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Abstract

This study investigates how climate sensitivity depends upon the spatial pattern of radiative forcing. Sensitivity experiments

using a coupled ocean-atmosphere model were conducted by adding anomalous incoming solar radiation over the entire globe,

Northern Hemisphere mid-latitudes, Southern Ocean, and tropics, respectively, with both positive and negative perturbation

considered. The varied forcing patterns led to highly divergent climate sensitivities, with extratropical forcing inducing sig-

nificantly more global-mean temperature change compared to tropical forcing. This dependence is particularly strong over

the Southern Hemisphere, where the climate is nearly twice as sensitive to Southern Ocean forcing as tropical forcing. This

dependence of climate sensitivity on the location of radiative forcing stems from covariations between lapse rate feedback, cloud

feedback and tropospheric stability. These results contrast with the conventional SST-pattern effect in which tropical surface

temperature changes regulate the climate sensitivity, and has important implications for geoengineering and understanding the

mechanisms of paleoclimate change.
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Key points: 10 

• The solar forcing pattern effect is investigated in a coupled ocean-atmosphere model.  11 

• Climate sensitivity is doubled from tropical forcing to Southern Ocean forcing. 12 

• The radiative forcing pattern effect involves changes in lapse rate feedback, cloud 13 
feedback, and tropospheric stability. 14 

Plain language summary 15 
The way surface temperature responds to radiative forcing depends on where such 16 

forcing is applied. The global mean surface temperature change is doubled when the forcing is 17 

imposed in the tropics compared to when it happens in the mid-latitudes such as the Southern 18 

Ocean. Changes in the vertical temperature profiles and clouds contribute to the dependence of 19 

surface temperature change on the forcing geographic locations. 20 

keywords 21 
Climate sensitivity; Climate feedback; Radiative forcing pattern effect;  22 
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Abstract 23 
This study investigates how climate sensitivity depends upon the spatial pattern of 24 

radiative forcing. Sensitivity experiments using a coupled ocean-atmosphere model were 25 

conducted by adding anomalous incoming solar radiation over the entire globe, Northern 26 

Hemisphere mid-latitudes, Southern Ocean, and tropics, respectively, with both positive and 27 

negative perturbation considered. The varied forcing patterns led to highly divergent climate 28 

sensitivities, with extratropical forcing inducing significantly more global-mean temperature 29 

change compared to tropical forcing. This dependence is particularly strong over the Southern 30 

Hemisphere, where the climate is nearly twice as sensitive to Southern Ocean forcing as tropical 31 

forcing. This dependence of climate sensitivity on the location of radiative forcing stems from 32 

covariations between lapse rate feedback, cloud feedback and tropospheric stability. These 33 

results contrast with the conventional SST-pattern effect in which tropical surface temperature 34 

changes regulate the climate sensitivity, and has important implications for geoengineering and 35 

understanding the mechanisms of paleoclimate change.  36 

  37 
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1. Introduction 38 
A linear zero-dimensional energy balance model is a useful tool for understanding the 39 

relationship between radiative forcing and surface temperature. It provides a straightforward way 40 

to estimate climate sensitivity (Gregory et al., 2004). However, this framework does not account 41 

for the spatial pattern of surface temperature changes. The spatial pattern of sea surface 42 

temperature (SST) change has received much attention. Previous studies have shown that the 43 

spatial pattern of SST has great impacts on precipitation (Xie et al., 2010), large-scale circulation 44 

(Ma & Xie, 2013), global radiative budget and thus radiative feedbacks (Andrews et al., 2022; 45 

Andrews & Webb, 2018). In particular, the dependence of radiative feedbacks on SST spatial 46 

patterns is of great interest to the community (Andrews et al., 2015; Andrews & Webb, 2018), as 47 

model predicted climate sensitivity can vary considerably between different patterns of SST 48 

changes even though these patterns have the same global mean values (Zhao, 2022). To estimate 49 

the impacts of SST spatial patterns on climate feedback and sensitivity, recent studies have 50 

utilized a Green’s function approach to analyze the climate response to local SST changes in 51 

atmosphere-only models forced by monthly-varying SST, and have shown that SST warming 52 

over tropical warm pools is associated with strong global-mean radiative cooling, whereas the 53 

same amount of SST warming over mid-to-high latitudes (e.g., the Southern Ocean) induces 54 

relatively small global-mean radiative response (Dong et al., 2019; Zhang et al., 2023; Zhou et 55 

al., 2017).  56 

While the Green’s function approach has shown to be useful in understanding the SST 57 

pattern effect on climate sensitivity, large uncertainties exist in terms of future SST projections. 58 

It is important to understand the radiative forcing pattern effect in atmosphere-ocean coupled 59 

models, where SST response to radiative forcing can be retrieved from such models. Motivated 60 

by the SST pattern effect on radiative feedbacks, this study seeks to explore how spatial 61 

asymmetries in radiative forcing influence climate sensitivity through a series of idealized solar 62 

forcing experiments using an atmosphere-ocean coupled system, which can help us understand 63 

the paleoclimate and guide the development of potential geoengineering strategies in the future. 64 

Previous studies have examined impacts of forcing patterns on the climate system from 65 

different perspectives. For example, Stuecker et al. (2020) showed that both local and remote 66 

CO2 forcing affect equatorial temperature via the large-scale atmospheric circulation like the 67 
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Hadley cell, the oceanic circulation, and local cloud feedback. Compared with tropical forcings, 68 

extratropical forcings have a greater impact on global temperature change (De F. Forster et al., 69 

2000; Joshi et al., 2003). Similarly, ocean heat uptake in higher latitudes results in greater global 70 

surface temperature change than ocean heat uptake in lower latitudes, which is attributed to 71 

distinct cloud feedbacks and circulation changes (Kang & Xie, 2014; Liu et al., 2018; Rose et al., 72 

2014; Rugenstein et al., 2016). Extratropical radiative forcings also shift the position of the 73 

intertropical convergence zone (ITCZ) by modifying the meridional energy transport (Kang et 74 

al., 2019; Xiang et al., 2018). From a paleoclimate perspective, variations in obliquity alter the 75 

meridional distribution of incoming solar radiation at TOA, which further affects SST and 76 

climate feedbacks (Mantsis et al., 2011), and large-scale circulation (Mantsis et al., 2014). 77 

Orbital precession can also change the energy budget at TOA, which impacts the Hadley cell 78 

(Merlis et al., 2013a, 2013b) and tropical precipitation (Merlis et al., 2013c).  79 

In this study, we investigate the dependence of climate feedback and sensitivity on the 80 

spatial pattern of solar forcing in a coupled climate model. Specifically, the incoming solar 81 

radiation at TOA is perturbed at different geographic locations to mimic the effect of changes in 82 

the spatial pattern of radiative forcing. A series of perturbation experiments are conducted by 83 

imposing an abrupt change of incoming solar radiation over the entire globe, and three zonal 84 

bands including the Northern Hemisphere mid-latitudes, Southern Ocean, and tropics, 85 

respectively. These experiments reveal a strong dependence of climate sensitivity upon the 86 

spatial pattern of radiative forcing, with extratropical forcings inducing roughly twice as much 87 

global-mean temperature change as tropical forcings, particularly in the Southern Hemisphere.  88 

2. Methods 89 

2.1 Idealized Spatial Patterns of Solar Forcing Perturbation 90 
Applying a fractional change to the solar constant is one approach of modifying incoming 91 

solar radiation. However, since the amplitude of annual mean incoming solar radiation peaks at 92 

the equator and decreases poleward, the resulting solar perturbation by this approach varies with 93 

latitude. This makes it challenging to determine whether the response is due to the amount of the 94 

fractional change, the spatial pattern of the perturbation, or a combination of both. The goal is to 95 

investigate the dependence of climate response on the location of anomalous incoming solar 96 

radiation. To achieve this, we impose solar forcing perturbation over the entire globe, Northern 97 
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Hemisphere Mid-latitudes, Southern Ocean, and Tropics. We seek to ensure that the annual mean 98 

anomalies are horizontally uniform, thereby excluding any potential impacts from the 99 

heterogeneity of imposed forcing within the regions of interest. By doing so, we can better 100 

understand the dependence of climate response on the location of the forcing and its potential 101 

implications for climate sensitivity. 102 

Nadeau and Mcgehee (2017) showed that the annual mean distribution of incoming solar 103 

radiation for the Earth can be estimated by a second-degree approximation: 104 

𝜎ଶ(𝑦, 𝛽) = 1 − 58 𝑝ଶ (𝑐𝑜𝑠 𝛽)𝑝ଶ(𝑦) #(1)  
where 𝑦  stands for sine of latitude, 𝛽  is obliquity, 𝑝ଶ(𝑦)  is the Legendre polynomials with 105 𝑝ଶ(𝑦) = (3𝑦ଶ − 1)/2. A simplified version is provided by North (1975): 106 𝜎ොଶ(𝑦) = 1 − 0.482 × 𝑝ଶ(𝑦)#(2)  

In this form, the annual mean distribution of incoming solar radiation is only a function of 107 

latitude. We first normalize the instantaneous incoming solar radiation at each model time step 108 

by the annual mean distribution of incoming solar radiation. The incoming solar radiation 109 

perturbation is deduced by (i) applying a 1 W m-2 change to the solar constant over the perturbed 110 

region to have a spatially and spectrally dependent forcing perturbation; (ii) dividing it by Eq. 2 111 

to make it horizontally uniform (when integrated annually over the entire spectrum); and (iii) 112 

multiplying it with a parameter to specify the global mean solar forcing perturbation. By doing 113 

this, only the annual mean perturbation is horizontally uniform, whereas neither the 114 

instantaneous nor the monthly mean perturbation is. 115 

 In this study, we consider both positive and negative perturbations. To ensure that the 116 

experiments are comparable with each other for the same sign, we keep the absolute magnitude 117 

of the global mean forcing the same. Since the domain size varies across the experiments, the 118 

parameter used to control the magnitude depends on the domain size. Specifically, positive 119 

perturbation experiments have a global mean forcing of +4 𝑊 𝑚ିଶ while the negative ones have 120 

a global mean forcing of −4 𝑊 𝑚ିଶ. When the forcing is imposed over the entire globe, the 121 

parameter is ±16.0 given that the surface area of the globe is 4𝜋𝑟ଶ but the effective area is 𝜋𝑟ଶ, 122 

where 𝑟 is the radius of the Earth. When adding forcing over a specific zonal band such as the 123 

Northern Hemisphere Mid-latitudes (30°N to 60°N), we need to calculate the surface area of the 124 
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zonal band. To do this, we use the difference between the surface area of the bigger spherical cap 125 

(from the north pole to 30°N) and that of the smaller spherical cap (from the north pole to 60°N), 126 

which is given by: 127 2𝜋𝑟ଶ(1 − sin 𝜃ଵ) − 2𝜋𝑟ଶ(1 − sin 𝜃ଶ) , #(3)  

where 𝜃ଵ = 30° and 𝜃ଶ = 60°. We use similar procedures to calculate the surface area for the 128 

Sothern Ocean and Tropics. This approach ensures the same absolute values of global mean 129 

anomalous incoming solar radiation across all experiments and allows us to examine the climate 130 

response to forcing in a systematic way. The geographic locations of anomalous incoming solar 131 

radiation are shown in Figure S1. Note that neither global mean effective radiative forcing nor 132 

global mean instantaneous radiative forcing is supposed to be the same across all experiments by 133 

this approach. 134 

2.2 Model and Experiment 135 
The Seamless System for Prediction and EArth System Research (SPEAR), developed at 136 

NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL), is a fully atmosphere-ocean coupled 137 

model designed for physical climate prediction and projection over a range of timescales from 138 

seasonal to  multidecadal  (Delworth et al., 2020). In this study, the SPEAR_LO version is used, 139 

which consists of AM4 for the atmosphere component and LM4 for the land component (Zhao et 140 

al., 2018a, 2018b). The atmosphere model has 33 vertical levels with a horizontal resolution of 141 

approximately 100 km. The ocean and sea ice components are based on the MOM6 model and 142 

have a nominal horizontal resolution of 1° and 75 vertical levels. Further information on the 143 

SPEAR_LO can be found in Delworth et al. (2020). 144 

In this study, a preindustrial control simulation integrated for 400 years is used as a base 145 

state, with radiative gas concentration and aerosol emission fixed at levels representative of the 146 

calendar year 1850. As noted in Delworth et al. (2020), this simulation displays a radiative 147 

imbalance at the TOA close to zero and little change in global mean surface air temperature over 148 

the 400-year period, indicating that the system is in near equilibrium. The climatological mean 149 

state is calculated from model outputs between years 101 and 300. For the perturbed simulations, 150 

initial conditions are retrieved from year 101 of the Control simulation, and an abrupt anomalous 151 

incoming solar radiation is added and maintained at a constant level throughout each simulation. 152 
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The domain of interest for each experiment is listed in Supplementary Table S1. Each perturbed 153 

simulation is integrated for 200 years.  154 

2.3 Radiative Kernel Analyses 155 
The radiative kernels used in this study are based on the atmospheric component of a 156 

recent generation climate model (HadGEM3) developed by the UK Met Office (Smith et al., 157 

2020). The radiative kernel method decomposes the response of radiative fluxes at the TOA into 158 

individual components caused by changes in temperature, water vapor, surface albedo and 159 

clouds. Soden et al. (2008) showed that cloud feedback can be diagnosed from the response of 160 

cloud radiative effect corrected by cloud masking effect. The radiative kernel method quantifies 161 

radiative responses from changes in Planck (contributions of vertically uniform warming), lapse 162 

rate (contributions of departures from vertically uniform warming), water vapor, surface albedo, 163 

and cloudiness. Here we compute radiative feedbacks as the difference between Control 164 

climatology and the last 20 years of the perturbation experiments. 165 

3. Surface Temperature Response and Climate Sensitivity 166 
Figure 1 illustrates impacts of anomalous incoming solar radiation on surface temperature 167 

changes. The globally uniform positive forcing, GL +4, results in an overall surface warming 168 

except the north Atlantic high latitudes (Figure 1a). NM +4 leads to enhanced surface warming 169 

over the Northern Hemisphere continents and the north Pacific, whereas the north Atlantic high 170 

latitudes still exhibit anomalous surface cooling (Figure 1b). By contrast, SO +4 shows large 171 

surface warming not only over the entire Southern Ocean, but also over the tropical eastern 172 

Pacific and tropical Atlantic (Figure 1c). The teleconnection between the SO and the tropics 173 

involves several proposed mechanisms such as low cloud feedbacks (Kim et al., 2022; Zhang et 174 

al., 2021), and surface wind anomalies associated with the Antarctic ozone hole (Hartmann, 175 

2022). TR +4 exhibits a similar surface warming pattern as GL +4, but with a weaker magnitude 176 

(Figure 1d). The negative perturbation experiments show similar patterns of surface temperature 177 

changes as their positive counterparts, but with opposite signs (Figure 1e-h).  178 
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experiments, the dependence of climate sensitivity on the geographic locations of the imposed 203 

anomalous incoming solar radiation indicates robust radiative forcing pattern effect. 204 

Previously Winton et al. (2010) introduced the ocean heat uptake efficacy factor (ε) to 205 

address climate response to an increase in CO2 concentration. The efficacy factor was explained 206 

in the context of a two-box model by Held et al. (2010), and was used to account for the effect of 207 

evolving SST spatial patterns on climate feedback (Winton et al., 2020). Here, large values of ε 208 

are mainly found in TR (not shown), indicating strong damping of the imposed forcing and thus 209 

large negative radiative feedback, whereas small values of ε  mostly appear in extratropical 210 

forcing cases (NM and SO) and global forcing cases (GL), which suggests weak damping of the 211 

imposed forcing and thus small negative radiative feedback. In addition, as indicated by the time 212 

series of global mean surface air temperature (Figure S3), the negative perturbation experiments 213 

evolve toward equilibrium in a faster pace than the positive ones. Stouffer (2004) showed that 214 

the coupled system exhibits a shorter response time scale with an abrupt half of CO2 215 

concentration than an abrupt doubling of CO2 concentration. Variations of the response times 216 

scale between positive and negative forcing suggest that one may not use the relationship found 217 

solely from either positive forcing or negative forcing experiments to constrain transient climate 218 

sensitivity (Merlis et al., 2014). 219 

 220 

4. Radiative Feedbacks 221 
To understand solar forcing pattern effect, we diagnose radiative feedbacks using the 222 

radiative kernel method (see Methods). The Planck feedback is negative and shows relatively 223 

small variations across the perturbation experiments (Figure 2a). The lapse rate feedback is also 224 

negative but exhibits large variations (Figure 2b), which is primarily due to the distinctive 225 

surface warming patterns caused by changes in solar forcing location. The coupling between the 226 

surface and the free troposphere is strong in the tropics because of temperature response 227 

following a moist adiabat. Therefore, a relatively larger warming in the tropics is associated with 228 

more tropospheric warming, a greater reduction in lapse rate, and a more negative lapse rate 229 

feedback (Soden & Held, 2006). Here, the tropical forcing has relatively more warming at low 230 

latitudes and thus more negative lapse rate feedback. However, the extratropical forcing, 231 

especially for the SO forcing, has relatively more surface warming at high latitudes where the 232 
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Figure 5 Scatterplots of (a) changes in global mean EIS per degree of global mean temperature 292 
change (units: K K-1) versus lapse rate feedback, and (b) changes in EIS per degree of global 293 
mean temperature change (units: K K-1) versus cloud feedback. 294 

6. Discussions and Summary 295 
This study investigates how changes in locations of imposed solar forcing affect the 296 

climate system in an atmosphere-ocean coupled model. We conduct a series of sensitivity 297 

experiments where anomalous incoming solar radiation is imposed globally and over three zonal 298 

bands including the Northern Hemisphere mid-latitudes, Southern Ocean, and tropics, 299 

respectively. Our analyses show that extratropical forcing results in larger temperature change 300 

compared to tropical forcing. The range in climate sensitivity mainly stems from variations in 301 

lapse rate feedback and cloud feedback, in which both are related to changes in tropospheric 302 

stability. 303 

Our results have implications for historical aerosol forcing, volcanic eruptions, and 304 

potential geoengineering efforts in the future. Compared to the idealized solar forcing 305 

experiments, aerosol forcing involves larger spatial-temporal variability. Over the historical 306 

period, changes in anthropogenic aerosols play an important role in altering radiative forcing, 307 

which is mostly due to a geographic shift of major aerosol emission sources. The spatial 308 

distribution of aerosols impacts surface temperature responses as shown in Persad and Caldeira 309 

(2018). In addition, volcanic eruptions can also induce an abrupt change in the geographic 310 

distribution of aerosols, which can further affect the mean state of the climate system (Yang et 311 

al., 2019). As indicated by the simulations, zonally symmetric forcing in the extratropics induces 312 

larger global mean temperature changes than that in the tropics. This implies that the 313 

effectiveness of geoengineering in modifying the overall mean state of the climate system would 314 

be limited if the forcing is applied solely over the tropics. Alternatively, our results highlight the 315 

importance of carefully choosing the location of the forcing when developing and evaluating 316 

potential geoengineering strategies.  317 

Overall, the results in this study provide evidence of the solar forcing pattern effect on the 318 

climate system, which involves dependence of radiative feedbacks on the geographic locations of 319 

solar forcing. Considering the computational cost of running coupled climate models, we only 320 

apply zonally symmetric forcing over the entire globe and three individual zonal bands, and 321 

perturb the entire shortwave spectrum of the solar radiation. We acknowledge that the solar 322 
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forcing’s spatial pattern can be more complex. Also, the perturbation is applied to the entire 323 

spectrum of solar radiation. A recent study suggested that the impact of solar radiation is 324 

spectrally dependent (Jing et al., 2021). While these issues are beyond the scope of this study, we 325 

suggest that future research could explore related questions, building on our findings to gain a 326 

more comprehensive understanding of the multifaceted interactions between external radiative 327 

forcing, feedback, surface temperature, and other aspects of the climate system. 328 
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