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Abstract

This study introduces a new chemistry option in the Weather Research and Forecasting model data assimilation (WRFDA)

system, coupled with the WRF-Chem model (Version 4.4.1), to incorporate aqueous chemistry (AQCHEM) in the assimilation

of ground-level chemical measurements. The new data assimilation capability includes the integration of aqueous-phase aerosols

from the Regional Atmospheric Chemistry Mechanism (RACM) gas chemistry, the Modal Aerosol Dynamics Model for Europe

(MADE) aerosol chemistry, and the Volatility Basis Set (VBS) for secondary organic aerosol (SOA) production. The RACM-

MADE-VBS-AQCHEM scheme facilitates aerosol-cloud-precipitation interactions by activating aerosol particles in cloud water

during the model simulation. With the goal of enhancing air quality forecasting in cloudy conditions, this new implementation

is demonstrated in the weakly coupled three-dimensional variational data assimilation (3D-Var) system through regional air

quality cycling over East Asia. Surface particulate matter (PM) concentrations and four gas species (SO$ 2$, NO$ 2$, O$ 3$,

and CO) are assimilated every 6 h for the month of March 2019. The results show that including aqueous-phase aerosols in both

the analysis and forecast can represent aerosol wet removal processes associated with cloud development and rainfall production.

During a pollution event with high cloud cover, simulations without aerosols defined in cloud water exhibit significantly higher

values for liquid water path (LWP), and surface PM$ {10}$ (PM$ {2.5}$) concentrations are overestimated by a factor of 10

(3) when wet scavenging processes dominate. On the contrary, aqueous chemistry proves to be helpful in simulating the wet

deposition of aerosols, accurately predicting the evolution of surface PM concentrations without such overestimation.
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Abstract26

This study introduces a new chemistry option in the Weather Research and Forecast-27

ing model data assimilation (WRFDA) system, coupled with the WRF-Chem model (Ver-28

sion 4.4.1), to incorporate aqueous chemistry (AQCHEM) in the assimilation of ground-29

level chemical measurements. The new data assimilation capability includes the integra-30

tion of aqueous-phase aerosols from the Regional Atmospheric Chemistry Mechanism (RACM)31

gas chemistry, the Modal Aerosol Dynamics Model for Europe (MADE) aerosol chem-32

istry, and the Volatility Basis Set (VBS) for secondary organic aerosol (SOA) produc-33

tion. The RACM-MADE-VBS-AQCHEM scheme facilitates aerosol-cloud-precipitation34

interactions by activating aerosol particles in cloud water during the model simulation.35

With the goal of enhancing air quality forecasting in cloudy conditions, this new imple-36

mentation is demonstrated in the weakly coupled three-dimensional variational data as-37

similation (3D-Var) system through regional air quality cycling over East Asia. Surface38

particulate matter (PM) concentrations and four gas species (SO2, NO2, O3, and CO)39

are assimilated every 6 h for the month of March 2019. The results show that includ-40

ing aqueous-phase aerosols in both the analysis and forecast can represent aerosol wet41

removal processes associated with cloud development and rainfall production. During42

a pollution event with high cloud cover, simulations without aerosols defined in cloud43

water exhibit significantly higher values for liquid water path (LWP), and surface PM1044

(PM2.5) concentrations are overestimated by a factor of 10 (3) when wet scavenging pro-45

cesses dominate. On the contrary, aqueous chemistry proves to be helpful in simulating46

the wet deposition of aerosols, accurately predicting the evolution of surface PM con-47

centrations without such overestimation.48

Plain Language Summary49

Major air pollution events over the Korean peninsula are often observed in asso-50

ciation with significant cloud cover, especially over the Yellow Sea to the west of the penin-51

sula. Cloudy conditions pose challenges for both remote sensing observations and model52

predictions, but the inclusion of aqueous-phase (or cloud-borne) aerosols in the WRF-53

Chem/WRFDA system improves the simulation of aerosol wet scavenging, leading to im-54

proved predictions of surface particulate matter concentrations that were otherwise sub-55

stantially overestimated.56

Keywords57

Aerosol data assimilation, aqueous chemistry, wet deposition58

1 Introduction59

Poor air quality, characterized by high concentrations of particulate matter (PM)60

at ground level, is often accompanied by extensive cloud cover Eck et al. (2018, 2020),61

posing challenges for both observation and prediction. Given the short lifetime of aerosol62

species (up to one week) and the large uncertainties in modeling atmospheric compo-63

sition, improving initialization is crucial for enhancing short-range air quality forecast-64

ing. Data assimilation (DA) incorporates available observations into a numerical predic-65

tion model to produce initial conditions that can lead to accurate forecasts. The qual-66

ity of the initial condition, or the analysis, largely depends on the quantity of reliable67

observations and the accuracy of the forecast model.68

Various efforts have been recently made towards chemical data assimilation, but69

the utilization of advanced chemistry schemes remains limited, especially for the predic-70

tion of particulate matter concentrations (Chen et al., 2019; Sun et al., 2020; Ha, 2022).71

Hence, it is fair to say that chemical data assimilation, especially aerosol data assimi-72
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lation focusing on aerosol species, is still in its early stages, lagging behind meteorolog-73

ical or oceanographic applications (Baklanov et al., 2014; Bocquet et al., 2015). Major74

challenges specific to aerosol data assimilation can be described as follows: 1) The lim-75

ited information content of atmospheric composition observations, which often lack ac-76

curacy and coverage, especially in cloudy conditions. 2) Large uncertainties or system-77

atic errors in chemical transport models, partly due to significant uncertainties in forc-78

ing parameters such as emissions and partly due to imperfect representation of complex79

chemical processes and their interactions with the atmospheric environment. 3) Surface80

PM concentrations, major indicators of the air quality index, are only computed diag-81

nostically at the end of the model integration to account for all contributions from mul-82

tiple aerosol species. Therefore, the data assimilation system should handle all the prog-83

nostic aerosol species that contribute to the estimation of PM concentrations and de-84

termine how to distribute analysis increments in ground PM concentrations back to the85

three-dimensional aerosol variables. Since the number of aerosol species predicted in the86

model is typically larger than the number of observed variables, it becomes an under-87

constrained problem where a unique solution is not guaranteed. Moreover, the use of so-88

phisticated chemistry schemes means a large number of prognostic variables, rendering89

aerosol analysis a high-dimensional problem that requires substantial computational re-90

sources. This makes the three-dimensional variational data assimilation (3D-Var) algo-91

rithm still attractive due to its speed and operational simplicity, despite limitations such92

as static background error covariance and the ignorance of model errors. 4) The model93

configuration for aerosol chemistry coupled with meteorology, the first step toward aerosol94

cycling, is typically more complicated than that of a weather prediction model alone. In95

an online coupled system, the dynamics and physics configurations for meteorology can96

greatly impact the reliability and performance of chemical simulations. Therefore, care-97

ful consideration should be given to the weather component of the configuration as well.98

5) Most interfaces to input data and chemical processes are highly customized for spe-99

cific gas and aerosol chemistry schemes. This is because each chemistry parameteriza-100

tion defines its own unique set of prognostic variables that are not interchangeable with101

other schemes (Pfister et al., 2020). Consequently, each chemistry scheme requires its102

own preparation of input forcing data, such as anthropogenic, biogenic and biomass burn-103

ing emissions. In the context of data assimilation, this also entails developing a new in-104

terface within the variational data assimilation system. This includes creating new ob-105

servation operators (that compute the model correspondents from the aerosol species de-106

fined in the scheme), as well as their tangent linear and adjoint models, and estimating107

background error covariance.108

Attempts to develop coupled data assimilation between chemistry and meteorol-109

ogy for regional forecast applications have been limited, despite the widespread recog-110

nition of high correlations between the two components in the modeling community (Baklanov111

et al., 2017). In the context of 3D-Var, fully (or strongly) coupled data assimilation is112

still challenging because many factors contributing to cross-covariance between meteo-113

rological and chemical variables are highly variable in time and space. When it comes114

to real observations, developments and research on coupled data assimilation have pri-115

marily focused on trace gases such as ozone and carbon monoxide, often using simpli-116

fied background error covariance (Ménard et al., 2019). On the other hand, in weakly117

coupled data assimilation, the coupling occurs during the model integration by using a118

two-way coupled forecast model, but not through the analysis. Observations are assim-119

ilated in each component (e.g., meteorology or chemistry) to update the analysis vari-120

ables independently, which are then used together to initialize the coupled modeling sys-121

tem for prediction. The background error covariance is estimated from the forecasts pro-122

duced by the fully coupled model, capturing the coupling aspects from the model sim-123

ulations rather than the cross-covariance component. As a result, the direct influence124

of observations is limited to each component of the model.125
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Aerosol particles play a crucial role in various key processes related to atmospheric126

chemistry and physics (Rosenfeld et al. (2008); Stevens and Feingold (2009); Tao et al.127

(2012); Baklanov et al. (2014)). These particles directly scatter and absorb incoming so-128

lar radiation, leading to changes in the atmospheric radiation reaching the Earth’s sur-129

face (e.g., ”aerosol direct effects”). They are either suspended in the air or attached to130

hydrometeors such as cloud droplets or ice crystals, acting as cloud condensation nuclei131

(CCN) or ice nuclei (IN). This interaction modifies the formation, lifetime, and optical132

properties of clouds, including cloud albedo, as well as precipitation rates, indirectly af-133

fecting the radiative transfer (e.g., ”aerosol indirect effects”). During cloud processes,134

aerosol particles undergo physical and chemical changes in their composition and mass135

concentrations. They are also redistributed by clouds and convection, which serve as trans-136

port media over time scales ranging from minutes to hours (Ervens, 2015). Aerosol-cloud137

interactions, which encompass both the effects of aerosols on clouds and the cloud ef-138

fects on aerosol particles, can play a crucial role in daily air quality, especially in regions139

with polluted aerosols and cloudy conditions. These interactions can influence both in-140

cloud and below-cloud wet scavenging of aerosol particles, leading to changes in PM con-141

centrations reaching the ground.142

From a data assimilation perspective, cloudy conditions are particularly challeng-143

ing because ground-based or remote-sensing retrievals are often missing or significantly144

degraded in quality due to cloud contamination. When only limited observations are avail-145

able for data assimilation, the quality of the analysis depends heavily on the numerical146

prediction system, especially its systematic errors. Variational data assimilation algo-147

rithms typically assume a perfect model without any systematic errors. Although it is148

not straightforward to detect and correct model error sources (Dee and Da Silva (1998);149

Dee (2005)), the analysis can benefit from advanced features that can enhance physical150

and chemical mechanisms, thereby improving the model performance. Eck et al. (2018,151

2020) have reported that major air pollution events in East Asia are frequently associ-152

ated with significant cloud cover, highlighting the importance of aerosol-cloud interac-153

tions compared to pristine conditions. This study is motivated by the haze events in Ko-154

rea, which coincide with extensive cloud cover and rainfall.155

The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem;156

Grell et al. (2005)) facilitates simulations of real-time interactions between aerosol, cloud,157

radiation, and precipitation for regional applications. To account for aerosol effects on158

clouds and simulate aerosol-cloud interactions within the system, it is necessary to de-159

fine cloud-borne aerosols (particles attached to cloud droplets) as well as interstitial aerosols160

(particles suspended in the air). When aerosol particles are represented in the aqueous161

phase (or in cloud water), cloud droplet number concentrations are prognostically treated162

through processes such as droplet activation, scavenging, and resuspension, allowing for163

real-time feedback between aerosols and clouds. Wet deposition, a major sink process164

for aerosol particles, involves the transport and removal of soluble or scavenged constituents165

by precipitation. It encompasses in-cloud scavenging and removal by rain and snow (rain-166

out), release by evaporation of rain and snow, and below-cloud scavenging by precipi-167

tation falling through without formation of precipitation (wash-out) (Seinfeld & Pan-168

dis, 2006). Subgrid-scale convective transport and in-cloud scavenging can be activated169

for aerosols in both the interstitial and aqueous phases (as well as tracers). However, to170

simulate wet scavenging by grid-resolvable precipitation and below-cloud scavenging through171

cloud chemistry, one needs to choose a chemistry option that includes aqueous chemistry172

with aerosols in the aqueous phase (as well as the interstitial phase) in the WRF-Chem173

model. Under cloudy conditions, the absence of these features can impact cloud forma-174

tion, growth, and wet deposition of air pollutants, resulting in systematic forecast errors175

in surface PM concentrations.176

Tuccella et al. (2015) implemented aqueous chemistry (AQCHEM) in the Regional177

Atmospheric Chemistry Mechanism (RACM; Stockwell et al. (1997)) gas-phase chem-178

–4–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

istry, coupled with the Modal Aerosol Dynamics Model for Europe (MADE; Ackermann179

et al. (1998)) inorganic aerosol mechanism and a secondary organic aerosol (SOA) scheme180

based on a four-bin volatility basis set (VBS) (Ahmadov et al., 2012) in the WRF-Chem181

model. They demonstrated that the RACM-MADE-VBS-AQCHEM scheme, coupled with182

cloud microphysics and radiation parameterization schemes, could characterize aerosol-183

cloud feedbacks, reducing large uncertainties in the prediction of microphysical and op-184

tical properties of clouds.185

The WRFDA system has been recently updated to incorporate the RACM-MADE-186

VBS scheme (chem opt=108) in the WRF-Chem model for chemical data assimilation187

(Ha, 2022). A case study conducted during the Korea–United States Air Quality (KORUS-188

AQ) period demonstrated that the 3D-Var aerosol analysis resulted in systematic im-189

provements in the prediction of surface PM concentrations over Korea. However, fore-190

cast errors tended to increase in cloudy conditions.191

This study further extends the WRFDA 3D-Var system to incorporate aerosol-cloud192

interactions with aqueous chemistry using the RACM-MADE-VBS-AQCHEM scheme193

(chem opt=109) in aerosol analysis and forecast cycling. The objective is to enhance the194

short-range prediction of surface PM concentrations over South Korea, particularly dur-195

ing cloudy conditions characterized by wet scavenging of polluted aerosols.196

Section 2 provides an overview of the WRF-Chem cycling system, describing the197

new implementation in the WRFDA system, which includes the introduction of new for-198

ward operators and background error statistics designed for aerosols in the aqueous phase.199

In Section 3, cycling experiments are conducted, and the forecast results are verified against200

independent observations to evaluate the reliability and performance of the system. Fi-201

nally, in Section 4, we draw conclusions, discuss the limitations of this study, and pro-202

vide suggestions for future research.203

2 The WRF-Chem cycling system204

The Weather Research and Forecasting (WRF) system consists of three main com-205

ponents: the WRF Preprocessing System (WPS), the WRF model coupled with Chem-206

istry (WRF-Chem), and the WRF Data Assimilation (WRFDA) system. Through cy-207

cling (e.g., conducting analysis and forecast consecutively), the observed information is208

incorporated into the WRF-Chem model at certain time intervals (ex. every 6 h) to ini-209

tialize the simulations. By pulling out the model trajectory towards observations every210

cycle, we re-initiate dynamical, physical and chemical mechanisms to be close to the ob-211

served state. This is a unified system in a sense that the forecast error is incorporated212

into the analysis (through background error covariance) and the prediction is initiated213

from its own analysis every time, thereby the error of the model itself is constantly re-214

flected throughout the cycling system. Figure 1 shows a flowchart of the WRF-Chem/WRFDA215

cycling system with chemical data assimilation. Dotted lines imply optional input data216

while solid lines the mandatory inputs for WRF-Chem/WRFDA cycling, accompanied217

by typical input file names (with no specification of domain ID or time) used in the WRF218

system. As a first step, WPS is run to configure the model domain using geographical219

data for land use and soil categories (geogrid.exe), ungrib meteorological data (e.g., the220

UK Met Office analysis; UM MET) in the grib format (ungrib.exe), and transform the221

three-dimensional data into the WRF domain (metgrid.exe). Through the WRF initial-222

ization step (real.exe), the data is then converted to the initial condition (wrfinput) and223

lateral boundary condition (wrfbdy) files for meteorological variables in each domain.224

For chemical simulations, emissions data should be prepared based on the wrfinput file225

to define land use categories consistent with those used for the meteorological initial con-226

dition. As soon as the WRF-Chem model starts, atmospheric physics and chemistry pa-227

rameterizations are initialized based on the land use categories (e.g., mminlu) in the lookup228

tables such as LANDUSE.TBL and VEGPARM.TBL. It is thus critical to use the same229
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wrfinput file in producing all the emissions data. By default, WRF-Chem regional sim-230

ulations use an idealized gas profile for some chemical species at the lateral boundaries,231

as used in this study. It should be noted that the diagram shown here is not meant to232

describe all the possible data input in the WRF-Chem model. Optional input data, such233

as an upper boundary condition for some gas species, biomass burning (e.g., fire), or air-234

craft emissions data, are not included because they were not considered here.235

Without data assimilation, wrfinput (xb) and wrfbdy files are used directly to ini-236

tialize the model simulation, bypassing the WRFDA processes (e.g. da wrfvar.exe and237

da update bc.exe). But if one wants to update the initial condition in the variational data238

assimilation, at least three input files are required for each model domain - a first guess239

(xb; wrfinput or fg), background error covariance (B; be.dat), and observations (y; ob.ascii240

or ob.bufr) that usually come with the specification of observation errors (R). Before241

incorporating observations into the DA system, data collection and processing should242

be carefully carried out, including data quality check. Since WRF Version 4 (including243

WRFDA), simultaneous data assimilation has been available for a few chemical options244

in WRF-Chem to update meteorological and chemical fields at the same time. In the cur-245

rent implementation, chemical observations are designed to be available in ascii format246

(ob chemsfc.ascii), separate from meteorological (MET) data provided in BUFR format.247

When data assimilation (da wrfvar.exe) is run for each domain, the initial condition is248

updated as the analysis (xa) in each domain. The lateral boundary condition in the mother249

domain also needs to be updated (through da update bc.exe) to be consistent with the250

analysis in the boundary zone.251

To compute the background error covariance (B), WRF-Chem forecasts should be252

run in advance, typically cycling without data assimilation using the same model con-253

figuration for a long period of time (at least for one month). In the National Meteoro-254

logical Center (NMC) method (Parrish and Derber (1992)), forecast differences between255

two different forecast leads at the same validation time are used to estimate the back-256

ground error covariance for all the analysis variables in each domain.257

Once the WRF-Chem model is integrated from the initial condition, the output258

forecast reached in the next cycle is reused to provide the next first guess with the sim-259

ulated chemical species (e.g., wrf chem input). By repeating the WRF initialization, WRFDA,260

and WRF-Chem simulations with the recycled chemical species at the cycling frequency,261

WRF-Chem/WRFDA cycling can be carried out continuously.262

2.1 WRF-Chem for aerosol effects263

The WRF-Chem model has long been used to study a wide range of atmospheric264

phenomena associated with atmospheric chemistry and aerosols over regional domains265

(e.g., Ntelekos et al. (2009), Grell and Baklanov (2011), Pfister et al. (2011), Ahmadov266

et al. (2012), Saide et al. (2012), Yang et al. (2015)). The online-coupled chemical trans-267

port model numerically solves for the concentration of chemical species through various268

processes. Included are emissions, advection, vertical mixing with dry deposition, con-269

vective transport, gas chemistry, aerosol chemistry, cloud chemistry (for activated aerosols270

in cloud water), and wet scavenging. At the end of each time step, PM concentrations271

are computed diagnostically as the sum of all aerosol species defined in the chemistry272

option.273

In the WRF-Chem model, aerosol effects are simulated through various processes,274

including activation, resuspension, aqueous reactions, and wet removal of aerosol par-275

ticles. These processes are mostly controlled through namelist options for each model276

domain. As such, we specify the namelist parameters in parentheses corresponding to277

the description of each process. To account for aerosol-cloud interactions, or aerosol in-278

direct effects, the direct effects of aerosols on incoming solar radiation must be activated279

(e.g., aer ra feedback = 1), which involves relating aerosol sizes and compositions to aerosol280
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optical properties (Fast et al., 2006). In this study, aerosol particles within a certain size281

range or mode are assumed to have the same composition. This allows for the averag-282

ing of refractive indices of spherical particles over all the species within each mode (e.g.,283

volume averaging; aer op opt = 1). Subsequently, extinction coefficients due to aerosol284

scattering and absorption are calculated using Mie theory (Ghan et al., 2001) and in-285

corporated into shortwave and photolysis schemes.286

While aerosol direct effects can be accounted for by all the aerosol chemistry schemes287

when using either the RRTMG or the Goddard shortwave radiation scheme, aerosol in-288

direct effects are only supported by a limited number of modal and sectional aerosol chem-289

istry options in WRF-Chem. For cloud microphysics, it is recommended to employ double-290

moment schemes such as Lin (Lin et al., 1983) or Morrison (Morrison et al., 2009) to take291

indirect aerosol effects into account. In this study, the Morrison two-moment scheme is292

utilized, which predicts the mass and number concentrations of five species (i.e., cloud293

droplets, cloud ice, snow, rain, and graupel). It should be noted that the new implemen-294

tation in DA is applicable to any double-moment scheme without any modifications. The295

double-moment microphysics accounts for the autoconversion of cloud droplets to rain-296

water based on the droplet number concentrations and interacts with prognostic aerosols,297

altering their size and composition through aqueous processes and wet scavenging (Yang298

et al., 2011). To represent aerosol effects on cloud chemistry and grid-scale precipitation299

(cldchem onoff = 1 and wetscav onoff = 1, respectively), it is necessary to simulate an300

aerosol activation process that enables aerosol particles to grow by water condensation,301

forming cloud droplets based on supersaturation and particle size (Abdul-Razzak & Ghan,302

2002). For aerosol indirect effects, cloud droplet number concentrations should be prog-303

nostically treated (progn = 1). Meanwhile, the Grell-Devenyi cumulus scheme simulates304

convective precipitation, which is recognized by atmospheric radiation and photolytic305

processes in the model. It also parameterizes convective transport, enabling the displace-306

ment of chemical species. Although aqueous chemistry in subgrid-scale convection (conv tr aqchem307

= 1) and wet scavenging within subgrid-scale clouds (conv tr wetscav = 1) can be ac-308

counted for as part of the cumulus parameterization, it does not explicitly consider cloud-309

borne aerosols or their impact on cloud chemistry. For brevity, we refer to aqueous chem-310

istry (AQCHEM) only when aerosols are defined in the aqueous phase for the chosen chem-311

istry scheme (e.g., chem opt = 109) and aerosol indirect effects are simulated.312

Tuccella et al. (2015) implemented the RACM-MADE-VBS-AQCHEM scheme (chem opt=109)313

for the simulation of aerosol-cloud-radiation interactions, following Fast et al. (2006) and314

Chapman et al. (2009), with simple aqueous reactions. The MADE-VBS aerosol scheme315

defines the particle size distribution as a superposition of three log-normal modes: an316

Aitken mode with a median diameter of 0.01 µm, an accumulation mode ranging between317

0.01 and 1 µm, and a coarse mode for particles typically larger than 1 µm (with a me-318

dian around 10 µm). All aerosol particles are assumed to be spherical and internally mixed319

(Aquila et al., 2011). The aerosol species treated are sulfate (SO=
4 ), nitrate (NO+

3 ), am-320

monium (NH+
4 ), elemental carbon (EC), primary organic matter (POA), anthropogenic321

and biogenic secondary organic aerosol (SOA), chloride (Cl), sodium (Na), unspeciated322

PM2.5, unspeciated coarse fraction of PM10 (antha), soil dust (soila), and sea salt (seas).323

The unspeciated PM2.5 includes the fine fraction of sea salt and mineral dust aerosols.324

For aqueous processes, each aerosol species is defined in the aqueous (or cloud-borne)325

phase as well as in the interstitial (or non-activated) state. The number and mass con-326

centrations of activated aerosols are calculated for each mode in the presence of water327

supersaturation. In this study, we identified and addressed several bugs in the RACM-328

MADE-VBS-AQCHEM scheme in the previous versions of the WRF-Chem model (e.g.,329

prior to V4.4.1), primarily related to a simple sulfuric oxidation. These bug fixes were330

incorporated into the released version of WRF V4.4.1. Also, some deposition variables331

have been added for diagnostics purposes specific to this study.332
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2.2 WRFDA updates for aqueous chemistry333

An interface between the WRF-Chem model and the WRFDA 3D-Var system in334

version 4.4.1 has been extended for the RACM-MADE-VBS-AQCHEM option to assim-335

ilate ground-level measurements of PM2.5, PM10, SO2, NO2, O3, and CO concentrations.336

The RACM-MADE-VBS scheme without aqueous chemistry (chem opt=108) was pre-337

viously implemented in the WRF-Chem/WRFDA system by Ha (2022). In this study,338

the interface is further expanded to include aqueous-phase aerosols (e.g., chem opt=109)339

in the aerosol analysis.340

2.2.1 Cost function341

In the 3D-Var system, the cost function J(x) is minimized to find an optimal so-342

lution for the model state (x) that best fits to all the observations (y) available at the343

analysis time. The minimization is performed based on the background and observation344

error covariance matrices (B and R, respectively), assuming Gaussian error distributions345

(Lorenc, 1986). In the incremental formulation (Courtier et al., 1994) adopted in WRFDA,346

analysis increments δx(= x− xb) are computed at each iteration using the background347

forecast (xb) from the previous analysis (xa) or the previous iteration step. The con-348

trol vector (v) is defined as δx = B1/2v to construct the cost function as below.349

J(v) =
1

2
vTv +

1

2
(d−HB1/2v)TR−1(d−HB1/2v) (1)

where the innovation vector is defined as d = y −H(xb) and the observation operator350

H transforms the model states (x) to the observed quantities (y) at observation loca-351

tions. In the chemical data assimilation presented in this study, all the chemical species352

defined in the model states (x) are also used as control variables (v), which are the same353

as analysis variables. These control variables have univariate error covariances, mean-354

ing that there are no static cross-correlations between chemical species or between chem-355

ical and meteorological variables. A list of 32 three-dimensional aerosol species defined356

in the analysis includes the following: aerosol sulfate (so4ai and so4aj), nitrate (no3ai357

and no3aj), ammonium (nh4ai and nh4aj), chloride (clai and claj), primary organic mat-358

ter (orgpai and orgpaj), elemental carbon (eci and ecj), sodium (naai and naaj), unspe-359

ciated PM2.5 (p25ai and p25aj), 4-bin anthropogenic and biogenic SOA (asoa1i, asoa1j,360

asoa2i, asoa2j, ..., bsoa4i, bsoa4j). Each variable name in the parenthesis ends with i or361

j to indicate Aitken or accumulation mode. Also included are three coarse-mode vari-362

ables - non-reactive anthropogenic primary aerosol (antha), marine aerosol concentra-363

tion (seas), soil-derived aerosol particles such as dust (soila). In summary, there are 35364

aerosol species defined in three modes (= 16 Aitken + 16 accumulation + 3 coarse modes),365

and their aqueous phase counterparts are also defined with ’cw’ added to their names.366

Four gas species, namely SO2, NO2, O3, and CO, can be also assimilated at the ground367

level, depending on the assimilation option. This results in a total of 74 three-dimensional368

chemical species in the control vector.369

2.2.2 Forward operator and observation errors370

In the assimilation of surface PM observations, H is calculated as the sum of each371

aerosol species defined in the control vector (v), interpolated at each observation site.372

This approach follows the way the MADE-VBS aerosol scheme in the model estimates373

PM concentrations based on individual aerosol species, ensuring that they are treated374

consistently between the analysis and forecast. For the activation of aqueous chemistry,375

H(x) is extended to include cloud-borne (activated) as well as interstitial (non-activated)376

aerosol species in all three modes. The PM2.5 concentrations in the model space (ypm2.5
)377

are computed as the sum of all the aerosol species listed above in accumulation (j) and378
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Aitken (i) modes.379

ypm2.5
= ρd

N∑
p=1

(

j∑
m=i

yp
m +

j∑
m=i

y∗p
m), (2)

where N is 32, ρd dry air density ([kg m−3]) for unit conversion from aerosol mixing ra-380

tios ([µg kg-1]) to mass concentrations ([µg m−3]), yp
m and y∗p

m representing each aerosol381

species in the interstitial and aqueous phases, respectively.382

When assimilating PM10 alone, the model correspondent is computed by adding383

three coarse-mode variables - antha, seas, and soila - to the simulated PM2.5. For the384

aqueous chemistry option, the three coarse-mode variables in the aqueous phase (anthcw,385

seascw, and soilcw) are also included in the observation operator. If PM10 is assimilated386

together with PM2.5, the residuals from (PM10 - PM2.5) are assimilated as the sum of387

the three coarse-mode aerosols, following Ha (2022). It should be noted that aerosol num-388

ber concentrations, which are not directly associated with PM mass concentrations, are389

not included as analysis variables or in the observation operators in this study.390

The assimilation of trace gases is straightforward because each gas species is ex-391

plicitly defined in the model prognostic variables. The control variables for the assim-392

ilation are the same four gas species (SO2, NO2, O3, and CO). The observation oper-393

ator for trace gases involves a simple horizontal interpolation of the corresponding vari-394

able at the lowest model level.395

The observation error covariance matrix R remains unchanged, regardless of the396

inclusion of aqueous chemistry. It uses the same uncorrelated observation errors for each397

observation (yo). Following Ha (2022), the observation errors for surface PM consist of398

measurement errors (ϵo) and representative errors (ϵr): ϵy =
√
ϵo2 + ϵr2 where ϵo =399

1.5+0.0075∗yo and ϵr = γϵo

√
∆x
L . Here, γ is set to be 0.5, ∆x is grid spacing (27 km400

for domain 1 and 9 km for domain 2), and the scaling factor L (defined as 3 km).401

For system reliability, data quality control (QC) is performed by applying maxi-402

mum thresholds to observation values and innovations ((o − f)’s) during the assimila-403

tion process. Surface PM2.5 and PM10 observations are rejected if they exceed 300, 500404

µg m−3, respectively, or if they differ from their corresponding model equivalents (e.g.,405

H(xb)) by more than 100 µg m−3. Regarding gas species, the maximum threshold val-406

ues are set at 2 ppmv for observed SO2, NO2, and O3, and 50 ppmv for CO. They are407

also rejected if their innovations exceed the threshold values of 0.2 ppmv for SO2, NO2,408

and O3, and 20 ppmv for CO. It is noted that these threshold values are set to be con-409

servative for the sake of the system reliability, especially in the operational environment.410

Although none of the observations were rejected based on the thresholds during the month-411

long period in our case study, it could limit the applicability of WRFDA to heavy pol-412

lution events or wildfire episodes. In the future, it would be nice to move these param-413

eters out of the codes and place them in the namelist such that users can easily mod-414

ify them for their specific applications. In the current implementation, ground-level gas-415

phase pollutants are assimilated together as a group rather than individually, using the416

corresponding model variables as their analysis (or control) variables.417

2.2.3 Background error covariance418

In the WRFDA system, the square root of the B matrix (B = B1/2(B1/2)T) is de-419

composed into a series of sub-matrices, eliminating the need of computing the inverse420

of the large B matrix, as below.421

B1/2 = UpSUvUh (3)

Here, the matrix Up is called physical or balance transformation (via linear regression),422

S a diagonal matrix of forecast error standard deviation, Uv the vertical transform, and423

Uh the horizontal transform matrix.424
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In this study, the WRF-Chem model is configured with two domains at grid res-425

olutions of 27 and 9 km, respectively, in a one-way nesting mode, as illustrated in Fig.426

2 (a). Vertically, a total of 31 model levels are used up to 50 hPa, with upper level jets427

located around level 23 (∼12 km) and low level jets (LLJ) situated around level 9 (∼1.2428

km). At Seoul (37.5N, 127.0E), for instance, a total of 8 model levels are configured un-429

der 1 km, with the lowest level at 72 meters (height above mean sea level). Chemical sim-430

ulations are cycled without data assimilation every six hours using the RACM-MADE-431

VBS-AQCHEM scheme, starting from 21 Feb to 31 March 2019, producing 48-hour fore-432

casts from 00Z each day for the month of March. The differences between the 24-hour433

and 48-hour forecasts at the same validation time are then computed as a proxy for fore-434

cast errors in each domain. In total, 31 sample forecasts in March, following an 8-day435

spin-up in Feb 2019, were used to construct the B matrix through the NMC method.436

To generate the B matrix in the WRFDA system, the GENBE 2.0 software (Descombes437

et al., 2015) is extended to incorporate all the aerosols in the aqueous phase, as spec-438

ified in the chosen chemistry scheme. In line with previous 3D-Var studies (Kumar et439

al. (2019) and Ha (2022)), we binned all the grid points together for each latitudinal band440

(every 2◦) and each model level, but with no longitudinal dependencies in the background441

error covariance. To examine the impact of aqueous-phase aerosols in the B matrix, we442

conducted one-month cycling forecasts with chem opt = 108 and 109, referred to as NO AQ443

and AQ, respectively.444

Figure 3 illustrates the comparison of the square root of the background error co-445

variance (B1/2) between the two experiments for each aerosol component in the inter-446

stitial state. As the control vector (v) is multiplied by B1/2 to convert it to analysis in-447

crements (δx) after the minimization process, this figure shows the relative weights of448

each species, indicating their contributions to atmospheric constituents and their ver-449

tical distribution when assimilating ground-level PM concentrations. It is evident that450

there is considerable variability in the vertical distribution of aerosol species, and their451

vertical structure undergoes distinct changes when simulating aerosols in cloud water (AQ).452

These changes in the interstitial state can be interpreted in conjunction with the back-453

ground error covariance (B1/2) for aqueous-phase aerosols (AQ case), as displayed in Fig.454

4. Sulfate aerosols are found to have the largest weights in the accumulation mode (cwj)455

and Aitken mode (cwi), while sea salt aerosols dominate the coarse mode (cw). These456

findings are consistent with the significant reductions observed for the same species in457

the interstitial phase across the entire troposphere, as depicted in Fig. 3. These changes458

can be attributed to the aqueous chemistry implemented in the WRF-Chem model, which459

primarily involves the oxidation of sulfur dioxide (SO2) to dissolved sulfur in oxidation460

state 4, S(IV). It is also noteworthy that aerosols in cloud water (”cw”) are concentrated461

below level 15 (e.g., below 5 km), with peak concentrations estimated around level 5, likely462

in association with low-level clouds. In contrast, most interstitial aerosols (as shown in463

Fig. 3) tend to increase as the level goes down, but their distribution extends up to level464

24. Only dust aerosols (soila in Fig.3 (l)) dominate at higher altitudes, with a peak around465

level 13 (around 3 km), possibly due to long-range transport of dust during the spring466

month. Another thing to note is that organic aerosols (both primary and secondary) are467

not updated through aqueous chemistry in the current version, showing little changes468

in the aqueous phase, as indicated by the pink solid line for ”POA” and blue dotted line469

for ”SOA” in Fig. 4 (a) and (b). The specific mechanisms underlying all the changes in470

each species are not fully understood, but it is apparent that the weights for soluble species471

are partitioned between the interstitial (dry) and the aqueous phase (cloud water), chang-472

ing the structure of the background error covariance with aqueous chemistry. This high-473

lights the complex interactions and transformations that occur between different phases474

of aerosols and the role of aqueous chemistry in modifying their behavior and represen-475

tation in the model.476

–10–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

3 Chemical analysis and forecast cycling477

3.1 Cycling experiments478

To examine the impact of chemical data assimilation with aqueous chemistry, WRF-479

Chem and WRFDA cycling experiments are conducted every 6 h from Feb 21 to Mar480

31, 2019 over the East Asian region (with a 27-km grid resolution) nested down to the481

Korean peninsula (at a 9-km resolution). This study uses the Morrison two-moment scheme482

(Morrison et al., 2009) for cloud microphysics, Grell-3 for cumulus parameterization (Grell483

& Dévényi, 2002), the YSU scheme (Hong et al., 2006) for the planetary boundary layer484

(PBL), and the rapid radiative transfer model for GCMs (RRTMG) for both shortwave485

and longwave radiation (Iacono et al., 2008). As described in the previous section, di-486

rect aerosol effects are accounted for through interactions with atmospheric radiation and487

photolysis while indirect aerosol effects are represented through interactions with cloud488

microphysics. Dust and sea salt emissions are simulated online, following the GOCART489

mechanism (e.g, dust opt = 13 and seas opt = 2). Photolysis rates of chemical species490

are computed in a simplified version of the National Center for Atmospheric Research491

(NCAR) Tropospheric Ultraviolet-Visible (TUV) model (phot opt=1) (Madronich, 1987).492

A list of the physics and chemistry schemes used in this study is summarized in Table493

S1.494

The anthropogenic emissions data for chemical species defined in the RACM-MADE-495

VBS scheme are obtained from the National Institute of Environment Research (NIER),496

which operates daily air quality forecasting in South Korea. These data are provided at497

a single level and do not include information on plume rise or vertical distribution. Bio-498

genic emissions, on the other hand, are generated online using the Model of Emission499

of Gases and Aerosol from Nature (MEGAN; Version 2) (Guenther et al., 2006), but biomass500

burning emissions are not used in this study. All WRF files, including anthropogenic and501

biogenic emissions, are processed based on MODIS land use dataset (Friedl et al., 2002).502

The initial and lateral boundary conditions for meteorological variables are derived503

from global analyses and forecasts from the UK Met Office’s Unified Model (UM) op-504

erated by the Korea Meteorological Administration (KMA) every 6 hours. However, the505

chemical lateral boundary conditions for the outer domain are not considered, while the506

chemical boundaries for the inner domain (D2) are provided during the one-way nested507

model simulations. Upper boundary conditions are also not provided in this particular508

study. The impacts of chemical boundary conditions on internal physical mechanisms,509

such as wet scavenging, are reserved for future studies.510

Hourly surface observations of PM2.5, PM10, SO2, NO2, O3, and CO are collected511

from 379 South Korean sites operated by AIRKOREA (http://www.airkorea.or.kr, last512

access: 27 April 2023) and 765 Chinese sites of the China National Environmental Mon-513

itoring Center (CNMEC; http://www.cnemc.cn, last access: 27 April 2023) within model514

domain 1 (D1). Since measurements are mainly concentrated in large cities, Korean sites515

are randomly divided into assimilation and verification datasets. Each dataset is then516

averaged over the 9-km model grid. As a result, 279 Korean sites are processed into 219517

stations for assimilation, while the remaining 100 sites are averaged to form 71 indepen-518

dent observations for evaluation over South Korea. The Chinese data are used for both519

assimilation and verification without any additional data processing because the focus520

of this study is to examine the aerosol impact over South Korea. Figure 2 depicts the521

surface network used for assimilation (panel (a)) and for evaluation (light blue dots in522

(b)). In panel (b), three surface stations of the EANET (Acid Deposition Monitoring523

Network in East Asia; https://www.eanet.asia; last access: 13 June 2023) are also rep-524

resented by a pink ”+” symbol along with their respective site names, which are utilized525

for evaluating the monthly wet deposition simulations. For meteorological data assim-526

ilation, all the conventional observations available in the National Centers for Environ-527

mental Prediction (NCEP) prepbufr data (https://rda.ucar.edu/datasets/ds337.0/; last528
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access: 13 June 2023) are employed. To verify the model performance against weather529

observations, a total of 699 surface Automatic Weather System (AWS; https://www.weather.go.kr/weather/observation/aws table popup.jsp,530

last access: 13 June 2023) sites in South Korea (marked as blue dots in Fig. 2c) are em-531

ployed.532

As summarized in Table S2, two baseline experiments are performed with and with-533

out aqueous chemistry (NODA and NODA AQ, respectively). Using the background er-534

ror statistics computed from each of these experiments, two corresponding DA cycling535

runs are then conducted with the same model configuration, assimilating surface con-536

centrations of all six air pollutants as well as conventional meteorological data (DA and537

DA AQ, respectively).538

Figure 5 illustrates time series of observation-minus-background (o-b; blue solid lines)539

and observation-minus-analysis (o-a; red dashed lines) averaged over 219 Korean stations540

(red dots in Fig. 2) for PM2.5 (top) and PM10 (bottom) at the ground level in the DA AQ541

cycling experiment in domain 2. The light blue shading indicates the standard devia-542

tion in (o-b)’s across the stations. Although the deviations of 6-hour background fore-543

casts from observations exhibit some fluctuations with cycles, they remain stable, and544

the analyses closely match the observations, confirming that the system runs reliably through-545

out the entire period. As for four gas species, they tend to be slightly overestimated dur-546

ing the cycling period, but runs stably as well, as shown in the supplement (Fig. S1).547

As this study focuses on the prediction of surface particulate matter, our discussion will548

remain focused on surface PM2.5 and PM10 concentrations.549

Figure 6 compares the analysis and background forecast profiles of each aerosol com-550

ponent, averaged over the 71 verification sites in Korea, for the month of March 2019,551

in two DA experiments (DA and DA AQ). Aerosols are combined for each species re-552

gardless of the aerosol phase or mode. Panels (a) - (i) show the sum of Aitken and ac-553

cumulation mode particles, and cloud-borne (cw) aerosols are also included in the cor-554

responding chemical species in the case of DA AQ. In the 3D-Var analysis, analysis in-555

crements in PM concentrations are distributed across aerosol species based on the back-556

ground error covariance, resulting in the vertical structure of each species generally fol-557

lowing their background error structures illustrated in Figs. 3 and 4. Therefore, even though558

only surface concentrations are assimilated, their impact goes up to the boundary layer.559

Comparing the analysis with and without aqueous chemistry (red and black lines, re-560

spectively), sulfate (a), ammonium (b), sea salt (k), and soil dust (l) are reduced with561

aqueous chemistry throughout the troposphere, while nitrate (b) and chloride (i) are mostly562

increased in the low troposphere. Primary organic carbon (f), elemental carbon (g), and563

the unspeciated coarse fraction of PM10 (j) tend to be redistributed toward the surface564

with aqueous chemistry. Regarding analysis increments, DA with aqueous chemistry seems565

to produce slightly larger increments than without AQ, especially in coarse-mode sea salt566

(k) in the boundary layer, followed by nitrate (b) and sulfate aerosols (a) in the accu-567

mulation mode. Averaged over the month of March 2019, the analyses of most aerosol568

species show clear differences depending on whether aqueous chemistry is activated (e.g.,569

red vs. black). However, the analysis increments are relatively small in both DA exper-570

iments, implying that the physics mechanism plays a more crucial role in simulating at-571

mospheric composition than the initialization through data assimilation.572

3.2 Air pollution events in cloudy conditions573

Air pollutants transported to the Korean peninsula are susceptible to the moist en-574

vironments above the Yellow Sea, which lies between Korea and China. The extent to575

which aerosol particles interact with moisture or cloud droplets is subject to the mov-576

ing speed and direction of the synoptic weather systems, such as fronts or troughs, that577

traverse the sea. To examine the effect of data assimilation with aqueous chemistry, an578

air pollution case with substantial cloud cover and wet scavenging was selected during579
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the cycling period. Figure 7 (a) illustrates the Level 3 (gridded) daily mean aerosol op-580

tical depth (AOD) retrieved from the Visible Infrared Imaging Radiometer Suite (VI-581

IRS) aboard the Suomi National Polar-Orbiting Partnership (Suomi NPP) spacecraft582

(https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/viirs/, last access:583

27 April 2023) on 19 March 2019. The total column AOD indicates high aerosol load-584

ing over Korea, especially along the west coast near the Seoul Metropolitan Area. On585

that day, a surface high pressure center is situated southwest of Jeju island (around 33.4◦N,586

126.5◦E), and the associated anticyclonic circulation over the sea brings air pollutants587

and moisture into South Korea along with southwesterly winds (not shown). The areas588

without colors in the satellite image are commonly affected by cloud contamination, re-589

sulting in missing data.590

On the following day, a low surface pressure system further approaches, leading to591

significant cloud cover over a wide area surrounding the Korean peninsula. As shown in592

Fig. 7 (b), the low cloud top pressure retrieved from MODIS sensors onboard the Aqua593

satellite (DOI: 10.5067/MODIS/MYD06 L2.061) indicates the development of convec-594

tive clouds (shown in white) over the Yellow Sea near Seoul, South Korea. This cloudy595

condition leads to the absence or poor quality of most remote sensing retrievals across596

the entire region, making in-situ surface measurements the primary source of observed597

information. In association with the extensive cloud cover and long-range transport em-598

bedded in the synoptic atmospheric flows, air quality experiences large variations before599

and after the two days. Figure 8 displays the boxplots representing surface PM10 (top)600

and PM2.5 (bottom) concentrations for 24-hour forecasts from the analysis at 00 UTC601

every day for five consecutive days (17-22 March 2022). Each boxplot indicates either602

daily observations or daily forecasts from each cycling experiment at 71 verification sites.603

The time series of observations (shown in a blue boxplot) illustrates that both PM10 and604

PM2.5 concentrations increase until 19 March 2019, accompanying the low pressure sys-605

tem with extensive clouds, and then gradually decreases in the following days.606

The largest differences between experiments and observations are found in surface607

PM10 concentrations on 20 March 2019, depending on whether aqueous chemistry (AQ)608

is employed. The experiments with AQ (e.g., NODA AQ in red and DA AQ in purple)609

accurately simulate the decreasing trend in mass concentrations owing to the wet scav-610

enging of aerosol particles. However, the experiments without AQ (e.g., NODA in or-611

ange and DA in green) predict substantial increases in concentrations. This implies that612

the absence of aqueous chemistry in the model can lead to a statistically significant over-613

estimation of surface concentrations. Without the capability to simulate below-cloud scav-614

enging of air pollutants by precipitation, the model misses the observed wash-out fea-615

ture, predicting an opposite trend to the observed one. Surface PM2.5 concentrations ex-616

hibit similar trends, but the differences between experiments are much smaller. Also, the617

differences in experiments without DA (e.g., NODA-NODA AQ) are larger than those618

with DA (e.g., DA-DA AQ) on 20 March, indicating that model forecasts are more vul-619

nerable to model errors when initialized without data assimilation.620

These daily trends can provide a statistical overview of each experiment’s behav-621

ior, but it would be also interesting to investigate hourly variations associated with the622

wet scavenging process. Figure 9 depicts 48-hour forecasts from the 00 UTC analysis for623

each experiment, comparing them to the observed surface PM10 (top) and PM2.5 (bot-624

tom) concentrations averaged over the 71 verification sites. Hourly rainfall accumula-625

tions (top) and mean sea level pressure (bottom) are also plotted as gray dotted lines626

with the right y-axis, averaged over 699 automated weather stations in South Korea. The627

time series of hourly rainfall (in the top panel) shows light precipitation reported overnight628

(from 10 to 15 UTC; 19-24 KST), while a surface low pressure system (in the bottom629

panel) passes over Korea. As aerosol particles are removed through wet scavenging, the630

observed PM concentrations continue to decrease until the next morning. The experi-631

ments with aqueous chemistry (NODA AQ represented by an orange plus sign and DA AQ632
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marked as a red circle) accurately capture the decreasing concentrations for most of the633

48-hour forecast period. In contrast, experiments without aqueous chemistry (NODA634

in green ”x” and DA in a blue square) predict substantial increases in hourly concen-635

trations even after the rainfall. This is likely because the model simulations without AQ636

assume all the aerosol particles as suspended in the air without any loss through wash-637

out. In this particular case, data assimilation does not make any significant differences,638

even at the analysis time, suggesting that the forecast error is primarily driven by model639

errors related to the parameterized wet scavenging mechanism. And it should also be640

noted that the difference between NODA and NODA AQ in surface PM10 concentrations641

(green ”x” vs. orange ”+”), as the mean over all the Korean sites, corresponds to the642

prediction of air quality changing from very unhealthy (> 150 µg kg-1) to clear condi-643

tion (< 30 µg kg-1), which is almost comparable to a situation of rain or no rain. This644

suggests that wet deposition with aqueous chemistry should be included to correctly sim-645

ulate the evolution of aerosols and prevent false alarms in air quality forecasting, espe-646

cially when associated with precipitating clouds.647

These distinctive differences are also observed in the meteorological variables. Fig-648

ure 10 displays the same 48-hour forecasts in AOD, liquid water path (LWP), planetary649

boundary layer height (PBLH), and hourly rain accumulations. Note that this figure is650

not intended for evaluation, but rather for demonstrating the sensitivity of these mete-651

orological fields to the wet scavenging of aerosols in the online-coupled system. The column-652

integrated AOD is expected to follow the hourly trends in surface PM10 concentrations653

in each experiment. As observed in the cloud image shown in Fig. 7 (b), the LWP (=
∫ z

0
ρqcdz,654

where ρ stands for dry density, qc cloud water mixing ratio, dz height differences between655

two adjacent levels in the model) increases overnight. However, depending on whether656

aqueous chemistry is activated with aqueous-phase aerosols, the simulated LWP can vary657

by as much as three times. The PBL height is also considerably different between the658

experiments, in association with the development of clouds and rain that affect the wet659

removal of aerosol species. During the nighttime (around 12 UTC; 21 KST), the height660

of the stable boundary layer exceeds 1 km in experiments without aqueous chemistry.661

Since we lack in-situ measurements for the PBLH, we are unable to directly verify these662

modeling behaviors. However, it is apparent that the simulated PBL height becomes sys-663

tematically higher under stable boundary conditions (e.g., at night) when aqueous-phase664

aerosols are not considered in cloud chemistry and wet scavenging. In terms of hourly665

total precipitation, which includes both convective and nonconvective rainfall amounts,666

wet deposition of aerosols does not significantly alter the predicted rainfall in the cycling667

experiments. But the total precipitation is mostly consistent with the observation (rep-668

resented by a ”x” marker) for this particular case of high cloud cover producing light pre-669

cipitation. Whether or not aqueous-phase aerosols are represented, it not only affects670

the vertical mixing and the structure of the boundary layer but also affects surface con-671

ditions. While surface winds are not very sensitive to the use of aqueous chemistry in672

this particular study, which is partly attributed to the large uncertainties in simulating673

the nocturnal stable boundary layer, there are noticeable changes in 2-m temperature674

and relative humidity, up to 5%, especially during the nighttime (not shown). As Saide675

et al. (2015) pointed out, aerosols can play an important role in modifying severe weather676

conditions or outbreaks. But in the weakly coupled DA system used in this study, aerosol677

and weather data assimilation only indirectly affect each other through aerosol feedbacks678

in the forecast model, and the assimilation of surface weather observations is not effec-679

tively performed owing to the specification of large observation errors. A thorough in-680

vestigation of the influence of aerosol data assimilation on meteorological conditions and681

the optimization of weather data assimilation is left behind for future studies.682

To further explore the relationship between the vertical distribution of PM con-683

centrations and the development of clouds and rain, we examine hourly PM10 concen-684

trations with a few meteorological variables at Seoul (37.5◦N, 127.0◦E) in 24-hour fore-685

casts from the 00 UTC analysis on 20 March 2019 for each experiment, as shown in Fig.686
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11. In the WRF-Chem model V4.4.1, since aerosols can act as cloud condensation nu-687

clei, but not as ice nuclei, the simulation of aerosol-cloud-precipitation interactions is lim-688

ited to warm rain processes (Tuccella et al., 2015). Also, the background error covari-689

ance defines most of the aerosol impacts below the model level 20 (as depicted in Figs.690

3 and 4), so it is desirable to focus on the vertical structure up to level 20. Contours of691

cloud water and rain water mixing ratios are represented in white and pink, respectively,692

and the LWP is overlaid as a black dashed line with the y-axis on the right. In the com-693

parison, it is evident that the use of aqueous chemistry can play an important role in the694

formation and development of clouds as well as the wet deposition of aerosols. Without695

AQ and DA (Fig. 11 (a)), the simulation is initiated with high concentrations of PM10696

in the boundary layer at 00 UTC (09 KST), which remains for most of the day (until697

08 UTC; 17 KST). Clouds start to form around level 15 (∼5 km) in the late afternoon698

and undergo some autoconversion and accretion processes (pink contours), but they mostly699

persist through the night, moving down to the ground. Autoconversion refers to the pro-700

cess where cloud droplets collide and coalesce to form raindrops, while accretion denotes701

the collection of cloud droplets by falling raindrops. With the development of low clouds702

in this simulation, the air quality is predicted to reach very unhealthy conditions (sur-703

face PM10 > 150 µg m−3) for the following hours starting from 18 UTC (03 KST). In704

Fig. 11 (b), data assimilation effectively mitigates the overestimation of low-level PM705

concentrations from the initial time to the late afternoon. But it cannot compensate for706

the model error resulting from the absence of the wet removal mechanism in the later707

forecast lead times, where a similar pattern of high PM concentrations is simulated. In708

Fig. 11 (c), however, the activation of aerosols in clouds drastically changes the model709

behavior to enhance rain water mixing ratios in the low troposphere (between levels 8-710

13, corresponding to 1-3 km) starting from the late afternoon (around 08 UTC) and the711

wet removal of aerosol particles in the troposphere (around level 10) for the next 6 hours712

or so. In the case of DA AQ (Fig. 11 (d)), data assimilation initially suppresses the PM713

overestimation again. Other than that, the vertical structure and temporal evolution re-714

main similar to the case without DA, highlighting the strong impact of aqueous chem-715

istry interacting with cloud microphysics and wet deposition processes on air quality fore-716

casting. As cloud droplets play an important role in aqueous-phase reactions, an accu-717

rate simulation of LWP is crucial. The time series of LWP reveals that the LWP can be718

simulated up to three times larger when aerosols in clouds are not considered. The en-719

hanced mid-level clouds with little autoconversion of cloud to rain water droplets are closely720

tied to the overprediction of PM concentrations.721

The same figure for PM2.5 concentrations, along with the PBL height, is provided722

in the supplementary material (Fig. S2). The temporal and vertical distributions of PM2.5723

concentrations are similar to those of PM10, with data assimilation suppressing initial724

concentrations and aqueous chemistry contributing to the wet removal of aerosols overnight.725

In the AQ experiments, cloud-borne sulfate aerosols are well overlaid with cloud water726

mixing ratios (QCLOUD), illustrating their formation within the clouds through the pro-727

cess of aqueous chemistry. Also, the temporal variation of the boundary layer height dur-728

ing nighttime is largely influenced by the activation of aqueous chemistry. While the max-729

imum height in Seoul remains relatively consistent across the experiments, ranging from730

1.1 to 1.5 km, the timing of the peak PBL height varies significantly. Both AQ exper-731

iments (NODA AQ and DA AQ) simulate the deepest boundary layer around 08 UTC732

(17 KST), followed by a sharp decrease, which is a more realistic representation com-733

pared to the experiments without AQ, where the boundary layer continues to grow un-734

til the evening (11 UTC or 20 KST). Overall, it is apparent that clouds and precipita-735

tion can greatly alter the evolution of aerosols in the atmosphere, and aerosols can also736

exert large influences on the cloud formation and development. Notably, whether aerosol737

wet scavenging or removal is simulated in the model determines the prediction of PM738

concentrations between heavy or no pollution events at the ground level. The significance739

of aerosol wet scavenging by clouds aligns with findings from previous studies (Ryu et740

al., 2022a, 2022b).741
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It is challenging to directly evaluate the aerosol wet removal mechanism at the pro-742

cess level, and a comprehensive investigation of all the physics mechanisms in the cou-743

pled system is beyond the scope of this study. However, we can compare our simulations744

with the monthly observations provided by the Acid Deposition Monitoring Network in745

East Asia (EANET). The EANET data includes monthly (dry and wet) deposition at746

three Korean sites, as marked in Fig.2 (b). To facilitate the comparison, we have mod-747

ified the model codes to produce wet deposition for sulfate, nitrate, and ammonium aerosols748

in the RACM-MADE-VBS-AQCHEM scheme during the model integration. Figure 12749

shows that the daily rainfall predictions in both NODA AQ and DA AQ are in good agree-750

ment with the observation in Gangwha, but are overestimated in Imsil and underesti-751

mated in Jeju. Wet deposition at each site largely follows the bias in rainfall, with the752

largest underestimation simulated in Jeju, except for sulfate in DA AQ. Overall, data753

assimilation tends to increase wet deposition at all three sites, slightly improving the un-754

derestimation in NODA AQ.755

The equilibrium between the gas and aqueous phase varies across aerosol species756

depending on their solubility. The activation of aerosols is determined based on the hy-757

groscopicity of each aerosol component, and wet deposition is applied to individual aerosol758

species. Hence, the processes of aerosol activation, scavenging, and chemical reactions759

through aqueous chemistry can lead to changes in the aerosol size distribution and the760

atmospheric composition. To investigate the impact of aqueous-phase aerosols on the761

aerosol size distribution, Fig. 13 presents the vertical distribution of aerosol mass con-762

centrations by mode. Here, the 6-hour background forecasts from each experiment are763

averaged over the 71 verification sites in domain 2. The top panel shows the monthly764

mean for March 2019, while the bottom panel compares the forecasts after the aerosol765

wet removal associated with grid-scale precipitation. In the far right in (d) and (h), PM10766

and PM2.5 are also displayed for each experiment. In the month-long statistics, data as-767

similation mostly increases aerosol species in the accumulation mode, especially in the768

boundary layer (panel (b)), leading to an increase in surface PM2.5 concentrations by769

up to 29%. On the other hand, the use of aqueous chemistry seems to have a greater im-770

pact (compared to data assimilation) on the simulation of coarse-mode aerosols. It re-771

duces the mass concentrations in the mid-to-low troposphere, contributing to the decrease772

of PM10 concentrations in NODA AQ and DA AQ, as indicated by the lines with dots773

in panel (d). In the Aitken mode, both aqueous chemistry and data assimilation verti-774

cally redistribute aerosol species, resulting in higher concentrations near the surface. Af-775

ter the wet removal associated with the rainfall event, however, the inclusion of aque-776

ous chemistry considerably decreases aerosol species in all three modes, regardless of data777

assimilation. This leads to reduced PM concentrations, as illustrated in the bottom panel778

for 00 UTC 21 March 2019. It is worth noting that without AQ, the DA experiment (rep-779

resented by blue dashed lines) attempts to reduce PM concentrations in both accumu-780

lation and coarse modes but data assimilation alone is unable to effectively reduce the781

overestimation when there is a large model error due to the missing mechanism for the782

below-cloud wet scavenging.783

In terms of forecast skills over the entire month, the root-mean-square-error (RMSE)784

of 24-hour forecasts in the 9-km domain (D2) in NODA is around 24 and 37 µg kg−1 for785

surface PM2.5 and PM10 concentrations, respectively, verified against independent ob-786

servations (e.g., at the 71 verification sites). Data assimilation improves the errors up787

to ∼3 µg kg−1, but the use of aqueous chemistry does not change the errors in a statis-788

tically significant way. In terms of systematic normalized mean bias of 24-h forecasts (e.g.,789

NMB =
∑

(f − o)/
∑

o×100%), however, surface PM2.5 concentrations without data790

assimilation are significantly underestimated (up to -24 %) in both NODA and NODA AQ,791

which is improved by assimilation up to -4 %. Surface PM10 concentrations are some-792

what overestimated by data assimilation in DA (15 %), which is reduced to approximately793

5% when aqueous chemistry is activated (e.g., DA AQ).794
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4 Conclusions and discussion795

Aerosol-cloud interactions can play a crucial role in daily air quality, especially in796

regions with polluted aerosols under cloud conditions. Major air pollution events in East797

Asia are frequently associated with extensive cloud cover, which leads to the absence or798

poor quality of most remote-sensing retrievals across the entire region, making in-situ799

surface measurements the primary source of observed information.800

With the goal of enhancing air quality forecasting in cloudy conditions associated801

with aerosol wet removals, the WRF-Chem/WRFDA system is extended for the RACM-802

MADE-VBS-AQCHEM scheme (chem opt = 109) to assimilate surface measurements803

of PM2.5, PM10, SO2, NO2, O3, and CO concentrations. The reliability and the effects804

of data assimilation using aqueous chemistry are demonstrated through regional air qual-805

ity cycling where chemical and weather observations are concurrently assimilated over806

East Asia every 6 h from February 21 to March, 2019.807

By introducing aerosols in the aqueous (or cloud water) phase in WRFDA, the re-808

gional cycling system using the online-coupled forecast model could represent the below-809

cloud wet scavenging of aerosol particles, leading to changes in PM concentrations reach-810

ing the ground. The use of aqueous chemistry for aerosol-cloud interactions requires a811

double-moment microphysics, for which the Morrison two-moment scheme is employed812

along with Grell-3 cumulus and the RRTMG short- and long-wave schemes.813

For the entire cycling period, a time series of innovations ((o-b)’s) in surface PM814

concentrations remains stable, confirming the successful implementation of the data as-815

similation system for the particular chemistry option (chem opt = 109).816

Although only surface mass concentrations are assimilated, the impact was recog-817

nized throughout the troposphere based on the background error statistics of each aerosol818

species. Both aqueous chemistry (AQ) and data assimilation (DA) systematically changed819

the atmospheric composition and its vertical structure, increasing nitrate in the accu-820

mulation mode and sea salt aerosols in the coarse mode near the surface. During the month821

of March 2019, data assimilation tend to considerably increase aerosol species in the ac-822

cumulation mode within the boundary layer while aqueous chemistry significantly re-823

duces coarse-mode aerosol particles up to mid troposphere. When accounted for in clouds,824

sulfate aerosols experience large increases in the aqueous phase, in association with the825

oxidation in low-level clouds.826

In a pollution event with high cloud cover, data assimilation with aqueous chem-827

istry was particularly helpful in simulating wet deposition of aerosols to accurately pre-828

dict the evolution of surface PM concentrations. As the activation, resuspension, and829

wet scavenging processes in association with cloud chemistry can be all simulated only830

when aerosols in cloud water are defined through aqueous chemistry, DA without aque-831

ous chemistry treated all the aerosols as interstitial (e.g., suspended in the air) even when832

precipitation occurred, leading to a significant overestimation of surface PM concentra-833

tions. At that time, large LWP was also produced over a wide range of the domain, demon-834

strating that the formation and development of clouds were also largely affected by aerosols835

in the aqueous phase.836

The use of aqueous chemistry in the aerosol cycling system is beneficial from sev-837

eral perspectives. First, when air pollutants are transported with significant cloud cover,838

aerosols can be considerably affected by clouds, and in turn, they can influence cloud de-839

velopment and properties. As shown in the presented case study, such interactions can840

affect wet scavenging of aerosol particles, significantly reducing false alarms in surface841

PM concentrations. Second, cloudy conditions are generally hard to observe, especially842

with remote-sensing data, making data assimilation more challenging or susceptible to843

cloud contamination. In the strong constraint variational data assimilation system, where844

model errors are not taken into account, the solution (e.g., analysis) might be subopti-845
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mal when model errors become large. In other words, reducing model errors through ad-846

vanced physics mechanisms (such as aqueous chemistry along with cloud chemistry and847

wet scavenging) can make data assimilation more effective, as the assumption of no model848

errors is violated to a lesser extent. Lastly, the effects of the analysis can accumulate over849

time through cycling to make systematic improvements in air quality forecasting.850

Aqueous chemistry currently implemented in the WRF-Chem model is designed851

for warm-rain processes by treating aerosols only in the cloud-water phase. And aque-852

ous chemistry implemented for the RACM-MADE-VBS scheme in WRF-Chem does not853

account for all the complex aqueous-phase reactions, either. For example, the contribu-854

tion to SOA concentration by cloud chemistry is missing, and aerosol interactions with855

ice nuclei are not taken into account in this version of the model (Tuccella et al., 2015).856

As such, the aqueous chemistry used in the chemical option might be overly simple to857

represent all the physical processes for indirect aerosol effects, especially for mixed-phase858

convective clouds with nonprecipitating supercooled liquid water near cloud tops (Rosenfeld859

et al., 2008).860

In the spring case examined here, however, the new chemistry option was clearly861

helpful to simulate the reduction of PM concentrations due to wet removal of aerosol par-862

ticles. In cloudy conditions that do not result in precipitation, however, enhanced aerosol863

concentrations in the atmosphere can act to reduce the mean size of cloud droplets and864

suppress coalescence and warm-rain processes, while enhancing the growth of large hail865

and cold-rain processes. Those cases cannot be simulated in the model with such sim-866

ple aqueous chemistry, which can mislead the analysis. As the strong-constraint 3D-Var867

system used in this study does not include any specific model error term, model errors868

are not investigated nor discussed in detail, but there is room for further improvements869

for the RACM-MADE-VBS-AQCHEM option in the model to account for more sophis-870

ticated aerosol effects in clouds, radiation, and precipitation.871

On the other hand, in the WRFDA system developed for this study, aerosol num-872

ber concentrations are not included as part of analysis (or control) variables so that they873

are not changed through the assimilation. To fully describe aerosol impacts on clouds874

or to handle complex cases with mix-phased clouds or cold-rain processes, we might need875

to consider developing the assimilation system to reflect the changes in aerosol number876

concentrations per aerosol (size) mode. Recently, cloud properties and/or atmospheric877

constituents have increasingly been measured or derived from multiple platforms on ground-878

and space-born satellites. Two notable examples are the National Aeronautics and Space879

Administration (NASA)’s Tropospheric Emissions Monitoring of Pollution instrument880

(TEMPO; https://tempo.si.edu/index.html, last access: 5 July 2023) and South Korea’s881

Geostationary Environment Monitoring Spectrometer (GEMS; Kim et al. (2020)) on-882

board the Geostationary Korean Multi-purpose Satellite 2B (GEO-KOMPSAT-2B; https://nesc.nier.go.kr/product/view,883

last access: 5 July 2023). Needless to say, these data can be extremely valuable to not884

only evaluate the modeling system but also to better initialize the model through data885

assimilation.886
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Figure 1. Flowchart of the WRF-Chem/WRFDA cycling system for chemical data assim-

ilation. Gridded input data is indicated by rectangular boxes on the left, and all the software

packages are filled in colors. Dotted lines imply optional input data, while solid lines are manda-

tory inputs for WRF-Chem/WRFDA cycling, accompanied by typical input file names (without

specification of domain ID and time) used in the WRF system.

5 Open Research887

All meteorological observations assimilated in this study are obtained from the Na-888

tional Centers for Environmental Prediction (NCEP) prepbufr data (https://rda.ucar.edu/datasets/ds337.0/)889

while the monthly wet deposition observations at Korean EANET (Acid Deposition Mon-890

itoring Network in East Asia) sites are read from the website (https://monitoring.eanet.asia/document/public/index/)891

for March 2019. Chemical measurements at the surface are collected from http://www.airkorea.or.kr892

for Korean sites and from http://www.cnemc.cn for Chinse sites. The observation data893

processed for the experiments presented in this study are available in Ha (2023b). The894

emissions data used in the case study are accessible in Ha (2023a). The base version (V4.4.1)895

of the WRF system is publicly released in https://github.com/wrf-model/WRF/releases/tag/v4.4.1,896

and the updated codes introduced for the new features in WRF-Chem/WRFDA are ac-897

cessible in Ha (2023c). Figure 1 is produced in Microsoft Powerpoint and all other fig-898

ures are produced in Python V3.8.13. VIIRS Level 3 gridded AOD data in netCDF4 are899

downloaded and displayed using the scripts provided in https://www.star.nesdis.noaa.gov/smcd/emb/viirs aerosol/software python viirs gridded.php,900

which is publicly available.901
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Figure 2. Surface observing network used in this study: a) Assimilated observation sites are

marked as dots in red (black) for Korean (Chinese) sites, with terrain height colored in domain

1 (at 27 km resolution) and a black box over the Korean peninsula indicating domain 2 (D2; 9

km resolution) b) 71 evaluation sites are marked in light blue dots while three EANET sites -

Ganghwa, Imsil, and Jeju - are displayed in pink (”+” sign) along with their site names and c)

the Korean automated weather stations (AWS) measuring meteorological variables at the surface

are shown in blue dots.
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Figure 3. Vertical profile of each aerosol species in background error standard deviation esti-

mated with and without aqueous chemistry (AQ and NO AQ, respectively) over domain 2 (D2).

Accumulation mode aerosols in AQ (NO AQ) are depicted in red lines with dots (black solid

lines) while Aitken mode aerosols in AQ (NO AQ) in dashed orange (dotted gray) lines.
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Figure 4. Vertical profile of background error standard deviation with aqueous chemistry

(AQ) for aerosol species in the aqueous or cloud water (”cw”) phase in domain 2. Domain-

averaged height ([km]), corresponding to the model levels, is displayed on the right y-axis.
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Figure 5. Time series of (o-a; red dashed lines) and (o-b; blue solid lines) in PM2.5 (top) and

PM10 concentrations (bottom) on the ground in DA AQ in domain 2. The lines indicate the

mean over all the assimilated stations in South Korea while the light blue shading area shows

standard deviation in (o-b)’s across the surface stations. The numbers in the legend indicate the

mean over the entire cycling period from Feb 21 to March 31, 2019.

Table S1. Physics and chemical options

Scheme Option Namelist option

Chemistry driver RACM-MADE-VBS-AQCHEM chem opt = 109
Photolysis Madronich phot opt = 1
Grid-scale Wet scavenging On wetscav onoff = 1
Grid-scale Cloud chemistry On cldchem onoff = 1
Convective transport and wet deposition On conv tr wetscav = 1
Convective-scale aqueous chemistry On conv tr aqchem = 1
Dust emissions On dust opt = 13
Sea salt emissions On seas opt = 2
Prognostic Number Concentration On progn = 1
Microphysics Morrison 2-moment mp physics = 10
Longwave radiation RRTMG ra lw physics = 4
Shortwave radiation RRTMG ra sw physics = 4
Surface layer Monin–Obukhov sf sfclay physics = 1
Land surface Noah sf surface physics = 1
Boundary layer YSU bl pbl physics = 1
Cumulus parametrization Grell-3D cu physics = 5

–23–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

0 1 2 3 4

5

10

15

20

Le
ve

l

(a) SO4

DA       anal
DA       back
DA_AQ  anal
DA_AQ  back

0 5 10

5

10

15

20
(b) NO3

0 2 4

5

10

15

20
(c) NH4

0 1 2 3

5

10

15

20

Le
ve

l

(d) P25

0 1 2 3

5

10

15

20
(e) SOA

0 1 2

5

10

15

20
(f) ORGP

0.0 0.5 1.0

5

10

15

20

Le
ve

l

(g) EC

0.000 0.025 0.050 0.075 0.100

5

10

15

20
(h) Na

0.00 0.02 0.04

5

10

15

20
(i) Cl

0 5 10 15

5

10

15

20

Le
ve

l

(j) antha

0.0 2.5 5.0 7.5

5

10

15

20
(k) seas

0 5 10 15

5

10

15

20
(l) soila

Figure 6. Vertical profile of each aerosol species ([µg/kg-dryair]) in the analysis and back-

ground forecast in domain 2 with and without aqueous chemistry (DA AQ and DA, respectively),

averaged over 71 verification sites in Korea (light blue dots in Fig.2) from 6-hr cycling for the

period of 1-31 March 2019.
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Figure 7. (a) Aerosol optical depth retrieved from VIIRS onboard the Suomi NPP as a daily

mean gridded data (level 3) on Mar 19, 2019 (b) Level 2 cloud top pressure retrieved from the

MODIS sensors onboard the Aqua satellite, merged between 04:35:12 and 04:40:12 UTC on 20

March 2019.
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Figure 8. Time series of boxplots for daily PM simulations in each experiment compared to

observations. Each day displays 24-hour forecasts initiated from the 00Z analysis in each experi-

ment at 71 verification sites in Korea.

Table S2. Experiments. DA stands for data assimilation and AQ aqueous chemistry.

Experiment chem opt Assimilation

NODA 108 None
DA 108 CHEM+MET
NODA AQ 109 None
DA AQ 109 CHEM+MET

–25–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

0 6 12 18 24 30 36 42 48

20

40

60

80

100

120

140

Su
rfa

ce
 P

M
10

 [u
g 

m
^-

3]

OBS
NODA      
DA           
NODA_AQ
DA_AQ     

0 6 12 18 24 30 36 42 48
Forecast Hour

10

20

30

40

50

60

70

80

Su
rfa

ce
 P

M
2_

5_
DR

Y 
[u

g 
m

^-
3]

0.0

0.5

1.0

1.5

2.0

2.5

Ho
ur

ly
 ra

in
fa

ll 
[m

m
]

1000

1004

1008

1012

1016

1020

1024

1028

M
SL

P 
[h

Pa
]

Figure 9. Time series of (top) surface PM10 and (bottom) PM2.5 concentrations for 48 h

forecasts from 00 UTC 20 March 2019, averaged over 71 Korean verification sites (marked in Fig.

2 (b)). In-situ observations (OBS; black triangle) are compared with hourly forecasts from their

00Z analysis in each cycling experiment. Gray dotted lines with the right y-axis are (top) hourly

rainfall (mm) and mean sea level pressure (hPa) observations (bottom) averaged over 699 AWS

sites over South Korea (marked in Fig. 2 (c)).
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marked as a ”x” symbol.
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Figure 11. Time series of 24 h forecasts of PM10 concentrations (filled) simulated at Seoul,

South Korea (in model levels up to 20) in each experiment. Cloud and Rain water mixing ratios

(QCLOUD and QRAIN ([g kg-1])) are contoured in white and pink, respectively. Liquid Water

Path (LWP) is also plotted in black dashed lines with the right y-axis.
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from three EANET sites (marked in Fig. 2 (b)) in (a) daily rain accumulation and wet deposition

in (b) SO4 (c) NO3 and (d) NH4.
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Figure S2. Same as Fig.11, but for PM2.5 (filled). The sum of cloud-borne sulfate aerosols

in the accumulation and Aitken modes (e.g., so4cwj+so4cwi) is contoured in pink, superimposed

with cloud water mixing ratios (QCLOUD ([g kg-1]); white solid lines). The PBL height is also

plotted in black dashed lines with the y-axis on the right.
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