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Abstract

Atmospheric rivers (ARs) and Santa Ana winds (SAWs) are impactful weather events for California communities. Emergency

planning efforts and resource management would benefit from extending lead times of skillful prediction for these and other

types of extreme weather patterns. Here we describe a methodology for subseasonal prediction of extreme winter weather in

California, including ARs, SAWs and temperature extremes. The hybrid approach combines dynamical model and historical

information to forecast probabilities of impactful weather outcomes at weeks 1-4 lead. This methodology (i) uses dynamical

model information considered most reliable, i.e., planetary/synoptic-scale atmospheric circulation, (ii) filters for dynamical

model error/uncertainty at longer lead times, and (iii) increases the sample of likely outcomes by utilizing the full historical

record instead of a more limited suite of dynamical forecast model ensemble members. We demonstrate skill above climatology

at subseasonal timescales, highlighting potential for use in water, health, land, and fire management decision support.
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Key points  15 

• A hybrid dynamical-statistical model is developed for 1-4-week forecasts of high impact 16 

California winter weather using weather regimes. 17 

• This hybrid framework reduces the number of forecasts available, but the ones issued can 18 

be interpreted with higher confidence. 19 

• Skillful subseasonal forecasts extending lead time by 1-4 weeks could improve early 20 

warnings and outcomes during extreme weather events. 21 
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Abstract 23 

Atmospheric rivers (ARs) and Santa Ana winds (SAWs) are impactful weather events for 24 

California communities.  Emergency planning efforts and resource management would benefit 25 

from extending lead times of skillful prediction for these and other types of extreme weather 26 

patterns. Here we describe a methodology for subseasonal prediction of extreme winter weather 27 

in California, including ARs, SAWs and temperature extremes. The hybrid approach combines 28 
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dynamical model and historical information to forecast probabilities of impactful weather 29 

outcomes at weeks 1-4 lead.  This methodology (i) uses dynamical model information considered 30 

most reliable, i.e., planetary/synoptic-scale atmospheric circulation, (ii) filters for dynamical 31 

model error/uncertainty at longer lead times, and (iii) increases the sample of likely outcomes by 32 

utilizing the full historical record instead of a more limited suite of dynamical forecast model 33 

ensemble members. We demonstrate skill above climatology at subseasonal timescales, 34 

highlighting potential for use in water, health, land, and fire management decision support.   35 

 36 

Plain Text Summary 37 

California winter weather can alternate between very wet conditions from atmospheric rivers 38 

making landfall along the Pacific coast to hot, dry, and windy conditions brought by Santa Ana 39 

winds blowing in from the Southwest interior. Atmospheric rivers are important for water 40 

resources while also causing flooding, whereas Santa Ana winds are often associated with wildfire, 41 

especially following prolonged dry periods. Preparing for these types of weather events is 42 

important for managing resources and protecting life and property, yet reliable forecasts beyond 43 

about 7-10 days remain a challenge.  We have developed a new prediction system that combines 44 

information about approaching atmospheric weather patterns from weather forecast models along 45 

with historical information relating those patterns to impacts over California to predict the 46 

likelihood of impactful weather at 1-4 weeks lead time.   By extending the window of opportunity 47 

to take action, this new approach should aid in resource and emergency planning in water, land, 48 

and fire sectors as well as protecting residents through improved warning systems. 49 

 50 

1. Introduction 51 
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Extremes of California’s winter weather variability sway between heavy multiday 52 

precipitation from Pacific storms associated with atmospheric rivers (ARs) and dry offshore 53 

downslope winds blowing from the elevated continental interior. Drought-busting ARs cause most 54 

of the region’s floods (Ralph et al. 2006, 2011, Dettinger 2013, Corringham et al. 2019) while 55 

downslope winds are often associated with coastal heat waves as well as wildfire and smoke 56 

impacts (Hughes and Hall 2010; Abatzoglou et al. 2013; Guzman-Morales et al. 2016; Aguilera et 57 

al. 2021, Gershunov et al. 2021, Cayan et al. 2022). Winter heat waves and dry spells accelerate 58 

mountain snowmelt (Hatchett et al. 2023), exacerbate drought and, particularly at the densely 59 

populated coast, endanger human health (Schwartz et al. 2020, Gershunov et al. 2021).  Improved 60 

prediction of these types of impactful weather events is of great importance for emergency 61 

preparedness and planning to mitigate impacts to society (DeFlorio et al. 2021). Climate change 62 

is increasing the likelihood and intensity of extreme weather in California (e.g., Gershunov et al. 63 

2019, 2021, Corringham et al. 2022, Huang and Swain 2022, Michaelis et al. 2022), highlighting 64 

the need for improved forecasts across a range of lead times to aid planning and ameliorate 65 

outcomes (e.g., DeFlorio et al. 2021; Oakley et al. 2023).  66 

ARs are low-tropospheric jets of water vapor that produce up to 50% of California’s annual 67 

precipitation (Dettinger et al. 2011, Gershunov et al. 2017).  They can be beneficial and hazardous 68 

(Ralph et al. 2019); replenishing water supplies, while also causing the most damaging California 69 

floods (Corringham et al. 2019, Guirguis et al. 2020, 2021). Santa Ana winds (SAWs) — the 70 

downslope winds of Southern California — are characterized by strong, dry, gusty northeasterly-71 

easterly winds that warm by adiabatic compression as they flow over and through the Transverse 72 

and Peninsular Ranges down to sea level.  SAWs can bring hot or cold temperatures, but the hot 73 

variety are associated with Southern California’s wildfires (Gershunov et al. 2021, Guirguis et al. 74 
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2022).  These hot SAWs are increasing in frequency over the historical record raising concerns 75 

about future wildfire risk.  76 

Numerical weather prediction has made notable advancements in recent years.  Multi-77 

ensemble probabilistic forecasts provide improvements over deterministic forecasts because they 78 

account for uncertainty arising from observational error, model limitations, and the chaotic nature 79 

of the earth-atmosphere system (Baurer et al. 2015, Palmer et al. 2017).  This improvement, along 80 

with computational and satellite advances, has led to encouraging progress towards extending 81 

forecast skill and lead time.  However, the time limit of predictability for high-impact weather 82 

events remains limited to about 1-2 weeks (Bauer et al. 2015) and warnings of heat waves or fire 83 

weather are typically issued on the order of a week or less.   84 

Skillful prediction of large-scale weather patterns and regime transitions has been 85 

demonstrated at leads of a month or longer (Baurer et al. 2015; Gibson et al. 2020; Robertson et 86 

al. 2020).  This has motivated work to extend forecast lead time by focusing on atmospheric 87 

circulation patterns and then inferring associated impacts for a region; leading to new operational 88 

forecast products (e.g., Ferranti et al. 2015, DeFlorio et al. 2021). These studies show dynamical 89 

models do have some skill at longer lead times in forecasting certain large-scale circulation 90 

features, but this skill is not consistent from forecast to forecast. Progress could be made by 91 

developing ways of recognizing when a subseaonal forecast is likely to be skillful or less reliable. 92 

In absence of dynamical model skill, a forecast could be supplemented or replaced by a statistical 93 

forecast. Here, we describe and evaluate a dynamical- statistical hybrid prediction system that uses 94 

dynamical model forecasts to predict four key modes of atmospheric variability on subseasonal 95 

timescales (1-4 weeks lead), filters for uncertainty and error, and then draws on known 96 
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relationships between these modes and high-impact West Coast weather to predict the likelihood 97 

of impactful weather events.  98 

Winter weather variability in California is largely modulated by four modes of atmospheric 99 

variability over the North Pacific Ocean (called the “NP4 modes”, Guirguis et al. 2018, 2020a, 100 

2022), named as the Baja-Pacific (BP), Alaskan-Pacific (AP), Canadian-Pacific (CP) and 101 

Offshore-California (OC) modes (Figure 1a). They collectively explain most of the variance (up 102 

to 89% in some locations) in mid-tropospheric circulation over a vast region over the North Pacific 103 

Ocean and West Coast (Figure S1). Daily interactions between these modes result in reoccurring 104 

weather patterns (Figure S2) responsible for much of California’s daily weather variability and 105 

extremes, including wildfires, heat waves, and damaging floods (Figure S3, Guirguis et al. 2022a, 106 

hereinafter GGR’22). These modes are also influential for California precipitation on seasonal 107 

timescales due to their tendency to persist in one phase or another during a season (Guirguis et al. 108 

2020a, hereinafter GGR’20). 109 

Our forecast system uses the circulation regime methodology of GGR’20 and GGR’22 110 

applied to 20 years of multi-ensemble hindcasts from the European Center for Medium-Range 111 

Weather Forecasts (ECMWF) model as well as real-time forecasts from water year 2022 112 

(WY2022).  We then apply a statistical model that relates these circulation regime-based forecasts 113 

to extreme weather over California. Using this dynamical-statistical hybrid approach, we 114 

demonstrate skillful probabilistic forecasts of ARs, SAWs, and hot/cold temperature extremes in 115 

California at subseasonal (1-4 week) lead times. By filtering out uncertain forecast periods, we 116 

improve the accuracy and reliability of the forecasts relative to dynamical model skill without 117 

filtering.  In this novel approach, we use dynamical model information when it is likely to be 118 

reliable, attempt to filter error and uncertainty, and then combine the filtered dynamical model 119 
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information with a statistical model to forecast an impactful weather event.  At shorter lead times 120 

(~1 week) the forecast is largely determined by the dynamical model information, whereas at 121 

longer lead times (when the dynamical model skill degrades) the statistical information becomes 122 

more important.  The aim of this work is to provide tools and information for decision support to 123 

improve outcomes from extreme weather events.  124 

 125 

2. Data  126 

2.1. Time period of study 127 

The focus of this study is extended winter (November-February) spanning 2001-2022.   128 

 129 

2.2.  Four Key Modes of Atmospheric Variability over the North Pacific Ocean (NP4 modes) 130 

Daily amplitudes of the NP4 modes are from Guirguis et al. (2020b, hereinafter GGR’20b), which 131 

was extended through WY2022. These circulation regimes are represented using daily 500 mb 132 

geopotential height (Z500) anomalies from NCEP/NCAR 2.5° Global Reanalysis (R1, Kalnay et 133 

al. 1996). Anomalies were calculated by fitting and removing annual and semiannual cycles using 134 

least-squares regression (Guirguis et al. 2018).   135 

 136 

2.3.  Atmospheric Rivers (ARs) 137 

ARs landfalling the West Coast are identified using the SIO-R1 catalog of Gershunov et al. (2017), 138 

available 1948-present. The methodology uses vertically integrated horizontal vapor transport 139 

(IVT) and integrated water vapor (IWV) to identify elongated plumes (>1500 m) of concentrated 140 

moisture (IVT>250 kg m-1s-1 and IWV>15mm). AR landfalls are identified when a coastal location 141 

is within the AR footprint for at least one 6-hourly timestep in a day. 142 
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 143 

2.4.  Santa Ana Winds (SAWs) 144 

Santa Ana winds are identified using the daily Santa Ana Winds Regional Index (SAWRI, 145 

Guzman-Morales et al. 2016).  This record uses hourly surface winds spanning 65 years (1948-146 

2012) from dynamically downscaled R1 using the California Regional Spectral Model (CaRD10, 147 

Kanamitsu and Kanamaru, 2007) and statistically thereafter (Guzman Morales and Gershunov 148 

2019). The methodology identifies SAWs impacting coastal Southern California when 149 

northeasterly wind speeds exceed local 75th percentiles.   150 

 151 

2.5.  Precipitation and Daily Maximum Temperature  152 

Precipitation and daily maximum temperatures (tmax) are from Gridmet (Abatzaglou 2013), 153 

available 1979-present at ~4km spatial resolution.  Daytime hot (cold) temperature extremes are 154 

defined as temperatures above (below) the historical 90th (10th) percentile after removing the 155 

seasonal cycle. We focus on three regions: the Central Sierra Nevada (1) for their importance for 156 

snow accumulation and water resources, as well as coastal Southern California (2) and the San 157 

Francisco Bay area (3) where millions of people are exposed to hazards (Figure S4).  158 

 159 

2.6.  ECMWF Ensemble Hindcasts 160 

We use global hindcasts of Z500 from the S2S Project database (Vitart et al. 2017) for 2001-2020. 161 

We selected one model, the ECMWF model, a state-of-the-art dynamical weather forecast model 162 

shown to outperform other models (e.g., Gibson et al. 2020, DeFlorio et al. 2019). Ocean coupling 163 

is included in these hindcasts, but sea ice coupling is not. Data were produced with the Integrated 164 

Forecast System (IFS). Hindcasts are made twice weekly yielding 34 forecasts per year over the 165 
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20-year period (680total), including one control and 10 perturbed ensemble members for lead 166 

times out to 46-days. We focus on days 1-30 for this study.   167 

 168 

2.7.  ECMWF Realtime Forecasts WY2022  169 

We use real-time forecasts of Z500 from the ECMWF during WY2022, produced twice weekly 170 

using fifty perturbed ensemble members. 171 

 172 

3. Description of the Dynamical-Statistical Hybrid Model  173 

The methodology (Figure 2) uses the best available information about evolving 174 

atmospheric circulation from the ECMWF, filters for error and uncertainty, and applies a statistical 175 

model to predict the likelihood of an impactful weather event for a region of interest.  176 

 177 

3.1. Dynamical Model Input 178 

The dynamical model input consists of ECMWF forecasts of Z500 fields over a domain 179 

spanning 20°S-80°N and 120-250°E for each ensemble member and lead time (Figure 2, step 1).   180 

 181 

3.2. Post Processing 182 

Anomaly maps are created by removing the seasonal cycle at each grid point (Section 2.2).  183 

These anomaly maps are projected onto each of the four NP4 mode EOFs (e.g., GGR’20) to 184 

calculate the forecast amplitude of the BP, AP, CP, and OC modes for each ensemble member and 185 

lead time (Figure 2, step 2).  These amplitudes provide information about the forecasted strength 186 

and position of ridges and troughs over the North Pacific and along the West Coast (c.f. Figure 187 

1a).  There is generally strong agreement among ensemble members about the phase of the NP4 188 
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modes at short lead times (on the order of 7-10 days), but uncertainty can become prominent at 189 

longer lead times (e.g., see growing dispersion in mode amplitudes shown in Figure 2, step 2).   190 

 191 

3.3. Consensus Filtering 192 

We filter for error and uncertainty using a consensus threshold of 70% (Figure 2, step 3).  193 

That is, if 70% of ensemble members agree about the phase of a given mode, then we assume this 194 

information is reliable.  If this criterion is not met, then we consider the mode phase to be uncertain. 195 

The choice of 70% is based on exploratory analysis demonstrating that a lower threshold (50-60%) 196 

leads to lower skill (Figure S5a) and a higher threshold (80%) is too rarely met in weeks 3-4 (Figure 197 

S5b). In Figure 2, step 3, the green and yellow shading indicates where the 70% consensus criterion 198 

is met for each mode, with the remaining forecasts classified as uncertain.  In physical terms, this 199 

means at least 70% of ensemble members agree that a ridge or trough will persist or develop over 200 

a certain location at a certain lead time.  In this example, the Alaska-Pacific mode is forecast to 201 

become negative around day 7 and then persist in that phase for over two weeks.  The negative 202 

phase of this mode is associated with a ridge over the Gulf of Alaska (c.f. Figure 1a). Knowledge 203 

about a developing persistent ridge over the Alaskan Gulf is useful information for West Coast 204 

weather prediction (Gibson et al. 2020, GGR’20). This forecast also indicates long-lead confidence 205 

about the Baja-Pacific mode transitioning into the negative phase, and the Offshore-California 206 

mode remaining negative into week 3.  The model is less confident about the phase of the 207 

Canadian-Pacific mode beyond day 12.   208 

 209 

3.4. Input to the Statistical Model 210 
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The filtered dynamical model information is used as input into the statistical model. For a 211 

given forecast and lead time, each of the BP, AP, CP, and OC modes can be positive, negative, or 212 

unknown (Figure 2, step 4).  We track the error in these dynamical NP4 phase forecasts (seen as a 213 

red “x” for the CP mode in days 23-24) for the skill assessment.  In this example, most of the 214 

remaining forecast information (after filtering) is correct, albeit with much uncertainty at longer 215 

lead times. 216 

 217 

3.5. Statistical Model  218 

A conditional probability model is used to predict the probability of a weather impact, X, 219 

over different regions of the West Coast.  Specifically, the model is represented as 220 

 221 

																																															𝑃(𝑋|𝐵𝑃, 𝐴𝑃, 𝐶𝑃,𝑂𝐶) = !(#,%!,&!,'!,(')
!(%!,&!,'!,(')

                                         Eqn (1) 222 

 223 

Where P(X) is the historical conditional probability of X, and BP, AP, CP, and OC represent the 224 

phase of the four NP4 modes as forecast by the dynamical model, which (from Section 3.4) can be 225 

positive, negative, or unknown.  The weather impact X can be any weather outcome that is driven 226 

by atmospheric circulation in this region.  To determine P(X), we use the NP4 dataset of GGR’20b 227 

to identify days in the historical record when the same mode phase combination occurred, and then 228 

compile observed outcomes on those days to quantify the historical probability of different weather 229 

impacts for different locations. The statistical model will vary in complexity for each forecast and 230 

lead time. Some forecasts will have 4 modes available as predictors while other forecasts will only 231 

use 3, 2, or 1 mode due to uncertainty in the remaining modes.  Additional detail is provided in the 232 

supplement (Text S1, Figure S6).  We focus on predicting AR landfalls at different West Coast 233 
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latitudes (32.5-55°N), SAWs in Southern California, and hot/cold temperature extremes over the 234 

Sierra Nevada, Coastal Southern California, and the San Francisco Bay area.   235 

 236 

3.6. Hindcast Skill Assessment Methodology  237 

For the hindcast skill assessment, we bin the probabilistic forecasts P(X) into three 238 

categories: “low probability”, “above normal probability”, and “much above normal probability”, 239 

where the upper/lower bounds for each category were determined relative to local climatology.  240 

The definitions for the three categories are: <50% of climatology, 120-160% of climatology, and 241 

>160% of climatology, respectively (Figure S7).  242 

To assess skill, we compare the forecast conditional probability P(X) with the observed 243 

frequency for each type of event.  A “low probability” forecast is considered skillful if the observed 244 

frequency of extreme temperatures, SAWs, or ARs following these forecasts is low relative to 245 

climatology (falls below the 10th percentile of the resampled distribution).  The “above normal” 246 

and “much above normal” forecasts are considered skillful if the observed frequency is higher than 247 

the 90th percentile.   248 

 249 

4.    Realtime Skill Assessment: Forecasts from WY2022 250 

 Figure 1 shows real-time forecast information for WY2022. Verified ECMWF forecasts of 251 

the NP4 modes after filtering are shown in Figure 1b.  Probabilistic AR forecasts for different 252 

regions along the coast are shown in Figure 1d, with the regions defined in Figure 1c.  Here, the 253 

NP4 mode phase information shown in Figure 1b is used as predictors for the AR forecasts shown 254 

in Figure 1d (i.e., using equation 1 where X is an AR landfall at a coastal region). 255 
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As a first skill measure, we evaluate if the phases of the NP4 modes (Figure 1b) were 256 

accurately predicted by the ECMWF model, and if the consensus filtering methodology was 257 

effective at removing error (i.e., accuracy of the information used as input to the statistical model). 258 

In Figure 1b, most of the information in weeks 1-2 is correct (red/blue shading) but at longer lead 259 

times, an increasing number of forecasts are classified as uncertain (gray shading), and by week 4 260 

most of the dynamical model information has been filtered due to uncertainty, although useful 261 

information remains in week 4 for some modes.  The information that remains after filtering is 262 

overwhelmingly correct (91%) with only 9% error.  Figure S8a examines what the forecasts would 263 

look like if the NP4 mode phases were calculated from the ensemble mean without filtering.  264 

Figure S8b shows the forecasts issued using the ensemble mean reference model, but which were 265 

removed by the consensus filtering method.  Of the forecasts removed by filtering (Figure S8b), 266 

41% would have been incorrect.  Unfortunately, 59% of accurate data was also eliminated by 267 

filtering, but this is preferable over retaining many incorrect forecasts. To summarize, applying 268 

uncertainty filtering in this hybrid dynamical-statistical framework decreases the number of 269 

incorrect forecasts obtained by the raw dynamical model output by ~32%. Although the number 270 

of forecasts issued in this hybrid framework are lower, the ones that are issued can be interpreted 271 

with much higher confidence and reliability.   272 

In WY2022, the dynamical model skillfully predicted important atmospheric circulation 273 

features in week 3 and occasionally into week 4 (Figure 1b).  The ECMWF skillfully predicted the 274 

negative phase of the Alaskan-Pacific mode 3-4 weeks in advance during Dec-Feb, which in 275 

physical terms is characterized by a ridge over the Gulf of Alaska (c.f. Figure 1a).  In December, 276 

the positive phase of the Canadian-Pacific mode was skillfully predicted at 3-4 weeks lead time, 277 

which is associated with a trough over British Columbia. There was also skill in forecasting the 278 
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negative phase of the Offshore-California mode in week 3 during January and weeks 3-4 during 279 

February, which is associated with a ridge offshore from California.  This persistent ridge during 280 

January-February is responsible for the extremely dry conditions that occurred in California and 281 

contributed to the continuation of the drought during WY2022 (Figure S9).  282 

Figure 1d shows real-time AR forecasts from WY2022 for four coastal regions shown in 283 

Figure 1c.  In Figure 1d, the top panels show the observed coastal AR IVT from Nov 1-Feb 28 and 284 

the bottom panels show the AR landfall probability forecasts using the hybrid model.  The forecasts 285 

represent the observed AR landfall behavior that occurred in WY2022 very well with 3 weeks 286 

lead, and with some skill seen at 4 weeks.  In general, above (below) normal AR forecasts were 287 

issued for days when AR landfalls occurred (did not occur).  For example, the mid-winter dry spell 288 

during December in British Columbia was correctly forecast, along with the wet periods that 289 

preceded and followed.  Also notable are wet December conditions followed by a dry January-290 

February along the US West coast, which was well represented in the forecasts for the Pacific 291 

Northwest and Northern/Southern California. 292 

 293 

5.  Hindcast Skill Assessment 294 

 Figure 3 shows the skill assessment for 20 years of hindcast data for the NP4 modes (Figure 295 

3a) and impactful weather events (Figures 3b-d). 296 

 297 

5.1  NP4 Modes 298 

The hindcast skill assessment for the NP4 modes, after filtering, is shown in Figure 3a. For 299 

lead times of 1-2 weeks, the hindcasts are significantly skillful for all seasons (i.e., the full 300 

distribution of seasonal forecasts lies above the 95% significance line).  In week 3, most seasons 301 
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exhibit significant skill.   In week 4 most seasons remain skillful, but this is less consistent where 302 

the first quartile (Q1) often falls below the significance line, meaning that more than 25% of 303 

forecasts are in error.  In general, the forecasts of the NP4 modes, after filtering, show skill in 304 

weeks 1-4. 305 

 306 

5.2  Hot and Cold Temperature Extremes 307 

Figure 3b shows hindcast skill for heat extremes.  The hybrid model forecasts are 308 

significantly skillful at weeks 1-3 lead for all regions and forecast categories.  In general, “low 309 

probability” forecasts are followed by a low frequency of extreme heat occurrence, whereas “above 310 

normal” and “much above normal” forecasts are followed by a much higher frequency of 311 

occurrence.  These forecasts are statistically skillful at the 90% level.  312 

There is evidence of skill in predicting extreme out-of-season heat at 4 weeks lead, but the 313 

skill is not as reliable (i.e., more data points fall within the 10th-90th percentiles of the resampled 314 

distribution).  For Coastal Southern California and San Francisco Bay, the “low probability” 315 

forecasts are not skillful at 4 weeks lead, suggesting a tendency to underestimate heat wave 316 

occurrence.  These regions also show inconsistent skill in week 4 forecasts for the other two 317 

categories. Forecasts for the Central Sierra Nevada show significant skill at 4 weeks lead for all 318 

forecast categories.     319 

Figure S10 shows the skill assessment for cold extremes.  The forecasts for weeks 1-3 are 320 

generally skillful for the three regions and forecast categories.  However, skill becomes less 321 

reliable in weeks 4, especially the “below normal category.  In general, extreme heat appears more 322 

skillfully predictable than extreme cold. A possibility is that transient cold fronts are less 323 
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predictable than stationary highs, however more research is needed to identify the cause of these 324 

skill differences. 325 

 326 

5.3.  Santa Ana Winds 327 

Figure 3c shows hindcast skill for Santa Ana winds over Southern California. The results 328 

are similar as for heat extremes, where the outcomes for the three forecast categories are well 329 

separated and significantly skillful at weeks 1-3 lead and in week 4 for some forecast categories.  330 

There is a drop in skill for the “above normal category” at 3 weeks lead, where SAWs do not 331 

materialize as often as forecast, as seen by many orange data points falling below the 90th percentile 332 

significance line.   This drop in skill is not evident for the highest probability category, suggesting 333 

that higher confidence might lead to higher skill.     334 

 335 

5.4. Atmospheric Rivers 336 

Figure 3d shows hindcast skill for AR landfalls at different coastal latitudes.  The hybrid 337 

forecasts are skillful for most locations at weeks 1-3 lead.  The “below normal” forecasts are 338 

followed by a low frequency of AR landfalls while the “above normal” and “much above normal” 339 

forecasts are followed by an elevated frequency of AR landfalls, and these results generally show 340 

significant skill at weeks 1-3 lead.  At week 4, the observed AR frequency corresponding to the 341 

different forecast categories is generally correct with respect to climatology.  However, the skill is 342 

not statistically significant across latitudes, except for the “much above normal” category, which 343 

shows significant skill over latitudes 35-42 °N (much of coastal California). Overall, these results 344 

are encouraging for predicting AR landfalls along the coast on subseasonal timescales. 345 

 346 
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6. Discussion 347 

We have described and evaluated a new statistical-dynamical hybrid model, which 348 

produces skillful probabilistic forecasts of temperature extremes, Santa Ana winds, and landfalling 349 

ARs over California at subseasonal timescales. The model is skillful in weeks 1-3 for each impact 350 

and region studied.   Week 4 also shows skill, though the skill is not consistent among all variables 351 

and forecast categories.  352 

Because we use a hybrid approach, the potential skill is not strictly limited by the dynamical 353 

weather forecast, and near-future improvements are possible through continued development of 354 

the statistical model.  For example, signals from lower frequency climate teleconnections could be 355 

incorporated at longer lead times when the dynamical model is uncertain.  Impacts of climate-scale 356 

teleconnections on offshore atmospheric ridges (Gibson et al. 2020a) as well as the NP4 modes 357 

(GGR’20) have been identified, and such relationships could be incorporated to extend skill and 358 

lead time using this hybrid approach.   359 

We focused on four impact types (hot/cold temperature extremes, SAWs, and ARs). 360 

However, other applications are possible including hot/cold temperature anomalies more 361 

generally, conditions driving mid-winter snowmelt (Hatchett et al. 2023), high snow level storms 362 

(Shulgina et al. 2023) with rain-on-snow (Heggli et al. 2022), and other decision-specific variables 363 

not represented in dynamical forecasts.  The offshore wind forecasts — essential ingredients for 364 

Southern California’s wildfires — focused on Santa Ana winds, which were amenable to this 365 

analysis given the long SAW catalog of Guzman-Morales et al. (2019).  Related applications could 366 

include Diablo and Sundowner winds of Northern and Central California; however the seasonality 367 

of these winds requires an extension of the methodology into earlier fall and later spring 368 

(Abatzoglou et al. 2020). Identifying relationships between the GGR’22 weather regimes and 369 
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observed live/dead fuel moisture could inform development of long-lead fire hazard models and 370 

advanced warning systems using this hybrid approach.  371 

Predictability of extreme precipitation in a probabilistic sense could also be explored.  This 372 

is especially important as both extreme winter precipitation and winter wildfires become more 373 

common (Gershunov et al. 2019, Cayan et al. 2022), raising the possibility of compound extreme 374 

events such as short-duration high-intensity rainfall, which can cause devastating post-fire debris 375 

flows (Oakley et al. 2017, 2018a) and landslides (Rengers et al. 2020, Oakley et al. 2018b), rain-376 

on-snow flooding (Haleakala et al. 2023), as well as other precipitation patterns driving mass 377 

movements such as avalanches (Hatchett et al. 2017). Improving lead time to prepare for these 378 

types of events and likelihood of occurrence is crucial to prevent loss of life and mitigate damage 379 

to property (Oakley et al. 2023). This approach could be applied in climate change studies, where 380 

changes to atmospheric circulation identified in global climate models along with thermodynamic 381 

responses could be linked to future impacts (Michaelis et al. 2023; Rhoades et al. 2023).  We 382 

envision these results and future updates will form the basis for real-time forecast tools with 383 

possible applications for early warning systems and decision support across many sectors 384 

including water resources, public health, land, and fire management in a varying and changing 385 

climate.   386 

 387 

Open Research 388 

The NP4 dataset is available at https://doi.org/10.6075/J0154FJJ.  The Santa Ana winds regional 389 

index and the SIO-R1 AR catalog are available at https://weclima.ucsd.edu/data-products/.  The 390 

temperature gridMET dataset is available at https://www.climatologylab.org/gridmet.html.  391 
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NCEP/NCAR reanalysis is available at https://psl.noaa.gov/data/reanalysis/reanalysis.shtml.  The 392 

EMWF hindcast data are available at https://www.ecmwf.int/en/research/projects/s2s. 393 
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 539 

Figure 1. (a) Positive phase of the NP4 modes shown in units of correlation (r) between each mode 540 

and the raw Z500 data.  (b) Validated real-time forecasts of the NP4 mode phase from WY2022, 541 

where each individual forecast is displayed on a diagonal line, the x-axis gives the target date from 542 

1Nov-28Feb, the y-axis gives the lead time from 1-30 days, red (blue) shading indicates that a 543 

mode was correctly forecast to be in the positive (negative) phase, yellow shows forecast error, 544 

gray shows when forecasts were classified as uncertain. (c) Map showing four West Coast regions. 545 

(d) Observed and forecast AR behavior during WY2022 for the four regions shown in (c), where 546 

the top four panels (blue stem plots) show regionally averaged observed daily AR IVT during 547 

WY2022, the bottom four panels show the hybrid forecasts for each region at different lead times, 548 

a) NP4 modes 

    
b) Verified NP4 mode phase Forecasts WY2022 

    
       c) Coastal Regions 
 

 

d) Observed AR Landfalls and Forecast AR Landfall Probability
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where each forecast is shown on a diagonal line, the x-axis gives the target date, the y-axis gives 549 

lead time, blue indicates above normal AR probability forecasts (wet), yellow/orange shows low 550 

probability forecasts (dry), gray indicates uncertainty (no forecast, NF). 551 

 552 

 553 

 554 

 555 

 556 

 557 

 558 

 559 

 560 

 561 

 562 

 563 

 564 

 565 

 566 

 567 



 

 27 

 

Figure 2. Description of the statistical-dynamical hybrid model. Step 1 describes the dynamical 568 

model input.  Step 2 illustrates postprocessing, specifically the NP4 mode amplitudes (units of 569 

standard deviations) as calculated from Z500 forecasts from 50 ensemble members for 1-30 days 570 

lead.  Step 3 shows consensus filtering where green (yellow) indicates >70% of ensemble members 571 

agree that the mode will be positive (negative), white indicates uncertainty, and the red line shows 572 

observations.  Step 4 shows the input into the statistical model, where each mode is input as 573 
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positive, negative, or unknown/uncertain, and the red “x” shows error relative to observations.  574 

Step 5 describes the statistical model. 575 

 576 
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 585 

Figure 3.  (a) Hindcast skill assessment of the NP4 mode phase, after filtering, where the y-axis 586 

gives the percent of forecasts in a season that were correct, the x-axis shows lead time, the boxes 587 

include datapoints falling within the interquartile range with lines extending to the 10th-90th 588 

percentiles, and the green line shows the 95% significance level.  (b-c) Hindcast skill assessment 589 

of heat waves and SAWS, respectively, where the y-axis shows observed event frequency 590 

following three forecast categories: low (blue), above normal (orange), and much above normal 591 

(red) probability. (d) Hindcast skill assessment of AR landfalls at different coastal latitudes (y-592 

axis) shown at the weekly resolution. The gray shaded area in b-d gives the 10th-90th percentiles 593 

a) Hindcast Skill: Mode Phase 

 
b) Hindcast Skill: Heat Extremes 

     

c) Hindcast Skill: SAWs 

 
d) Hindcast Skill: Atmospheric River Landfalls 
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of the resampled distribution, and the dashed black line shows climatology. Filled markers indicate 594 

statistically significant skill (90% level).   595 


