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Abstract

We devised a new data analysis technique to identify the threat level of solar active regions by processing a combined data

set of magnetic field parameters and flaring activity. The data set is composed of two elements: a reduced factorization of

SHARP parameters of the active regions, and information about the flaring activity at the time of measurement of the SHARP

parameters. Machine learning is used to reduce the data and to subsequently classify the active regions. For this classification

we used both supervised and unsupervised methods. The following processing steps are applied to reduce and enhance the

SHARP data: outlier detection, redundancy elimination with common factor analysis, addition of sparsity with autoencoders,

and construction of a balanced data set with under- and over-sampling. The supervised method, K-nearest neighbors, produces

very good results on the strong X- and M-flares, with TSS scores of respectively 0.94 and 0.75. As unsupervised methods we

used clustering models, K-means and Gaussian Mixture Models. We find that both techniques are able to distinguish non-flaring

and flaring active regions. Moreover, K-means is able to distinguish C-/M-flaring active regions from X-flaring active regions.

For processing purposes an unsupervised method is more useful, since the type of flare will not be available. Therefore, we

conclude that K-means provides the most promising results.
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Key Points:6
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flaring active regions, and very active X-flare regions.10

• The magnetic field properties of C- and M-flaring active regions are very similar.11
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Abstract12

We devised a new data analysis technique to identify the threat level of solar active re-13

gions by processing a combined data set of magnetic field parameters and flaring activ-14

ity. The data set is composed of two elements: a reduced factorization of SHARP pa-15

rameters of the active regions, and information about the flaring activity at the time of16

measurement of the SHARP parameters. Machine learning is used to reduce the data17

and to subsequently classify the active regions. For this classification we used both su-18

pervised and unsupervised methods. The following processing steps are applied to re-19

duce and enhance the SHARP data: outlier detection, redundancy elimination with com-20

mon factor analysis, addition of sparsity with autoencoders, and construction of a bal-21

anced data set with under- and over-sampling. The supervised method, K-nearest neigh-22

bors, produces very good results on the strong X- and M-flares, with TSS scores of re-23

spectively 0.94 and 0.75. As unsupervised methods we used clustering models, K-means24

and Gaussian Mixture Models. We find that both techniques are able to distinguish non-25

flaring and flaring active regions. Moreover, K-means is able to distinguish C-/M-flaring26

active regions from X-flaring active regions. For processing purposes an unsupervised27

method is more useful, since the type of flare will not be available. Therefore, we con-28

clude that K-means provides the most promising results.29

Plain Language Summary30

One of the main sources of space weather activity are solar active regions. In these31

zones the magnetic activity of the Sun is increased and can produce the two most en-32

ergetic events in the solar system: flares and coronal mass ejections. We investigate the33

magnetic field parameters of active regions, and the amount of energy they release. Our34

end goal is to produce an automatic model that can forecast the energy level released35

by a flare from solar active regions, using only their current magnetic field parameters.36

For this study, we used machine learning techniques that recognize patterns in data,37

without being explicitly told what to look for. These techniques can sometimes find pat-38

terns that escape the human intuition. The technique classifies different active regions,39

based on their magnetic parameters, identifying those that can release large amounts of40

energy in the near future.41

Our technique is able to discover differences between flaring and non-flaring active42

regions. We are also able to distinguish weakly flaring active regions from the strongest43

flaring active regions. However, there is still room for improvement. Future research should44

incorporate other data types and time series to get better results.45
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1 Introduction46

Solar flares are sudden electromagnetic explosions on the solar surface. These flares47

are triggered by the rapid reconfiguration of the magnetic field in solar active regions.48

The most intense solar flares are frequently accompanied by coronal mass ejections (CMEs)49

and solar energetic particles. Kawabata et al. (2018) show that CMEs are associated with50

approximately all events whose X-ray flux is larger than 10−3.9Wm−2, which correspond51

to the X-flares. Solar activity, like solar flares and CMEs, pose a serious threat to the52

near-Earth environment. They can produce streams of highly energetic particles, which53

can affect the Earth’s magnetosphere within a few hours or minutes (Cinto et al., 2020).54

These particles pose radiation hazards to astronauts and spacecrafts (Mikaelian, 2009).55

Flares are also associated with radio communication disruptions (Knipp et al., 2016; Red-56

mon et al., 2018), and the associated high energy particles can ionize our atmosphere57

at low altitudes (Liu et al., 2021). CMEs can trigger geomagnetic storms, which can dis-58

able satellites (Dang et al., 2022) and even knock out electrical power grids (Pulkkinen59

et al., 2005). Should such a large geomagnetic storm happen nowadays, it would have60

catastrophic results, causing considerable economic damage (Eastwood et al., 2017). For61

example, the 1977 New York City blackout cost is estimated at $624 million dollars (Sorkin,62

1982). A similar event today would have an even higher cost. Therefore, it is critical to63

study the magnetic field of active regions in order to understand, and ultimately predict,64

solar activity, like flares.65

66

Since solar flares mostly occur in active regions, it is common in solar flare predic-67

tion research to first produce predictions for active regions. The differentiation of solar68

active regions often involves the use of sunspot classifications - Mount Wilson (Hale et69

al., 1919) and McIntosh (McIntosh, 1990) - which are still performed manually. These70

classes are based on human observations in the visible light spectrum. This leads to in-71

ference of the subjectivity of the experts. Moreover, the visible light spectrum provides72

very limited information regarding the critical properties of solar active regions. Today73

it is possible to automatize the classification of solar active regions, reducing the influ-74

ence of human bias. This will allow to produce fast solar flare forecasting systems.75

76

There is already a long history of research on solar flare prediction. One of the ear-77

liest flare-prediction systems is THEO (McIntosh, 1990). This system is based on the78

McIntosh classification, representing the morphological characteristics, and uses more79

than 500 decision rules to predict X-ray solar flares. The predictions from THEO were80

subjective, since the decision rules were incorporated by a human expert and had not81

been evaluated statistically (Qahwaji & Colak, 2007). Afterwards, a lot of other researchers82
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also based themselves on the McIntosh classification to construct a solar flare prediction83

method, but used more objective statistical methods (Bornmann & Shaw, 1994; Gallagher84

et al., 2002) and machine learning methods (Li et al., 2008; Qahwaji & Colak, 2007). Other85

researchers based themselves on the properties of the solar photospheric magnetic field86

instead (Barnes et al., 2007; Leka & Barnes, 2007; Wang et al., 2008).87

88

Leka and Barnes (2003) pioneered the use of vector magnetic field data for flare89

prediction. Since then, numerous other researchers have followed and used a multitude90

of different vector magnetic field features and studied the relevance of them for flare pre-91

diction. For example, magnetic field topology parameters have been used by Schrijver92

(2007). Fisher et al. (2012) found that the integrated Lorentz force exerted by active re-93

gions can be related to the flaring activity as well. Also, the presence of polarity inver-94

sion lines is believed to be strongly correlated with flaring activity (Zirin & Wang, 1993),95

leading to the development of features measuring this (Jing et al., 2006; Mason & Hoek-96

sema, 2010).97

98

Since the launch of the Solar dynamics Observatory (SDO) in 2010, the magnetic99

features on the Sun have been continuously monitored by the Helioseismic and Magnetic100

Imager (HMI). This instrument maps the full-disk photospheric magnetic field with high101

cadence and continuity. (Bobra et al., 2014) developed the SHARP parameters from this102

data. These parameters are physical features calculated from the full-disk photospheric103

magnetic field for each active region identified on the disk. Sixteen of the SHARP pa-104

rameters are features derived by Leka and Barnes (2003). Seven other parameters are105

adapted from Fisher et al. (2012).106

107

With the launch of the HMI instrument at SDO and the development of the SHARP108

parameters, the amount of data available and the quality of the data has increased enor-109

mously, leading to the need for a more automated and faster approach. Barnes et al. (2007)110

were the first to use vector magnetograms to investigate solar flare forecasting using a111

statistical classifier. Bobra and Couvidat (2015) followed this with the first solar flare112

forecast using machine learning on features derived from a vector magnetogram. It was113

also the first time that a large data set of vector magnetograms had been used to fore-114

cast solar flares. They used 25 parameters of the SHARP vector magnetic field data and115

applied a support vector machine on them to predict X- and M-class flares.116

117

Many new approaches have been developed to process the large amounts of solar118

observational data. Different statistical methods have been applied in many solar flare119
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prediction studies, e.g. (Bloomfield et al., 2012; Barnes et al., 2016; Mason & Hoeksema,120

2010; Song et al., 2009). In the last 15 years machine learning methods have become in-121

creasingly popular for analysing the occurrence of solar flares. Multiple machine learn-122

ing methods have been considered, including regression models (Lee et al., 2007; Song123

et al., 2009), k-Nearest Neighbors (Huang et al., 2013; Li et al., 2008; Nishizuka et al.,124

2017; Winter & Balasubramaniam, 2015), Bayesian networks (D. Yu et al., 2009), C4.5125

decision trees (Huang et al., 2010; D. Yu et al., 2009), hybrid LASSO (Campi et al., 2019),126

support vector machines (SVM) (Bobra & Couvidat, 2015; Ilonidis et al., 2015; Nishizuka127

et al., 2017; Qahwaji & Colak, 2007; Raboonik et al., 2016; Sadykov & Kosovichev, 2017;128

Yuan et al., 2010), artificial neural networks (Ahmed et al., 2013; Colak & Qahwaji, 2009;129

Higgins et al., 2011; Li & Zhu, 2013; Nishizuka et al., 2018; Qahwaji & Colak, 2007), ran-130

dom forest (Florios et al., 2018; Liu et al., 2017), convolutional neural networks (CNN)131

(Huang et al., 2018; Park et al., 2018; Sun et al., 2022; Zheng et al., 2019), long-short132

term memory (LSTM) (Jiao et al., 2020; Sun et al., 2022) and ensemble learning (Colak133

& Qahwaji, 2009; Guerra et al., 2015, 2020; Huang et al., 2010; Sun et al., 2022).134

135

The above studies are some examples of research that used machine learning to pre-136

dict solar flares. More related to the study of (Bobra & Couvidat, 2015) and our study137

is the literature where machine learning methods are applied on the SHARP parame-138

ters, e.g. (Abduallah et al., 2020; Jiao et al., 2020; Liu et al., 2017; Ma et al., 2017; Sun139

et al., 2022; Tang et al., 2021). Abduallah et al. (2020) developed a machine-learning-140

as-a-service framework, DeepSun, for predicting solar flares on the Web, based on the141

SHARP parameters. Jiao et al. (2020) applied a mixed LSTM regression model on the142

SHARP parameters to identify the flare intensity, a continuous variable. Liu et al. (2017)143

applied a random forest algorithm to the SHARP data and predicted the occurrence of144

a certain class of flares in a given active region within 24 hours. Ma et al. (2017) clus-145

tered the SHARP features one-by-one, identified the most interesting ones, e.g. the ones146

that were able to find the most different clusters, and applied a decision tree on the clus-147

tering results to find the final binary flare prediction. Sun et al. (2022) applied two deep-148

learning methods, LSTM and CNN, on SHARP data from solar cycle 24 and SMARP149

data from solar cycle 23. Tang et al. (2021) used a combination of a deep neural network,150

a CNN and a bidirectional LSTM to predict whether a sunspot group will have a flare151

event ≤ C or ≤ M, based on the SHARP features.152

153

As mentioned in the previous paragraph, Sun et al. (2022) used photospheric mag-154

netic field data from both solar cycle 23 and 24, while the SHARP data only exist for155

solar cycle 24, since the HMI instrument did not exist before. However, the HMI instru-156
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ment had a precursor, MDI (Hoeksema et al., 1992) of SOHO. A new data set has been157

created by Bobra et al. (2021), called SMARPs. These are similar to SHARPs, but con-158

structed from the solar images taken by MDI. As such, they attempt to extend backwards159

the SHARP database to the more active Solar Cycle 23. However, MDI’s measurements160

are restricted to only the line-of-sight component, with a a lower spatial resolution (2”161

per pixel, in contrast to 0.5” per pixel for HMI), lower signal-to-noise ratio, and shorter162

cadence. As such, the SMARPs do not include as much information as the SHARPs and163

the data quality is lower (Sun et al., 2022).164

165

A number of studies have investigated the importance of each of the SHARP pa-166

rameters for solar flare prediction (Ran et al., 2022; Sinha et al., 2022; Zhang et al., 2022).167

They found that the most influential SHARP parameters are TOTUSJH, TOTUSJZ, MEANPOT,168

TOTPOT, USFLUX and R VALUE. See Table 1 for the physical meaning of these parameters.169

170

The SHARP parameters are selected based on physical understanding of what quan-171

tities are related to flare prediction. As such, they may be thought of as handcrafted fea-172

tures and are not objective. Recent research focuses on automatic characterization of173

useful features. There have been some studies combining the SHARP magnetic field pa-174

rameters with features that are automatically generated from the solar images with ma-175

chine learning methods, e.g (Chen et al., 2019; Jonas et al., 2018). Chen et al. (2019)176

compared the results of LSTM models trained on the SHARP data and on autoencoder-177

derived features and found that they were very similar in performance. Therefore, the178

autoencoder-derived features could be a viable alternative for the SHARP parameters.179

180

Finally, most solar flare prediction methods focus on a binary classification. There181

are two ways to do this: flaring versus non-flaring active regions (Bloomfield et al., 2012;182

Bobra & Couvidat, 2015; Hamdi et al., 2017; Gallagher et al., 2002; Park et al., 2018;183

Wheatland, 2004) or strong versus weakly flaring active regions (Benvenuto et al., 2018;184

Huang et al., 2018; Nishizuka et al., 2018; Sun et al., 2022; Tang et al., 2021). In both185

cases, sometimes the intermediate C-flares are ignored, e.g. (Bobra & Couvidat, 2015;186

Sun et al., 2022). There are also some studies that make multiclass predictions of solar187

flares (Bloomfield et al., 2012; Colak & Qahwaji, 2009; Liu et al., 2017; Zheng et al., 2019),188

distinguishing between the different types of flares.189

190

The goal of the present work is to classify the flaring activity of solar active regions,191

based only on the SHARP parameters extracted from the SDO HMI instrument. We ap-192

ply rigorous and comprehensive pre-processing techniques to divide the useful from the193
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superfluous information, contained in the SHARP database. The novelty of this work194

is the use of both supervised and unsupervised machine learning methods, where the lat-195

ter does not take the flaring activity of the training data into account. This allows the196

computer to extract patterns unknown to human experts. Many of the classification meth-197

ods used in the literature are based on supervised learning only. We show how the un-198

supervised classes that we obtain correlate with the flaring activity of active regions. An-199

other aspect that differentiates our work is that we try to distinguish the different lev-200

els of flaring activity, implementing a multi-class approach, whereas most studies focus201

on binary classification.202

The paper is structured as follows. Active regions and solar flares are briefly in-203

troduced in section 2. Section 3 discusses the data used, followed by section 4, which ex-204

plains the data processing methods and results. Sections 5 and 6 introduce the cluster-205

ing methods and types of evaluation. The clustering results are shown in section 7, fol-206

lowed by the discussion in section 8. Finally, section 9 summarizes the main conclusions207

of the research results.208

2 Active Regions and Solar Flares209

Solar active regions are large areas on the Sun where the magnetic activity tem-210

porarily and locally increases. The magnetic field there is complex and intense. Mag-211

netic fields in active regions can be a thousand times stronger than the average solar mag-212

netic field of a few Gauss (Sheeley, N.R., 2020). The number of active regions observed213

in the solar disk varies over the course of the solar cycle and are most common during214

its peak.215

A solar flare is a sudden, intense brightening of a small area on the Sun, lasting min-216

utes to a few hours. Flares occur in the solar corona when magnetic field lines of oppo-217

site polarity are forced together, by the convective motion of their foot-points in the con-218

vection zone, or by travelling coronal pressure waves. This causes magnetic reconnec-219

tion, a sudden transformation of magnetic energy into kinetic and thermal energy. Streams220

of highly energetic particles travel along magnetic field lines, generating high intensity221

electromagnetic radiation on their path and during their interaction with matter. So-222

lar flares typically erupt from solar active regions, because their complex and intense mag-223

netic field is the perfect locus of magnetic reconnection (Priest & Forbes, 2002).224

Flares are classified according to the strength of their soft X-ray emission, as recorded225

by the GOES satellites located in geostationary orbit. The types of flares, ordered from226

weakest to strongest are A, B, C, M and X. Strong solar flares occur very infrequently,227
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compared to weak solar flares. Therefore, solar flare data is by definition largely imbal-228

anced. This always has to be taken into account during the processing of the data and229

the interpretation of the results.230

3 Data Set231

The open source data set of Angryk et al. (2020b) is used for this research. The232

authors developed a data set (henceforth called the Angryk data set), extracted from the233

Space Weather HMI Active Region Patch series (SHARP) (Bobra et al., 2014), integrated234

with information from solar flare catalogs. These SHARP patches and their magnetic235

field parameters are derived from solar photospheric vector magnetograms obtained by236

the Helioseismic and Magnetic Imager (HMI) from the Solar Dynamics Observatory (SDO).237

The HMI instrument provides information on the magnetic field in the solar photosphere.238

These observations are bundled in patches for each active region. Magnetic field param-239

eters are extracted from these patches and integrated over the whole area. They give an240

indication of the magnetic activity of the complete patch.241

The Angryk data set contains sixteen SHARP parameters and eight additional pa-242

rameters proposed by Angryk et al. (2020a). These 24 parameters are listed in Table 1.243

The data set also contains parameters BFLARE, CFLARE, MFLARE and XLFARE. These ex-244

press the number of flares of each flare class occurring at the time of measurement of the245

SHARP and therefore indicate the concurrent solar flare activity of that active region.246

For simplicity, in this work, each data point has been assigned to only one of four classes:247

No-flare, C-flare, M-flare or X-flare. These correspond to the strongest occurring flare248

originating from the active region at that time. The No-flare class signifies the flare-quiet249

instances, but also the weakest, A- and B-class, flares. This because the A- and B-flares250

are hard to distinguish against the background brightness of the Sun (Chen et al., 2019).251

The assignment of flare types to the data points leads to the following ratio: 2 602 509252

No-flares, 6717 C-flares, 680 M-flares and 47 X-flares. The data was collected between253

May 2010 and December 2018. This corresponds with solar cycle 24 (December 2008 -254

December 2019) and includes the solar maximum in April 2014. This solar cycle was an255

unusual quiet one, and the data set contains only few strong flares. The Angryk data256

set is meant to serve as a benchmark data set for testing flare prediction algorithms (Angryk257

et al., 2020a).258
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Table 1: Magnetic field parameters from Angryk et al. (2020b). Parameters with * are derived by
Angryk et al. (2020a), the others are contained in SHARP. Units from Liu et al. (2017) and SDO.

Parameters Description Formula

ABSNJZH [10G2/m] Absolute net current helicity Hcabs
∝ |

∑
Bz · Jz|

EPSX* [−10−1] Sum normalized Lorentz force (X) δFx ∝
∑

BxBz∑
B2

EPSY* [−10−1] Sum normalized Lorentz force (Y) δFy ∝ −
∑

ByBz∑
B2

EPSZ* [−10−1] Sum normalized Lorentz force (Z) δFz ∝
∑

(B2
x +B2

y −B2
z )∑

B2

MEANALP [1/Mm] Mean twist parameter αtotal ∝
∑

Jz ·Bz∑
B2

z

MEANGAM [◦] Mean inclination angle γ =
1

N

∑
arctan

(
Bh

Bz

)

MEANGBH [G/Mm] Mean horizontal field gradient ∇Bh =
1

N

∑√(
∂Bh

∂x
+

∂Bh

∂y

)

MEANGBT [G/Mm] Mean total field gradient ∇Btot =
1

N

∑√(
∂B

∂x
+

∂B

∂y

)

MEANGBZ [G/Mm] Mean vertical field gradient ∇Bz =
1

N

∑√(
∂Bz

∂x
+

∂Bz

∂y

)
MEANJZD [mA/m

2
] Mean vertical current density Jz ∝ 1

N

∑(
∂By

∂x
− ∂Bx

∂y

)
MEANJZH [G2/m] Mean current helicity Hc ∝

1

N

∑
Bz · Jz

MEANPOT [103ergs/cm
3
] Mean photospheric excess mag-

netic energy density
ρ ∝ 1

N

∑
(BObs −BPot)2

MEANSHR [◦] Mean shear angle Γ =
1

N

∑
arccos

(
BObs ·BPot

|BObs||BPot|

)
R VALUE* [Mx] Total unsigned flux around high

gradient polarity inversion lines
ϕ =

∑
|Blos| · dA (within R mask)

SAVNCPP [1012A] Summed absolute value of net cur-
rent per polarity

JΣz ∝
∣∣∣∑B+

z JzdA
∣∣∣+ ∣∣∣∑B−

z JzdA
∣∣∣

SHRGT45 [%] Area with shear angle > 45◦
Area with Shear > 45◦

Total Area

TOTBSQ* [1010G2] Total magnitude of Lorentz force F ∝
∑

B2

TOTFX* [−1023dyne] Sum X-component of Lorentz force Fx ∝
∑

BxBzdA

TOTFY* [−1023dyne] Sum Y-component of Lorentz force Fy ∝
∑

ByBzdA

TOTFZ* [−1023dyne] Sum Z-component of Lorentz force Fz ∝
∑(

B2
x +B2

y −B2
z

)
dA

TOTPOT [1023ergs/cm
3
] Total photospheric magnetic en-

ergy density
ρtot ∝

∑(−−−→
BObs −

−−−→
BPot

)2

dA

TOTUSJH [102G2/m] Total unsigned current helicity Hctotal
∝

∑
Bz · Jz

TOTUSJZ [1012A] Total unsigned vertical current Jztotal
=

∑
|Jz|dA

USFLUX [1021Mx] Total unsigned flux ϕ =
∑

|Bz|dA
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4 Data Processing259

Some pre-processing of the data set was carried out by Angryk et al. (2020a). Fur-260

ther processing includes outlier removal, data transformation and dimensionality reduc-261

tion. These steps are explained in more detail in the following sections.262

There is a large class imbalance present in the data set, with 2 602 509 No-flares,263

6717 C-flares, 680 M-flares and only 47 X-flares. This class imbalance needs to be taken264

into account when processing the data. To reduce the impact of class imbalance, the No-265

flare class is randomly under-sampled to 50 000 No-flares. This is done by randomly se-266

lecting 50 000 data points from the 2 602 509 No-flares, without selecting the same data267

point twice.268

The selected number of No-flares is determined after multiple tests of the autoen-269

coding procedure, described in section 4.3.2, the most data-intensive processing step in270

this work. In short, in an autoencoder a compression and decompression of the data set271

is performed, and the active region parameters before and after the procedure should be272

exactly the same. We applied the procedure with different sample sizes. For each case273

the error is computed. When the sample size is too small, the error is large. Increasing274

the size of the sample reduces the error. A plot of the sample size versus the error presents275

an optimal inflection point, which in this work corresponds to the selected sample size:276

50 000 data points are sufficient to obtain an accuracy comparable to the full 2 602 509277

data points.278

In section 4.4 we show how we handle additional class imbalances using over- and279

under-sampling techniques.280

4.1 Outlier Removal281

Multiple entries in the data set contain one or more empty parameters (NaN val-282

ues). We eliminate from the original data set every entry where at least one of the pa-283

rameters was empty. We also perform a detection and elimination of outliers. These were284

identified using the hierarchical clustering algorithm HDBSCAN. This method is able285

to automatically determine the optimal clustering of a cloud of points in an N-dimensional286

space. The points that are detached from the core cloud of points are identified as out-287

liers. A more detailed explanation of HDBSCAN can be found in Campello et al. (2013).288

We found 586 outliers. About 20% of the outliers come from HMI magnetogram289

images taken during rotation or re-positioning of the SDO spacecraft, causing distortions290

in the data. In addition, 36 outliers were identified and removed by hand, of which 33291

were due to the same parameter, MEANPOT. The other three were due to the parameter292
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TOTFZ. The fact that they were missed by HDBSCAN is due to a combination of the stan-293

dardization and some extreme outliers. The standardization transforms the data to zero294

mean and to unit variance. If there are a few extreme outliers, this will shift the major-295

ity of the data to very small values. This causes a difference of ∼ 2−3 orders of mag-296

nitude with respect to the other parameters, hindering HDBSCAN to detect all outliers.297

4.2 Data Transformation298

To be able to differentiate groups of points in the parameter space, it is necessary299

to identify high concentrations of points that can be separated by a hyper-plane. Some300

of the parameters have a very skewed or narrow distribution, which will complicate the301

classification process. The log transformation is one of the most popular transformations302

to transform skewed data (Feng et al., 2014; West, 2022). This technique has been used303

abundantly in statistical analysis, for a review see (Curran-Everett, 2018; Keene, 1995),304

and has also been used with SHARP data in the past (Zhang et al., 2022). Therefore,305

we applied log transformations to some of the parameters to perform a rebinning of the306

data distributions. The transformations used are listed in Table 2.307

Table 2: Data transformations used to expand narrow and/or skewed distributions.

Parameter (Table 1) Transformation

TOTUSJH ln(x+ |min(x)|+ 0.01)

TOTBSQ ln(x+ |min(x)|+ 0.01)

TOTPOT ln(x+ |min(x)|+ 0.01)

TOTUSJZ ln(x+ |min(x)|+ 0.01)

ABSNJZH ln(x+ |min(x)|+ 0.01)

SAVNCPP ln(x+ |min(x)|+ 0.01)

USFLUX ln(x+ |min(x)|+ 0.01)

MEANPOT ln(x+ |min(x)|+ 0.0001)

TOTFZ ln(−x+ |max(x)|+ 0.01)

TOTFY ln(|x|)
TOTFX ln(|x|)

4.3 Dimensionality Reduction308

High-dimensional data is computationally expensive to process. If possible, it is im-309

portant to reduce the number of dimensions. In addition, clustering methods and other310

techniques based on the calculation of distances in an Eulerian space are subject to the311

‘curse of dimensionality’: in high dimensions every point tends to be equidistant to each312
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other point. Moreover, we want to reduce high correlations by removing redundant fea-313

tures. Figure 1 (left) illustrates the presence of correlations between the magnetic field314

parameters.The redundancy in magnetic field parameters, like SHARP, has been noted315

before by several studies, e.g. (Ahmed et al., 2013; Barnes et al., 2016; Bobra & Cou-316

vidat, 2015; Chen et al., 2019; Leka & Barnes, 2007). These studies all found that when317

a subset of only four to six parameters is used, the performance of their algorithm is sim-318

ilar compared to when the whole data set is used. Redundant features do not add rel-319

evant information and may hinder the learning algorithm, possibly causing overfitting320

(Yu & Liu, 2004). Therefore, we applied Common Factor Analysis (CFA) on the data321

set to remove the redundancy.322

4.3.1 Common Factor Analysis323

Common Factor Analysis (CFA) (Spearman, 1904) is a technique that searches for

latent, unobserved variables, called factors, from a set of observed variables. For exam-

ple, three observed variables (Y1, Y2, Y3) can be modeled as a linear combination of two

factors (F1, F2) and three error terms (e1, e2, e3), as shown in Eq. (1) (Navlani, 2019).

Applied to the data set, there are 24 equations for Y1, Y2, ..., Y24. The amount of fac-

tors depends the amount of redundant features in the data, but can be at most 24.

Y1 = θ10 + θ11F1 + θ12F2 + e1

Y2 = θ20 + θ21F1 + θ22F2 + e2

Y3 = θ30 + θ31F1 + θ32F2 + e3

(1)

The package FactorAnalyzer of Biggs (2019) is used. The number of factors is deter-324

mined with the help of Horn’s Parallel Analysis. For more information about this method325

we would like to refer the reader to Horn (1965).326

Figure 1 (right) shows the resulting factor loadings, corresponding to the θ param-

eters in Eq. 1. The loadings are a measure of how much a factor explains the associated

magnetic field parameters. It is a correlation coefficient for the original parameters and

the resulting factors and is defined like this:

X −M = LF − ε (2)

where X ∈ Rp×n is the observation matrix, L ∈ Rp×k is the loading matrix, F ∈ Rk×n
327

is the factor matrix, ε ∈ Rp×n is the error term matrix and M ∈ Rp×n is the mean328

matrix, with p the number of parameters, n the number of observations and k the num-329

ber of factors.330
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Figures/heatmaps.jpg

Figure 1: Left: Covariance matrix of the data set before applying CFA. Many parameters
are strongly correlated with each other. Right: Heatmap of factor loadings of CFA.

4.3.2 Sparse Autoencoders331

Makhzani and Frey (2014) show improvement in classification tasks when sparse332

data representations are used. To improve sparsity in our data set, we applied sparse au-333

toencoders. These are able to transform the data into a higher dimensional space, where334

it is possible to create hyperplanes that allow to separate different clouds of points.335

Sparse autoencoders are a type of unsupervised neural networks. For an explana-336

tion on neural networks, we refer the reader to the notes of Ng et al. (2011). The un-337

derlying mathematics of autoencoders are the same as for neural networks. The special338

property of autoencoders is that the target values (X̂) are set equal to the input values339

(X) (Hinton & Salakhutdinov, 2006): f : X → X̂, where X ≈ X̂. The model learns340
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an approximation of the identity function. This may seem like a trivial task, but by re-341

inforcing an information bottleneck in the hidden layers it is possible to discover inter-342

esting structures in the data.343

In a basic (vanilla) autoencoder, also called encoder-decoder, AE = {f, f ′}, the344

applied constraint consists to limit the number of nodes in an intermediary hidden layer345

to less than the number of input features of the model: the autoencoder functions are346

defined as f : X ∈ Rn → Z ∈ Rm, followed by f ′ : Z ∈ Rm → X̂ ∈ Rn, where347

n > m. A second autoencoder category corresponds to sparse autoencoders (Jiang et348

al., 2015), where the constraint is applied by forcing sparsity in the intermediary hid-349

den layer. The dimension of the hidden layer is not smaller than the input layer. Instead,350

a sparsity constraint ensures that only a few hidden nodes are allowed to be active at351

the same time, i.e. most of the hidden nodes will have a value of zero. Sparse autoen-352

coders provide an information bottleneck without having to reduce the number of nodes.353

This means that low dimensional data sets can be projected into higher dimensions where354

sparsity is encouraged, allowing for a better differentiation between different clouds of355

data points.356

4.3.2.1 Implementation Details The sparse autoencoder is implemented using357

Python, together with libraries Tensorflow (Abadi et al., 2015) and Keras (Chollet et358

al., 2015). Any kind of neural network learns by minimizing a loss function, obtained by359

comparing the output of the model with the expected output. The loss function, Eq. 3,360

consists of two terms: (1) a reconstruction error and (2) a sparsity penalty. As recon-361

struction error the mean squared error is used. The sparsity penalty is a regularization362

acting on the activations of the hidden nodes, a
(h)
i ∈ Z, using the L1-norm. In the spar-363

sity term of Eq. 3, λ is the pre-factor that determines the influence of the regularization.364

L =
1

n

∑
i

(Xi − X̂i)
2 + λ

∑
i

∣∣∣a(h)i

∣∣∣ (3)

The autoencoder is optimized following the traditional error minimization techniques used365

in classical neural networks. As optimization algorithm, Adam (Kingma & Ba, 2015), is366

used. This is an extension to stochastic gradient descent that maintains separate dynamic367

learning rates for each parameter. For the Adam optimization we have to define the start-368

ing learning rate. The optimal value is determined with the method introduced by Smith369

(2017). This method trains a network starting with a low learning rate, which is expo-370

nentially increased throughout the epochs (training cycles). The optimal learning rate371

corresponds to the fastest decrease in loss throughout the training. An additional method372

to determine the optimal learning rate is to run the algorithm for multiple values of the373
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learning rate for a limited number of epochs, and to select the one with the lowest val-374

idation loss. The combination of these methods yields an optimal learning rate of 0.0005.375

To determine the accuracy of the output, the R-squared metric is used, see Eq. 4.376

R2 = 1−
∑N

i=1(Xi − X̂i)
2∑N

i=1(Xi −Xi)2
with Xi =

1

N

N∑
j=1

Xj (4)

To reduce the influence of the class imbalance, different weights have been assigned377

to the data samples corresponding to different flare classes. A weight of respectively 1,378

4, 16 and 64 has been assigned to classes No-flare, C-flare, M-flare and X-flare.379

Our data set is split into three sub-groups: 60% training, 20% validation and 20%380

testing data. The split is performed using stratification, which means that in each data381

portion the percentage of each flare type is preserved.382

4.3.2.2 Architecture Optimization To find the optimal autoencoder architecture,383

three parameters need to be optimized: (1) the magnitude λ of the sparsity constraint,384

(2) the number of hidden nodes and (3) the activation function.385

If the sparsity pre-factor is too high, all hidden nodes will tend to produce values386

of zero; if this parameter is too small, no sparsity will be introduced. The optimal value387

of λ is obtained by finding a balance between the level of sparsity and the activity on388

the hidden nodes. The pre-factor needs to be set to ensure that only part of the nodes389

(less than the number of input nodes) are active at the same time, without leaving in-390

active nodes. This balance is found for λ = 0.1.391

The most adequate architecture is selected by comparing the loss function between392

the training and the validation set. The optimal architecture contains one hidden layer393

with seven hidden nodes and uses SELU (Klambauer et al., 2017) activation function.394

4.3.2.3 Resulting Distributions The resulting optimal sparse autoencoder is used395

to increase the dimensionaliy, generating sparsity in the data set. The R-squared met-396

ric returns a value of 0.9942, indicating that the model is able to nearly perfectly mimic397

the original distributions. A two-dimensional projection of the distribution of each pair398

of parameters in the final data set is shown in Figure 2.399

4.4 Data Sampling400

Solar flare data is by definition largely imbalanced, since strong solar flares are scarce.401

Machine learning methods tend to favor the dominant class, here the non-flaring active402
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Figures/selu_output_hiddenlayer_7_0.1_Adam0.0005.jpg

Figure 2: Distributions of the encoded data produced by the hidden layer of the sparse
autoencoder. The autoencoder includes one hidden layer, with seven neurons, and SELU
activation functions. The pre-factor λ for the activity regularization is set to 0.1. The
parameters H1 until H7 denote the output learned by each of the seven hidden neurons of
the sparse autoencoder.

regions. The four different flare activity classes are either over-sampled or under-sampled403

to construct a balanced data set. A random under-sampling of the No-flares was already404

presented in section 4, but the imbalance among flare classes is still large.405

4.4.1 Random Sampling406

Random sampling can be applied to either under-sample or over-sample data. The407

methods RandomUnderSampler and RandomOverSampler of the package imbalanced-learn408

(Lemâıtre et al., 2017) are used. Random under-sampling picks samples from the ma-409

–16–



manuscript submitted to Space Weather

jority classes without replacement, while over-sampling picks samples from the minor-410

ity classes with replacement. However, random over-sampling of the minority class leads411

to duplication, which might lead to overfitting. Therefore an alternative over-sampling412

method is used.413

4.4.2 SMOTE Sampling414

The alternative Synthetic Minority Over-sampling TEchnique (SMOTE) (Chawla415

et al., 2002) technique is also included in the imbalanced-learn package. SMOTE does416

not duplicate any samples, but generates new data points by randomly selecting a mi-417

nority class instance (a), and finding its k nearest neighbors. Subsequently, one of those418

k neighbors (b) is chosen at random and a synthetic example is created at a random point419

on the line segment between the instance (a) and its selected neighbor (b).420

4.4.3 Resulting Data Set421

It has been shown by Chawla et al. (2002) that the combination of SMOTE and422

under-sampling performs better than plain under-sampling. In our work the majority423

classes, No-flare and C-flare, are randomly under-sampled, while the minority classes,424

M-flare and X-flare, are over-sampled with SMOTE. Every class is sampled to 6000 sam-425

ples, making the data set balanced.426

4.4.4 Justification Sampling427

The sampled data set has to be representative of the real data set in order to be428

reliable. To check this, we compare the distribution functions for each parameter before429

and after sampling. Since the under-sampling of non-flaring and C-flaring active regions430

was random, and the amount of data sampled was sufficiently high (6000 samples), the431

distribution functions before and after sampling are almost identical. The minority classes,432

M- and X-flares, were largely over-sampled, which makes it less evident that the sam-433

pled data set is representative of the real data set. Figures 3 and 4 show the density func-434

tions for each of the seven parameters before and after over-sampling. The distributions435

of the M-flares before and after over-sampling are very similar. The width of the den-436

sity distribution is the same and the peaks occur at the same values. The peaks are slightly437

overestimated by the over-sampling technique. The over-sampling of the X-flares does438

not preserve the data distribution equally well. The overall shape is preserved, but the439

width of the distribution is more narrow after over-sampling. This is due to the SMOTE440

algorithm. This algorithm creates a synthetic sample between two real data samples. There-441

fore, SMOTE never creates samples at the border of the distribution and over-estimates442
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the center. The peaks in the distribution are also overestimated more significantly than443

for the M-flares. However, given that the X-flares are over-sampled by a factor of 160,444

these effects are limited in magnitude and the overall distributions are similar. We rec-445

ognize that the effects of the over-sampling method will influence our results. Since the446

distributions are overestimated in the peaks and underestimated at the borders, our method447

will be limited in its reliability at the borders.448

Figures/Density_plotsM.jpeg

Figure 3: Density plots showing the distribution of M-flares for all seven parameters. The
distribution is shown for the original data, and after over-sampling with SMOTE.
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Figures/Density_plotsX.jpeg

Figure 4: Density plots showing the distribution of X-flares for all seven parameters. The
distribution is shown for the original data, and after over-sampling with SMOTE.

5 Classification of Active Regions449

We tested multiple algorithms on the data set to classify the solar active regions450

based on their processed magnetic field parameters and found common aspects among451

the corresponding active regions.452

5.1 k-Nearest Neighbors (supervised)453

k-Nearest Neighbors (KNN), explained in e.g. Cunningham and Delany (2007), is454

a supervised and instance-based classifier. It assumes similar objects exist in close prox-455

imity to the evaluated data point. The class of a data point is determined based on the456

most frequent class among its k nearest neighbors.457
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The optimal number of neighbors k is the one that minimizes the error, the per-458

centage of wrong predictions, while maintaining the ability to make accurate predictions459

on new data. The method minimizes the loss on the validation data, without overfitting460

on the training data. In general, lower k makes the predictions less stable. Increasing461

the number of neighbors makes the predictions more stable due to averaging and there-462

fore more likely to produce reliable results. We selected the optimal k by performing the463

KNN algorithm for a range of k-values, fitting a fourth order polynomial to the corre-464

sponding error values and selecting the k corresponding to the minimum error.465

5.2 K-means (unsupervised)466

K-means (Lloyd, 1982; MacQueen, 1967) is a centroid-based clustering method, which467

assumes that the clusters are spherical and equally sized. Clustering is a machine learn-468

ing method which groups data in subgroups that share similar properties (here, similar469

reduced magnetic field parameters). A good clustering method minimizes intra-cluster470

distances, while maximizing inter-cluster distances (Zhang & Tsai, 2005). The imple-471

mentation and how clusters are defined differ from method to method. K-means works472

best when the clusters are equally dense and not too contaminated by noise or outliers.473

The clustering is achieved by iteratively assigning each data point to its nearest centroid474

and creating new centroids by computing the mean of each cluster.475

The optimal number of clusters is determined by a scree plot (Cattell, 1966), where476

the ‘knee’ point is associated to the optimum value, and corresponds to the inflection477

point of the curve. The position of this ‘knee’ is determined through the Kneedle algo-478

rithm (Satopaa et al., 2011). The scree plot is configured by computing the error for dif-479

ferent runs for a range of different number of clusters. A line is plotted between the first480

and last point of the curve and the distances between each point and the line are com-481

puted. The point with maximal distance between the two lines marks the maximum of482

curvature, i.e. the elbow.483

5.3 Gaussian Mixture Models (unsupervised)484

Gaussian Mixture Models (GMM) are a probabilistic clustering method, which as-485

sume that all data points are generated from a mixture of Gaussian distributions. It iden-486

tifies for each data point the probabilities of belonging to each Gaussian distribution.487

This allows the detection of more elongated clusters. The Gaussian distributions are ap-488

proximated by the Expectation-Maximization method (Dempster et al., 1977).489

To determine the number of clusters for GMM, we used the gradient of the Bayesian

Information Criterion (BIC). BIC (Schwarz, 1978) gives an estimation on how accurately
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the model represents the existing data, with lower BIC value indicating a better estima-

tion. BIC is defined in Eq. 5, with k the number of unknown model parameters (mean

and variance for each cluster), n the number of samples and L̂ the maximum likelihood.

BIC = k lnn− 2 ln L̂ (5)

A high number of clusters corresponds to low BIC scores, but the error curve shows an490

inflection point. This point can be found by checking the gradient of BIC. The optimal491

number of clusters is the point where the gradient no longer changes, i.e. when the sec-492

ond derivative is zero (Lavorini, 2018).493

6 Evaluation Methods494

To determine the quality of an algorithm a good evaluation method is essential.495

An Area Under the Curve Receiver Operating Characteristics (AUC-ROC) plot (Fawcett,496

2006) is a good evaluation technique for supervised classification methods, when the data497

is severely imbalanced (Brownlee, 2020).498

ROC curves are in general used for binary classifications, but can be extended to499

multi-class data by using one-vs-rest for each class, providing one ROC curve per class.500

The macro-average is computed by averaging all ROC curves, treating all classes equally.501

The ROC curve is a visual measure of the predictive quality of a model, that visualizes502

the trade-off between sensitivity and specificity. The plot of a ROC curve displays the503

True Positive Rate (TPR), see Eq. 6, on the y-axis and the False Positive Rate (FPR),504

see Eq. 7, on the x-axis. These rates are computed for different thresholds. The thresh-505

old is the lowest probability necessary to be assigned to the positive cluster.506

TPR =
TP

TP + FN
(6)

FPR =
FP

TN + FP
(7)

An AUC score can be computed from the ROC, by computing the area under the507

curve. AUC is a measure of the ability of a classifier to distinguish between classes, where508

e.g. 0.7 means that in 70% of the cases the model is able to distinguish between the pos-509

itive and the negative class (Narkhede, 2018).510

In addition, the True Skill Statistic (TSS), also called the Hanssen score (Hanssen511

& Kuipers, 1965), will be computed for the supervised method, k-Nearest Neighbors, see512
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Eq. 8. The value of TSS lies between -1 and 1, with a higher value indicating a better513

forecast. It is one of the most used evaluation metrics to assess solar flare forecasts.514

TSS =
TP

TP + FN
− FP

FP + TN
=

TP

P
− FP

N
(8)

It is a lot harder to assess whether unsupervised methods perform well, because515

no labels are present. A viable alternative are validation methods that check whether516

there is a high separation between clusters and a high cohesion within the clusters. Ex-517

amples of such metrics are the Calinsky-Harabasz (CH) coefficient (Caliński & Harabasz,518

1974) and the Silhouette coefficient (SC) (Rousseeuw, 1987). The Calinski-Harabasz co-519

efficient is defined as the ratio between the within-cluster dispersion and the between-520

cluster dispersion. This coefficient should be maximized. The Silhouette coefficient is com-521

puted, for each sample, using: (a) the mean inter-cluster distance, and (b) the mean nearest-522

cluster distance, see Eq. 9. The total Silhouette score is found by averaging over all sam-523

ples. The best value is 1, the worst is −1 and values near 0 indicate that the clusters over-524

lap. If the value is negative it is generally an indication that samples are assigned to the525

wrong cluster, as it is found that a different cluster is more similar.526

SC =
b− a

max(a, b)
(9)

7 Results527

Figure 5 shows the mean value and standard deviation of each of the seven reduced528

parameters, for each flare class. In general, the parameters are very similar for all flar-529

ing active regions (C, M and X-flares). X-flare classes present only slight differences with530

respect to the other flaring classes. Parameters H2, H5 and H6 have a larger absolute531

mean value for these stronger flare classes. The mean value of the data without flares532

(No) is clearly different. It can be expected that flaring active regions will be distinguish-533

able from non-flaring active regions, while distinguishing between the different flare classes534

will be more challenging with the available data. The same conclusions can be made from535

Figure 6, where the distribution function of magnetic field parameter ABSNJZH is shown536

for the different types of flares. The distribution of non-flaring active regions is clearly537

different from the distributions of flaring active regions. Meanwhile, the distributions of538

C-, M- and X-flares show a similar shape, only shifted a bit, but largely overlapping. We539

show here the magnetic field parameter with the largest differences in distributions be-540

tween the types of flares.541
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Figures/mean_sigma.jpg

Figure 5: Mean and standard deviation of the features resulting from the sparse autoen-
coder, per flare label. The flaring data looks very similar, while the non-flaring data has
distinct parameter values.

7.1 Supervised (KNN)542

7.1.1 Hyperparameter selection543

We based the hyperparameter selection for KNN on the unsampled data set, to avoid544

using under-/over-sampled data points. Performing the hyperparameter selection on the545

sampled data would yield an optimal number of neighbors of one, leading to unstable546

results. By applying the hyperparameter selection on the unsampled data set, we find547

an optimal number of neighbors of ten. To validate this selection method, KNN is con-548

ducted multiple times, testing the use of one, three, six and ten nearest neighbors. The549

resulting ROC curves are shown in Figure 7. These figures demonstrate that when more550
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Figures/Hist_originalClasses_4Clusters_ABSNJZH_originalData.jpg

Figure 6: Density distribution function per flare type, for magnetic field parameter AB-
SNJZH, with the true flare labels.

neighbors are taken into account, the results improve, producing a higher value for the551

area-under-the-curve. This is the case for the macro-average, as well as for the individ-552

ual flare types. This shows that taking only one neighbor into account is not optimal.553

7.1.2 Classification results554

Figure 8 shows the normalized confusion matrix for the KNN results. On the x-555

axis are the predictions and on the y-axis the true classes. The following conclusions can556

be derived from the confusion matrix. Almost all X-flares are correctly identified. How-557

ever, this is influenced by the over-sampling of the X-flares by a factor of ∼160. We min-558

imized this influence by applying cross-validation. 87% of the true M-flares are correctly559

identified. This high percentage is also somewhat influenced by the over-sampling. When560

M-flares are misclassified, it is ∼ 37% of the time as an X-flare and ∼ 61% of the time561

as a C-flare. 76% of the non-flaring active regions are correctly classified as well. The562

non-flaring active regions are most often mistaken for C-flares. Finally, C-flares are hard-563

est to identify, with only 50% of the active regions correctly identified as C-flares. They564

are mostly mistaken for their neighboring classes, in terms of X-ray flux strength. For565
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Figures/KNN_ROC_allneighbours.jpg

Figure 7: AUC ROC plot of KNN, performed on the sampled data set, for varying num-
ber of neighbors.

example, almost 30% of the C-flares are misclassified as M-flares. This indicates that the566

distributions of the magnetic field parameters of C- and M-flares are overlapping.567

The TSS has been calculated for each of the flare types. A TSS of 0.94 is found568

for X-flares, 0.75 for M-flares, 0.42 for C-flares and 0.72 for the non-flaring active regions569

7.2 Unsupervised (K-means + GMM)570

Unsupervised methods are more useful in practice, since there is not always infor-571

mation present about the flaring nature of an active region. These methods only pro-572

cess the reduced magnetic field parameters and not the flare types. For both unsuper-573

vised methods used in this work (K-means and GMM), the number of clusters needs to574
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Figures/kNN_confusion matrix_10.jpg

Figure 8: Normalized confusion matrix of the results of KNN with ten nearest neighbors
taken into account.

be determined using a hyperparameter optimization technique, as described in sections575

5.2 and 5.3. For K-means an optimal number of four (4) clusters is found, while GMM576

has an optimal number of three (3) clusters.577

Table 3 shows the Calinski-Harabasz (Caliński & Harabasz, 1974) and Silhouette578

(Rousseeuw, 1987) coefficients, which evaluate the clusters found through K-means and579

GNN. The first one should be maximized, while the latter should be as close to 1 as pos-580

sible. Both coefficients indicate that K-means does a better job at clustering the data.581

However, a relatively low Silhouette score of 0.25 indicates that the clusters are either582

not well separated or the points within a cluster are distributed far apart.583

Table 3: Evaluation coefficients for K-means and GNN.

K-means GMM

Calinski-Harabasz 7506 1886
Silhouette 0.25 0.12
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With unsupervised machine learning methods we can not construct a confusion ma-584

trix, since no labels are used. Instead, we constructed a matrix that shows the percent-585

age of each flare included in each cluster in order to analyse the relation between the gen-586

erated clusters and the flaring activity of the active regions. This matrix is shown for587

both K-means and GMM in Figure 9. Normalization is performed per flare type.588

Analyzing the clusters of K-means learns us that 66% of the non-flaring active re-589

gions are included in Cluster 3. Cluster 3 also includes 17% of the C-flares, 12% of the590

M-flares and 5% of the X-flares. This cluster can be considered as one with mostly non-591

and weakly flaring active regions. An active region that is classified in Cluster 4 has a592

high probability to be an X-flare, since there are double as many X-flares as C- and M-593

flares, and only 12% non-flaring active regions present. If an active region is classified594

in Cluster 2, it is very probable to be flaring, because there are only 7% non-flaring ac-595

tive regions and ∼ 40% of each flaring type. However, nothing can be concluded about596

the type of flare from this cluster.597

The resulting clusters found with GMM are visualized in Figure 9 (right). Clus-598

ter 3 contains 52% of the non-flaring active regions and 14 to 18% of flaring active re-599

gions. Meanwhile, Cluster 2 contains 34% of the non-flaring active regions and 8 to 18%600

of flaring active regions. Active regions that are classified into Cluster 2 and Cluster 3601

are therefore mostly non-flaring. Cluster 1 contains only 14% of non-flaring active re-602

gions and 68 to 78% of each type of flare. This cluster can therefore with a high success603

rate identify flaring active regions. In all clusters found with GMM, the percentages of604

the different types of flaring active regions are very similar. Therefore, in contrast to K-605

means, the clustering with GMM is not able to distinguish the strength of the flares.606

To get a more quantitative analysis, Figure 10 is a useful addition to Figure 9. They607

show the same data, but in Figure 10 the normalization is performed per cluster. There-608

fore, it can be used to determine the probability that an active region is of a certain flare609

type if it belongs to a certain cluster. We clarify this by giving a few examples. When610

an active regions is assigned to Cluster 3 by the K-means algorithm, it is with 66% prob-611

ability non-flaring, with 17% a C-flare and with 12% probability an M-flare. An active612

regions that is assigned to Cluster 2 by K-means will with 94% probability (31% + 33%613

+ 30%) be flaring, with approximately equal probability to be a C-flare, M-flare or X-614

flare. If an active region belongs to Cluster 1, found with GMM, there is only 6% chance615

that it is not flaring. However, when the active region is assigned to Cluster 2 or 3 by616

GMM, there is respectively a chance of 48% and 53% that it is not flaring.617
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Figures/heatmap_kmeans_gmm_1.jpg

Figure 9: Clustering results of K-means (left) and GMM (right) on the sampled data
set. The percentage of each flare included in each cluster is shown, where normalization is
performed per flare type.

8 Discussion618

The supervised method (KNN) has good performance for the M- and X-flares as619

well as for the non-flaring active regions with TSS scores of respectively 0.75, 0.93 and620

0.72. The performance on the C-flares is less accurate, due to overlapping distributions621

of magnetic field parameters with M-flares and non-flaring active regions.622

The unsupervised methods (K-means and GMM) can distinguish non-flaring from623

flaring active regions. Moreover, K-means is able to differentiate active regions produc-624

ing strong flares from active regions producing weak flares, within some probability.625
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Figures/heatmap_kmeans_gmm_2.jpg

Figure 10: Clustering results of K-means (left) and GMM (right) on the sampled data
set. The percentage of each flare included in each cluster is shown, where normalization is
performed per cluster.

For processing purposes, unsupervised methods are more useful, since the type of626

flare will not be available. Out of the two unsupervised methods we studied, K-means627

stands out because it can distinguish between weakly and strongly flaring active regions.628

Although K-means shows very promising results, it is not possible to differentiate629

C- from M-flares. The difficulty of differentiating between these flare types is partly in-630

herent to the data, as predicted by analysis of Figure 5. The magnetic field parameters631

are very similar for C-flaring and M-flaring active regions. Moreover, the difficulty of dif-632

ferentiating C-, M- and X-flares is also caused by the arbitrary class boundaries, deter-633

mined by their peak X-ray flux. A C9-flare is very similar to an M1-flare, but they were634
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for this work considered as strictly different classes of flares. The difference between back-635

ground radiation (non-flaring active regions) and weak C-flares can be very small as well.636

The strength of flares is a continuous parameter, but was here treated as strictly discrete.637

Discarding C-flares and distinguishing non-flaring active regions, M-flares and X-638

flares, as done in Bobra and Couvidat (2015) and Sun et al. (2022), might produce bet-639

ter results. Another improvement could be to discard non-flaring active regions and only640

consider flaring data. When both non-flaring and flaring data is taken into account, re-641

gions with complex and intense magnetic fields are compared against completely quiet642

regions. This gives the impression that all flaring active regions have similar properties.643

They will appear more distinct when only compared against each other. However, for644

flare prediction, in real-time data, the C-flares or non-flaring active regions can not be645

eliminated and need to be classified correctly as well.646

Integrating more information into the analysis could also provide a clearer distinc-647

tion. For example, the maximal difference in magnitude of the magnetic field over the648

active region could provide valuable information. In future research, the magnetic field649

parameters should be combined with other features, created through good feature en-650

gineering from the original images, for example through edge detection or with varia-651

tional autoencoders. More data can be included by taking into account EUV observa-652

tions, at multiple wavelenghts. Another extension to the use of the magnetic field pa-653

rameters is to study their evolution, through time series. The data set we used is already654

in a time series format, but was not used like that for this research. The variation of the655

magnetic field in anticipation of the release of a flare will provide valuable information.656

The use of time series can also help to distinguish the natural variability of the solar mag-657

netic field from a sudden change in the magnetic field due to flare formation.658

9 Conclusion659

Throughout this work detailed data cleaning and parameter transformation was660

conducted to enhance the quality of the Angryk data set and improve the classification661

results. Supervised clustering, with KNN, is able to distinguish the M- and X-flares, with662

respectively 99% and 87% correctly identified. However, only half of the C-flares are ac-663

curately classified. Unsupervised clustering, with K-means and GMM, identifies clusters664

with mainly non-flaring active regions and clusters with mainly flaring active regions.665

Moreover, K-means is able to distinguish X-flares from C-/M-flares. Unsupervised clus-666

tering is most useful for production purposes, since flare labels are not present. There-667

fore, we propose K-means as the most promising algorithm. For future projects, addi-668
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tional information should be included, like time series, different parameters - indicating669

e.g. the topology of active regions - or images of the active regions.670

Open Research671

This research uses the open source data set SWAN-SF of Angryk et al. (2020b).672

For more information we would like to refer the reader to the respective paper (Angryk673

et al., 2020a). The data is available for download through: https://dataverse.harvard674

.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/EBCFKM.675

The code used to perform all data transformations and generate the clustering re-676

sults is completely written in Python 3.10, and is accessible on Gitlab: https://gitlab677

.com/hanneb/clustering ar sf hbaeke.git (Baeke, 2022).678
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