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Abstract

The ability to rapidly simulate the climate implications of a large number of CO2 emissions trajectories is helpful for imple-

menting mitigation and adaptation policies. A key variable of interest is near-surface air temperature, which is approximately

proportional to cumulative CO2 emissions. We take advantage of this relationship, diagnosing Green’s Functions for the spatial

temperature response to CO2 emissions based on CMIP6 experiment data, creating an emulator that can be used across emis-

sions scenarios to estimate local temperature responses. As compared to CMIP6 experiments, this approach captures the spatial

temperature response with some limited accuracy in polar regions. It incorporates emissions path dependency and is useful for

evaluating large ensembles of policy scenarios that are otherwise prohibitively expensive to simulate using earth system models.

We apply this emulator to show differing local temperature responses when a global mean of 2ºC is reached and to varying

trajectories with the same cumulative emissions.
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Key Points:6

• With a Green’s Function approach, we emulate the global mean and spatially re-7

solved temperature response to a CO2 emissions trajectory.8

• This approach allows expedient emulation of the spatial and temporal tempera-9

ture response to varying emissions pathways.10

• We illustrate this approach by evaluating local temperatures when a global mean11

of 2°C is reached.12
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Abstract13

The ability to rapidly simulate the climate implications of a large number of CO2 emis-14

sions trajectories is helpful for implementing mitigation and adaptation policies. A key15

variable of interest is near-surface air temperature, which is approximately proportional16

to cumulative CO2 emissions. We take advantage of this relationship, diagnosing Green’s17

Functions for the spatial temperature response to CO2 emissions based on CMIP6 ex-18

periment data, creating an emulator that can be used across emissions scenarios to es-19

timate local temperature responses. As compared to CMIP6 experiments, this approach20

captures the spatial temperature response with some limited accuracy in polar regions.21

It incorporates emissions path dependency and is useful for evaluating large ensembles22

of policy scenarios that are otherwise prohibitively expensive to simulate using earth sys-23

tem models. We apply this emulator to show differing local temperature responses when24

a global mean of 2°C is reached and to varying trajectories with the same cumulative25

emissions.26

Plain Language Summary27

There is a wide range of potential pathways for future CO2 emissions, and simu-28

lating them in earth system models can take large computational resources. It is impor-29

tant to understand the varying local impacts of different policies for effective mitigation30

and adaptation to climate change. A key concern is understanding local changes in tem-31

perature where people live. It is well established that the global mean temperature change32

is proportional to the cumulative emissions of CO2; taking advantage of this relation-33

ship, we create a simplified model that quantifies local temperature response to CO2 emis-34

sions. As it takes less than one second to emulate 90 years of temperature change, this35

approach can be used to evaluate a multitude of policy scenarios. We evaluate this ap-36

proach with the Climate Model Intercomparison Project Phase 6 (CMIP6) experiment37

data, showing that it captures the temperature response in different locations with some38

limited accuracy in polar regions. We apply this approach to show local temperature change39

when a global mean temperature reaches 2°C.40

1 Introduction41

Evaluating uncertainty in coupled earth-society systems is important for understand-42

ing the impact of decision-making on society, and for developing metrics such as the so-43

cial cost of carbon (SCC) (Interagency Working Group on Social Cost of Greenhouse Gases,44

United States Government, 2021; Carleton et al., 2022). One aspect of such uncertainty45

analysis involves evaluating the impacts of emissions trajectories from large ensembles46

of social scenarios to quantify impacts on the climate system. Because of the computa-47

tional cost of running full-scale earth-system models, researchers rarely use them to eval-48

uate large numbers of different emission scenarios. Detailed information drawn from these49

models, however, is useful for understanding the local climate impacts of decisions.50

Current methods to evaluate the temperature response of the earth system to an-51

thropogenic emissions of CO2 include running global climate models (GCMs), earth sys-52

tem models (ESMs), earth system models of intermediate complexity (EMICs) (Claussen53

et al., 2002), energy balance models (EBMs) or multi-box models that underlie many54

integrated assessment models (IAMs). There is a tradeoff between model complexity (and55

thus the detail of results) and computational cost for all of these approaches. GCMs and56

ESMs are too computationally expensive to run large ensembles of policy scenarios. EMICs57

can evaluate the spatial temperature response to CO2 emissions, with smaller compu-58

tational costs due to lower resolution and reduced complexity physics. EBMs are com-59

putationally inexpensive, but provide only global mean or zonally-integrated represen-60

tations of temperature changes.61
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The transient climate response to cumulative emissions of carbon dioxide (TCRE)62

(Matthews et al., 2009; Steinacher & Joos, 2016; Herrington & Zickfeld, 2014; Canadell63

et al., 2021) can be used to calculate the temperature impact of CO2 emissions. Pattern64

scaling using the regional transient climate response to cumulative emissions of carbon65

dioxide (RTCRE) (Leduc et al., 2016) can provide low-cost, spatially explicit estimates66

of the temperature response to emissions. Applications of the RTCRE typically assume67

that the pattern response of temperature is constant and insensitive to the emissions tra-68

jectory, which can fail under varying emissions sizes and under reductions in emissions69

(Krasting et al., 2014; Zickfeld et al., 2016; Tokarska et al., 2019). This linearity and the70

TCRE have had important societal consequences, leading to the establishment of car-71

bon budgets for a target global mean temperature (Meinshausen et al., 2009; Rogelj et72

al., 2011; Matthews et al., 2018; Matthews & Caldeira, 2008; Drake & Henderson, 2022).73

Response operators, or Green’s Functions, provide an alternate approach to diag-74

nosing both global mean and spatial feedbacks to a forcing in ways that can capture dif-75

fering pattern responses over time. Green’s Functions have been used to characterize the76

radiative feedback response to sea surface temperature (Dong et al., 2019), temperature77

response to CO2 concentrations (Lucarini et al., 2017; Lembo et al., 2020), and atmo-78

spheric transit times (Orbe et al., 2016). When diagnosed from ESMs, Green’s Functions79

can form the basis for emulators that maintain the resolution of the original model, while80

reducing the computational load to simulate scenarios (as seen in Geoffroy and Saint-81

Martin (2014)).82

Here, we construct an emulator, the Earth System Green’s Response emulator (ESGR),83

of the pattern response of temperature to CO2 emissions, which maintains the resolu-84

tion of the ESMs it is derived from while enabling near-instantaneous computation. We85

take advantage of the approximately linear relationship between CO2 emissions and tem-86

perature by diagnosing Green’s Functions for temperature response to CO2 emissions,87

using the Carbon Dioxide Removal Model Intercomparison Project (CDRMIP) model88

output (Keller et al., 2018). ESGR is based on the multi-model mean spatial Green’s Func-89

tion, and is evaluated with CMIP6 experiments. We show that it reproduces the tem-90

perature response due to emissions of CO2 in most locations within one standard devi-91

ation of the CMIP6 multi-model mean both when CO2 emissions are increasing and af-92

ter their cessation. ESGR captures the time-dependent spatial patterns of the temper-93

ature response under two scenarios that end with the same cumulative CO2 emissions.94

We illustrate how ESGR can be used to efficiently calculate metrics such as local tem-95

perature changes when a global mean 2 °C is reached.96

2 Methods97

We use model output from CDRMIP to build ESGR from calculated temperature98

responses to CO2 emissions. Here we present the model data that is used to diagnose99

the Green’s Functions and for evaluation, and explain the derivation and evaluation of100

ESGR.101

2.1 CMIP6 Models102

The Earth System Grid Federation (ESGF) archive includes six models that ran103

250 years of pre-industrial control simulations (esm-pi-ctrl), as well as 100 gigaton car-104

bon (GtC) pulse (esm-pi-CO2pulse) and removal (esm-pi-CDRpulse) emission simula-105

tions that branch from the esm-pi-ctrl at year 100 and allow the coupled carbon-climate106

system to respond over 90-140 years (Keller et al., 2018). There are six models with data107

from these experiments (shown in Table S1), each with two pulse scenarios (CanESM5108

has 3 realizations of the pulse) for a total of 16 model runs. We compare ESGR to the109

difference between the 1pctCO2 or esm-1pct-brch-1000PgC experiment and the esm-pi-110

ctrl simulation for the same model source IDs as used to diagnose the Green’s Function111
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for evaluation (excluding GFDL as the data is unavaialable; see Table S2 for model in-112

formation).113

2.2 Spatial Green’s Functions114

We diagnose Green’s Functions to create a spatiotemporally resolved pattern of tem-115

perature response to a CO2 emissions pulse. In the case of CMIP6 experiment output,116

the change in the response variable of interest, T (near-surface air temperature at a lo-117

cation x), over time, is defined as:118

∂T (x)

∂t
= A(T (x)) + E(t), (1)

where E(t) is the emissions forcing, and A(T ) are the temperature tendency terms119

(everything impacting temperature aside from emissions, such as advection and radia-120

tion). Assuming that A(T ) is independent of time and linear, we define a linear oper-121

ator, L ≡ ∂
∂t −A, that satisfies:122

LT (x) = E(t). (2)

A Green’s Function, G(x, t−t′), is defined as the response at location x and time123

t to an impulse (delta function) forcing at time t = t′ that satisfies the linear equation:124

LG(x, t− t′) = δ(t− t′), (3)

If we scale this by E(t′), and then integrate this over time, the resulting equation125

becomes:126

∫
LG(x, t− t′)E(t′)dt′ =

∫
E(t′)δ(t− t′)dt′. (4)

Taking advantage of the assumed time-independence of L, and that δ(t−t′) is zero127

everywhere except where t = t′, we can simplify this as:128

L
[∫

G(x, t− t′)E(t′)dt′
]
= E(t). (5)

This takes the same form as 2, allowing us to equate129

T (x, t) =

∫
G(x, t− t′)E(t′)dt′, (6)

providing a simple equation by which we can estimate the near-surface air temperature130

response given an emissions time series.131

2.3 Diagnosing the Green’s Functions from CMIP6132

We can take this general form of the Green’s Function and apply it to the CMIP6133

pulse experiments. Here, Tp(x, t; t0) is the temperature change due to either the esm-134

pi-CO2pulse or esm-pi-CDRpulse experiments relative to the pi-ctrl, and E0 is the mag-135

nitude of the forcing from that pulse (100 or -100 GtC, respectively) at time t0, result-136

ing in:137

LTp = E0δ(t− t0). (7)

Dividing equation 7 by the constant E0, and using equation 3 we diagnose the Green’s138

Function139
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G(x, t− t0) =
Tp(x, t; t0)

E0
. (8)

Assuming that G does not depend on the absolute time of the pulse, we can rela-140

bel the specific time t0 to any time t′, allowing us to convolve the Green’s Function that141

is diagnosed in equation 8 with a forcing E(t′) at any time, as long as the scenario re-142

mains within present CO2 states with up to 5000 GtC of cumulative emissions (as the143

linear relationship has been determined to hold to this level (Tokarska et al., 2016)).144

Practically, we construct ESGR as the multi-model mean Green’s Function for ev-145

ery grid box of the CMIP6 model output, equally weighting by model source ID. We use146

a 4th-order polynomial fit of the Green’s Function to reduce the role of unforced inter-147

nal variability (see Supplementary Information for an evaluation of unforced internal vari-148

ability). In order to evaluate temperature response to a given emissions scenario, we con-149

volve ESGR with emissions scenarios of CO2 by summing the discretized integrands of150

equation 6 (using scipy’s signal convolution (Virtanen et al., 2020)).151

2.4 Evaluation152

We evaluate ESGR with the 1pctCO2 and esm-1pct-brch-1000PgC experiments. The153

1pctCO2 experiment prescribes a one percent increase in CO2 concentration from pre-154

industrial conditions until four times the pre-industrial atmospheric concentration is reached155

(Eyring et al., 2016). The esm-1pct-brch-1000PgC experiment follows the 1pctCO2 ex-156

periment until 1000PgC has accumulated in the atmosphere after which it allows the car-157

bon cycle to freely evolve with zero anthropogenic CO2 emissions.158

We calculate the underlying emissions profiles for these two experiments accord-159

ing to methods described in equation 2 of (Liddicoat et al., 2021), where the emissions160

have to balance the atmospheric CO2 concentration (GATM ), exchange with the ocean161

(SOCEAN ), and exchange with the land (SLAND − ELUC):162

ECO2
= GATM + SOCEAN + (SLAND − ELUC) (9)

Where (GATM ) is the co2mass variable, exchange with the ocean (Socean) is fgco2,163

and exchange with the land (Sland − ELUC) is nbp, all globally integrated.164

The evaluation is performed by 1) convolving individual model Green’s Functions165

with the corresponding diagnosed 1pctCO2 and esm-1pct-brch-1000PgC emissions pro-166

file, and 2) taking the weighted multi-model mean temperature response (weights are shown167

in Table S2). We convolve ESGR for each model ID and instance with the correspond-168

ing emissions and take the mean. ESGR depends in part on carbon cycle dynamics, so169

it has a non-zero correlation with the emissions that underlie an individual model’s fixed170

CO2 concentration experiments, and as a result, taking the mean before and after the171

convolution yield differing results. This is only necessary in the evaluation as emissions172

scenarios we independently create are not correlated to an individual model’s response173

and can be convolved with the ESGR multi-model mean. We compare the ESGR near-174

surface air temperature response at every grid box with the weighted multi-model mean175

temperature difference between the 1pctCO2 or the esm-1pct-brch-1000PgC experiment176

and the pi-ctrl run.177

2.5 Smoothing approach for the Green’s Function178

We reduce the role of unforced internal variability by taking the mean across mul-179

tiple models (Lehner & Deser, 2023), and by using a 4th-order polynomial fit (Lehner180

& Deser, 2023; Hawkins & Sutton, 2009) to the Green’s Function (see Supplementary181
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Information and Figure S6 for a comparison of different fits to the Green’s Function).182

The convolution also smooths out much of the high-frequency variability that is intro-183

duced in the Green’s function approach (see Supplementary Information and Figure S8184

for a discussion of the Fourier transform of the Green’s function, which shows the reduc-185

tion of this noise).186

2.6 Transient Climate Response, Zero Emissions Commitment, and Pat-187

tern Scaling Calculations188

We calculate a TCR for each model source ID using the temperature response of189

a 1pctCO2 experiment at a doubling of CO2, defined as the mean between years 60 and190

80 following the method of Matthews et al. (2009). The TCRE is the TCR divided by191

the cumulative emissions to year 70 in a 1pctCO2 experiment (Matthews et al., 2009).192

We use an approach similar to that of (MacDougall et al., 2020) for the ZEC, taking the193

twenty-year global mean temperature anomaly centered 15 years after cessation of emis-194

sions.195

In order to pattern scale the TCRE, we multiply it by the cumulative emissions196

at every time (based on Leduc et al. (2016)’s RTCRE pattern scaling).197

3 Results198

We first present an evaluation of ESGR with respect to global mean and pattern199

response, comparing the temperature change to that of the multi-model mean CMIP6200

for 1pctCO2 and esm-1pctCO2-brch-1000PgC experiments. We then illustrate two po-201

tential applications, demonstrating how ESGR can be used for calculating the impact202

of varying emissions trajectories on warming, and show that we capture the dependence203

of the final state of surface temperature change on not only the cumulative emissions but204

also the time-dependent emissions pathway. Importantly, this emulator takes under one205

second to simulate 90 years of temperature response, which allows for the evaluation of206

a multitude of emissions trajectories.207

3.1 Evaluation: Global Mean Response208

Figure 1a shows that the global mean time series of ESGR is positive, and has a209

time mean value of 1.49◦C/1000GtC, reflecting the expected warming response to emis-210

sions of CO2. All of the individual model Green’s Functions have a positive time-mean211

value over time, which is again expected given the positive temperature response to in-212

creased CO2 emissions. ESGR reproduces the global mean temperature response over213

time to the 1pctCO2 and the esm-1pctCO2-brch-1000PgC experiments (Figure 1b). It214

captures both the positive increase in temperature as a response to increasing CO2 emis-215

sions, and the cessation of warming when emissions are stopped under esm-1pctCO2-brch-216

1000PgC.217

We quantify ESGR’s ability to reproduce the global mean temperature change through218

calculating the TCR and ZEC for both the ESGR and CMIP6 experiments (Figure 1c219

and d). The multi-model mean TCR, which indicates the global mean warming after a220

doubling of CO2, is 2.12
◦C for the CMIP6 1pctCO2 experiments, and ESGR has a TCR221

of 2.04◦C. The inter-model spread of ESGR, particularly the minimum and maximum,222

cover a larger range than in the CMIP6 experiments, due to the variability in ESGR’s223

ability to capture global mean temperature response for individual models. The global224

mean ZEC for ESGR is -0.028, indicating a slight decrease in temperature after a ces-225

sation of emissions. This mean response falls within the inter-quartile range (IQR) of226

the CMIP6 experiments’ ZEC; however, the mean CMIP6 ZEC indicates continued warm-227

ing with a ZEC of 0.088.228
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Figure 1. a) Global mean ESGR, and the spread of individual model Green’s Functions. b)

Mean of the 1pctCO2 and esm-1pctCO2-brch-1000PgC emissions convolved with ESGR as com-

pared to the multi-model mean of the 1pctCO2 and and esm-1pctCO2-brch-1000PgC model runs

compared to the pi-ctrl. Grey shading indicates the 20-year averaging period to calculate the

TCR, and yellow shading indicates the 20-year time averaging period to calculate the ZEC. c and

d) Mean, median, and interquartile range (IQR) of the TCR and ZEC (respectively).
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Figure 2. Difference in temperature response between ESGR 1pctCO2 (top) or ESGR esm-

1pct-brch-1000PgC (bottom) and the multi-model mean CMIP6 1pctCO2 or esm-1pct-brch-

1000PgC experiment at 20(±5) and 85(±5) years. Hatching indicates locations that fall outside

of a 1σ range of the model variability for the CMIP6 1pct model runs.

3.2 Evaluation: Pattern Response229

Figure 2 shows the difference between the pattern response of ESGR and the multi-230

model mean CMIP6 1pctCO2 and esm-1pctCO2-brch-1000PgC experiments at 20 (±5)231

and 85 (±5) years. ESGR is able to capture the temperature response to both 1pctCO2232

and esm-1pctCO2-brch-1000PgC emissions over the first decade within 0.5°C of the CMIP6233

model everywhere but the North Atlantic. After 20 years ESGR falls within one stan-234

dard deviation of the CMIP6 model spread (Figure S5 shows the one standard devia-235

tion range), which we interpret as indicating the emulator is projecting a response con-236

sistent with the CMIP6 models. Over longer time periods, such as 85 years, ESGR is237

still able to capture the temperature response within 0.5°C of the CMIP6 experiments238

in all areas except for the Arctic and Antarctic due to nonlinearities from climate feed-239

backs (explored more in the Discussion and Conclusion). Even in the Arctic and Antarc-240

tic, many of the regions still fall within one standard deviation of the multi-model spread241

of CMIP6 responses; regions that are hatched are those that fall outside of this range.242

The temperature response in regions within one standard deviation of the multi-model243

mean CMIP6 responses are within the range of temperature responses that we would ex-244

pect from an individual ESM. ESGR captures the reduced warming in year 85 of esm-245

1pctCO2-brch-1000PgC as compared to the 1pctCO2, indicating that it can represent tem-246

perature response to both an increase and decrease in emissions (see Figure S4).247

3.3 Application: Path-dependent Emissions Trajectories248

ESGR can be used to show how emissions trajectories differ in their spatial tem-249

perature impact over time; here we calculate the outcomes of two example emissions sce-250

narios that result in the same cumulative emissions. Trajectory 1 represents an increase251

in CO2 emissions to 70 GtC/year over 20 years, followed by a rapid decline to zero GtC/year252

over 7 years, and Trajectory 2 represents an increase in CO2 emissions to 37 GtC/year253

over 20 years, followed by a slow decline to zero GtC/year over 30 years. Both trajec-254

tories have the same cumulative emissions of 1050 GtC over a 120-year time span (Fig-255

ure 3a). We convolve ESGR with these two trajectories creating ESGR Traj 1 and ESGR256
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Figure 3. a) Cumulative emissions of CO2 in GtC for 120 years in Trajectories 1 and 2. b)

Global mean difference in temperature response to trajectories 1 and 2 convolved with either

our Green’s Function emulator or the TCRE. Dashed lines indicate years 24, 50, and 80 which

are used in part c. c) The spatial pattern of the 10-year mean temperature difference between

trajectories 1 and 2 convolved with our Green’s Function emulator at years 24, 50, and 80 (all ±
5 years). The spatial pattern of temperature response by scaling the TCRE would have the same

pattern of response throughout.

Traj 2. Figure 3 shows that at year 24, when the difference in cumulative emissions be-257

tween the two scenarios is the greatest, there is more warming (both spatially and in the258

global mean) in ESGR Traj 1 than ESGR Traj 2.259

The calculated temperature response using ESGR is different than what results from260

scaling the TCRE by the cumulative emissions over time (as calculated in the Methods).261

This is expected, as the TCRE does not capture temperature responses when zero emis-262

sions are reached (Rogelj et al., 2018). Figure 3b shows that the peak temperature dif-263

ference between Trajectories 1 and 2 is larger in ESGR than in a TCRE scaling, but the264

global mean temperature response does have a similar shape, as they both have peak dif-265

ferences in year 24. Once the two trajectories reach constant cumulative emissions, their266

global mean temperature in the TCRE convolution are, by definition, identical. How-267

ever, there are fluctuations in the difference between ESGR Traj 1 and ESGR Traj 2 both268

in the global mean and spatially, capturing the emissions path dependency of warming269

(Krasting et al., 2014).270

3.4 Application: Reaching Two Degrees of Warming271

ESGR allows us to rapidly calculate the range of temperature response at differ-272

ent locations when a global mean temperature target is met under various emissions tra-273

jectories. We use the 1pctCO2 and 6 additional trajectories (see Supplementary Infor-274

mation) that ramp up emissions more slowly but that reach the same cumulative emis-275

sions as 1pctCO2 has when the global mean temperature response is 2°C to show the276

local temperature dependence on historical emissions pathways. In ESGR 1pctCO2, when277

a 2°C global mean is reached after 69 years, Boston, Shanghai, Buenos Aires, and La-278

gos are at decadal mean temperatures of 2.68°C, 2.35°C, 1.66°C, and 1.77°C, respectively.279

Under scenarios that reach the same cumulative emissions by year 69, however, the decadal280

mean local temperatures could range between 1.49°-2.68 °C (Boston), 1.46°-2.35 °C (Shang-281

hai), 0.90°-1.66 °C (Buenos Aires), and 1.03°-1.77 °C (Lagos). The variation in final tem-282

perature shows the dependency of local temperature on the trajectory of emissions. These283

–9–
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Figure 4. The time at which Boston, Shanghai, Buenos Aires, and Lagos reach 2 °C of warm-

ing. Black dashed lines show when the global mean temperature reaches 2°C. Horizontal blue

shading indicates the local temperature range across our scenarios when a global mean of 2°C is

reached. The emulated 1pctCO2 response is in maroon and light grey lines show the alternative

scenarios that reach the same cumulative emissions (all shown as a ten year mean).

results would be strongly sensitive to the use of a scaling approach (such as pattern scal-284

ing the RTCRE), as a pattern scaling would yield the exact same temperature response285

in each location under the different emissions trajectories.286

4 Discussion and Conclusions287

Understanding the relationship between global emissions and local impacts is nec-288

essary for evaluating emissions trajectories under uncertainty, mitigating climate change,289

and adapting to a warming world. Here, we establish a Green’s Function emulator (ESGR)290

for spatially resolved temperature responses to cumulative global CO2 emissions. ESGR291

allows users to rapidly assess the local responses to policy options and their resulting global292

CO2 emissions trajectories. We evaluate this approach, which builds on the linear re-293

lationships between cumulative emissions and temperature change, by identifying where294

it falls within the model spread of ESM’s. We apply ESGR to two emissions trajecto-295

ries and use it to examine the local temperature response when the global mean reaches296

2°C under multiple scenarios.297

ESGR captures the global and local temperature response to both increases and298

reductions in CO2 emissions, suggesting that it reproduces the different timescales of the299

radiative and carbon cycle responses. It does worst at estimating temperature response300

at high latitudes, overestimating temperature changes in the Arctic, and underestimat-301

ing temperature changes in the Southern Ocean. Arctic amplification is the higher rate302
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of warming that is experienced in the Arctic (Pierrehumbert, 2010; Manabe & Wether-303

ald, 1975; Budyko, 1969; Previdi et al., 2021; Henry et al., 2021). Our overestimate in304

the Arctic (Figure S3), indicates that in the process of linearizing the response of the cli-305

mate system, we overestimate the positive feedbacks that would occur due to emissions306

of an additional unit of CO2, or that unforced internal variability is captured in this ap-307

proach. The Southern Ocean is understood to have delayed warming due to the over-308

turning circulation and the transport of warm waters northward (Armour et al., 2016).309

We either overestimate the negative feedbacks that would occur due to the emissions of310

an additional unit of CO2, or incorporate unforced internal variability that leads to this311

delayed warming, leading to an incorporation of too much Southern Ocean delayed warm-312

ing. Although ESGR could include unforced internal variability due to a mismatch in313

variability between the pi-ctrl and esm-pi-CO2pulse/esm-pi-CDRpulse experiments, we314

take multiple approaches to reduce the impact of this noise (see Supplementary Infor-315

mation).316

ESGR can be applied to rapidly calculate metrics that can explore the implications317

of path dependence of local temperature response to CO2. Previous work has shown the318

importance of emission pathways due to nonlinearities in the climate system, particu-319

larly when CO2 emissions are reduced after overshoot scenarios (e.g. Zickfeld et al. (2016);320

Tokarska et al. (2019)). Here, we are able to reproduce the path dependence of the lin-321

ear response of temperature to cumulative emissions (Krasting et al., 2014). One poten-322

tial underlying reason for this is the balance between the different spatial patterns of the323

fast and slow components of global warming, where a reduction in CO2 forcing leads to324

a fast exponential response on the order of magnitude of a few years, as well as a slow,325

recalcitrant response that leads to up to 50% of CO2 being removed from the atmosphere326

within 30 years, equilibration with the ocean occurring on century timescales, and weath-327

ering occurring on millennial timescales (Held et al., 2010; Joos et al., 2013; Denman et328

al., 2007; Glotter et al., 2014). ESGR is able to reproduce these fast and slow responses;329

the pulse of CO2 it is based on causes both immediate changes in atmospheric CO2 con-330

centration while still allowing for slow ocean carbon and heat uptake (Figure S3 shows331

variations in ESGR over time).332

Many of the limitations of ESGR are due to experiments and data available from333

the CMIP6 archive, and based on this work we can evaluate what would be necessary334

to build on this approach. ESGR is built on Green’s Functions derived from pulse emis-335

sions from a pre-industrial background state, and prior work has shown that atmospheric336

CO2 concentration response is dependent on the background CO2 concentration (Joos337

et al., 2013). This dependency is offset by the logarithmic relationship between CO2 con-338

centration and radiative forcing, leading to the linear response of temperature to CO2339

emissions (Caldeira & Kasting, 1993). Furthermore, work has shown that this linear re-340

lationship between CO2 cumulative emissions and temperature holds at up to 5000 GtC341

of cumulative emissions in ESMs (Tokarska et al., 2016). Pulses of various sizes have been342

shown to influence the rate of the temperature response (Steinacher & Joos, 2016). How-343

ever, the impact of emissions size is smaller than the impact of using various models (Krasting344

et al., 2014). As a result, the linear response function we derive here should be robust345

across varying background concentrations of CO2 and emission sizes.346

These assumptions could be better tested with additional ESM experiments to quan-347

tify the impact of pulse size, background state, short and long responses of the climate348

system, and internal variability. Additional ESM experiments pulsing varying sizes of349

emissions from a different starting condition would allow for quantification of the impact350

of the pulse size and background state– currently, the closest available experiments are351

the CDR-yr2010-pulse experiments, which are not publicly available on the Earth Sys-352

tem Grid Federation (ESGF) and have been run in EMICs. If the pulse (esm-pi-CO2pulse)353

and removal (esm-pi-CDRpulse) experiments were run for longer time periods, this would354

improve our ability to evaluate long timescales and estimate variations in the ZEC over355

–11–
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time (MacDougall et al., 2020). Lastly, an ensemble of pulse emissions from individual356

models would allow for better quantification of the role of internal variability, and for357

averaging out its impact on the Green’s Function. As climate models improve, and as358

more become available, ESGR can be updated easily to reflect the latest state of the sci-359

ence.360

Open Research Section361

All code to reproduce this work is available on Zenodo (currently available on github362

at https://github.com/lfreese/CO2 greens, to be updated to Zenodo for publica-363

tion). The raw data from CMIP6 is available at https://esgf-node.llnl.gov/search/364

cmip6/, and all of the experiments and runs used are described in Tables S1 and S2.365

Acknowledgments366

Author Contributions: Conceptualization: LF; Method development: LF; Anal-367

ysis: LF; Interpretation: LF, NS, AF; Writing-original draft: LF; Writing-edits and re-368

view: LF, NS, AF; Supervision: NS.369

We thank the NIEHS Toxicology Training Grant no. T32-ES007020 and the MIT370

Martin Family Society of Fellows for Sustainability (L.M.F.). This work was supported371

in part by the MIT Climate Grand Challenges project “Bringing Computation to the372

Climate Challenge” (L.M.F., N.E.S., and A.M.F.).373

References374

Armour, K. C., Marshall, J., Scott, J. R., Donohoe, A., & Newsom, E. R. (2016,375

July). Southern Ocean warming delayed by circumpolar upwelling and equa-376

torward transport. Nature Geoscience, 9 (7), 549–554. Retrieved 2023-03-28,377

from https://www.nature.com/articles/ngeo2731 (Number: 7 Publisher:378

Nature Publishing Group) doi: 10.1038/ngeo2731379

Budyko, M. I. (1969, January). The effect of solar radiation variations on the380

climate of the Earth. , 21 (5), 611. Retrieved 2023-04-18, from https://381

a.tellusjournals.se/articles/10.3402/tellusa.v21i5.10109 (Number:382

5 Publisher: Stockholm University Press) doi: 10.3402/tellusa.v21i5.10109383

Caldeira, K., & Kasting, J. F. (1993, November). Insensitivity of global warming384

potentials to carbon dioxide emission scenarios. Nature, 366 (6452), 251–253.385

Retrieved 2023-04-18, from https://www.nature.com/articles/366251a0386

(Number: 6452 Publisher: Nature Publishing Group) doi: 10.1038/366251a0387

Canadell, J., Monteiro, P., Costa, M., da Cunha, L. C., Cox, P., Eliseev, A., . . .388

Zickfeld, a. K. (2021). Global Carbon and other Biogeochemical Cycles and389

Feedbacks. Climate Change 2021: The Physical Science Basis. Contribution390

of Working Group I to the Sixth Assessment Report of the Intergovernmental391

Panel on Climate Change, 673–816. ([Masson-Delmotte, V., P. Zhai, A. Pirani,392
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field, O. Yelekçi, R. Yu, and B. Zhou (eds.)]) doi: 10.1017/9781009157896.007395

Carleton, T., Jina, A., Delgado, M., Greenstone, M., Houser, T., Hsiang, S., . . .396

Zhang, A. T. (2022, November). Valuing the Global Mortality Consequences397

of Climate Change Accounting for Adaptation Costs and Benefits. The Quar-398

terly Journal of Economics, 137 (4), 2037–2105. Retrieved 2022-12-09, from399

https://doi.org/10.1093/qje/qjac020 doi: 10.1093/qje/qjac020400

Claussen, M., Mysak, L., Weaver, A., Crucifix, M., Fichefet, T., Loutre, M.-F., . . .401

Wang, Z. (2002, March). Earth system models of intermediate complexity:402

closing the gap in the spectrum of climate system models. Climate Dynam-403

–12–



manuscript submitted to Geophysical Research Letters

ics, 18 (7), 579–586. Retrieved 2023-03-29, from https://doi.org/10.1007/404

s00382-001-0200-1 doi: 10.1007/s00382-001-0200-1405

Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. M., Dickinson,406

R. E., . . . Molina, M. (2007). Couplings Between Changes in the Climate Sys-407

tem and Biogeochemistry (Climate Change 2007: The Physical Science Basis).408

Cambridge University Press, Cambridge, United Kingdom and New York, NY,409

USA..410

Dong, Y., Proistosescu, C., Armour, K., & Battisti, D. (2019). Attributing His-411

torical and Future Evolution of Radiative Feedbacks to Regional Warming412

Patterns using a Green’s Function Approach: The Preeminence of the West-413

ern Pacific. Journal of Climate, Volume 32 (Issue 17). Retrieved 2022-07-414

08, from https://journals.ametsoc.org/view/journals/clim/32/17/415

jcli-d-18-0843.1.xml416

Drake, H. F., & Henderson, G. (2022, May). A defense of usable climate miti-417

gation science: how science can contribute to social movements. Climatic418

Change, 172 (1), 10. Retrieved 2022-11-25, from https://doi.org/10.1007/419

s10584-022-03347-6 doi: 10.1007/s10584-022-03347-6420

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., &421

Taylor, K. E. (2016, May). Overview of the Coupled Model Intercomparison422

Project Phase 6 (CMIP6) experimental design and organization. Geosci-423

entific Model Development , 9 (5), 1937–1958. Retrieved 2023-03-13, from424

https://gmd.copernicus.org/articles/9/1937/2016/ (Publisher: Coper-425

nicus GmbH) doi: 10.5194/gmd-9-1937-2016426

Geoffroy, O., & Saint-Martin, D. (2014, December). Pattern decomposition of the427

transient climate response. Tellus A: Dynamic Meteorology and Oceanography ,428

66 (1), 23393. Retrieved 2023-04-18, from https://a.tellusjournals.se/429

article/10.3402/tellusa.v66.23393/ doi: 10.3402/tellusa.v66.23393430

Glotter, M. J., Pierrehumbert, R. T., Elliott, J. W., Matteson, N. J., & Moyer,431

E. J. (2014, October). A simple carbon cycle representation for eco-432

nomic and policy analyses. Climatic Change, 126 (3), 319–335. Retrieved433

2023-04-18, from https://doi.org/10.1007/s10584-014-1224-y doi:434

10.1007/s10584-014-1224-y435

Hawkins, E., & Sutton, R. (2009, August). The Potential to Narrow Uncer-436

tainty in Regional Climate Predictions. Bulletin of the American Meteo-437

rological Society , 90 (8), 1095–1108. Retrieved 2023-05-30, from https://438

journals.ametsoc.org/view/journals/bams/90/8/2009bams2607 1.xml439

(Publisher: American Meteorological Society Section: Bulletin of the American440

Meteorological Society) doi: 10.1175/2009BAMS2607.1441

Held, I. M., Winton, M., Takahashi, K., Delworth, T., Zeng, F., & Vallis, G. K.442

(2010, May). Probing the Fast and Slow Components of Global Warming by443

Returning Abruptly to Preindustrial Forcing. Journal of Climate, 23 (9), 2418–444

2427. Retrieved 2023-02-13, from https://journals.ametsoc.org/view/445

journals/clim/23/9/2009jcli3466.1.xml (Publisher: American Meteoro-446

logical Society Section: Journal of Climate) doi: 10.1175/2009JCLI3466.1447

Henry, M., Merlis, T. M., Lutsko, N. J., & Rose, B. E. J. (2021, March). De-448

composing the Drivers of Polar Amplification with a Single-Column Model.449

Journal of Climate, 34 (6), 2355–2365. Retrieved 2023-04-24, from https://450

journals.ametsoc.org/view/journals/clim/34/6/JCLI-D-20-0178.1.xml451

(Publisher: American Meteorological Society Section: Journal of Climate) doi:452

10.1175/JCLI-D-20-0178.1453

Herrington, T., & Zickfeld, K. (2014, November). Path independence of climate454

and carbon cycle response over a broad range of cumulative carbon emis-455

sions. Earth System Dynamics, 5 (2), 409–422. Retrieved 2023-02-14, from456

https://esd.copernicus.org/articles/5/409/2014/ (Publisher: Coperni-457

cus GmbH) doi: 10.5194/esd-5-409-2014458

–13–



manuscript submitted to Geophysical Research Letters

Interagency Working Group on Social Cost of Greenhouse Gases, United States459

Government. (2021). Technical Support Document: Social Cost of Car-460

bon, Methane, and Nitrous Oxide. Retrieved 2022-12-13, from https://461

web.archive.org/web/20221212061639/https://www.whitehouse462

.gov/wp-content/uploads/2021/02/TechnicalSupportDocument463

SocialCostofCarbonMethaneNitrousOxide.pdf464

Joos, F., Roth, R., Fuglestvedt, J. S., Peters, G. P., Enting, I. G., von Bloh, W.,465

. . . Weaver, A. J. (2013, March). Carbon dioxide and climate impulse re-466

sponse functions for the computation of greenhouse gas metrics: a multi-model467

analysis. Atmospheric Chemistry and Physics, 13 (5), 2793–2825. Retrieved468

2020-12-16, from https://acp.copernicus.org/articles/13/2793/2013/469

doi: 10.5194/acp-13-2793-2013470

Keller, D. P., Lenton, A., Scott, V., Vaughan, N. E., Bauer, N., Ji, D., . . . Zickfeld,471

K. (2018, March). The Carbon Dioxide Removal Model Intercomparison472

Project (CDRMIP): rationale and experimental protocol for CMIP6. Geo-473

scientific Model Development , 11 (3), 1133–1160. Retrieved 2022-11-04, from474

https://gmd.copernicus.org/articles/11/1133/2018/ (Publisher: Coper-475

nicus GmbH) doi: 10.5194/gmd-11-1133-2018476

Krasting, J. P., Dunne, J. P., Shevliakova, E., & Stouffer, R. J. (2014).477

Trajectory sensitivity of the transient climate response to cumu-478

lative carbon emissions. Geophysical Research Letters, 41 (7),479

2520–2527. Retrieved 2023-03-29, from https://onlinelibrary480

.wiley.com/doi/abs/10.1002/2013GL059141 ( eprint:481

https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2013GL059141)482

doi: 10.1002/2013GL059141483
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Abstract13

The ability to rapidly simulate the climate implications of a large number of CO2 emis-14

sions trajectories is helpful for implementing mitigation and adaptation policies. A key15

variable of interest is near-surface air temperature, which is approximately proportional16

to cumulative CO2 emissions. We take advantage of this relationship, diagnosing Green’s17

Functions for the spatial temperature response to CO2 emissions based on CMIP6 ex-18

periment data, creating an emulator that can be used across emissions scenarios to es-19

timate local temperature responses. As compared to CMIP6 experiments, this approach20

captures the spatial temperature response with some limited accuracy in polar regions.21

It incorporates emissions path dependency and is useful for evaluating large ensembles22

of policy scenarios that are otherwise prohibitively expensive to simulate using earth sys-23

tem models. We apply this emulator to show differing local temperature responses when24

a global mean of 2°C is reached and to varying trajectories with the same cumulative25

emissions.26

Plain Language Summary27

There is a wide range of potential pathways for future CO2 emissions, and simu-28

lating them in earth system models can take large computational resources. It is impor-29

tant to understand the varying local impacts of different policies for effective mitigation30

and adaptation to climate change. A key concern is understanding local changes in tem-31

perature where people live. It is well established that the global mean temperature change32

is proportional to the cumulative emissions of CO2; taking advantage of this relation-33

ship, we create a simplified model that quantifies local temperature response to CO2 emis-34

sions. As it takes less than one second to emulate 90 years of temperature change, this35

approach can be used to evaluate a multitude of policy scenarios. We evaluate this ap-36

proach with the Climate Model Intercomparison Project Phase 6 (CMIP6) experiment37

data, showing that it captures the temperature response in different locations with some38

limited accuracy in polar regions. We apply this approach to show local temperature change39

when a global mean temperature reaches 2°C.40

1 Introduction41

Evaluating uncertainty in coupled earth-society systems is important for understand-42

ing the impact of decision-making on society, and for developing metrics such as the so-43

cial cost of carbon (SCC) (Interagency Working Group on Social Cost of Greenhouse Gases,44

United States Government, 2021; Carleton et al., 2022). One aspect of such uncertainty45

analysis involves evaluating the impacts of emissions trajectories from large ensembles46

of social scenarios to quantify impacts on the climate system. Because of the computa-47

tional cost of running full-scale earth-system models, researchers rarely use them to eval-48

uate large numbers of different emission scenarios. Detailed information drawn from these49

models, however, is useful for understanding the local climate impacts of decisions.50

Current methods to evaluate the temperature response of the earth system to an-51

thropogenic emissions of CO2 include running global climate models (GCMs), earth sys-52

tem models (ESMs), earth system models of intermediate complexity (EMICs) (Claussen53

et al., 2002), energy balance models (EBMs) or multi-box models that underlie many54

integrated assessment models (IAMs). There is a tradeoff between model complexity (and55

thus the detail of results) and computational cost for all of these approaches. GCMs and56

ESMs are too computationally expensive to run large ensembles of policy scenarios. EMICs57

can evaluate the spatial temperature response to CO2 emissions, with smaller compu-58

tational costs due to lower resolution and reduced complexity physics. EBMs are com-59

putationally inexpensive, but provide only global mean or zonally-integrated represen-60

tations of temperature changes.61
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The transient climate response to cumulative emissions of carbon dioxide (TCRE)62

(Matthews et al., 2009; Steinacher & Joos, 2016; Herrington & Zickfeld, 2014; Canadell63

et al., 2021) can be used to calculate the temperature impact of CO2 emissions. Pattern64

scaling using the regional transient climate response to cumulative emissions of carbon65

dioxide (RTCRE) (Leduc et al., 2016) can provide low-cost, spatially explicit estimates66

of the temperature response to emissions. Applications of the RTCRE typically assume67

that the pattern response of temperature is constant and insensitive to the emissions tra-68

jectory, which can fail under varying emissions sizes and under reductions in emissions69

(Krasting et al., 2014; Zickfeld et al., 2016; Tokarska et al., 2019). This linearity and the70

TCRE have had important societal consequences, leading to the establishment of car-71

bon budgets for a target global mean temperature (Meinshausen et al., 2009; Rogelj et72

al., 2011; Matthews et al., 2018; Matthews & Caldeira, 2008; Drake & Henderson, 2022).73

Response operators, or Green’s Functions, provide an alternate approach to diag-74

nosing both global mean and spatial feedbacks to a forcing in ways that can capture dif-75

fering pattern responses over time. Green’s Functions have been used to characterize the76

radiative feedback response to sea surface temperature (Dong et al., 2019), temperature77

response to CO2 concentrations (Lucarini et al., 2017; Lembo et al., 2020), and atmo-78

spheric transit times (Orbe et al., 2016). When diagnosed from ESMs, Green’s Functions79

can form the basis for emulators that maintain the resolution of the original model, while80

reducing the computational load to simulate scenarios (as seen in Geoffroy and Saint-81

Martin (2014)).82

Here, we construct an emulator, the Earth System Green’s Response emulator (ESGR),83

of the pattern response of temperature to CO2 emissions, which maintains the resolu-84

tion of the ESMs it is derived from while enabling near-instantaneous computation. We85

take advantage of the approximately linear relationship between CO2 emissions and tem-86

perature by diagnosing Green’s Functions for temperature response to CO2 emissions,87

using the Carbon Dioxide Removal Model Intercomparison Project (CDRMIP) model88

output (Keller et al., 2018). ESGR is based on the multi-model mean spatial Green’s Func-89

tion, and is evaluated with CMIP6 experiments. We show that it reproduces the tem-90

perature response due to emissions of CO2 in most locations within one standard devi-91

ation of the CMIP6 multi-model mean both when CO2 emissions are increasing and af-92

ter their cessation. ESGR captures the time-dependent spatial patterns of the temper-93

ature response under two scenarios that end with the same cumulative CO2 emissions.94

We illustrate how ESGR can be used to efficiently calculate metrics such as local tem-95

perature changes when a global mean 2 °C is reached.96

2 Methods97

We use model output from CDRMIP to build ESGR from calculated temperature98

responses to CO2 emissions. Here we present the model data that is used to diagnose99

the Green’s Functions and for evaluation, and explain the derivation and evaluation of100

ESGR.101

2.1 CMIP6 Models102

The Earth System Grid Federation (ESGF) archive includes six models that ran103

250 years of pre-industrial control simulations (esm-pi-ctrl), as well as 100 gigaton car-104

bon (GtC) pulse (esm-pi-CO2pulse) and removal (esm-pi-CDRpulse) emission simula-105

tions that branch from the esm-pi-ctrl at year 100 and allow the coupled carbon-climate106

system to respond over 90-140 years (Keller et al., 2018). There are six models with data107

from these experiments (shown in Table S1), each with two pulse scenarios (CanESM5108

has 3 realizations of the pulse) for a total of 16 model runs. We compare ESGR to the109

difference between the 1pctCO2 or esm-1pct-brch-1000PgC experiment and the esm-pi-110

ctrl simulation for the same model source IDs as used to diagnose the Green’s Function111
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for evaluation (excluding GFDL as the data is unavaialable; see Table S2 for model in-112

formation).113

2.2 Spatial Green’s Functions114

We diagnose Green’s Functions to create a spatiotemporally resolved pattern of tem-115

perature response to a CO2 emissions pulse. In the case of CMIP6 experiment output,116

the change in the response variable of interest, T (near-surface air temperature at a lo-117

cation x), over time, is defined as:118

∂T (x)

∂t
= A(T (x)) + E(t), (1)

where E(t) is the emissions forcing, and A(T ) are the temperature tendency terms119

(everything impacting temperature aside from emissions, such as advection and radia-120

tion). Assuming that A(T ) is independent of time and linear, we define a linear oper-121

ator, L ≡ ∂
∂t −A, that satisfies:122

LT (x) = E(t). (2)

A Green’s Function, G(x, t−t′), is defined as the response at location x and time123

t to an impulse (delta function) forcing at time t = t′ that satisfies the linear equation:124

LG(x, t− t′) = δ(t− t′), (3)

If we scale this by E(t′), and then integrate this over time, the resulting equation125

becomes:126

∫
LG(x, t− t′)E(t′)dt′ =

∫
E(t′)δ(t− t′)dt′. (4)

Taking advantage of the assumed time-independence of L, and that δ(t−t′) is zero127

everywhere except where t = t′, we can simplify this as:128

L
[∫

G(x, t− t′)E(t′)dt′
]
= E(t). (5)

This takes the same form as 2, allowing us to equate129

T (x, t) =

∫
G(x, t− t′)E(t′)dt′, (6)

providing a simple equation by which we can estimate the near-surface air temperature130

response given an emissions time series.131

2.3 Diagnosing the Green’s Functions from CMIP6132

We can take this general form of the Green’s Function and apply it to the CMIP6133

pulse experiments. Here, Tp(x, t; t0) is the temperature change due to either the esm-134

pi-CO2pulse or esm-pi-CDRpulse experiments relative to the pi-ctrl, and E0 is the mag-135

nitude of the forcing from that pulse (100 or -100 GtC, respectively) at time t0, result-136

ing in:137

LTp = E0δ(t− t0). (7)

Dividing equation 7 by the constant E0, and using equation 3 we diagnose the Green’s138

Function139
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G(x, t− t0) =
Tp(x, t; t0)

E0
. (8)

Assuming that G does not depend on the absolute time of the pulse, we can rela-140

bel the specific time t0 to any time t′, allowing us to convolve the Green’s Function that141

is diagnosed in equation 8 with a forcing E(t′) at any time, as long as the scenario re-142

mains within present CO2 states with up to 5000 GtC of cumulative emissions (as the143

linear relationship has been determined to hold to this level (Tokarska et al., 2016)).144

Practically, we construct ESGR as the multi-model mean Green’s Function for ev-145

ery grid box of the CMIP6 model output, equally weighting by model source ID. We use146

a 4th-order polynomial fit of the Green’s Function to reduce the role of unforced inter-147

nal variability (see Supplementary Information for an evaluation of unforced internal vari-148

ability). In order to evaluate temperature response to a given emissions scenario, we con-149

volve ESGR with emissions scenarios of CO2 by summing the discretized integrands of150

equation 6 (using scipy’s signal convolution (Virtanen et al., 2020)).151

2.4 Evaluation152

We evaluate ESGR with the 1pctCO2 and esm-1pct-brch-1000PgC experiments. The153

1pctCO2 experiment prescribes a one percent increase in CO2 concentration from pre-154

industrial conditions until four times the pre-industrial atmospheric concentration is reached155

(Eyring et al., 2016). The esm-1pct-brch-1000PgC experiment follows the 1pctCO2 ex-156

periment until 1000PgC has accumulated in the atmosphere after which it allows the car-157

bon cycle to freely evolve with zero anthropogenic CO2 emissions.158

We calculate the underlying emissions profiles for these two experiments accord-159

ing to methods described in equation 2 of (Liddicoat et al., 2021), where the emissions160

have to balance the atmospheric CO2 concentration (GATM ), exchange with the ocean161

(SOCEAN ), and exchange with the land (SLAND − ELUC):162

ECO2
= GATM + SOCEAN + (SLAND − ELUC) (9)

Where (GATM ) is the co2mass variable, exchange with the ocean (Socean) is fgco2,163

and exchange with the land (Sland − ELUC) is nbp, all globally integrated.164

The evaluation is performed by 1) convolving individual model Green’s Functions165

with the corresponding diagnosed 1pctCO2 and esm-1pct-brch-1000PgC emissions pro-166

file, and 2) taking the weighted multi-model mean temperature response (weights are shown167

in Table S2). We convolve ESGR for each model ID and instance with the correspond-168

ing emissions and take the mean. ESGR depends in part on carbon cycle dynamics, so169

it has a non-zero correlation with the emissions that underlie an individual model’s fixed170

CO2 concentration experiments, and as a result, taking the mean before and after the171

convolution yield differing results. This is only necessary in the evaluation as emissions172

scenarios we independently create are not correlated to an individual model’s response173

and can be convolved with the ESGR multi-model mean. We compare the ESGR near-174

surface air temperature response at every grid box with the weighted multi-model mean175

temperature difference between the 1pctCO2 or the esm-1pct-brch-1000PgC experiment176

and the pi-ctrl run.177

2.5 Smoothing approach for the Green’s Function178

We reduce the role of unforced internal variability by taking the mean across mul-179

tiple models (Lehner & Deser, 2023), and by using a 4th-order polynomial fit (Lehner180

& Deser, 2023; Hawkins & Sutton, 2009) to the Green’s Function (see Supplementary181
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Information and Figure S6 for a comparison of different fits to the Green’s Function).182

The convolution also smooths out much of the high-frequency variability that is intro-183

duced in the Green’s function approach (see Supplementary Information and Figure S8184

for a discussion of the Fourier transform of the Green’s function, which shows the reduc-185

tion of this noise).186

2.6 Transient Climate Response, Zero Emissions Commitment, and Pat-187

tern Scaling Calculations188

We calculate a TCR for each model source ID using the temperature response of189

a 1pctCO2 experiment at a doubling of CO2, defined as the mean between years 60 and190

80 following the method of Matthews et al. (2009). The TCRE is the TCR divided by191

the cumulative emissions to year 70 in a 1pctCO2 experiment (Matthews et al., 2009).192

We use an approach similar to that of (MacDougall et al., 2020) for the ZEC, taking the193

twenty-year global mean temperature anomaly centered 15 years after cessation of emis-194

sions.195

In order to pattern scale the TCRE, we multiply it by the cumulative emissions196

at every time (based on Leduc et al. (2016)’s RTCRE pattern scaling).197

3 Results198

We first present an evaluation of ESGR with respect to global mean and pattern199

response, comparing the temperature change to that of the multi-model mean CMIP6200

for 1pctCO2 and esm-1pctCO2-brch-1000PgC experiments. We then illustrate two po-201

tential applications, demonstrating how ESGR can be used for calculating the impact202

of varying emissions trajectories on warming, and show that we capture the dependence203

of the final state of surface temperature change on not only the cumulative emissions but204

also the time-dependent emissions pathway. Importantly, this emulator takes under one205

second to simulate 90 years of temperature response, which allows for the evaluation of206

a multitude of emissions trajectories.207

3.1 Evaluation: Global Mean Response208

Figure 1a shows that the global mean time series of ESGR is positive, and has a209

time mean value of 1.49◦C/1000GtC, reflecting the expected warming response to emis-210

sions of CO2. All of the individual model Green’s Functions have a positive time-mean211

value over time, which is again expected given the positive temperature response to in-212

creased CO2 emissions. ESGR reproduces the global mean temperature response over213

time to the 1pctCO2 and the esm-1pctCO2-brch-1000PgC experiments (Figure 1b). It214

captures both the positive increase in temperature as a response to increasing CO2 emis-215

sions, and the cessation of warming when emissions are stopped under esm-1pctCO2-brch-216

1000PgC.217

We quantify ESGR’s ability to reproduce the global mean temperature change through218

calculating the TCR and ZEC for both the ESGR and CMIP6 experiments (Figure 1c219

and d). The multi-model mean TCR, which indicates the global mean warming after a220

doubling of CO2, is 2.12
◦C for the CMIP6 1pctCO2 experiments, and ESGR has a TCR221

of 2.04◦C. The inter-model spread of ESGR, particularly the minimum and maximum,222

cover a larger range than in the CMIP6 experiments, due to the variability in ESGR’s223

ability to capture global mean temperature response for individual models. The global224

mean ZEC for ESGR is -0.028, indicating a slight decrease in temperature after a ces-225

sation of emissions. This mean response falls within the inter-quartile range (IQR) of226

the CMIP6 experiments’ ZEC; however, the mean CMIP6 ZEC indicates continued warm-227

ing with a ZEC of 0.088.228
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Figure 1. a) Global mean ESGR, and the spread of individual model Green’s Functions. b)

Mean of the 1pctCO2 and esm-1pctCO2-brch-1000PgC emissions convolved with ESGR as com-

pared to the multi-model mean of the 1pctCO2 and and esm-1pctCO2-brch-1000PgC model runs

compared to the pi-ctrl. Grey shading indicates the 20-year averaging period to calculate the

TCR, and yellow shading indicates the 20-year time averaging period to calculate the ZEC. c and

d) Mean, median, and interquartile range (IQR) of the TCR and ZEC (respectively).
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Figure 2. Difference in temperature response between ESGR 1pctCO2 (top) or ESGR esm-

1pct-brch-1000PgC (bottom) and the multi-model mean CMIP6 1pctCO2 or esm-1pct-brch-

1000PgC experiment at 20(±5) and 85(±5) years. Hatching indicates locations that fall outside

of a 1σ range of the model variability for the CMIP6 1pct model runs.

3.2 Evaluation: Pattern Response229

Figure 2 shows the difference between the pattern response of ESGR and the multi-230

model mean CMIP6 1pctCO2 and esm-1pctCO2-brch-1000PgC experiments at 20 (±5)231

and 85 (±5) years. ESGR is able to capture the temperature response to both 1pctCO2232

and esm-1pctCO2-brch-1000PgC emissions over the first decade within 0.5°C of the CMIP6233

model everywhere but the North Atlantic. After 20 years ESGR falls within one stan-234

dard deviation of the CMIP6 model spread (Figure S5 shows the one standard devia-235

tion range), which we interpret as indicating the emulator is projecting a response con-236

sistent with the CMIP6 models. Over longer time periods, such as 85 years, ESGR is237

still able to capture the temperature response within 0.5°C of the CMIP6 experiments238

in all areas except for the Arctic and Antarctic due to nonlinearities from climate feed-239

backs (explored more in the Discussion and Conclusion). Even in the Arctic and Antarc-240

tic, many of the regions still fall within one standard deviation of the multi-model spread241

of CMIP6 responses; regions that are hatched are those that fall outside of this range.242

The temperature response in regions within one standard deviation of the multi-model243

mean CMIP6 responses are within the range of temperature responses that we would ex-244

pect from an individual ESM. ESGR captures the reduced warming in year 85 of esm-245

1pctCO2-brch-1000PgC as compared to the 1pctCO2, indicating that it can represent tem-246

perature response to both an increase and decrease in emissions (see Figure S4).247

3.3 Application: Path-dependent Emissions Trajectories248

ESGR can be used to show how emissions trajectories differ in their spatial tem-249

perature impact over time; here we calculate the outcomes of two example emissions sce-250

narios that result in the same cumulative emissions. Trajectory 1 represents an increase251

in CO2 emissions to 70 GtC/year over 20 years, followed by a rapid decline to zero GtC/year252

over 7 years, and Trajectory 2 represents an increase in CO2 emissions to 37 GtC/year253

over 20 years, followed by a slow decline to zero GtC/year over 30 years. Both trajec-254

tories have the same cumulative emissions of 1050 GtC over a 120-year time span (Fig-255

ure 3a). We convolve ESGR with these two trajectories creating ESGR Traj 1 and ESGR256
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Figure 3. a) Cumulative emissions of CO2 in GtC for 120 years in Trajectories 1 and 2. b)

Global mean difference in temperature response to trajectories 1 and 2 convolved with either

our Green’s Function emulator or the TCRE. Dashed lines indicate years 24, 50, and 80 which

are used in part c. c) The spatial pattern of the 10-year mean temperature difference between

trajectories 1 and 2 convolved with our Green’s Function emulator at years 24, 50, and 80 (all ±
5 years). The spatial pattern of temperature response by scaling the TCRE would have the same

pattern of response throughout.

Traj 2. Figure 3 shows that at year 24, when the difference in cumulative emissions be-257

tween the two scenarios is the greatest, there is more warming (both spatially and in the258

global mean) in ESGR Traj 1 than ESGR Traj 2.259

The calculated temperature response using ESGR is different than what results from260

scaling the TCRE by the cumulative emissions over time (as calculated in the Methods).261

This is expected, as the TCRE does not capture temperature responses when zero emis-262

sions are reached (Rogelj et al., 2018). Figure 3b shows that the peak temperature dif-263

ference between Trajectories 1 and 2 is larger in ESGR than in a TCRE scaling, but the264

global mean temperature response does have a similar shape, as they both have peak dif-265

ferences in year 24. Once the two trajectories reach constant cumulative emissions, their266

global mean temperature in the TCRE convolution are, by definition, identical. How-267

ever, there are fluctuations in the difference between ESGR Traj 1 and ESGR Traj 2 both268

in the global mean and spatially, capturing the emissions path dependency of warming269

(Krasting et al., 2014).270

3.4 Application: Reaching Two Degrees of Warming271

ESGR allows us to rapidly calculate the range of temperature response at differ-272

ent locations when a global mean temperature target is met under various emissions tra-273

jectories. We use the 1pctCO2 and 6 additional trajectories (see Supplementary Infor-274

mation) that ramp up emissions more slowly but that reach the same cumulative emis-275

sions as 1pctCO2 has when the global mean temperature response is 2°C to show the276

local temperature dependence on historical emissions pathways. In ESGR 1pctCO2, when277

a 2°C global mean is reached after 69 years, Boston, Shanghai, Buenos Aires, and La-278

gos are at decadal mean temperatures of 2.68°C, 2.35°C, 1.66°C, and 1.77°C, respectively.279

Under scenarios that reach the same cumulative emissions by year 69, however, the decadal280

mean local temperatures could range between 1.49°-2.68 °C (Boston), 1.46°-2.35 °C (Shang-281

hai), 0.90°-1.66 °C (Buenos Aires), and 1.03°-1.77 °C (Lagos). The variation in final tem-282

perature shows the dependency of local temperature on the trajectory of emissions. These283
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Figure 4. The time at which Boston, Shanghai, Buenos Aires, and Lagos reach 2 °C of warm-

ing. Black dashed lines show when the global mean temperature reaches 2°C. Horizontal blue

shading indicates the local temperature range across our scenarios when a global mean of 2°C is

reached. The emulated 1pctCO2 response is in maroon and light grey lines show the alternative

scenarios that reach the same cumulative emissions (all shown as a ten year mean).

results would be strongly sensitive to the use of a scaling approach (such as pattern scal-284

ing the RTCRE), as a pattern scaling would yield the exact same temperature response285

in each location under the different emissions trajectories.286

4 Discussion and Conclusions287

Understanding the relationship between global emissions and local impacts is nec-288

essary for evaluating emissions trajectories under uncertainty, mitigating climate change,289

and adapting to a warming world. Here, we establish a Green’s Function emulator (ESGR)290

for spatially resolved temperature responses to cumulative global CO2 emissions. ESGR291

allows users to rapidly assess the local responses to policy options and their resulting global292

CO2 emissions trajectories. We evaluate this approach, which builds on the linear re-293

lationships between cumulative emissions and temperature change, by identifying where294

it falls within the model spread of ESM’s. We apply ESGR to two emissions trajecto-295

ries and use it to examine the local temperature response when the global mean reaches296

2°C under multiple scenarios.297

ESGR captures the global and local temperature response to both increases and298

reductions in CO2 emissions, suggesting that it reproduces the different timescales of the299

radiative and carbon cycle responses. It does worst at estimating temperature response300

at high latitudes, overestimating temperature changes in the Arctic, and underestimat-301

ing temperature changes in the Southern Ocean. Arctic amplification is the higher rate302
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of warming that is experienced in the Arctic (Pierrehumbert, 2010; Manabe & Wether-303

ald, 1975; Budyko, 1969; Previdi et al., 2021; Henry et al., 2021). Our overestimate in304

the Arctic (Figure S3), indicates that in the process of linearizing the response of the cli-305

mate system, we overestimate the positive feedbacks that would occur due to emissions306

of an additional unit of CO2, or that unforced internal variability is captured in this ap-307

proach. The Southern Ocean is understood to have delayed warming due to the over-308

turning circulation and the transport of warm waters northward (Armour et al., 2016).309

We either overestimate the negative feedbacks that would occur due to the emissions of310

an additional unit of CO2, or incorporate unforced internal variability that leads to this311

delayed warming, leading to an incorporation of too much Southern Ocean delayed warm-312

ing. Although ESGR could include unforced internal variability due to a mismatch in313

variability between the pi-ctrl and esm-pi-CO2pulse/esm-pi-CDRpulse experiments, we314

take multiple approaches to reduce the impact of this noise (see Supplementary Infor-315

mation).316

ESGR can be applied to rapidly calculate metrics that can explore the implications317

of path dependence of local temperature response to CO2. Previous work has shown the318

importance of emission pathways due to nonlinearities in the climate system, particu-319

larly when CO2 emissions are reduced after overshoot scenarios (e.g. Zickfeld et al. (2016);320

Tokarska et al. (2019)). Here, we are able to reproduce the path dependence of the lin-321

ear response of temperature to cumulative emissions (Krasting et al., 2014). One poten-322

tial underlying reason for this is the balance between the different spatial patterns of the323

fast and slow components of global warming, where a reduction in CO2 forcing leads to324

a fast exponential response on the order of magnitude of a few years, as well as a slow,325

recalcitrant response that leads to up to 50% of CO2 being removed from the atmosphere326

within 30 years, equilibration with the ocean occurring on century timescales, and weath-327

ering occurring on millennial timescales (Held et al., 2010; Joos et al., 2013; Denman et328

al., 2007; Glotter et al., 2014). ESGR is able to reproduce these fast and slow responses;329

the pulse of CO2 it is based on causes both immediate changes in atmospheric CO2 con-330

centration while still allowing for slow ocean carbon and heat uptake (Figure S3 shows331

variations in ESGR over time).332

Many of the limitations of ESGR are due to experiments and data available from333

the CMIP6 archive, and based on this work we can evaluate what would be necessary334

to build on this approach. ESGR is built on Green’s Functions derived from pulse emis-335

sions from a pre-industrial background state, and prior work has shown that atmospheric336

CO2 concentration response is dependent on the background CO2 concentration (Joos337

et al., 2013). This dependency is offset by the logarithmic relationship between CO2 con-338

centration and radiative forcing, leading to the linear response of temperature to CO2339

emissions (Caldeira & Kasting, 1993). Furthermore, work has shown that this linear re-340

lationship between CO2 cumulative emissions and temperature holds at up to 5000 GtC341

of cumulative emissions in ESMs (Tokarska et al., 2016). Pulses of various sizes have been342

shown to influence the rate of the temperature response (Steinacher & Joos, 2016). How-343

ever, the impact of emissions size is smaller than the impact of using various models (Krasting344

et al., 2014). As a result, the linear response function we derive here should be robust345

across varying background concentrations of CO2 and emission sizes.346

These assumptions could be better tested with additional ESM experiments to quan-347

tify the impact of pulse size, background state, short and long responses of the climate348

system, and internal variability. Additional ESM experiments pulsing varying sizes of349

emissions from a different starting condition would allow for quantification of the impact350

of the pulse size and background state– currently, the closest available experiments are351

the CDR-yr2010-pulse experiments, which are not publicly available on the Earth Sys-352

tem Grid Federation (ESGF) and have been run in EMICs. If the pulse (esm-pi-CO2pulse)353

and removal (esm-pi-CDRpulse) experiments were run for longer time periods, this would354

improve our ability to evaluate long timescales and estimate variations in the ZEC over355
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time (MacDougall et al., 2020). Lastly, an ensemble of pulse emissions from individual356

models would allow for better quantification of the role of internal variability, and for357

averaging out its impact on the Green’s Function. As climate models improve, and as358

more become available, ESGR can be updated easily to reflect the latest state of the sci-359

ence.360
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Introduction

Text S1: Green’s Function Analysis

Figure S1 shows that the individual model Green’s Functions are different if they are

diagnosed from the esm-pi-CO2pulse versus the esm-pi-CDRpulse experiments. This dif-

ference could be due to a variety of reasons, including our limitation to only an individual

model run (except in the case of CANESM), or non-linearities in the way CO2 and heat

are taken up versus released by the land and ocean. These individual model Green’s
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Functions vary in their ability to reconstruct the temperature response to the 1pctCO2

experiment (see Figure S2).

We evaluate the difference between the first thirty and final sixty years of ESGR (scaled

by the initial emissions size, 100 GtC) in Figure S3. We split the Green’s Function into

these two time periods based on (Joos et al., 2013)– defining an initial immediate response

over the first four years, and a slower response over the following 32 years. We see increased

warming in the poles in the later response time period, in contrast to enhanced warming

over land areas in the immediate time period of 0-4 years, as has been explored in (Held

et al., 2010).

Text S2: Green’s Function Sensitivity to the Smoothing Approach

We use a 4th-order polynomial fit to our Green’s Function to reduce the role of internal

variability. Here we discuss the sensitivity of this fit as compared to other smoothing

approaches, and the role of the convolution in smoothing out internal variability.

In order to minimize the impact of this difference in unforced internal variability that

arises, we take a number of steps: 1) averaging across multiple models and realizations, 2)

smoothing the Green’s function with a 4th-order polynomial fit, 3) comparing ESGR to

a Green’s function diagnosed from a pulse run and just the climatology of the pi-ctrl, and

4) comparing internal variability within models to the inter-model spread. Additionally,

the process of the convolution itself also reduces the impact of this internal variability, as

positive and negative phases can cancel each other out.

We test the sensitivity of our smoothing approach by comparing the 4th-order polyno-

mial fit to five different Green’s Functions (a-e): a) a Green’s Function diagnosed by using
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the 100 gigaton carbon (GtC) pulse (esm-pi-CO2pulse) and removal (esm-pi-CDRpulse)

emission simulations and the pi-ctrl simulation; b, c, and d) a 5, 10, and 30-year rolling

mean Green’s Function, and e) Green’s Function diagnosed by using the esm-pi-CO2pulse

and esm-pi-CDRpulse emission simulations and the climatology of the pi-ctrl simulation.

The comparison to the varying rolling means tests the sensitivity of the timescale of our

smoothing approach. Using the climatology for the pi-ctrl is a potential way to reduce

unforced internal variability in the resulting Green’s Function, although it can also falsely

attribute drift in the pi-ctrl as a signal. Figure S6 shows the impact of various timescales

for taking the rolling mean and for a 4th-order polynomial fit of the Green’s Function.

Much of the noise is canceled out in both the 4th-order polynomial and the 30-year rolling

mean, but the curve still maintains a similar magnitude and trend. We then test the im-

pact of these differences on the results of a convolution; once convolved with emissions

from a 1pctCO2 experiment, the spatial temperature change for each of these six Green’s

Functions are very similar. Figure S7 shows the root mean squared error (RMSE) for pre-

dicted temperatures versus the expected temperatures in a 1pctCO2 experiment using the

temperature change from each of the six Green’s Functions. The RMSE is calculated as:√∑N
i=0

(predictedi−expectedi)
2

N
, where N is the number of years (limited to 90), the predicted

values are temperatures from a convolution, and the expected values are temperatures

from the multi-model mean CMIP6 1pctCO2 experiment. The global mean RMSE is low-

est for a 4th-order polynomial fit, but as seen in Figure S7, they are all within a similar

range of values.
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To test whether or not the convolution is reducing the noise, we can take the Fourier

transform of our global mean ESGR and of the emissions from a multi-model mean 1pct-

CO2 experiment. Because of the convolution theorem, we know that the Fourier transform

of the convolution of these functions is equal to the product of their Fourier transforms.

Figure S8 shows the Fourier transform of ESGR, where it is clear that there is a strong

low-frequency signal, as well as a number of weaker high-frequency signals that indicate

either forced or unforced internal variability. The Fourier transform of the function of the

emissions similarly has a strong low-frequency signal and very few weak high-frequency

signals. The product of these two dampens these higher-frequency signals; since the

product of the Fourier transforms is the same as the Fourier transform of their convolution,

we can say that the high-frequency noise (internal variability), is being reasonably reduced

by the convolution process.

Text S3: Trajectory Creation

We create six trajectories that have the same cumulative emissions as the 1pctCO2

experiment by the year a global mean 2°C is reached (year 69). These trajectories are

meant to exemplify the importance of historical emissions on temperature outcomes, and

are idealized smooth power-law fits of emissions that follow the equation:

e(t) =
(c(n+ 1)tn)

tn+1
f

(1)

scaled such that
∫ tf
t=0 e(t)dt = c, where c is the cumulative emissions desired (1204.7

GtC), t is the time range of emissions (0-90 years), tf is the time by which c is reached

(69 years), and n is polynomial fit desired. We calculate the emissions for n = 1/8, 1/4,

1/2, 2, 4, and 8.
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Table S1. Model Information for Green’s Function Derivation. Italicization indicates that the

realizations that are in italics only have the Experiment IDs italicized.

Model Realizations Experiment IDs Data Variables Frequency Weighting
Function

GFDL r1i1f1p1 esm-pictrl,
esm-pi-CO2pulse,
esm-pi-cdr-pulse

tas monthly 1

NORESM2 r1i1f1p1 esm-pictrl,
esm-pi-CO2pulse,
esm-pi-cdr-pulse

tas monthly 1

UKESM1 r1i1f2p1 esm-pictrl,
esm-pi-CO2pulse,
esm-pi-cdr-pulse

tas monthly 1

CanESM5 r1i1f1p2,
r2i1f1p2,
r3i1f1p2

esm-pictrl,
esm-pi-CO2pulse,
esm-pi-cdr-pulse

tas monthly 1/3,
1/3,
1/3

ACCESS r1i1f1p1 esm-pictrl,
esm-pi-CO2pulse,
esm-pi-cdr-pulse

tas monthly 1

MIROC r1i1f2p1 esm-pictrl,
esm-pi-CO2pulse,
esm-pi-cdr-pulse

tas monthly 1

Figure S1. 4th-order polynomial fit global mean Green’s Function for every model in both

the esm-pi-CO2pulse and esm-pi-CDRpulse.
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Table S2. Model Information for 1pctCO2 Comparison

Model Realizations Experiment IDs Data Variables Frequency Weighting
Function

GFDL r1i1f1p1 pictrl,
1pctCO2

tas, co2mass,
fgco2, nbp,
areacella

monthly 1

NORESM2 r1i1f1p1 pictrl,
1pctCO2,
esm-1pct-brch-
1000PgC

tas, co2mass,
fgco2, nbp, area-
cello, areacella

monthly 1

UKESM1 r1i1f2p1,
r2i1f2p1,
r3i1f2p1,
r4i1f2p1

pictrl,
1pctCO2,
esm-1pct-brch-
1000PgC

tas, co2mass,
fgco2, nbp, area-
cello, areacella

monthly 1/4
1/4
1/4
1/4

CanESM5 r1i1f1p2,
r2i1f1p2,
r3i1f1p2

pictrl,
1pctCO2,
esm-1pct-brch-
1000PgC

tas, fgco2, nbp,
areacello, area-
cella

monthly 1/3,
1/3,
1/3

ACCESS r1i1f1p1 pictrl,
1pctCO2,
esm-1pct-brch-
1000PgC

tas, fgco2, nbp,
areacello, area-
cella

monthly 1

MIROC r1i1f2p1 pictrl,
1pctCO2,
esm-1pct-brch-
1000PgC

tas, fgco2, nbp,
areacello, area-
cella

monthly 1
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Figure S2. Global mean temperature change in each model for a 1pctCO2 experiment in the

CMIP6 model, compared to ESGR and convolutions with the individual pulse types (esm-pi-

CO2pulse and esm-pi-CDRpulse)
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Figure S3. The time-mean ESGR scaled by the initial emissions size of 100GtC between 0-4

years and 4-36 years, and the difference between the two.

Figure S4. Temperature change in ESGR due to the 1pctCO2 and esm-1pct-brch-1000PgC

scenarios at 20 (±5) years and 85 (±5) years.
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Figure S5. Intra model spread, shown as 1σ as used for determining hatching in S5 at 20 (±5)

years and 85 (±5) years.

Figure S6. Global mean Green’s function for the rolling mean at varying windows (5, 10,

30, and none), the 4th-order polynomial fit, and the 4th-order polynomial fit using a pi-ctrl

climatology. The dashed line shows the TCRE.
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Figure S7. The root mean squared error (RMSE) for temperature change in ESGR compared

to the CMIP6 1pctCO2 multi-model mean. a) shows a 5-year rolling mean ESGR, b) a 10-year

rolling mean, c) a 30-year rolling mean, d) no rolling mean, e) a 4th-order polynomial fit, and f)

a 4th-order polynomial fit using the pi-ctrl climatology.
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Figure S8. The Fourier transform of the global mean ESGR, the Fourier transform of the

emissions from a multi-model mean 1pct-CO2 experiment, and their product. All values are

normalized to the peak magnitude.
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