costly and requires us to estimate data581

covariance matrices. In addition, a study by Gu et al. (2018) reveals that in the case of582

induced seismicity, accounting for (potentially) correlated noise has relatively little ef-583

fect compared to the uncertainty arising from the inaccuracy of the velocity model. Ide-584

ally, the latter is also formally included. The relation between a specific source model585

(i.e., a specific set of model parameters) and the particle displacement at the surface will,586

in that case, be quantified by means of a probability density function (Tarantola & Valette,587

1981). Due to limited computational resources, however, we disregard the uncertainty588

associated with the velocity model. Including it (for our 3D velocity model) will require589

enormous computational effort as each ‘cell’ in the model must be varied according to590

their variance when computing the forward problem represented by Equation 1 (effec-591

tively, the Green’s functions will become probability density functions). While using 1D592

velocity models, lateral heterogeneity is not considered, and therefore, the number of cells593
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will be exponentially reduced and hence the computational burden. In general, using 3D594

models has improved the characterization of earthquake sources since they better rep-595

resent the subsurface compared to 1D models (Hingee et al., 2011; Hejrani et al., 2017;596

Wang & Zhan, 2020).597

Many studies involving MT inversions limit the model space to purely double-couple598

sources. Often, this limitation is justified by (presumed) a priori information of the source599

type. For example, a DC mechanism is usually sufficient to explain faulting in tecton-600

ically active areas where volumetric components can be expected to be negligible. In the601

context of induced seismicity, however, numerous studies have found that non-DC com-602

ponents explain a substantive part of the observed recordings (Caputa et al., 2021; Cesca603

et al., 2013; Š́ılenỳ & Milev, 2008). In the context of the gas extraction below Gronin-604

gen, a study by Willacy et al. (2019) uses waveform data to obtain moment tensor so-605

lutions assuming that the earthquakes can be explained by DC mechanisms. Hence, they606

only estimated the best DC mechanisms of each observed earthquake. Meanwhile, an-607

other study by Kühn et al. (2020) (also focusing on the events in Groningen) reveals that608

ignoring non-DC components significantly affects the solution and data fit. In this study,609

we find the DC component to be dominant but still need the ISO and CLVD components610

to be non-zero in order to explain the data.611

As for the centroid, we find that it is likely that the earthquake nucleated above612

the reservoir. In our case, the posterior mean is located a bit above 2.8 km depth. This613

is a small shift from the estimate by Dost et al. (2020), who estimate the earthquake to614

be located inside the reservoir. A recent study by Smith et al. (2020), however, finds that615

most of the Groningen earthquakes nucleated just above the reservoir, although this study616

does not include the event we are using here. Considering both the centroid and MT so-617

lution, we find that the models that best explain the recorded particle displacements cor-618

relate well with the nearby fault (see Figure 16).619

For the workflow to be applied to a larger number of induced earthquakes, we be-620

lieve a couple of additions would be beneficial. The first is related to the estimation of621

the data uncertainty. Since the workflow relies on Bayesian inference, the data uncer-622

tainty is rather critical while shaping reliable final posterior distributions. A second ad-623

dition would be to allow for correlated noise. Particularly for the Groningen earthquakes,624

the effect of correlated noise for source characterization is not considered in any of the625

publications cited in this manuscript. Quantifying its effect on source parameters esti-626

mations would therefore be relevant.627

Appendix A Linearization of the Forward Problem628

In the context of Hamiltonian Monte Carlo, a model m can be interpreted as the629

position of a particle in the 2Nm-dimensional phase space (Betancourt, 2017). Using equa-630

tion 3, this particle’s potential energy U , which is defined as U(m) ≡ − ln ρ(m | dobs),631

therefore reads (Fichtner & Simutė, 2018; Masfara et al., 2022)632

U (m) =
1

2

(
d(m) − dobs

)⊤
C−1

d

(
d(m) − dobs

)
− 1

2

(
m−m(0)

)⊤
C−1

m

(
m−m(0)

)
. (A1)

where we have, for convenience, ignored the proportionality constant (this does not633

affect our results as it is independent of m.)634

In this study, the HMC variant that involves a linearization of the forward prob-635

lems is referred to as ‘linearized HMC.’ Linearization of the forward model implies a Tay-636

lor expansion of equation 1 about the prior mean m(0), and subsequently dropping higher637
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order terms. The linear approximation of ui reads (Fichtner & Simutė, 2018)638

ui

(
x(r), t;m

)
= ui

(
x(r), t;m(0)

)
+

Nm∑
p=1

∂

∂mp
ui

(
x(r), t;m(0)

)(
mp −m(0)

p

)
. (A2)

Substituting this approximation in equation A1, U(m) can be written as follows:639

U(m) =
1

2

Nm∑
p,q=1

(
mp −m(0)

p

)
Apq

(
mq −m(0)

q

)
+

Nm∑
p=1

bp

(
mp −m(0)

p

)
+

1

2
c, (A3)

where Apq, bp, and c read640

Apq ≡ 1

T

Nr∑
r=1

3∑
i=1

σ−2
ri

∫ T

0

∂

∂mp
ui

(
x(r), t;m(0)

) ∂

∂mq
ui

(
x(r), t;m(0)

)
dt +

1

Nmσ2
m

, (A4)

bp ≡ 1

T

Nr∑
r=1

3∑
i=1

σ−2
ri

∫ T

0

[
ui

(
x(r), t;m(0)

)
− uobs

i

(
x(r), t

)] ∂

∂mp
ui

(
x(r), t;m(0)

)
dt, (A5)

and641

c ≡ 1

T

Nr∑
r=1

3∑
i=1

σ−2
ri

∫ T

0

[
ui

(
x(r), t;m(0)

)
− uobs

i

(
x(r), t

)]2
dt, (A6)

respectively. Here, σ−2
ri encodes the data uncertainty for receiver number r and com-642

ponent i. This formulation implies that the noise is assumed to be uncorrelated. Sim-643

ilarly, a pairwise uncorrelated prior probability of the model parameters is considered.644

(i.e., Cm is diagonal). Using the three quantities above, ∂U
∂m in equation 7 can be replaced645

by646

∂U

∂mp
=

Nm∑
q=1

Apq

(
mq −m(0)

q

)
+ bp. (A7)

Acknowledgments647

We thank NWO for providing the financial support for this study. We thank Thomas648

Cullison for his assistance in generating our synthetic datasets. We thank Daniela Kuhn649

for the fruitful discussion and suggestion regarding probabilistic inversions.650

Conflict of Interest651

The authors declare no conflicts of interest relevant to this study.652

Data Availability Statement653

The seismograms of the earthquake were downloaded from the KNMI seismic and654

acoustic network (KNMI, 1993) via Obspy (Beyreuther et al., 2010). The Forward mod-655

eled seismograms were generated using SPECFEM (Komatitsch & Tromp, 2002) avail-656

able at https://github.com/geodynamics/specfem3d. The input for SPECFEM is Sub-657

surface Groningen models provided by Romijn (2017) available at https://nam-onderzoeksrapporten658

–24–



manuscript submitted to JGR: Solid Earth

.data-app.nl/reports/download/groningen/en/3b4f8b0d-0277-40e0-8ff5-9a385c08327d659

(last accessed July 2023). The models were first pre-processed using Python packages,660

gnam (Cullison et al., 2022), and PyAspect (Cullison & Masfara, 2022). Those packages661

are stored at https://github.com/code-cullison/gnam and https://github.com/662

code-cullison/pyaspect, respectively.663

References664

Aki, K., & Richards, P. G. (2002). Quantitative seismology (2nd ed.). University665

Science Books. Hardcover. Retrieved from http://www.worldcat.org/isbn/666

0935702962667

Betancourt, M. (2017). A conceptual introduction to hamiltonian monte carlo. arXiv668

preprint arXiv:1701.02434 .669

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J.670

(2010). Obspy: A python toolbox for seismology. Seismological Research671

Letters, 81 (3), 530–533.672

Bommer, J. J., Stafford, P. J., Edwards, B., Dost, B., van Dedem, E., Rodriguez-673

Marek, A., . . . Ntinalexis, M. (2017). Framework for a ground-motion model674

for induced seismic hazard and risk analysis in the groningen gas field, the675

netherlands. Earthquake Spectra, 33 (2), 481–498.676

Bourne, S., & Oates, S. (2017, October). Induced seismicity within the groningen677

gas field. Retrieved from https://doi.org/10.5281/zenodo.1035226 doi: 10678

.5281/zenodo.1035226679
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Abstract14

Hamiltonian Monte Carlo (HMC) is known to be highly efficient when sampling15

high-dimensional parameter spaces. This high efficiency can be attributed to Hamilton’s16

equations, which guide the sampling of the model space. In the case of weakly non-linear17

problems, this efficiency can be increased even further by linearizing the forward prob-18

lem. In this study, we exploit this for the purpose of estimating source parameters of a19

3.4 magnitude induced event that originated in the Groningen gas field in 2019. In to-20

tal, we estimate ten earthquake parameters: centroid (three coordinate components), mo-21

ment tensor (six elements), and origin time. We demonstrate that, in the absence of a22

sufficiently accurate centroid prior, the linearization of the forward model necessitates23

multiple initial centroid priors. Here, we consider two sets of initial centroid priors. The24

first set is based on the known fault geometry in the Groningen reservoir, whereas the25

second set is obtained by placing initial centroid priors on a uniform horizontal grid at26

a depth of 3 km (the approximate depth of the gas reservoir). In general, the results from27

both sets are in good agreement with each other. Most important, however, is their agree-28

ment with the geological knowledge of the area: the posterior peaks for model vectors29

containing a centroid near a major fault and a moment tensor that corresponds to nor-30

mal faulting along a plane which has a strike almost coinciding with the strike of that31

major fault.32

Plain Language Summary33

Earthquake source parameters, such as depth, time, and type of faulting, can be34

estimated using the recordings (or seismograms) of this (induced) earthquake. Being able35

to do this such that the uncertainty of the estimated parameters is also quantified is par-36

ticularly valuable. This, however, requires the use of a probabilistic algorithm. A dis-37

advantage of probabilistic algorithms is their computational cost. In this study, we sim-38

plify the relationship between the earthquake source parameters and the seismograms39

to significantly reduce computational costs. Specifically, we demonstrate that the sim-40

plified relation between the earthquake source parameters and the earthquake record-41

ings requires the probabilistic algorithm to be provided with a sufficiently accurate (prior)42

estimate of these very earthquake source parameters. By means of a magnitude 3.4 in-43

duced event that originated in the Groningen gas field in 2019, we show that a geolog-44

ically inspired prior can be helpful to partly overcome this: we use (known) existing faults45

in the reservoir to kick start the probabilistic algorithm. As such, we recover earthquake46

source parameters that are in line with subsurface geological information.47

1 Introduction48

Characterizing an earthquake is essential for a number of reasons. First, its source49

parameters (centroid, magnitude, slip direction, etc.) determine, to a large extent, the50

damage it may cause (Lui et al., 2016). This is because the depth, size, and type of rup-51

ture all affect the amount of shaking produced (Trippetta et al., 2019). Secondly, source52

characterization may help to improve our understanding of an event’s nucleation, which53

is essential for developing reliable earthquake hazard models (Ellsworth et al., 2015). In54

addition, an increased understanding of source characteristics can potentially be used55

to improve earthquake early warning systems by providing (additional) information that56

can be used to generate alerts before strong shaking takes place (Peng et al., 2021).57

Seismologists distinguish between ‘natural’ and ‘induced’ earthquakes. Induced earth-58

quakes usually emit shorter period signals compared to tectonic earthquakes (Dais et al.,59

2018). This is because, on average, induced events have relatively low magnitudes com-60

pared to (stronger) tectonic earthquakes, although some induced events are reported to61

be as high as 5.8 (Foulger et al., 2018). In addition, induced events usually occur at rel-62
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atively shallow depths. Combined, shallower depths and higher frequencies imply that63

induced events may still cause significant damage to buildings and infrastructure (Vlek,64

2018). In addition, ground motions are exacerbated by high amplification factors in some65

areas (Bommer et al., 2017).66

A notable example of induced earthquakes is the events occurring in the Gronin-67

gen gas field, the Netherlands (Sarhosis et al., 2019). The Groningen gas field, located68

in the northern part of the Netherlands, is the largest gas field in Europe. Since the first69

reported induced earthquake in 1986, there has been a gradual increase in seismic ac-70

tivity in the field (van Thienen-Visser & Breunese, 2015). Because of the societal un-71

rest associated with the earthquakes (Nepveu et al., 2016), the Dutch government has72

recently taken steps to reduce the extraction of natural gas from the Groningen gas field.73

The field will close down permanently on October 1, 2024, with production expected to74

be halted on October 1, 2023. Parallel to the production reduction, an extensive array75

of seismometers was installed by the Dutch meteorological institute (KNMI, which stands76

for Koninklijk Nederlands Meteorologisch Instituut), funded by NAM (Nederlandse Aar-77

dolie Maatschappij), which is the major operator in the Groningen gas field (Ntinalexis78

et al., 2019). The array also includes borehole seismometers, enabling improved source79

characterization in the area (Smith et al., 2020), i.e., due to a significant increase of the80

signal-to-noise ratio (SNR) at depth (Ruigrok & Dost, 2019).81

An earthquake source can be parameterized in several ways (Aki & Richards, 2002).82

In this study, we consider a moment tensor (MT) representation (Jost & Herrmann, 1989).83

This implies that the seismic event is collapsed to a single position (point-source repre-84

sentation), which is usually referred to as ‘the centroid’. Such a representation is justi-85

fied in case the waveform data is analyzed at periods for which the seismic source is ef-86

fectively a point source (Aki & Richards, 2002). Additionally, assuming instantaneous87

rupturing, we end up with ten source parameters. The first six are the moment tensor88

components, where the MT’s magnitude is a measure of the amount of energy released.89

This MT can be decomposed into isotropic (ISO), double-couple (DC), and compensated90

linear vector dipole (CLVD) components (Jost & Herrmann, 1989). The other four pa-91

rameters are the event’s east, north, and depth coordinates and the origin time.92

Various datasets and techniques have been utilized to estimate the source charac-93

teristics of Groningen earthquakes. Willacy et al. (2018) adopt a deterministic approach94

to estimate moment tensors and centroids. These authors employed a detailed 3D sub-95

surface model of Groningen but restricted the search space to DC sources. In contrast,96

Dost et al. (2020) used a probabilistic approach to estimate the centroid and full mo-97

ment tensor (implying that they allowed for the ISO and CLVD components as well) but98

employed (locally) 1D models. Deterministic approaches often provide faster computa-99

tions compared to probabilistic approaches. However, probabilistic approaches quantify100

the uncertainty of the different parameters; in this case, these are the uncertainties of101

the ten earthquake source parameters. Also, the use of 3D subsurface models has a clear102

advantage over 1D subsurface models. This is because 3D models take into account the103

subsurface lateral heterogeneity that will affect the shape (amplitude and phase) of the104

seismogram generated from simulating an earthquake event using those 3D models.105

In this study, we investigate the combination of a probabilistic approach with 3D106

subsurface models to estimate the source parameters of a real event in Groningen. To107

mitigate the aforementioned ”inefficiency” of probabilistic approaches, we modify the work-108

flow described in Masfara et al. (2022). This workflow relies on a variant of the Hamil-109

tonian Monte Carlo (HMC) algorithm and has previously been tested using synthetic110

recordings generated using the 3D Groningen subsurface velocity model. For this study,111

we consider the 2019 3.4 local magnitude earthquake below the village of Westerwijtwerd112

(Figure 1). Since we estimate the full moment tensor, our estimation does not limit the113

search space to just DC components but includes the ISO and CLVD components. Also,114

the inclusion of origin time in the estimation quantifies the trade-off between origin time115
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and estimated depth. In what follows, we first describe the theory underlying the work-116

flow. We subsequently introduce and discuss the (retrieval of the) recordings used to es-117

timate the parameters, including the prior information that is used to increase the com-118

putational efficiency of the workflow. Finally, we compare our results to results obtained119

in other studies and draw conclusions, including the outlook of applying the same ap-120

proach to a larger set of events in the Groningen area.121

Figure 1. Map of the research area. The inverted triangles indicate the location of the KNMI

seismometers, and the blue star is the epicenter of the 2019 Westerwijtwerd earthquake, as esti-

mated by the KNMI. Axes indicate location using the Dutch RD coordinate system. This specific

coordinate system gives the geodetic coordinates for European Netherlands and is used in official

national maps. The inset at the bottom right shows the location of the study area.

2 Methodology122

To enable source characterization, the formal relationship between the observed data123

and the source (model) parameters is introduced and detailed in the first subsection. Sub-124

sequently, we introduce Bayes’ theorem and, assuming Gaussianity, cast it in a form al-125

–4–



manuscript submitted to JGR: Solid Earth

lowing us to utilize it. In Subsection 2.3, we then introduce the HMC algorithm. Finally,126

in Subsections 2.4 and 2.5, we then describe how the algorithm’s efficiency can be en-127

hanced via linearization of the forward problem and by choosing meaningful prior infor-128

mation, respectively.129

2.1 The Forward Problem130

In this study, the posterior probability of the model parameters is estimated by means131

of a Markov process. The generation of such a Markov chain is detailed further below132

(Subsection 2.3), but, at this point, it should be understood that for each sample in the133

chain, forward-modeled data is compared against measured data. In the context of our134

problem, a specific model m (or sample) implies assigning a specific value to each of the135

ten aforementioned source parameters (MT, centroid, and origin time). The measured136

data dobs consists of the induced event’s waveform data, which, in our case, are record-137

ings of particle displacement recorded by KNMI instruments. Computation of the like-138

lihood ρ(dobs|m) yields the probability of these recordings given a model m and involves139

quantification of the misfit between the recorded particle displacements and numerically140

modeled particle displacements. The latter is computed by numerically solving the wave141

equation, i.e., they are the result of solving (what is usually referred to as) ‘the forward142

problem’. Mathematically, the forward problem can be written as143

ui

(
x(r), t

)
=

3∑
j=1

3∑
k=1

Mjk(t, T0) ∗Gij,k

(
x(r), t;x(a)

)
, (1)

where ui is the ith component of the particle displacement vector (u = (u1, u2, u3) where144

1, 2, 3, correspond to the east, north, and down direction, respectively), Mjk represents145

an element of the 3 × 3 moment tensor M at position x(a), i.e., the centroid. Note that146

j and k indicate the axis along which the force is acting and the direction in which the147

arm is pointing, respectively (Aki & Richards, 2002). Furthermore, x(r) denotes the po-148

sition where the displacement is recorded, G is the Green’s tensor, ∗ represents tempo-149

ral convolution, and T0 denotes the origin time. The comma after the second subscript150

of an individual element of the 3 × 3 Green’s tensor implies a spatial derivative in the151

k direction with respect to x(a). To make the computation of u
(
x(r), t

)
for a large num-152

ber of potential centroids (i.e., a large number of x(a)) more efficient, we invoke reciprocity153

(Aki & Richards, 2002). In this study, the numerically modeled particle displacements154

are generated using SPECFEM3D (Komatitsch & Tromp, 2002). For this purpose, we155

use the 3D subsurface models of the Groningen gas field by Romijn (2017).156

2.2 Bayes’ Theorem157

The probabilistic workflow used in this study relies on Bayes’ theorem (or rule).158

In general, Bayes’ theorem describes how, in the presence of prior knowledge, the prob-159

ability of a hypothesis (or model) m depends on the available data dobs. The prior knowl-160

edge is accounted for by the prior probability distribution (often simply referred to as161

‘the prior’). Ignoring the marginal probability (or ‘evidence’), Bayes’ theorem can be writ-162

ten as163

ρ(m|dobs) ∝ ρ(dobs|m)ρ(m), (2)

where ρ(m|dobs) is the posterior probability distribution (or simply ‘the posterior’), ρ(dobs|m)164

the likelihood, and ρ(m) the prior probability distribution. The model vector m is a ten-165

component vector containing the centroid x(a) (where a Cartesian east-north-down co-166

ordinate system implies that x(a) = (x
(a)
1 , x

(a)
2 , x

(a)
3 ); hence three model parameters),167

the moment tensor M (six independent elements and hence six model parameters), and168

–5–



manuscript submitted to JGR: Solid Earth

the origin time T0 (one model parameter). This implies that ρ(m) represents the prior169

probability of these ten parameters.170

Assuming Gaussian observational errors and a Gaussian distributed prior proba-171

bility, the posterior in equation 2 can be written as (Fichtner & Simutė, 2018; Masfara172

et al., 2022):173

ρ
(
m | dobs

)
∝ exp

(
−1

2

(
d(m) − dobs

)⊤
C−1

d

(
d(m) − dobs

)
− 1

2

(
m−m(0)

)⊤
C−1

m

(
m−m(0)

))
.

(3)
Here, d (m) contains the numerically modeled displacement recordings (solution of equa-174

tion 1) and dobs the observed ones. Explicitly, for a total of Nr three-component instru-175

ments, d (m) is a concatenation of all 3×Nr modeled seismograms and dobs a concate-176

nation of all 3×Nr recorded seismograms. Cd, Cm, and m(0) are the data covariance177

matrix, prior covariance matrix, and prior mean, respectively. Evaluating equation 3 re-178

sults in the (a posteriori) probability of the model parameters, i.e., their probability given179

observations and prior knowledge of the system (Tarantola, 2006).180

2.3 Hamiltonian Monte Carlo181

Although Bayes’ theorem describes how the posterior probability distribution de-182

pends on the available data dobs (through the likelihood) and prior knowledge ρ(m), that183

posterior can usually not be estimated directly (Tarantola & Valette, 1981). In partic-184

ular, a large number of model parameters and non-linearity prohibit this. To overcome185

this, we generate a sequence of specific models (often called ‘samples’) in what is referred186

to as a ‘Markov chain’. The density of these samples reflects the density of the poste-187

rior distribution we seek to find.188

Numerous sampling algorithms are available to estimate ρ(m|dobs), all with their189

own advantages and disadvantages. In this study, we implement a workflow that relies190

on the Hamiltonian Monte Carlo (HMC) algorithm. HMC was derived from classical me-191

chanics, applied to statistical mechanics (Betancourt, 2017), and considered one of the192

most efficient probabilistic algorithms for exploring high-dimensional model spaces. HMC193

relies on the sequential calculation of two quantities. These are the ‘potential energy’194

U, which is a function of the model vector m, and the ‘kinetic energy’ K, which, in our195

framework, is solely a function of the momentum vector p. This momentum vector is196

an auxiliary vector that has the same dimension as m (ten in our case). Together, m197

and p make up what is often referred to as the ‘phase space,’ and their joint probabil-198

ity is described by the ‘canonical distribution’ ρ (p,m).199

The canonical distribution can be written in terms of an invariant function H (p,m),200

i.e.,201

ρ (p,m) = e−H(p,m). (4)

Here, H (p,m) is referred to as ‘the Hamiltonian’, and its value in phase space is usu-202

ally called ‘the energy’ at that point (Neal et al., 2011). As such, a model m can be looked203

upon as the position of a “particle” (Betancourt, 2017).204

Rewriting equation 4, and substituting the posterior probability (i.e., ρ (p,m) →205

ρ(p,m | dobs)), we have206

H
(
p,m | dobs

)
≡ − ln

(
ρ
(
p,m | dobs

))
= = − ln[ρ(p | m)] − ln

[
ρ
(
m | dobs

)]
= K(p,m) + U(m). (5)

Here, U(m) ≡ − ln ρ(m | dobs).207

Equation 5 describes the more general case; in our implementation, K (p,m) is merely208

a function of the momentum vector and hence K (p,m) → K (p). Specifically, it is given209
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by (Fichtner & Simutė, 2018; Masfara et al., 2022)210

K(p) = pTM−1p/2, (6)

where the mass matrix M acts as a tuning parameter (Fichtner et al., 2019, 2021), al-211

lowing the particle to move through the desired areas of phase space with correspond-212

ing potential and kinetic energy (Betancourt, 2017).213

Starting from an initial estimate of m with some prescribed initial momentum, Hamil-214

ton’s equations, which read215

dm

dτ
=

∂K

∂p
,

dp

dτ
= − ∂U

∂m
, (7)

will efficiently explore areas with relatively low potential energies (corresponding to the216

a posteriori more probable areas of the model space; see equation 5). Here, the quan-217

tity τ is the ‘artificial time’ that is used to propagate (the particle) from the initial model218

along trajectories of constant H. This propagation occurs for some (to-be-determined)219

time τlp, where the subscript ‘lp’ stems from ‘leap’ as we use the leapfrog algorithm to220

evaluate 7. The model reached at τlp, i.e., m(τlp), is subsequently accepted with prob-221

ability222

θ = min

[
1,

ρ (p(τlp),m(τlp))

ρ (p,m)

]
, (8)

which is usually referred to as the ‘metropolis rule’ (Tarantola, 2005). If the model m(τlp)223

is not accepted, the process will be repeated by introducing a new (different) momen-224

tum vector to the initial model. If accepted, the model m(τlp) will serve as the start-225

ing point for a new deterministic trajectory after being endowed with momentum.226

Figure 2. Illustration of model space exploration using Metropolis-Hastings (a) and Hamil-

tonian Monte Carlo (b) algorithms. Note that with a similar number of accepted samples, HMC

explores the distribution more efficiently via a combination of iterative short and long trajec-

tories. This is achieved by prescribing a different momentum for each trajectory and iterative

computation of Hamilton’s equations. Mind that we only show the rejected samples of the first

two moves/accepted samples for both algorithms.

–7–



manuscript submitted to JGR: Solid Earth

2.4 Linearization of the Forward Problem227

To ease the computation of the gradient of the potential energy in the model space,228

Fichtner and Simutė (2018) linearize equation 1 by means of a Taylor expansion around229

the prior mean m(0) (see Appendix A). Simutė et al. (2022) use this same modification230

and 3D Earth models to characterize tectonic earthquakes below the Japanese penin-231

sula. In these studies, m(0) is obtained from an earthquake catalog, which is not always232

directly available for induced earthquakes. Replacing, in d(m), the numerically mod-233

eled displacements u(x(r), t) by numerically modeled displacements resulting from a lin-234

ear approximation of equation 1 implies that we assume m(0) to be “sufficiently close”235

to the true model parameters. This merely applies for the centroid x(a) and origin time236

T0. That is, since the particle displacement depends linearly on the moment tensor com-237

ponents, the linearization does not impose an approximation when it comes to the mo-238

ment tensor components. Importantly, “sufficiently close” means that the centroid x(a)
239

and origin time T0 should be at sub-wavelength and sub-period distance from the true240

centroid and origin time, respectively.241

In our case, the assumption that m(0) is sufficiently close to the true model param-242

eters is usually not met. This will render the application of HMC ineffective (to state243

the least). In order to apply HMC (including a linear approximation of equation 1) to244

induced earthquakes, two main challenges, therefore, need to be addressed. First, the245

recorded seismograms are often dominated by high-frequency signals (>1 Hz), increas-246

ing the non-linearity of the forward problem. Second, as mentioned earlier, the prior in-247

formation is often unavailable or rather inaccurate. To address these challenges, in this248

study, we use the multi-stage workflow introduced by Masfara et al. (2022). This means249

that we iteratively update m(0), which is detailed in the remainder of this section. In250

addition, we run this workflow multiple times (in parallel), each starting from a differ-251

ent m(0). This is explained in Section 2.5. In the remainder of this paper, we will refer252

to the HMC variant that involves a linearization of the forward problems as ‘linearized253

HMC’. It should be understood, however, that this does not involve a linearization of254

Hamilton’s equations itself.255

Figure 3 illustrates the embedding of linearized HMC in the proposed multi-stage256

workflow. Iteratively updating m(0) partly overcomes deviations of the estimated pos-257

terior from the true posterior, as such addressing the first challenge. Given a first m(0),258

the three quantities in equations A4-A6 need to be computed only once in order to sam-259

ple a “local posterior” around that m(0). These quantities are used to compute the gra-260

dient of the potential energy and hence evaluate Hamilton’s equations and the Hamil-261

tonian itself (equations 7 and 5, respectively). Importantly, in the absence of a lineariza-262

tion of the forward problem, the computation of equations 7 and 5 requires the forward263

problem to be evaluated during each deterministic trajectory. Linearization of equation264

1, resulting in the three aforementioned quantities, renders this unnecessary for each in-265

dividual stage (Masfara et al., 2022).266

When m(0) does not coincide with the true model parameters, the linearized HMC267

algorithm will explore a “local posterior” that deviates from the true posterior distri-268

bution despite being computationally efficient. This is illustrated in Figure 3(a), where269

the linearized HMC can only explore the area above the orange curve. To obtain a bet-270

ter approximation of the posterior, the workflow uses the result of exploring the local271

posterior in Figure 3(a) to obtain a new m(0) (essentially taking the mean of the local272

posterior and using that as m(0)). Linearization of the forward problem about the up-273

dated m(0) and re-computation of the aforementioned quantities allows for a new explo-274

ration of the model space in Figure 3(b) and (c). After five Taylor expansions about the275

new m(0), six local posteriors are estimated. The associated distributions are, for each276

stage, depicted in Figure 3(d). Having the results from all stages in (d), the workflow277

then uses variance reduction (e.g., Mustać & Tkalčić, 2016; Masfara et al., 2022) as a278
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Figure 3. Illustration of linearized HMC embedded in the multi-stage workflow detailed in

Masfara et al. (2022). Panel (a) to (c) depict the sampling of a local posterior associated with

different m(0). In (a), m(0) is the initial prior mean. In the next stage (b), m(0) is updated using

the results of the exploration of the local posterior associated with this initial prior mean until

m(0) (almost) coincides with the most likely model (c). The workflow’s progression up to five

stages is shown in (d). (e) is the final posterior composed using variance reduction criterion,

which discriminates the first two stages from stages 2 to 5.

criterion to select stages that should be included in the estimate of the final posterior.279

This is depicted in Figure 3(e).280

2.5 The Importance of the Prior281

Having an inaccurate m(0) can only partly be overcome by updating m(0) in pro-282

gressive stages. That is, the multi-stage workflow will still be ineffective when the ini-283

tial m(0) is located in a “local mode” of the posterior distribution (i.e., associated with284

a local minimum of the potential energy). The chance of this happening increases with285

an increase in the non-linearity between the model parameters and the observed displace-286

ment recordings (i.e., higher frequencies). In practice, this happens when the centroid287

x(a) and origin time T0 in m(0) are separated from the true centroid and true origin time288

by more than (approximately) half a wavelength or half a period, respectively. To ad-289

dress this, we additionally use multiple initial m(0) concatenated in a list which we de-290

note by m
(0)
list (the list consists of m

(0)
1 , m

(0)
2 , .... m

(0)
N with N being the total number291

of m(0)). These initial m
(0)
i differ to the extent that the centroid position is different for292

each of them. The use of m
(0)
list is to ensure some of the individual m

(0)
i are contained in293

the global minimum. The same criterion is used to select which (local posterior) distri-294

butions can be included in the final posterior (i.e., which stages). That is, the variance295

reduction is now computed for all stages associated with the individual (initial) m
(0)
i in296

m
(0)
list. We illustrate the process of using multiple m(0) in Figure 4. We depict three ini-297

tial m(0), with one located in the “correct” lobe, that is, m
(0)
2 . Each of the m(0) will then298

be updated in a similar fashion as shown in Figure 3. While m
(0)
1 and m

(0)
3 ended up299

sampling the wrong lobe, the updated m
(0)
2 enables the linearized HMC algorithm to sam-300

ple the correct lobe. In Figure 4(b), we detail the last stage of the multi-stage workflow301

that started with m
(0)
2 in the red circle.302
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Figure 4. (a) Illustration of using multiple initial m(0) while sampling a complex/multimodal

posterior distribution using linearized HMC. (b) zoom of the last stage of the multiple stages

associated with the initial model prior m
(0)
2 .

We end this section by emphasizing that although being very efficient in sampling303

the posterior distribution (through the potential energy), the proposed multi-stage work-304

flow (including the use of multiple initial priors m
(0)
i ) ultimately only results in an ap-305

proximate posterior distribution. This is because the true observational errors are not306

necessarily Gaussian and uncorrelated (which we assume in this study) and because we307

linearized the relation between observed particle displacement and model parameters.308

In addition, the 3D velocity model used to model (numerically) displacement recordings309

(according to equation 1) is assumed to coincide with the true velocity model. Since this310

will not be the case, another “source of error” is introduced, which in practice will re-311

sult in a deviation of the estimated posterior from the true posterior. Moreover, since312

a Markov process only approaches the true posterior asymptotically, a Markov-chain-313

based estimate of the posterior is, by definition, an approximation. Whereas the latter314

two cannot be circumvented (we don’t have the exact subsurface model and also can-315

not run a Markov chain for an infinite amount of time), the linearization is, in princi-316

ple, not necessary, and also Gaussian observational errors do not need to be assumed.317

Not doing so, however, would make the computational demands prohibitively large.318

3 Data319

In this study, dobs contains the 3 × Nr recordings of displacements (uobs) due to320

an induced event that occurred close to the village of Westerwijtwerd in 2019, the province321

of Groningen (see Figure 1). The KNMI estimates the magnitude of the earthquake to322

be 3.4 local magnitude. We collected uobs from ten G-network seismometers. These seis-323

mometers are selected based on their distance and azimuthal coverage with respect to324

the estimated epicenter. In Figure 5(a), we depict the ten seismometers as white inverted325

triangles and the location of the KNMI-estimated epicenter by a blue star. The seismome-326

ters are part of the KNMI borehole network: each borehole contains four vertically-separated327

seismometers. The number at the end of their ID indicates their depth, i.e., their IDs328

run from ..1 to ..4, with the instruments numbered ..1 being at 50 m depth and the in-329

struments numbered ..4 being at 200 m depth. We illustrated the configuration of a string330

of borehole seismometers in Figure 5(b).331

From the four seismometers in each borehole, we solely used the seismograms recorded332

by the deepest seismometers: they have a higher signal-to-noise ratio than the shallower333

seismometers (Dost et al., 2012). Furthermore, all seismometers experience a horizon-334
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Figure 5. (a) Depth of top Rotliegend (reservoir) in area of interest. Solid black dots delin-

eate mapped faults (Bourne & Oates, 2017). The inset at the bottom right shows the location of

the study area. (b) Illustration of borehole seismometers in the G-network.

tal rotation while lowering them in the borehole. Consequently, a rotation needs to be335

carried out for projecting the horizontal recordings to specific preferred orientations, which336

in our case are to the east-west(x1-axis) and north-south(x2-axis) orientations, respec-337

tively. In Figure 5(b), we illustrate the orientation of the deepest borehole seismome-338

ter. The axis H1 and H2 are proxies of east and north. We then rotate the data to the339

true east and north using the angles given in Ruigrok et al. (2019). We depict the orig-340

inal seismograms (obtained from the KNMI) and the rotated seismograms of the selected341

seismometers in Figure 6.342

Dost et al. (2020) have used the same recordings to characterize the Westerwijtwerd343

event probabilistically. These authors, however, use local 1D velocity models to solve the344

forward problem. Furthermore, they separately use 0.5 and 1s windows of P and S waves,345

respectively, where the P-wave is given more weight and evaluated at higher frequencies346

(i.e., 2-4 Hz for P and 1-3 Hz for S-wave). The P-wave waveform is given a higher weight347

because of the higher accuracy of the employed P-wave velocity models (compared to348

the S-wave velocity models). Also, these authors only use the vertical components of the349

recorded P-wave and the transverse component of the recorded S-waves. To account for350

inaccuracy in the velocity models, they allow individual, station-specific shifts of 0.1 s351

for both wave types. Another study in the area is by Smith et al. (2020), which uses a352

coherence method. This study focuses on determining the hypocenter. They find most353

Groningen earthquakes to systematically originate approximately 200 m above the reser-354

voir layer. In this study, we exclusively use P-wave seismograms due to the significantly355

higher accuracy of the P-wave model. Furthermore, we use both the vertical and hor-356

izontal components and filter the recordings using a passband of 1-4 Hz, similar to the357

frequency range used by Dost et al. (2020). As for the length of the measurement win-358

dow, we use 2.5s for all components and taper both ends with a 0.5 s cosine taper. For359

the data covariance, we use a diagonal matrix representing uncorrelated noise and es-360

timate this to be 5% of each component’s maximum amplitude. By taking a certain frac-361

tion of the maximum amplitude, we overestimate the ‘true noise’. The reason for this362

is that we want to account for (part) of the waveform misfit arising from the deviation363

of the employed velocity model Romijn (2017) from the true (unknown) velocity model.364
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Figure 6. Observed seismograms before (green) and after rotation/polarity switch (black).

Recordings are normalized (individually) with respect to maximum particle displacement (written

in blue).

Before applying it to the field data, we perform a synthetic experiment, detailed in the365

next section.366

4 Synthetic Experiment367

In this section, we test the validity of the proposed workflow and data processing368

parameters (i.e., frequency band, length of the measurement window, and noise crite-369

ria) on a synthetic event. For this, we first generate synthetic data using the KNMI-estimated370

hypocenter as the centroid of our synthetic earthquake. We then set T0 to 3 s, and for371

the MT, we use the values of 0.2E13 Nm, 2.86E13 Nm, -3.07E13 Nm, 0.76E13 Nm, -0.45E13372

Nm, -1.71E13 Nm for Mnn, Mee Mdd, Mne, Mnd, and Med respectively. These values373

represent pure shear normal faulting (rake of -90°) along a geological fault with a strike374

of 165°, a dip of 60°, and a moment magnitude of 3. We then corrupt the data in the fre-375

quency domain to simulate the presence of uncorrelated noise. This is implemented us-376

ing the same approach as Mustać and Tkalčić (2016). In the time domain, the uncor-377

related noise results in amplitude variations that affect the estimation of our centroid378

and MT, and shift the observed recordings in time (resulting in uncertainty in T0). To379

effectively test the workflow, we first choose a (single) m(0) that significantly deviates380

from the actual value (i.e., the synthetic earthquake parameters). For the centroid, we381

impose a shift of 200 m along each axis, i.e., the centroid in m(0) deviates 200 m from382

x
(a)
east, x

(a)
north, and x

(a)
depth. For the MT, we simply assign a uniform value to each MT com-383

ponent, and for T0, we impose a shift of 0.5 s. We then run our workflow for 20 stages384

(i.e., the prior mean m(0) is updated twenty times). The results are presented in Fig-385

ure 7.386
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Figure 7. Marginal posterior probabilities obtained through applying the proposed linearized

HMC workflow to synthetic recordings. The stars represent the initial m(0). The black and green

dots represent all accepted samples from all 20 stages and samples from selected stages (i.e., the

VR-score exceeds 0.95) used to compose the final posterior, respectively. The red lines represent

the true (synthetic) model parameters, and the red dots are the samples generated running the

generic (non-linearized) HMC algorithm.

The yellow stars represent the initial m(0), and the red lines represent the true syn-387

thetic earthquake parameters. The black dots are the samples generated from all 20 stages,388

which are equivalent to samples used to build all the histograms from exploring local pos-389

teriors in Figure 3(d). Whereas the green dots are the samples from selected stages based390

on a VR criterion, equivalent to the samples from the selected stages in Figure 3(e). The391

red dots represent samples resulting from a generic HMC run (i.e., HMC without lin-392

earizing the forward problem). This run was terminated as soon as the number of times393

for which the forward problem needed to be solved coincided with the number of times394

the forward problem was solved while running the multi-stage workflow in which the for-395

ward problem was linearized. Mind that each solution of the forward problem involves396

the computation of 3 × 10 seismograms (recall from Section 3 that Nr = 10).397

Let us demonstrate the computational benefit of the multi-stage workflow (in con-398

junction with a linearization of the forward problem) over generic HMC (which does not399

involve this linearization). The number of times the forward problem needs to be solved400

in order to generate four model samples using generic HMC (represented by the star and401

the red dots in Figure 7) is 404. Here, each ‘solution of the forward problem’ in prac-402

tice involves a separate computation of the ui

(
x(r), t

)
in equation 1. We arrive at 404403

as follows: it depends on the number of generated samples Ns (4 in this case), the num-404

ber of leaps Nlp to arrive at m(τlp) (here we use 5), and the number of model param-405

eters Nm (10 in our case). First, with the prescribed five leaps to arrive at a new model406

started from the current model, we evaluate equation 7 five times. Second, the evalu-407

ation of equation 7 requires the computation of ∂U
∂m . For that, we use a central differ-408

ence approximation, which means that for each of the ten parameters in m, we must eval-409

uate U twice. Additionally, after the five leaps, we still have to compute ρ (p(τlp),m(τlp))410

to evaluate equation 8, which requires one additional solution of the forward problem411

per sample. Consequently, the total number of forward problem solutions coincides with412

Ns×Nlp×2Nm+Ns= 404. Linearization of the forward problem reduces this number413

dramatically. In fact, for every stage of the multi-stage workflow, the number of sam-414

ples that can be generated is unlimited in the sense that it does not require additional415
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solutions to the forward problem. The forward problem just needs to be run 2×Nm =416

20 times per stage. This number stems from the (one-time) computation of the deriva-417

tives of U . These derivatives are included in the Apq, bp, and c (equations A4, A5, and418

A6 in appendix Appendix A, respectively). Therefore, to generate all samples for a to-419

tal of 20 stages (i.e., 20 updates of m(0)), the number of times the solution to the for-420

ward problem needs to be computed is just 400.421

Figure 8. Seismograms modeled using the posterior mean (gray) compared to the modeled

observed recordings with noise added (brown) and the modeled observed recordings without noise

(green).

We use the mean of the approximate posterior resulting from our multi-stage work-422

flow to generate displacement recordings. In Figure 8, we compare these recordings with423

the observed (synthetic) recordings. The observed recordings are depicted in brown (re-424

call that noise is added to these seismograms). The recordings associated with the mean425

values of our estimated posterior are depicted in grey and align well with the noise-free426

recordings associated with the true source parameters (depicted in green).427

5 Prior Knowledge428

In Subsection 2.5, we discussed the importance of using m
(0)
list to avoid getting trapped429

in a local mode. For the purpose of generating m
(0)
list, we make use of the available fault430

map of Groningen’s subsurface by Bourne and Oates (2017). This is inspired by research431

that reveals a strong correlation between hypocenters and major faults in Groningen’s432

subsurface (Pickering, 2015; Spetzler & Dost, 2017; Willacy et al., 2018). In this con-433

text, we also evaluate the importance of the displacement along the horizontal compo-434

nents for the estimated posterior. The reason for this is potential errors arising from pos-435

sible incorrect rotations of the horizontal displacements (see Section 3). Combined, we,436
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therefore, investigate three different cases: two centroid prior configurations (i.e., with437

different m
(0)
list) of which one is used in conjunction with both the vertical component record-438

ings and the three-component recordings. The configuration that uses known faults in439

the reservoir as a basis to generate the m
(0)
list, in conjunction with the vertical component440

recordings only, is referred to as ‘1C-fault’. The same configuration, but used to estimate441

the posterior based on the recordings by all three components, is referred to as ‘3C-fault’.442

The other centroid prior configuration we consider consists of a square grid that covers443

not just the fault but also the surrounding area. This configuration of m
(0)
list is only used444

in conjunction with the recordings by all three components and is referred to as the ‘3C-445

grid’. This centroid prior configuration is considered to evaluate whether the recovered446

posterior might peak at a centroid position that deviates from the known fault geom-447

etry. The two different centroid prior configurations are depicted in Figure 9.448

Figure 9. Horizontal positions of the different centroid priors for the two different prior con-

figurations considered. The first configuration is guided by the known fault geometry inside the

green circle and is represented by the yellow stars. This circle has a 1km radius and is centered

at the epicenter estimated by the KNMI (blue star). The second centroid prior configuration uses

a 2 km x 2 km grid with again the KNMI-estimated epicenter at its center. These centroid priors

are depicted as green stars.

To generate the entries (individual m(0)) in m
(0)
list of the two considered prior con-449

figurations, we first draw a circle with a 1 km radius around the epicenter estimated by450

the KNMI. The enclosed area is colored dark green in Figure 9. Next, we discretize the451

fault inside the circle using a spatial sampling criterion based on the approximate seis-452

mic P-wave velocity within the circle and the highest frequency we use while fitting the453

waveforms. This criterion provides a rough estimate of the minimum “wavelength” of454

the posterior distribution. By discretizing the fault such that the individual centroids455

(associated with individual m
(0)
i ) in m

(0)
list are separated by less than half this wavelength,456

we therefore, ensure that at least one of the initial priors is located in the “correct” lobe,457

i.e., similar to what we have illustrated in Figure 4. Given the P-wave velocities at reser-458
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voir depth and a maximum frequency of 4 Hz (recall that we filter the recordings using459

a passband of 1-4 Hz), we arrive at a value of 200 m for this criterion. This is hence the460

separation along the fault at which individual centroid priors are placed. We depict these461

initial centroid priors in Figure 9 as yellow stars. At the same time, the fault orienta-462

tions at these positions are used to determine the six moment tensor entries in the ini-463

tial priors. As for the depth and origin time T0 in the m
(0)
i , we use the values estimated464

by the KNMI for both configurations (i.e., 3 km for the depth and 2019-05-22T03:49:00.075s465

for the origin time). In total, 19 individual m(0) are concatenated in m
(0)
list for 1C-fault466

and 3C-fault. For the third case, we consider a centroid prior configuration consisting467

of a square grid of 2 km × 2 km, with the center again being the epicenter estimated by468

the KNMI. We use the same criterion (200 m) to determine the horizontal spacing be-469

tween the individual centroid priors. In Figure 9, we depict these as green stars. For the470

depth and origin time, we use identical values. Furthermore, for the MT, we assign a uni-471

form value to each MT component for each individual m(0). In total, we obtain 121 ini-472

tial m(0) for this configuration.473

6 Application to Field Data474

For all cases described above (1C-fault, 3C-fault, 3C-grid), our multi-stage work-475

flow consists of 20 stages. For the centroid prior configuration derived from the geom-476

etry of the known faults within the reservoir m
(0)
list contains N = 19 m(0), which implies477

a total of 380 stages. For the 3C-grid, a total of 121 initial priors serve as starting model478

of the 121 multi-stage workflows (see Figure 9), resulting in a total of 2420 stages for this479

configuration. For each stage, we then compute the VR score based on the recordings480

u
(
x(r), t;m

)
associated with the mean model m of all 3000 individual models within that481

stage. Stages for which the VR score exceeds 0.95 are subsequently used to build our fi-482

nal posterior distribution. For each of the three cases considered, and for each of the ini-483

tial centroid prior means, we show in Figure 10 the VR score associated with that m
(0)
i484

of the 20 m(0) in m
(0)
list for which the VR score attains its maximum. Note that this model’s485

centroid is usually not at the location of the initial centroid prior mean (i.e., the centroid486

in m
(0)
0 ) because the models for which the waveforms best fit the observed recordings487

are often found in one of the later stages; see also Figure 3. For all three cases consid-488

ered here, the highest VR scores are obtained in those chains for which the initial cen-489

troid prior mean is close to a fault.490

Figure 10. Maximum VR score in each of the chains associated with the different initial m(0)

for the three different cases considered (from left to right: 1C-fault, 3C-fault, and 3C-grid, re-

spectively). Note that here we represent them by plotting the initial prior means (of the lateral

positions) of the centroid.
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6.1 Estimated Posterior491

In Figure 11, we display the 1D marginal posterior distributions obtained from the492

selected stages of each configuration. In general, the mean value of these posteriors is493

fairly consistent across configurations, especially for 3C-fault and 3C-grid. For the 1C-494

fault case, the mean of the posteriors slightly deviates while at the same time having a495

slightly broader distribution compared to the other two cases. We attribute this to the496

fact that, for 3C-fault and 3C-grid, the additional data reduces the uncertainty of the497

estimates. In Figure 12, and for 3C-fault, we also plot the progression of the different498

stages associated with one of the individual centroid priors included in one of the m(0)
499

in m
(0)
list. Specifically, we show the progression of that workflow (i.e., starting from that500

m
(0)
i ) that contains the stage that results in the overall maximum VR score. The ver-501

tical lines represent the start of different stages, and the red horizontal lines are the pos-502

terior means computed using the selected stages (after evaluating the VR scores for all503

stages). The progression follows a trend identical to the illustration in Figure 3(d), es-504

pecially for the origin time T0 with a slight variation for some others, such as for the depth505

and Mnd that shift monotonically to lower values. It is important to add that an initial506

estimate of T0 was obtained using the envelope of the traces. This is described in detail507

in Section 6.1 of Masfara et al. (2022).508

Figure 11. 1D marginal posterior distributions for the three different cases considered. ’1C-

fault’: initial centroid prior configuration derived from the geometry of the known faults within

the reservoir, and only the vertical particle displacement recordings are used. ’3C-fault’: initial

centroid prior configuration derived from the geometry of the known faults within the reservoir,

but both horizontal and vertical particle displacement recordings are used. ’3C-grid’: initial cen-

troid prior located on a regular grid in a horizontal plane at the approximate (expected) depth of

the event, and both horizontal and vertical particle displacement recordings are again used.

6.2 Traces Associated With the Posterior Distribution509

Using the posterior mean in Figure 11, we generate synthetic data and compare510

these with the observed data in Figure 13. In our workflow, the misfit in equation A1511

is based on 2.5 seconds of the observed particle displacement, bandpass filtered between512

1 and 4 Hz. Here, for consistency, we adopted the same values for these parameters. Ad-513

ditionally, we show in Figure 13 the maximum and minimum bounds using synthetic data514
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Figure 12. Progression of 20 stages from using one of the m(0) in the 3C-fault configuration.

The vertical lines represent different stages, whereas the red lines are the posterior mean (i.e., the

mean of the green distributions in Figure 11) obtained from the selected stages based on the VR

criteria for 3C-fault configuration.

generated from 1000 models drawn from the posterior distribution. We depict those bounds515

as a shaded area in Figure 13.516

6.3 Source Characteristics517

To investigate the source characteristics of the analyzed induced event, we first de-518

compose the MTs of the posteriors shown in Figure 11. In this study, we do not limit519

our solutions to a single mechanism. We, therefore, decompose our moment tensor so-520

lutions into their ISO, DC, and CLVD components. We do this for each case (1C-fault,521

3C-fault, and 3C-grid) and depict the decompositions in the Hudson plots in Figure 14.522

The mean MT for each case is represented by the beachball with the red outline. For523

all cases, the DC “region” is densely clustered (i.e., the center of the plot), with nega-524

tive ISO components clearly outnumbering positive ISO components. This is often at-525

tributed to the compaction due to the gas extraction (Dost et al., 2020). We show the526

posterior distributions of the different MT components in Figure 15 (bottom row). Fur-527

thermore, in the top row, we depict the translation of the MT solutions in Figure 14 to528

distributions of strike, dip, and rake. Here, we only show solutions with strikes between529

90◦ and 180◦, which are in accordance with the orientation of the fault close by (given530

the centroid posterior distributions).531

We visualize the centroid posterior distributions using horizontal and vertical slices532

of the Groningen subsurface (Figure 16). In the top row, we show the depth of the top533

reservoir as a contour map, including the location of faults from Bourne and Oates (2017)534

at that depth. On top of these contour maps, we show the samples used to generate the535

2D marginal posterior distributions of the lateral position of the centroids. We also plot536

the result from Dost et al. (2020) and the KNMI as the black beachball and blue star,537

respectively. The red beachball represents the mean MT which is also depicted in Fig-538

ure 14 (beachball with red outlines). Not only do the posterior means of the (lateral) cen-539

troid positions coincide with the known fault, but also does the moment tensor solution540

agree quite well with the strike of the nearby fault. On the vertical slices (middle and541

bottom rows), we depict the depth of the top reservoir as solid black lines. The location542

of the east-west vertical cross section and the north-south vertical cross section are shown543

as red and blue lines in the contour maps, respectively. For this specific earthquake, we544

find the posterior mean of the centroid to be slightly shallower than the centroid esti-545
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Figure 13. The comparison between observed and numerically modeled seismograms. The

modeled seismograms are generated given the posterior mean for estimated for each of the con-

sidered cases (see Figure 11). The shaded area is within the maximum and minimum bounds of

a total of 1000 waveforms generated using 1000 models drawn from the posterior distributions

in Figure 11. Each seismogram is filtered and tapered using the same parameters used in the

multi-stage HMC workflow. The duration of each trace plotted here is 3.25s.

mated by Dost et al. (2020). In fact, instead of being within the reservoir, we find the546

probability of having the earthquake nucleated above the reservoir is higher. The earth-547

quake (model) parameter that has the strongest trade-off with depth is origin time. This548

is because an earlier origin time can be translated to an earthquake occurring at greater549

deeper and vice versa. In this study, origin time uncertainty is considered, and the re-550

sult shows that the estimated T0 from the KNMI is lagging by a few milliseconds. As551

a caveat, however, we do not consider the uncertainty in the 3D velocity models, which552

may not only introduce amplitude variations but also affect the origin time and/or depth.553

For a more detailed comparison, in Table 1, we list the mean and standard deviation of554

our estimated parameters (for the MTs, we convert these into strike, dip, and rake so-555

lutions) and compare them with the result of Dost et al. (2020) and the KNMI (hypocen-556

ter only).557
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Figure 14. Hudson plot that shows the decomposition of the source mechanisms given the

posterior distributions in Figure 11. The beachball with the red outlines represents the mean

MT.

Figure 15. Top: The distributions of strike, dip, and rake solutions given the beachballs in

Figure 14. Here we only show one part of the solutions closer to the orientation of the nearby

major faults. Bottom: The marginal posterior distributions for different earthquake mechanisms

given the decomposition in Figure 14.

7 Discussion and Conclusion558

Using a probabilistic workflow incorporating the HMC algorithm, we estimate the559

source characteristics of a 3.4 ML induced earthquake associated with gas extraction from560

the Groningen gas field. Specifically, we estimate the posterior probability density of ten561

earthquake parameters using two different sets of initial prior probabilities, of which one562

is used in conjunction with two sets of data: one consisting only of vertical component563

displacement recordings and a second one composed of the particle displacement in all564

three directions (east, north, down). We find that the posteriors estimated using both565

horizontal and vertical components of the seismograms (i.e., the latter data set) have sim-566

ilar shapes. At the same time, the one that only depends on the vertical component record-567

ings yields a posterior that deviates (slightly) from the results of the other two cases while568

simultaneously being slightly broader. However, we find no substantial difference in the569

modeled seismograms associated with the different posterior means. In terms of runtime,570

using an 8-core MacBook Pro (2018 version), it took us a maximum of 3 minutes to run571

the 19 multi-stage workflows of the 1C-fault and 3C-fault case, and 12 minutes for the572

121 multi-stage workflows of 3C-grid.573
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Figure 16. Comparison of samples used to generate centroid posterior distributions in Figure

11 (east, north, and depth) with the centroid estimated by Dost et al. (2020) and the KNMI. The

samples are color coded with the density of centroid posteriors. The black line in the last two

rows represent the top reservoir obtained from slicing the top reservoir map based on the red and

blue line in the top row.

The main factor that affects the shape of the posteriors is uncertainty, which, in574

this case, is formulated as data and model uncertainty. In our study, we choose a uni-575

form distribution for the model parameters to encode a state of ignorance (i.e., σm →576

∞). Whereas the data uncertainty is estimated individually for each component on each577

seismometer (and hence captured by σri in Apq, see Equation A4, where the indices r578

and i are associated with a specific receiver and component, respectively). It is assumed579

that the noise is uncorrelated. Prescribing the noise to be correlated will make the work-580

flow more complex and computationally more costly and requires us to estimate data581

covariance matrices. In addition, a study by Gu et al. (2018) reveals that in the case of582

induced seismicity, accounting for (potentially) correlated noise has relatively little ef-583

fect compared to the uncertainty arising from the inaccuracy of the velocity model. Ide-584

ally, the latter is also formally included. The relation between a specific source model585

(i.e., a specific set of model parameters) and the particle displacement at the surface will,586

in that case, be quantified by means of a probability density function (Tarantola & Valette,587

1981). Due to limited computational resources, however, we disregard the uncertainty588

associated with the velocity model. Including it (for our 3D velocity model) will require589

enormous computational effort as each ‘cell’ in the model must be varied according to590

their variance when computing the forward problem represented by Equation 1 (effec-591

tively, the Green’s functions will become probability density functions). While using 1D592

velocity models, lateral heterogeneity is not considered, and therefore, the number of cells593
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will be exponentially reduced and hence the computational burden. In general, using 3D594

models has improved the characterization of earthquake sources since they better rep-595

resent the subsurface compared to 1D models (Hingee et al., 2011; Hejrani et al., 2017;596

Wang & Zhan, 2020).597

Many studies involving MT inversions limit the model space to purely double-couple598

sources. Often, this limitation is justified by (presumed) a priori information of the source599

type. For example, a DC mechanism is usually sufficient to explain faulting in tecton-600

ically active areas where volumetric components can be expected to be negligible. In the601

context of induced seismicity, however, numerous studies have found that non-DC com-602

ponents explain a substantive part of the observed recordings (Caputa et al., 2021; Cesca603

et al., 2013; Š́ılenỳ & Milev, 2008). In the context of the gas extraction below Gronin-604

gen, a study by Willacy et al. (2019) uses waveform data to obtain moment tensor so-605

lutions assuming that the earthquakes can be explained by DC mechanisms. Hence, they606

only estimated the best DC mechanisms of each observed earthquake. Meanwhile, an-607

other study by Kühn et al. (2020) (also focusing on the events in Groningen) reveals that608

ignoring non-DC components significantly affects the solution and data fit. In this study,609

we find the DC component to be dominant but still need the ISO and CLVD components610

to be non-zero in order to explain the data.611

As for the centroid, we find that it is likely that the earthquake nucleated above612

the reservoir. In our case, the posterior mean is located a bit above 2.8 km depth. This613

is a small shift from the estimate by Dost et al. (2020), who estimate the earthquake to614

be located inside the reservoir. A recent study by Smith et al. (2020), however, finds that615

most of the Groningen earthquakes nucleated just above the reservoir, although this study616

does not include the event we are using here. Considering both the centroid and MT so-617

lution, we find that the models that best explain the recorded particle displacements cor-618

relate well with the nearby fault (see Figure 16).619

For the workflow to be applied to a larger number of induced earthquakes, we be-620

lieve a couple of additions would be beneficial. The first is related to the estimation of621

the data uncertainty. Since the workflow relies on Bayesian inference, the data uncer-622

tainty is rather critical while shaping reliable final posterior distributions. A second ad-623

dition would be to allow for correlated noise. Particularly for the Groningen earthquakes,624

the effect of correlated noise for source characterization is not considered in any of the625

publications cited in this manuscript. Quantifying its effect on source parameters esti-626

mations would therefore be relevant.627

Appendix A Linearization of the Forward Problem628

In the context of Hamiltonian Monte Carlo, a model m can be interpreted as the629

position of a particle in the 2Nm-dimensional phase space (Betancourt, 2017). Using equa-630

tion 3, this particle’s potential energy U , which is defined as U(m) ≡ − ln ρ(m | dobs),631

therefore reads (Fichtner & Simutė, 2018; Masfara et al., 2022)632

U (m) =
1

2

(
d(m) − dobs

)⊤
C−1

d

(
d(m) − dobs

)
− 1

2

(
m−m(0)

)⊤
C−1

m

(
m−m(0)

)
. (A1)

where we have, for convenience, ignored the proportionality constant (this does not633

affect our results as it is independent of m.)634

In this study, the HMC variant that involves a linearization of the forward prob-635

lems is referred to as ‘linearized HMC.’ Linearization of the forward model implies a Tay-636

lor expansion of equation 1 about the prior mean m(0), and subsequently dropping higher637
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order terms. The linear approximation of ui reads (Fichtner & Simutė, 2018)638

ui

(
x(r), t;m

)
= ui

(
x(r), t;m(0)

)
+

Nm∑
p=1

∂

∂mp
ui

(
x(r), t;m(0)

)(
mp −m(0)

p

)
. (A2)

Substituting this approximation in equation A1, U(m) can be written as follows:639

U(m) =
1

2

Nm∑
p,q=1

(
mp −m(0)

p

)
Apq

(
mq −m(0)

q

)
+

Nm∑
p=1

bp

(
mp −m(0)

p

)
+

1

2
c, (A3)

where Apq, bp, and c read640

Apq ≡ 1

T

Nr∑
r=1

3∑
i=1

σ−2
ri

∫ T

0

∂

∂mp
ui

(
x(r), t;m(0)

) ∂

∂mq
ui

(
x(r), t;m(0)

)
dt +

1

Nmσ2
m

, (A4)

bp ≡ 1

T

Nr∑
r=1

3∑
i=1

σ−2
ri

∫ T

0

[
ui

(
x(r), t;m(0)

)
− uobs

i

(
x(r), t

)] ∂

∂mp
ui

(
x(r), t;m(0)

)
dt, (A5)

and641

c ≡ 1

T

Nr∑
r=1

3∑
i=1

σ−2
ri

∫ T

0

[
ui

(
x(r), t;m(0)

)
− uobs

i

(
x(r), t

)]2
dt, (A6)

respectively. Here, σ−2
ri encodes the data uncertainty for receiver number r and com-642

ponent i. This formulation implies that the noise is assumed to be uncorrelated. Sim-643

ilarly, a pairwise uncorrelated prior probability of the model parameters is considered.644

(i.e., Cm is diagonal). Using the three quantities above, ∂U
∂m in equation 7 can be replaced645

by646

∂U

∂mp
=

Nm∑
q=1

Apq

(
mq −m(0)

q

)
+ bp. (A7)
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