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Abstract

Particle-resolved direct numerical simulations (PR-DNS) play an increasing role in investigating aerosol-cloud-turbulence in-

teractions at the most fundamental level of processes. However, the high computational cost associated with high resolution

simulations poses considerable challenges for large domain or long duration simulation using PR-DNS. To address these issues,

here we present a digital twin model of the complex physics-based PR-DNS developed by use of the data-driven Fourier Neural

Operator (FNO) method. The results demonstrate high accuracy at various resolutions and the digital twin model is two

orders of magnitude cheaper in terms of computational demand compared to the physics-based PR-DNS model. Furthermore,

the FNO digital-twin model exhibits strong generalization capabilities for different initial conditions and ultra-high-resolution

without the need to retrain models. These findings highlight the potential of the FNO method as a promising tool to simulate

complex fluid dynamics problems with high accuracy, computational efficiency, and generalization capabilities, enhancing our

understanding of the aerosol-cloud-precipitation system.

1



manuscript submitted to JAMES

Digital Twin of PR-DNS: Accelerating Dynamical1

Fields with Neural Operators in Particle-Resolved2

Direct Numerical Simulation3
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Key Points:7

• The Fourier Neural Operator (FNO) model can accurately emulate particle-resolved8

direct numerical simulations (PR-DNS) at various resolutions.9

• The computational time of the physics-based PR-DNS model is reduced by two10

orders of magnitude with the FNO model.11

• The FNO model demonstrates robust and zero-shot generalization for various ini-12

tial conditions and ultra-high resolutions.13
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Abstract14

Particle-resolved direct numerical simulations (PR-DNS) play an increasing role in in-15

vestigating aerosol-cloud-turbulence interactions at the most fundamental level of pro-16

cesses. However, the high computational cost associated with high resolution simulations17

poses considerable challenges for large domain or long duration simulation using PR-DNS.18

To address these issues, here we present a digital twin model of the complex physics-based19

PR-DNS developed by use of the data-driven Fourier Neural Operator (FNO) method.20

The results demonstrate high accuracy at various resolutions and the digital twin model21

is two orders of magnitude cheaper in terms of computational demand compared to the22

physics-based PR-DNS model. Furthermore, the FNO digital-twin model exhibits strong23

generalization capabilities for different initial conditions and ultra-high-resolution with-24

out the need to retrain models. These findings highlight the potential of the FNO method25

as a promising tool to simulate complex fluid dynamics problems with high accuracy, com-26

putational efficiency, and generalization capabilities, enhancing our understanding of the27

aerosol-cloud-precipitation system.28

Plain Language Summary29

Particle-resolved direct numerical simulations (PR-DNS) are an important model30

to enhance our understanding of the fundamental processes involved in aerosol-cloud-31

turbulence interactions. However, achieving the extra-high-resolution simulations comes32

at very expensive computational cost. Although high-performance computing can ac-33

celerate PR-DNS simulations, it requires considering various factors, such as efficient MPI34

communications and GPU memory utilization. The machine learning digital twin mod-35

els require much less computation cost compared to traditional numerical methods. Nev-36

ertheless, conventional machine learning models can only learn mappings between spe-37

cific finite-dimensional spaces. The Fourier Neural Operator (FNO) method has recently38

been proposed to learn in the mesh-free and infinite dimensional space. In this study,39

we first present a digital twin model of the complex PR-DNS developed by using of the40

FNO method. The results show that the FNO model can achieve high accurate predic-41

tion, require low computational cost, and perform well with different initial conditions42

and resolutions, without re-training the machine learning models.43
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1 Introduction44

Accurately simulating the aerosol-cloud-precipitation system and representing it45

appropriately in weather and climate models pose significant challenges for the cloud physics,46

weather, climate, and energy communities (Fan et al., 2013; Liu, 2019; Liu et al., 2023).47

These challenges are particularly daunting due to knowledge gaps in crucial processes48

that occur at scales smaller than the typical grid sizes of large eddy simulation (LES)49

models (e.g., 100 m). These processes include microphysics, turbulent entrainment-mixing50

between clouds and environmental air, turbulence, and their mutual interactions. These51

fundamental processes are either not represented at all or are only rudimentarily param-52

eterized in major atmospheric models such as LES models, weather models, and climate53

models, thus hindering future progress in climate modeling.54

Fully addressing these vital knowledge gaps at the fundamental level calls for a particle-55

resolved direct numerical simulation (PR-DNS) model that not only resolves the small-56

est turbulent eddies in clouds but also tracks motion and growth of individual particles57

or droplets (Gao et al., 2018). PR-DNS involves the numerical solution of the Navier-58

Stokes (NS) equations coupled with equations that describe the motion and growth of59

individual particles or droplets. The time evolution of fluid’s motion as well as its ther-60

modynamic properties (e.g., temperature and water vapor mixing ratio) is controlled by61

the NS equations which are solved numerically in an Eulerian framework. The motion62

and growth of particles/droplets, which are affected by dynamic and thermodynamic prop-63

erties of surrounding fluid, are calculated in the Lagrangian framework. The hygroscopic64

growth of particles/droplets can subsequently affect fluid property through latent heat65

release and water depletion. PR-DNS is a unique tool to investigate aerosol-cloud-turbulence66

interactions at the process level.67

Since the pioneering works in the early 2000s (P. A. Vaillancourt & Yau, 2000; P. Vail-68

lancourt et al., 2002), a few studies have contributed to developing and applying DNS69

to study the interactions between cloud microphysics and turbulence. The DNS presented70

in (P. A. Vaillancourt & Yau, 2000) and (P. Vaillancourt et al., 2002) solves the forced71

incompressible Naiver-Stokes equations in 3-D by using the method of (Sullivan et al.,72

1994) and tracks individual droplets, to investigate the influence of turbulence on droplet73

size distribution under isotropic turbulent environment. Andrejczuk et al. developed a74

DNS model to simulate a cloud-clear air interfacial layer to investigate the effects of mix-75

ing processes on cloud microphysics in decaying moist turbulence, to examine the effects76

of initial turbulence kinetic energy (TKE), cloud fraction, droplet sizes, and the relation-77

ship between the mixing mechanisms and the Damköhler number(Andrejczuk et al., 2004,78

2006, 2009). Kumar et al. (2013, 2012, 2014, 2017) developed a particle-resolved DNS79

model to study turbulent entrainment-mixing processes. Chen et al. (2016) provided the80

collision parameterization in a turbulent environment and then investigates the impact81

of turbulence on collision efficiency and the droplet size distribution in cumulus clouds82

(Chen, Yau, & Bartello, 2018). Additionally, subsequent studies by Chen, Yau, Bartello,83

and Xue (2018) and Chen et al. (2020) investigate the effect of aerosols and turbulence84

on cloud droplet growth.85

However, PR-DNS requires a large amount of computational resources, which lim-86

its its current use to relatively small-domain simulations (Gao et al., 2018). The paral-87

lel algorithm is designed by decomposing the domain into subdomains. The computa-88

tion of a subdomain is conducted on an independent processor, and the required exchange89

of boundary information between the processors is done through Message Passing inter-90

face (MPI). Due to the communication bottleneck, the linear scaling breaks down rapidly91

as the number of CPU cores is further increased, which significantly inhibits our abil-92

ity to scale up the PR-DNS simulations. Linear solvers such as the Portable, Extensi-93

ble Toolkit for Scientific Computation (PETSc, Balay et al. (2019)) and High-Performance94

Preconditioners (HYPRE, Falgout and Yang (2002)) are used in the implementation of95

the Navier-Stokes equations in our original PR-DNS (Gao et al., 2018). PETSc is a flex-96
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ible and highly efficient framework for solving large-scale numerical problems, includ-97

ing parallel solvers for PDEs. HYPRE is a library of scalable preconditioners for solv-98

ing large-scale PDEs. However, high efficiency using PETSc and HYPRE requires tun-99

ing their parameters, such as the pc hypre boomeramg strong threshold value when us-100

ing the Hypre BoomerAMG preconditioner, which could impact the convergence rate and101

efficiency of the solver. Van Heerwaarden et al. (2017) proposed GPU-based DNS with102

good speedup on a single GPU. However, a major limitation in single-GPU computa-103

tion is its available memory capacity, which poses a hard constraint on the maximum104

size of computational mesh. In addition, traditional solvers impose a trade-off on the res-105

olution: coarse grids are fast but less accurate; fine grids are accurate but slow. Com-106

plex systems of partial differential equations (PDE) usually require a very fine discretiza-107

tion, and are therefore very challenging and time-consuming for traditional solvers.108

Recently, a number of studies have attempted the use of deep neural networks for109

simulating turbulent fluid flows (Raissi et al., 2019; Bhatnagar et al., 2019; Xie et al.,110

2019; Kochkov et al., 2021). The main advantage of neural network-based solvers is that111

upon training they incur significantly lower computational overhead compared with tra-112

ditional numerical solvers. However, neural network-based solvers, like video frame pre-113

diction, can only learn mappings between specific finite-dimensional spaces. As a result,114

if the resolutions change, these models have to be retrained, which could limit their prac-115

tical applications. As a solution, the resolution-invariant neural networks are needed to116

allow for greater flexibility and adaptability for super-resolution modeling.117

Recently, a new line of work proposed learning mesh-free, infinite dimensional op-118

erators with neural networks (Lu et al., 2021; Li et al., 2020b). These approaches, so called119

“neural operators”, only need to be trained once and have the ability to transfer solu-120

tions to different mesh granularities. They have shown promise in improving the accu-121

racy and efficiency of numerical simulations (Li et al., 2020a; Lu et al., 2021). Neverthe-122

less, the neural operators currently in use incorporate integral operators, which can be123

computationally demanding and time-consuming. As such, there is a need for more ef-124

ficient computational optimization to improve the scalability and practicality of these125

methods. The Fourier Neural Operator (FNO) method has recently been proposed to126

learn a continuous function via representing the model in its function space (Li et al.,127

2020a). The integral operator is restricted to a convolution, and instantiated through128

a linear transformation in the Fourier domain with high computational efficiency.129

As the first application of the FNO to the PR-DNS model, here we build several130

digital twin surrogate models of our PR-DNS and use numerical simulation results to131

evaluate their accuracy and computational performance. The digital-twin PR-DNS mod-132

els can be used to directly simulate turbulent flows on a larger model domain, covering133

more realistic scales in turbulent clouds. Particularly, the FNO surrogate model demon-134

strates better accuracy than other deep learning-based methods, such as UNET(Ronneberger135

et al., 2015) and ResNet(He et al., 2016) in terms of the prediction accuracy for veloc-136

ity and temperature. Its computational cost is two orders of magnitude lower than the137

original PR-DNS model, especially for high resolution. In addition, it exhibits good gen-138

eralization ability for different initial conditions and zero-shot super resolution, which139

do not require retraining the deep learning model, instead, only utilizing the pre-trained140

model for high resolution.141

The rest of the paper is organized as follows: Section 2 introduces the PR-DNS model142

and the simulation data. Section 3 describes the FNO algorithm. Section 4 discusses the143

performance of FNO method, including comparison with previous studies. Conclusions144

and discussions are given in Section 5.145

–4–



manuscript submitted to JAMES

Eulerian Approach Lagrangian Approach

dynamical field (Traditional DNS)

Temperature

vapor mixing ratio

Particle-Resolved DNS

droplet condensation/evaporation

(5)

droplet motion

(4-a)

(4-b)

condensation rate

(6)

(1-a)

(2)

(1-b)

(3)

Figure 1. PR-DNS overview

2 Model and Data146

We use the PR-DNS developed by Gao et al. (2018), which includes the Eulerian147

field representation of turbulence near the Kolmogorov microscale and Lagrangian droplet148

tracking, shown in Figure 1. The dynamical model is based on the incompressible Boussi-149

nesq fluid system, given by Equations 1-a and 1-b, Figure 1. The u is the velocity field,150

p is the pressure field, ν is the kinematic viscosity, and ρ0 is the density of dry air. fb151

and fe are the buoyancy and large-scale forcings, respectively. The buoyancy force is given152

by153

fb = −g

[
T − T0

T0
+ 0.608(qv − qv0)− qc

]
(7)

which depends on the gravity g, the temperature T , and vapor mixing ratio qv. It154

thus couples the fluid velocity equations with T , qv and thus cloud microphysics. The155

external force fe maintains a statistically stationary homogeneous turbulence.156

In the equations for temperature (Eq 3) and vapor mixing ratio (Eq 4) from Fig-157

ure 1, Lh is the latent heat of water vapor condensation, cp is the specific heat, and µT158

and µv are, respectively, the molecular diffusivity for temperature and water vapor. The159

condensation rate Cd (Eq 6) from Figure 1 depends on the droplet radii Ri(t) and thus160

couples the Lagrangian particles and the Eulerian field.161

For the Lagrangian approach, equations 4-5 from Figure 1 describe the motion and162

condensation/ evaporation of cloud droplets, where Ri(t), Xi(t), and Vi(t) denote, re-163

spectively, the radius, position coordinate, and velocity of the i-th droplet at time t.164

In our simulations, the physical solution domain is set to be 0.512 × 0.512 m2 in165

the two-dimension space with double periodic boundary conditions. In order to evalu-166

ate the performance at different resolutions, we conduct the PR-DNS simulations with167

64 x 64, 128 x 128 and 256 x 256 meshes which correspond, respectively, to 8mm, 4mm168

and 2mm grid sizes. In addition, in order to evaluate the performance of the deep learn-169

ing models given different initial conditions, we conduct the PR-DNS with different ini-170

tial conditions for the 128x128 grid. The time step size is 0.003s on average, satisfying171

the Courant-Friedrichs-Lewy condition. We run each simulation for 6000 time steps. The172

first 4000 time steps are used to train the deep learning methods, with the rest of 2000173

time steps for performance validation.174
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3 Method175

3.1 Fourier Neural Operator176

The traditional PDE solvers, such as finite volume and finite difference, typically177

start with the initial conditions and then iterate forward to generate the solution at each178

time step based on the solution at the previous time steps. For the original PR-DNS model,179

given the specific initial conditions, it outputs the properties at each time step, such as180

velocity, temperature and water vapor. In other words, the PDE solvers build the map-181

ping Gθ from the initial condition A to the solution U , Gθ: A× θ → U . Deep learning182

models have been proved to be excellent function approximators in many domains, and183

they can emulate the initial-condition-to-solution mapping of PR-DNS too.184

Two distinct types of deep learning methods have the potential as the digital twins185

of the traditional solvers, as illustrated in Figure 2. Because physical variable distribu-186

tions in a discretized 2D/3D space resemble 2D/3D images, the first category leverages187

existing deep learning techniques developed for computer vision, such as UNet and Resid-188

ual neural network (ResNet). UNet is a well-known deep neural network architecture that189

is widely employed for image segmentation in computer vision, utilizing the encoder-decoder190

structure to reduce the feature dimension (Ronneberger et al., 2015). The encoder down-191

samples the input by a series of convolutional layers, while the decoder upsamples the192

feature to produce the final output. In addition, the decoder uses the skip connections193

to embed the feature learned by the encoder that preserve the spatial information of the194

original input. In contrast, ResNet addresses the issue of vanishing gradients in very deep195

networks by using residual blocks that enable gradients to propagate more easily through196

the network (He et al., 2016). In contrast to the UNet architecture, the ResNet replace197

the convolutional layers by the residual blocks. Both UNet and ResNet can function as198

PDE solvers by mapping one finite space to another finite space, as depicted in Figure199

2(a). However, when the resolution or shape of the application domain change, the deep200

learning models have to be re-trained. Conversely, neural operators are specially designed201

to learn mathematical operators that are independent to the discretization, such as dif-202

ferential operators or integral operators, instead of directly learning a functional map-203

ping that binds to a specific discretization. Figure 2(b) illustrates that the neural op-204

erator attempts to learn the integral operators in the Green Function, which can find205

analytical solutions to PDE equations.206

Li et al. (2020b, 2020a) proposed the neural operator that learns the mapping Gθ:

Gθ = Q ((Kl +Wl) ◦ σl ◦ · · · ◦ (K0 +W0) ◦ σ0)P (8)

This neural operator includes the P and Q transformation network, integral op-207

erator K, linear operators W and the activation function σ for non-linear mapping, as208

illustrated in Figure 3. P can be interpreted as the encoder which employs neural net-209

works to map inputs into a high dimension latent space, and Q serves as the decoder that210

projects outputs back to the original space. Both P and Q are shallow fully-connected211

neural networks. The integral operator K is defined as:212

(K(a;ϕ)vt) (x) :=

∫
D

κ(x, y, a(x), a(y);ϕ)vt(y)dy, ∀x ∈ D (9)

where a ∈ A denotes the input, ϕ represents the learnable parameters in neural213

networks, vt denotes the σt(Kt + Wt) in the equation 8. κ refers to the periodic spa-214

tial kernel function, which is in accordance with the PR-DNS periodic boundary. The215

integral operator K is time consuming. To address this challenge, Li et al. (2020a) pro-216

posed the Fourier Neural Operator (FNO), which takes advantage of the Fast Fourier217

Transform (FFT) algorithm to calculate the calculation of the integration.218

–6–
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(a) UNet and ResNet

T=1 T=2

solver

T=1 T=2

solver

Green Function

(b) Neural Operator

Figure 2. Two kinds of deep learning PDE solvers, (a) finite mapping based on traditional

deep learning, such as UNet and ResNet; (b) infinite mapping based on neural operator.

(K(a;ϕ)vt) (x) = F−1 (F (κϕ) · F (vt)) (x) (10)

where F denotes the Fourier transform of a function f and F−1 is its inverse:

(Ff)j(k) =
∫
D
fj(x)e

−2iπ(x,k) dx (11)

(
F−1f

)
j
(x) =

∫
D

fj(k)e
2iπ⟨x,k⟩dk (12)

3.2 Hyperparameters and Training219

The FNO architecture is generically depicted in Figure 3. In the present study, the220

FNO architecture comprises six layers in total, including two shallow fully-connected neu-221

ral networks (P and Q) and four Fourier layers. P has 32 output channels, while Q has222

128 output channels. In each Fourier layer, under the assumption that κ is periodic, it223

can be represented by a Fourier series expansion. To effectively capture the relevant com-224

ponents, each Fourier layer only retains the lowest k Fourier modes to learn the low-frequency225

components in PDE. In this study, we found that 30 modes can achieve the best per-226

formance. For the activation function, we employ the Gaussian Error Linear Unit (GELU),227

which is a smoother version of the Rectified Linear Unit (ReLU).228

The deep learning models were trained on a single NVIDIA GeForce RTX 3090 with229

24GB memory using the PyTorch (Paszke et al., 2019) framework. Each model was trained230

for 500 epochs with a batch size of 50. We utilized the Adam optimizer, a first-order gra-231

dient descent method, with a weight decay of 10−4. The initial learning rate was set to232

0.001 and was halved every 100 epochs. For training and testing, we used the L2 based233

loss function, as defined in Eq. 13.234

ζ2 =

√
Σm

i=1(u(xi)− û(xi))2√
Σm

i=1(u(xi))2
, (13)

–7–
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a(x) P Fourier Layer 1 Fourier Layer 2 Fourier Layer 3 Q u(x)

v(x)

R

W

+

Figure 3. FNO framework. The input consists of 10 previous time steps of one variable, such

as velocity or temperature. The output is variable at the 11th time step. The FNO framework

consists of two shallow fully-connected neural networks, and four Fourier layers.

where m is the total number of grids, u is the ground truth and û is the predic-235

tion by deep learning models.236
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4 Results237

In this section, we compare FNO models with ResNet and UNet in their ability to238

emulate the fields of air velocity and temperature. In the UNet architecture used in this239

study, the encoder consists of three convolutional blocks with 16, 32, and 64 output chan-240

nels, respectively, while the corresponding decoder has 64, 32, and 16 output channels.241

The ResNet has a similar U-shaped structure, but replaces vanilla convolutional blocks242

used in UNet with residual blocks. For each of the three deep learning models, we used243

three resolutions, 64 x 64, 128 x 128 and 256 x 256. For fairness, all methods use the same244

training and testing datasets for each resolution. For the 64 x 64 test case, we used N=2000245

training time steps and 1000 testing time steps. For the 128 x 128 and 256 x 256 test246

cases, we used N=4000 training time steps and 2000 testing time steps.247

4.1 Accuracy248
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(d) Temperature Testing Error
ResNet
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0.50
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1.00

1.25

1.50
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Figure 4. Training/testing errors as a function of epochs for UNet, ResNet, and FNO for the

x component of velocity (a,c) and temperature (b,d) at the 64x64 resolution.

Figure 4 shows the training and testing errors as a function of the number of epochs.249

It reveals that FNO exhibits the lowest training and testing errors when compared to250

ResNet and UNet, not only at the end of but also throughout the training procedure.251

Furthermore, the FNO model converges faster. Remarkably, in the case of the x-velocity252

variable, the UNet exhibits poor performance in both training and testing. Similarly, for253

the temperature variable, ResNet exhibits unstable and fluctuating testing performance.254

Table 1 provides additional evidence that FNO performs well across various res-255

olutions, except the temperature at the R-256 resolution. Notably, the testing error for256

the x-velocity variable remains consistent across different resolutions, indicating that the257

performance is resolution invariant.258

Fig 5 and Fig 6 display 2D spatial maps of the x-velocity and temperature vari-259

ables at the 128x128 resolution, respectively, at a single time snapshot as examples. In260

the case of the x-velocity, the UNet method can capture the overall pattern of high ve-261

–9–
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Table 1. Testing L2 errors for the various resolutions, including 64x64 (R-64), 128x128 (R-

128), and 256x256 (R-256).

x-velocity temperature
R-64 R-128 R-256 R-64 R-128 R-256

UNet 0.997 0.058 0.078 0.722 1.036 3.603
ResNet 0.001 0.0009 0.003 0.024 0.391 0.043
FNO 0.0001 0.0001 0.0007 0.008 0.013 0.196

locity at the bottom and low velocity on top. However, the contour details are not ac-262

curate. Conversely, the ResNet and FNO methods closely resemble the ground truth ob-263

tained from PR-DNS. With regard to the temperature variable, the UNet method tends264

to produce slightly larger predictions than the ground truth. The ResNet method achieves265

slightly higher values than the ground truth in the lower part of the map. Meanwhile,266

the FNO method captures the temperature pattern most accurately.267
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Figure 5. Snapshot prediction of x-velocity by UNet (a), ResNet (b), FNO (c), ground truth

(d)

In addition to the single time snapshot, we show in Figures 7 and 8 the L2 error268

between deep learning predictions and ground truth for the entire testing dataset on a269

grid point by grid point basis, in order to quantitatively compare their accuracy. The270

calculation of this error is performed as follows:271

ζ(xi, xj) =

√
ΣT

k=1(û(xi, xj)− u(xi, xj))2√
Σt

k=Tu(xi, xj)2
, (14)
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Figure 6. Same as Figure 5, but for temperature

0 50 1000

20

40

60

80

100

120
(a) UNet.L2 (%) mean=60.802

0 50 1000

20

40

60

80

100

120
(b) ResNet.L2 (%) mean=0.906

0 50 1000

20

40

60

80

100

120
(c) FNO.L2 (%) mean=0.385

0 50 1000

20

40

60

80

100

120
(d) UNet.L2 - FNO.L2 (%)

0 50 1000

20

40

60

80

100

120
(e) ResNet.L2 - FNO.L2 (%)

0
20
40
60
80
100
120
140
160
180

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

0
20
40
60
80
100
120
140
160
180

1.8
1.2
0.6

0.0
0.6
1.2
1.8

Figure 7. Snapshot prediction accuracy of x-velocity at every grid point by UNet, ResNet,

and FNO
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Figure 8. Same as Figure 7, but for temperature

where i and j represent the spatial coordinates in the 2D space. T is the total length of272

the testing dataset, û is the prediction by deep learning models, and u denotes the cor-273

responding truth.274

For the x-velocity variable, the L2 error of the UNet method is exceedingly high275

at 60%. In contrast, the ResNet and FNO methods achieve significantly lower L2 errors276

of 0.905% and 0.385%, respectively. Notably, the L2 error of ResNet is slightly larger than277

that of FNO. With regard to the temperature variable, although the UNet method de-278

creases the error, it remains the worst among all three methods. Conversely, the FNO279

method achieves the lowest error averaged across all grid points.280

4.2 Computational efficiency281
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Figure 9. Computational cost for (a) backward process per epoch, (b) inference per 1k sam-

ples and 1k time steps in the original PR-DNS model under different resolutions.

Figure 9 evaluates the computational efficiency of UNet, ResNet, FNO, and the nu-282

merical PR-DNS solver across multiple resolutions. The deep learning models consist of283

–12–



manuscript submitted to JAMES

both forward (inference) and backward steps. For the inference step, input data is fed284

into the deep learning models and then the models compute the output predictions through285

the neural network. The backward step computes the gradients of the loss function with286

respect to the parameters of the neural network and updates the parameters correspond-287

ingly to minimize the loss function. During training, both forward and backward steps288

are invoked, while only the forward step is required at the prediction time.289

The results show that all three deep learning methods are significantly less com-290

putationally expensive, by two orders of magnitude, compared to the numerical PR-DNS291

solver. We observe that while the inference time of the numerical PR-DNS model increases292

roughly linearly with the resolution, those of ML models only increase slightly, demon-293

strating their efficiency for large domains. It is worth noting that the inference time of294

FNO is slightly larger than that of UNet and ResNet. The reason could be that although295

FNO has fewer layers (8) compared to UNet (13) and ResNet (17), it involves a com-296

plex Fourier transforming process in the Fourier layer, which takes 3 times longer than297

the 2D convolution operations. The backward time of ResNet is the largest due to its298

more layers and parameters, while FNO has the smallest backward time due to its fewer299

layers and parameters.300

4.3 Generalizability301

Traditional PDE solvers typically require re-running when the initial condition or302

resolution changes. Fortunately, due to the generalizability of deep learning models, deep303

learning methods provide the advantage of zero-shot learning, meaning that pre-trained304

models can perform well on new data without the need for additional training. It is worth305

noting that all three deep learning models used in the present study, namely FNO, ResNet,306

and UNet, can achieve zero-shot learning under different initial conditions, but only FNO307

can do so under different resolutions. In this section, we only focus on FNO because, as308

discussed in Section 4.1, the ResNet has similar accuracy to FNO and UNet can not achieve309

satisfactory performance.310
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Figure 10. Two initial conditions for x-velocity.

We conduct two PR-DNS simulations, each starting with different initial conditions311

for the x-velocity. These two initial conditions are shown in Figure 10. Each PR-DNS312

simulation has the same initial condition for the temperature field. However, due to the313

coupling of the equations in the PR-DNS model (refer to Section 2 and Figure 1) and314

the fact that the two simulations have different initial conditions for the x-velocity, the315

time evolution of the temperature field will be different in each case. For reference, the316

PR-DNS simulation snapshots, that is, our ground truth, are shown in Figures 11 (d)317

and (e) for x-velocity and in Figures 12 (d) and (e), for temperature.318
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The deep learning model, FNO, can be trained and tested independently for each319

simulation, as shown in Figures 11-12 (a,d) and Figures 11-12 (b,e), respectively. As demon-320

strated previously via Figures 5-6, FNO can achieve high accuracy in this scenario. For321

the cases now under discussion, the normalized L2 errors between the ground truth and322

FNO prediction for x-velocity are 0.0001 when training and predicting using data from323

the first PR-DNS simulation only and 0.0003 when training and predicting with data from324

the second PR-DNS simulation only. In the case of temperature, the corresponding nor-325

malized L2 errors are 0.013 and 0.007.326

To test the generalization capability with respect to the initial conditions, we train327

the model using data from the first PR-DNS simulation, labeled “init1” in Figures 10-328

11, and predict using data from the second PR-DNS simulation, labeled “init2” in Fig-329

ures 10-11. This means that we do not need to re-train the deep learning model under330

other initial conditions. The FNO predictions under this scenario are shown in Figure331

11 (c) for x-velocity and Figure 12 (c) for temperature, where one can observe that the332

zero-shot learning for different initial conditions can achieve high accuracy as well. The333

L2 errors of the FNO predictions under this zero-shot learning for x-velocity and tem-334

perature are, respectively, 0.0001 and 0.094.335
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Figure 11. Zero-shot learning for different initial conditions of x-velocity. (a) and (b) are the

predictions of x-vel where the training data and the testing data are from the same simulations.

(d) and (e) are the corresponding ground truth. (c) is the generalizing prediction where the

training data and testing data are from the two simulations with different initial conditions. The

label “init1/2” before the arrow in the subtitle denotes the training data, while the label after

the arrow represents the testing, or prediction, data. The normalized L2 error between the FNO

prediction (c) and the ground truth (e) is 0.0001.

Among all models, the FNO model is the only one capable of performing zero-shot336

super-resolution, which means a model trained on low resolutions can also make predic-337

tion on high resolution grids. In comparison, UNet and ResNet models cannot adapt to338

resolutions which they are not trained on. In this study, we utilized the FNO model trained339

on a R64 resolution and applied it to R128 and R256 resolutions. The results, as shown340

in Figures 13 and 14, revealed an excellent match with the ground truth. Regarding x-341
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Figure 12. Same as Figure 11, but for temperature. The normalized L2 error between the

FNO prediction (c) and the ground truth (e) is 0.094.

velocity, the normalized L2 errors achieve 0.0004 and 0.0007 for R128 and R256 super-342

resolution, respectively. As for temperature, they achieve 0.038 and 0.036 for R128 and343

R256 super-resolution, respectively. These results demonstrate that the accuracy of super-344

resolution is comparable to that of training from the higher resolution (Table 1).345

These findings are significant as they can facilitate a more comprehensive under-346

standing of turbulent clouds, especially for the large-scale turbulent eddies, by extend-347

ing the PR-DNS domain to larger domains. PR-DNS models with larger domains can348

better represent larger turbulent eddies and their influences on cloud microphysics, es-349

pecially for turbulent clouds with large Reynold numbers. Such multiscale interactions350

could be critical for determining such macro-cloud properties such as lifetime and phys-351

ical sizes.352
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Figure 13. Super-resolution to R128 (a, b) and R256 (c, d) using the FNO model trained on

the R64 resolution in terms of x-velocity.
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Figure 14. Super-resolution to R128 (a, b) and R256 (c, d) using the FNO model trained on

the R64 resolution in terms of temperature.
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5 Discussion and conclusion353

In this study, we first present a digital twin model of the complex PR-DNS devel-354

oped by use of the Fourier neural operator (FNO) method. PR-DNS is crucial for en-355

hancing our understanding of the intricate aerosol-cloud-turbulence interactions at the356

process level. However, it incurs a substantial high computational cost due to the long357

simulations for large domains with ultra-high resolutions. The digital twin of the numer-358

ical PR-DNS model serves as a surrogate for the original physics-based model, and it typ-359

ically relies on the output generated by the original PR-DNS simulations. The utiliza-360

tion of digital twins is essential because it enables the extreme-high-resolution simula-361

tion in a controlled and cost-effective manner. As a consequence, the digital twins can362

facilitate the understanding of complex physical systems under different scenarios, such363

as varying initial conditions and resolutions.364

While the FNO model is state-of-the-art, there is still room for exploration in fu-365

ture work. First, this study is focused on the 2D spatial domain, while in reality, the orig-366

inal PR-DNS solver can run 3D simulations. Hence, we aim to develop a 3D FNO model.367

Second, it’s worth noting that this study only focuses on the Eulerian part, specifically368

the velocity and temperature. It will be important to expand this study to the moisture369

variables, such as supersaturation and water vapor mixing ratio. Additionally, besides370

the Eulerian part, the Lagrangian part, such as particle motion and growth, should also371

be considered.372

In our work, an ‘offline’ learning method is employed, where the testing dataset is373

generated by the original PR-DNS. However, for more realistic usage, an ‘online’ learn-374

ing method should be used, where the current input of the deep learning model is de-375

rived from the previous output of the deep learning operator. However, it should be noted376

that in the online approach, the prediction errors may accumulate and significantly af-377

fect the accuracy of the simulation. To address this issue, the error can be constrained378

by the original PR-DNS model or through the use of the Physics-Informed Neural Net-379

work (PINN) method (Raissi et al., 2019), which incorporates the governing equations380

as constraints.381

Finally, in this study, the time step of FNO is the same as the original PR-DNS.382

Due to the use of different solvers, we will explore appropriate steps for the new deep383

learning solver in future work.384
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6 Open Research385

Data Availability Statement386

The deep learning models, including FNO, ResNet and UNet can be archived at387

https://doi.org/10.5281/zenodo.8077871. The PR-DNS time-step simulations at vari-388

ous initial conditions and various resolutions for training the deep learning models can389

be available at https://doi.org/10.5281/zenodo.8077871. The PR-DNS models can be390

accessed at https://github.com/PR-DNS/PR DNS base.391
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Key Points:7

• The Fourier Neural Operator (FNO) model can accurately emulate particle-resolved8

direct numerical simulations (PR-DNS) at various resolutions.9

• The computational time of the physics-based PR-DNS model is reduced by two10

orders of magnitude with the FNO model.11

• The FNO model demonstrates robust and zero-shot generalization for various ini-12

tial conditions and ultra-high resolutions.13
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Abstract14

Particle-resolved direct numerical simulations (PR-DNS) play an increasing role in in-15

vestigating aerosol-cloud-turbulence interactions at the most fundamental level of pro-16

cesses. However, the high computational cost associated with high resolution simulations17

poses considerable challenges for large domain or long duration simulation using PR-DNS.18

To address these issues, here we present a digital twin model of the complex physics-based19

PR-DNS developed by use of the data-driven Fourier Neural Operator (FNO) method.20

The results demonstrate high accuracy at various resolutions and the digital twin model21

is two orders of magnitude cheaper in terms of computational demand compared to the22

physics-based PR-DNS model. Furthermore, the FNO digital-twin model exhibits strong23

generalization capabilities for different initial conditions and ultra-high-resolution with-24

out the need to retrain models. These findings highlight the potential of the FNO method25

as a promising tool to simulate complex fluid dynamics problems with high accuracy, com-26

putational efficiency, and generalization capabilities, enhancing our understanding of the27

aerosol-cloud-precipitation system.28

Plain Language Summary29

Particle-resolved direct numerical simulations (PR-DNS) are an important model30

to enhance our understanding of the fundamental processes involved in aerosol-cloud-31

turbulence interactions. However, achieving the extra-high-resolution simulations comes32

at very expensive computational cost. Although high-performance computing can ac-33

celerate PR-DNS simulations, it requires considering various factors, such as efficient MPI34

communications and GPU memory utilization. The machine learning digital twin mod-35

els require much less computation cost compared to traditional numerical methods. Nev-36

ertheless, conventional machine learning models can only learn mappings between spe-37

cific finite-dimensional spaces. The Fourier Neural Operator (FNO) method has recently38

been proposed to learn in the mesh-free and infinite dimensional space. In this study,39

we first present a digital twin model of the complex PR-DNS developed by using of the40

FNO method. The results show that the FNO model can achieve high accurate predic-41

tion, require low computational cost, and perform well with different initial conditions42

and resolutions, without re-training the machine learning models.43

–2–



manuscript submitted to JAMES

1 Introduction44

Accurately simulating the aerosol-cloud-precipitation system and representing it45

appropriately in weather and climate models pose significant challenges for the cloud physics,46

weather, climate, and energy communities (Fan et al., 2013; Liu, 2019; Liu et al., 2023).47

These challenges are particularly daunting due to knowledge gaps in crucial processes48

that occur at scales smaller than the typical grid sizes of large eddy simulation (LES)49

models (e.g., 100 m). These processes include microphysics, turbulent entrainment-mixing50

between clouds and environmental air, turbulence, and their mutual interactions. These51

fundamental processes are either not represented at all or are only rudimentarily param-52

eterized in major atmospheric models such as LES models, weather models, and climate53

models, thus hindering future progress in climate modeling.54

Fully addressing these vital knowledge gaps at the fundamental level calls for a particle-55

resolved direct numerical simulation (PR-DNS) model that not only resolves the small-56

est turbulent eddies in clouds but also tracks motion and growth of individual particles57

or droplets (Gao et al., 2018). PR-DNS involves the numerical solution of the Navier-58

Stokes (NS) equations coupled with equations that describe the motion and growth of59

individual particles or droplets. The time evolution of fluid’s motion as well as its ther-60

modynamic properties (e.g., temperature and water vapor mixing ratio) is controlled by61

the NS equations which are solved numerically in an Eulerian framework. The motion62

and growth of particles/droplets, which are affected by dynamic and thermodynamic prop-63

erties of surrounding fluid, are calculated in the Lagrangian framework. The hygroscopic64

growth of particles/droplets can subsequently affect fluid property through latent heat65

release and water depletion. PR-DNS is a unique tool to investigate aerosol-cloud-turbulence66

interactions at the process level.67

Since the pioneering works in the early 2000s (P. A. Vaillancourt & Yau, 2000; P. Vail-68

lancourt et al., 2002), a few studies have contributed to developing and applying DNS69

to study the interactions between cloud microphysics and turbulence. The DNS presented70

in (P. A. Vaillancourt & Yau, 2000) and (P. Vaillancourt et al., 2002) solves the forced71

incompressible Naiver-Stokes equations in 3-D by using the method of (Sullivan et al.,72

1994) and tracks individual droplets, to investigate the influence of turbulence on droplet73

size distribution under isotropic turbulent environment. Andrejczuk et al. developed a74

DNS model to simulate a cloud-clear air interfacial layer to investigate the effects of mix-75

ing processes on cloud microphysics in decaying moist turbulence, to examine the effects76

of initial turbulence kinetic energy (TKE), cloud fraction, droplet sizes, and the relation-77

ship between the mixing mechanisms and the Damköhler number(Andrejczuk et al., 2004,78

2006, 2009). Kumar et al. (2013, 2012, 2014, 2017) developed a particle-resolved DNS79

model to study turbulent entrainment-mixing processes. Chen et al. (2016) provided the80

collision parameterization in a turbulent environment and then investigates the impact81

of turbulence on collision efficiency and the droplet size distribution in cumulus clouds82

(Chen, Yau, & Bartello, 2018). Additionally, subsequent studies by Chen, Yau, Bartello,83

and Xue (2018) and Chen et al. (2020) investigate the effect of aerosols and turbulence84

on cloud droplet growth.85

However, PR-DNS requires a large amount of computational resources, which lim-86

its its current use to relatively small-domain simulations (Gao et al., 2018). The paral-87

lel algorithm is designed by decomposing the domain into subdomains. The computa-88

tion of a subdomain is conducted on an independent processor, and the required exchange89

of boundary information between the processors is done through Message Passing inter-90

face (MPI). Due to the communication bottleneck, the linear scaling breaks down rapidly91

as the number of CPU cores is further increased, which significantly inhibits our abil-92

ity to scale up the PR-DNS simulations. Linear solvers such as the Portable, Extensi-93

ble Toolkit for Scientific Computation (PETSc, Balay et al. (2019)) and High-Performance94

Preconditioners (HYPRE, Falgout and Yang (2002)) are used in the implementation of95

the Navier-Stokes equations in our original PR-DNS (Gao et al., 2018). PETSc is a flex-96
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ible and highly efficient framework for solving large-scale numerical problems, includ-97

ing parallel solvers for PDEs. HYPRE is a library of scalable preconditioners for solv-98

ing large-scale PDEs. However, high efficiency using PETSc and HYPRE requires tun-99

ing their parameters, such as the pc hypre boomeramg strong threshold value when us-100

ing the Hypre BoomerAMG preconditioner, which could impact the convergence rate and101

efficiency of the solver. Van Heerwaarden et al. (2017) proposed GPU-based DNS with102

good speedup on a single GPU. However, a major limitation in single-GPU computa-103

tion is its available memory capacity, which poses a hard constraint on the maximum104

size of computational mesh. In addition, traditional solvers impose a trade-off on the res-105

olution: coarse grids are fast but less accurate; fine grids are accurate but slow. Com-106

plex systems of partial differential equations (PDE) usually require a very fine discretiza-107

tion, and are therefore very challenging and time-consuming for traditional solvers.108

Recently, a number of studies have attempted the use of deep neural networks for109

simulating turbulent fluid flows (Raissi et al., 2019; Bhatnagar et al., 2019; Xie et al.,110

2019; Kochkov et al., 2021). The main advantage of neural network-based solvers is that111

upon training they incur significantly lower computational overhead compared with tra-112

ditional numerical solvers. However, neural network-based solvers, like video frame pre-113

diction, can only learn mappings between specific finite-dimensional spaces. As a result,114

if the resolutions change, these models have to be retrained, which could limit their prac-115

tical applications. As a solution, the resolution-invariant neural networks are needed to116

allow for greater flexibility and adaptability for super-resolution modeling.117

Recently, a new line of work proposed learning mesh-free, infinite dimensional op-118

erators with neural networks (Lu et al., 2021; Li et al., 2020b). These approaches, so called119

“neural operators”, only need to be trained once and have the ability to transfer solu-120

tions to different mesh granularities. They have shown promise in improving the accu-121

racy and efficiency of numerical simulations (Li et al., 2020a; Lu et al., 2021). Neverthe-122

less, the neural operators currently in use incorporate integral operators, which can be123

computationally demanding and time-consuming. As such, there is a need for more ef-124

ficient computational optimization to improve the scalability and practicality of these125

methods. The Fourier Neural Operator (FNO) method has recently been proposed to126

learn a continuous function via representing the model in its function space (Li et al.,127

2020a). The integral operator is restricted to a convolution, and instantiated through128

a linear transformation in the Fourier domain with high computational efficiency.129

As the first application of the FNO to the PR-DNS model, here we build several130

digital twin surrogate models of our PR-DNS and use numerical simulation results to131

evaluate their accuracy and computational performance. The digital-twin PR-DNS mod-132

els can be used to directly simulate turbulent flows on a larger model domain, covering133

more realistic scales in turbulent clouds. Particularly, the FNO surrogate model demon-134

strates better accuracy than other deep learning-based methods, such as UNET(Ronneberger135

et al., 2015) and ResNet(He et al., 2016) in terms of the prediction accuracy for veloc-136

ity and temperature. Its computational cost is two orders of magnitude lower than the137

original PR-DNS model, especially for high resolution. In addition, it exhibits good gen-138

eralization ability for different initial conditions and zero-shot super resolution, which139

do not require retraining the deep learning model, instead, only utilizing the pre-trained140

model for high resolution.141

The rest of the paper is organized as follows: Section 2 introduces the PR-DNS model142

and the simulation data. Section 3 describes the FNO algorithm. Section 4 discusses the143

performance of FNO method, including comparison with previous studies. Conclusions144

and discussions are given in Section 5.145
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dynamical field (Traditional DNS)
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Figure 1. PR-DNS overview

2 Model and Data146

We use the PR-DNS developed by Gao et al. (2018), which includes the Eulerian147

field representation of turbulence near the Kolmogorov microscale and Lagrangian droplet148

tracking, shown in Figure 1. The dynamical model is based on the incompressible Boussi-149

nesq fluid system, given by Equations 1-a and 1-b, Figure 1. The u is the velocity field,150

p is the pressure field, ν is the kinematic viscosity, and ρ0 is the density of dry air. fb151

and fe are the buoyancy and large-scale forcings, respectively. The buoyancy force is given152

by153

fb = −g

[
T − T0

T0
+ 0.608(qv − qv0)− qc

]
(7)

which depends on the gravity g, the temperature T , and vapor mixing ratio qv. It154

thus couples the fluid velocity equations with T , qv and thus cloud microphysics. The155

external force fe maintains a statistically stationary homogeneous turbulence.156

In the equations for temperature (Eq 3) and vapor mixing ratio (Eq 4) from Fig-157

ure 1, Lh is the latent heat of water vapor condensation, cp is the specific heat, and µT158

and µv are, respectively, the molecular diffusivity for temperature and water vapor. The159

condensation rate Cd (Eq 6) from Figure 1 depends on the droplet radii Ri(t) and thus160

couples the Lagrangian particles and the Eulerian field.161

For the Lagrangian approach, equations 4-5 from Figure 1 describe the motion and162

condensation/ evaporation of cloud droplets, where Ri(t), Xi(t), and Vi(t) denote, re-163

spectively, the radius, position coordinate, and velocity of the i-th droplet at time t.164

In our simulations, the physical solution domain is set to be 0.512 × 0.512 m2 in165

the two-dimension space with double periodic boundary conditions. In order to evalu-166

ate the performance at different resolutions, we conduct the PR-DNS simulations with167

64 x 64, 128 x 128 and 256 x 256 meshes which correspond, respectively, to 8mm, 4mm168

and 2mm grid sizes. In addition, in order to evaluate the performance of the deep learn-169

ing models given different initial conditions, we conduct the PR-DNS with different ini-170

tial conditions for the 128x128 grid. The time step size is 0.003s on average, satisfying171

the Courant-Friedrichs-Lewy condition. We run each simulation for 6000 time steps. The172

first 4000 time steps are used to train the deep learning methods, with the rest of 2000173

time steps for performance validation.174
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3 Method175

3.1 Fourier Neural Operator176

The traditional PDE solvers, such as finite volume and finite difference, typically177

start with the initial conditions and then iterate forward to generate the solution at each178

time step based on the solution at the previous time steps. For the original PR-DNS model,179

given the specific initial conditions, it outputs the properties at each time step, such as180

velocity, temperature and water vapor. In other words, the PDE solvers build the map-181

ping Gθ from the initial condition A to the solution U , Gθ: A× θ → U . Deep learning182

models have been proved to be excellent function approximators in many domains, and183

they can emulate the initial-condition-to-solution mapping of PR-DNS too.184

Two distinct types of deep learning methods have the potential as the digital twins185

of the traditional solvers, as illustrated in Figure 2. Because physical variable distribu-186

tions in a discretized 2D/3D space resemble 2D/3D images, the first category leverages187

existing deep learning techniques developed for computer vision, such as UNet and Resid-188

ual neural network (ResNet). UNet is a well-known deep neural network architecture that189

is widely employed for image segmentation in computer vision, utilizing the encoder-decoder190

structure to reduce the feature dimension (Ronneberger et al., 2015). The encoder down-191

samples the input by a series of convolutional layers, while the decoder upsamples the192

feature to produce the final output. In addition, the decoder uses the skip connections193

to embed the feature learned by the encoder that preserve the spatial information of the194

original input. In contrast, ResNet addresses the issue of vanishing gradients in very deep195

networks by using residual blocks that enable gradients to propagate more easily through196

the network (He et al., 2016). In contrast to the UNet architecture, the ResNet replace197

the convolutional layers by the residual blocks. Both UNet and ResNet can function as198

PDE solvers by mapping one finite space to another finite space, as depicted in Figure199

2(a). However, when the resolution or shape of the application domain change, the deep200

learning models have to be re-trained. Conversely, neural operators are specially designed201

to learn mathematical operators that are independent to the discretization, such as dif-202

ferential operators or integral operators, instead of directly learning a functional map-203

ping that binds to a specific discretization. Figure 2(b) illustrates that the neural op-204

erator attempts to learn the integral operators in the Green Function, which can find205

analytical solutions to PDE equations.206

Li et al. (2020b, 2020a) proposed the neural operator that learns the mapping Gθ:

Gθ = Q ((Kl +Wl) ◦ σl ◦ · · · ◦ (K0 +W0) ◦ σ0)P (8)

This neural operator includes the P and Q transformation network, integral op-207

erator K, linear operators W and the activation function σ for non-linear mapping, as208

illustrated in Figure 3. P can be interpreted as the encoder which employs neural net-209

works to map inputs into a high dimension latent space, and Q serves as the decoder that210

projects outputs back to the original space. Both P and Q are shallow fully-connected211

neural networks. The integral operator K is defined as:212

(K(a;ϕ)vt) (x) :=

∫
D

κ(x, y, a(x), a(y);ϕ)vt(y)dy, ∀x ∈ D (9)

where a ∈ A denotes the input, ϕ represents the learnable parameters in neural213

networks, vt denotes the σt(Kt + Wt) in the equation 8. κ refers to the periodic spa-214

tial kernel function, which is in accordance with the PR-DNS periodic boundary. The215

integral operator K is time consuming. To address this challenge, Li et al. (2020a) pro-216

posed the Fourier Neural Operator (FNO), which takes advantage of the Fast Fourier217

Transform (FFT) algorithm to calculate the calculation of the integration.218
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(a) UNet and ResNet

T=1 T=2

solver

T=1 T=2

solver

Green Function

(b) Neural Operator

Figure 2. Two kinds of deep learning PDE solvers, (a) finite mapping based on traditional

deep learning, such as UNet and ResNet; (b) infinite mapping based on neural operator.

(K(a;ϕ)vt) (x) = F−1 (F (κϕ) · F (vt)) (x) (10)

where F denotes the Fourier transform of a function f and F−1 is its inverse:

(Ff)j(k) =
∫
D
fj(x)e

−2iπ(x,k) dx (11)

(
F−1f

)
j
(x) =

∫
D

fj(k)e
2iπ⟨x,k⟩dk (12)

3.2 Hyperparameters and Training219

The FNO architecture is generically depicted in Figure 3. In the present study, the220

FNO architecture comprises six layers in total, including two shallow fully-connected neu-221

ral networks (P and Q) and four Fourier layers. P has 32 output channels, while Q has222

128 output channels. In each Fourier layer, under the assumption that κ is periodic, it223

can be represented by a Fourier series expansion. To effectively capture the relevant com-224

ponents, each Fourier layer only retains the lowest k Fourier modes to learn the low-frequency225

components in PDE. In this study, we found that 30 modes can achieve the best per-226

formance. For the activation function, we employ the Gaussian Error Linear Unit (GELU),227

which is a smoother version of the Rectified Linear Unit (ReLU).228

The deep learning models were trained on a single NVIDIA GeForce RTX 3090 with229

24GB memory using the PyTorch (Paszke et al., 2019) framework. Each model was trained230

for 500 epochs with a batch size of 50. We utilized the Adam optimizer, a first-order gra-231

dient descent method, with a weight decay of 10−4. The initial learning rate was set to232

0.001 and was halved every 100 epochs. For training and testing, we used the L2 based233

loss function, as defined in Eq. 13.234

ζ2 =

√
Σm

i=1(u(xi)− û(xi))2√
Σm

i=1(u(xi))2
, (13)
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a(x) P Fourier Layer 1 Fourier Layer 2 Fourier Layer 3 Q u(x)

v(x)

R

W

+

Figure 3. FNO framework. The input consists of 10 previous time steps of one variable, such

as velocity or temperature. The output is variable at the 11th time step. The FNO framework

consists of two shallow fully-connected neural networks, and four Fourier layers.

where m is the total number of grids, u is the ground truth and û is the predic-235

tion by deep learning models.236
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4 Results237

In this section, we compare FNO models with ResNet and UNet in their ability to238

emulate the fields of air velocity and temperature. In the UNet architecture used in this239

study, the encoder consists of three convolutional blocks with 16, 32, and 64 output chan-240

nels, respectively, while the corresponding decoder has 64, 32, and 16 output channels.241

The ResNet has a similar U-shaped structure, but replaces vanilla convolutional blocks242

used in UNet with residual blocks. For each of the three deep learning models, we used243

three resolutions, 64 x 64, 128 x 128 and 256 x 256. For fairness, all methods use the same244

training and testing datasets for each resolution. For the 64 x 64 test case, we used N=2000245

training time steps and 1000 testing time steps. For the 128 x 128 and 256 x 256 test246

cases, we used N=4000 training time steps and 2000 testing time steps.247

4.1 Accuracy248
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Figure 4. Training/testing errors as a function of epochs for UNet, ResNet, and FNO for the

x component of velocity (a,c) and temperature (b,d) at the 64x64 resolution.

Figure 4 shows the training and testing errors as a function of the number of epochs.249

It reveals that FNO exhibits the lowest training and testing errors when compared to250

ResNet and UNet, not only at the end of but also throughout the training procedure.251

Furthermore, the FNO model converges faster. Remarkably, in the case of the x-velocity252

variable, the UNet exhibits poor performance in both training and testing. Similarly, for253

the temperature variable, ResNet exhibits unstable and fluctuating testing performance.254

Table 1 provides additional evidence that FNO performs well across various res-255

olutions, except the temperature at the R-256 resolution. Notably, the testing error for256

the x-velocity variable remains consistent across different resolutions, indicating that the257

performance is resolution invariant.258

Fig 5 and Fig 6 display 2D spatial maps of the x-velocity and temperature vari-259

ables at the 128x128 resolution, respectively, at a single time snapshot as examples. In260

the case of the x-velocity, the UNet method can capture the overall pattern of high ve-261
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Table 1. Testing L2 errors for the various resolutions, including 64x64 (R-64), 128x128 (R-

128), and 256x256 (R-256).

x-velocity temperature
R-64 R-128 R-256 R-64 R-128 R-256

UNet 0.997 0.058 0.078 0.722 1.036 3.603
ResNet 0.001 0.0009 0.003 0.024 0.391 0.043
FNO 0.0001 0.0001 0.0007 0.008 0.013 0.196

locity at the bottom and low velocity on top. However, the contour details are not ac-262

curate. Conversely, the ResNet and FNO methods closely resemble the ground truth ob-263

tained from PR-DNS. With regard to the temperature variable, the UNet method tends264

to produce slightly larger predictions than the ground truth. The ResNet method achieves265

slightly higher values than the ground truth in the lower part of the map. Meanwhile,266

the FNO method captures the temperature pattern most accurately.267
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Figure 5. Snapshot prediction of x-velocity by UNet (a), ResNet (b), FNO (c), ground truth

(d)

In addition to the single time snapshot, we show in Figures 7 and 8 the L2 error268

between deep learning predictions and ground truth for the entire testing dataset on a269

grid point by grid point basis, in order to quantitatively compare their accuracy. The270

calculation of this error is performed as follows:271

ζ(xi, xj) =

√
ΣT

k=1(û(xi, xj)− u(xi, xj))2√
Σt

k=Tu(xi, xj)2
, (14)
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Figure 6. Same as Figure 5, but for temperature
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Figure 7. Snapshot prediction accuracy of x-velocity at every grid point by UNet, ResNet,

and FNO
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Figure 8. Same as Figure 7, but for temperature

where i and j represent the spatial coordinates in the 2D space. T is the total length of272

the testing dataset, û is the prediction by deep learning models, and u denotes the cor-273

responding truth.274

For the x-velocity variable, the L2 error of the UNet method is exceedingly high275

at 60%. In contrast, the ResNet and FNO methods achieve significantly lower L2 errors276

of 0.905% and 0.385%, respectively. Notably, the L2 error of ResNet is slightly larger than277

that of FNO. With regard to the temperature variable, although the UNet method de-278

creases the error, it remains the worst among all three methods. Conversely, the FNO279

method achieves the lowest error averaged across all grid points.280

4.2 Computational efficiency281
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Figure 9. Computational cost for (a) backward process per epoch, (b) inference per 1k sam-

ples and 1k time steps in the original PR-DNS model under different resolutions.

Figure 9 evaluates the computational efficiency of UNet, ResNet, FNO, and the nu-282

merical PR-DNS solver across multiple resolutions. The deep learning models consist of283
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both forward (inference) and backward steps. For the inference step, input data is fed284

into the deep learning models and then the models compute the output predictions through285

the neural network. The backward step computes the gradients of the loss function with286

respect to the parameters of the neural network and updates the parameters correspond-287

ingly to minimize the loss function. During training, both forward and backward steps288

are invoked, while only the forward step is required at the prediction time.289

The results show that all three deep learning methods are significantly less com-290

putationally expensive, by two orders of magnitude, compared to the numerical PR-DNS291

solver. We observe that while the inference time of the numerical PR-DNS model increases292

roughly linearly with the resolution, those of ML models only increase slightly, demon-293

strating their efficiency for large domains. It is worth noting that the inference time of294

FNO is slightly larger than that of UNet and ResNet. The reason could be that although295

FNO has fewer layers (8) compared to UNet (13) and ResNet (17), it involves a com-296

plex Fourier transforming process in the Fourier layer, which takes 3 times longer than297

the 2D convolution operations. The backward time of ResNet is the largest due to its298

more layers and parameters, while FNO has the smallest backward time due to its fewer299

layers and parameters.300

4.3 Generalizability301

Traditional PDE solvers typically require re-running when the initial condition or302

resolution changes. Fortunately, due to the generalizability of deep learning models, deep303

learning methods provide the advantage of zero-shot learning, meaning that pre-trained304

models can perform well on new data without the need for additional training. It is worth305

noting that all three deep learning models used in the present study, namely FNO, ResNet,306

and UNet, can achieve zero-shot learning under different initial conditions, but only FNO307

can do so under different resolutions. In this section, we only focus on FNO because, as308

discussed in Section 4.1, the ResNet has similar accuracy to FNO and UNet can not achieve309

satisfactory performance.310
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Figure 10. Two initial conditions for x-velocity.

We conduct two PR-DNS simulations, each starting with different initial conditions311

for the x-velocity. These two initial conditions are shown in Figure 10. Each PR-DNS312

simulation has the same initial condition for the temperature field. However, due to the313

coupling of the equations in the PR-DNS model (refer to Section 2 and Figure 1) and314

the fact that the two simulations have different initial conditions for the x-velocity, the315

time evolution of the temperature field will be different in each case. For reference, the316

PR-DNS simulation snapshots, that is, our ground truth, are shown in Figures 11 (d)317

and (e) for x-velocity and in Figures 12 (d) and (e), for temperature.318
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The deep learning model, FNO, can be trained and tested independently for each319

simulation, as shown in Figures 11-12 (a,d) and Figures 11-12 (b,e), respectively. As demon-320

strated previously via Figures 5-6, FNO can achieve high accuracy in this scenario. For321

the cases now under discussion, the normalized L2 errors between the ground truth and322

FNO prediction for x-velocity are 0.0001 when training and predicting using data from323

the first PR-DNS simulation only and 0.0003 when training and predicting with data from324

the second PR-DNS simulation only. In the case of temperature, the corresponding nor-325

malized L2 errors are 0.013 and 0.007.326

To test the generalization capability with respect to the initial conditions, we train327

the model using data from the first PR-DNS simulation, labeled “init1” in Figures 10-328

11, and predict using data from the second PR-DNS simulation, labeled “init2” in Fig-329

ures 10-11. This means that we do not need to re-train the deep learning model under330

other initial conditions. The FNO predictions under this scenario are shown in Figure331

11 (c) for x-velocity and Figure 12 (c) for temperature, where one can observe that the332

zero-shot learning for different initial conditions can achieve high accuracy as well. The333

L2 errors of the FNO predictions under this zero-shot learning for x-velocity and tem-334

perature are, respectively, 0.0001 and 0.094.335
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Figure 11. Zero-shot learning for different initial conditions of x-velocity. (a) and (b) are the

predictions of x-vel where the training data and the testing data are from the same simulations.

(d) and (e) are the corresponding ground truth. (c) is the generalizing prediction where the

training data and testing data are from the two simulations with different initial conditions. The

label “init1/2” before the arrow in the subtitle denotes the training data, while the label after

the arrow represents the testing, or prediction, data. The normalized L2 error between the FNO

prediction (c) and the ground truth (e) is 0.0001.

Among all models, the FNO model is the only one capable of performing zero-shot336

super-resolution, which means a model trained on low resolutions can also make predic-337

tion on high resolution grids. In comparison, UNet and ResNet models cannot adapt to338

resolutions which they are not trained on. In this study, we utilized the FNO model trained339

on a R64 resolution and applied it to R128 and R256 resolutions. The results, as shown340

in Figures 13 and 14, revealed an excellent match with the ground truth. Regarding x-341
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Figure 12. Same as Figure 11, but for temperature. The normalized L2 error between the

FNO prediction (c) and the ground truth (e) is 0.094.

velocity, the normalized L2 errors achieve 0.0004 and 0.0007 for R128 and R256 super-342

resolution, respectively. As for temperature, they achieve 0.038 and 0.036 for R128 and343

R256 super-resolution, respectively. These results demonstrate that the accuracy of super-344

resolution is comparable to that of training from the higher resolution (Table 1).345

These findings are significant as they can facilitate a more comprehensive under-346

standing of turbulent clouds, especially for the large-scale turbulent eddies, by extend-347

ing the PR-DNS domain to larger domains. PR-DNS models with larger domains can348

better represent larger turbulent eddies and their influences on cloud microphysics, es-349

pecially for turbulent clouds with large Reynold numbers. Such multiscale interactions350

could be critical for determining such macro-cloud properties such as lifetime and phys-351

ical sizes.352
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Figure 13. Super-resolution to R128 (a, b) and R256 (c, d) using the FNO model trained on

the R64 resolution in terms of x-velocity.

0 50 1000

20

40

60

80

100

120
(a) Prediction_R128 (m/s)

0 50 1000

20

40

60

80

100

120
(b) True_R128 (m/s)

0 100 2000

50

100

150

200

250
(c) Prediction_R256 (m/s)

0 100 2000

50

100

150

200

250
(d) True_R256 (m/s)

270.60
270.64
270.68
270.72
270.76
270.80
270.84
270.88
270.92
270.96

270.60
270.64
270.68
270.72
270.76
270.80
270.84
270.88
270.92
270.96

270.60
270.64
270.68
270.72
270.76
270.80
270.84
270.88
270.92
270.96

270.60
270.64
270.68
270.72
270.76
270.80
270.84
270.88
270.92
270.96

Figure 14. Super-resolution to R128 (a, b) and R256 (c, d) using the FNO model trained on

the R64 resolution in terms of temperature.
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5 Discussion and conclusion353

In this study, we first present a digital twin model of the complex PR-DNS devel-354

oped by use of the Fourier neural operator (FNO) method. PR-DNS is crucial for en-355

hancing our understanding of the intricate aerosol-cloud-turbulence interactions at the356

process level. However, it incurs a substantial high computational cost due to the long357

simulations for large domains with ultra-high resolutions. The digital twin of the numer-358

ical PR-DNS model serves as a surrogate for the original physics-based model, and it typ-359

ically relies on the output generated by the original PR-DNS simulations. The utiliza-360

tion of digital twins is essential because it enables the extreme-high-resolution simula-361

tion in a controlled and cost-effective manner. As a consequence, the digital twins can362

facilitate the understanding of complex physical systems under different scenarios, such363

as varying initial conditions and resolutions.364

While the FNO model is state-of-the-art, there is still room for exploration in fu-365

ture work. First, this study is focused on the 2D spatial domain, while in reality, the orig-366

inal PR-DNS solver can run 3D simulations. Hence, we aim to develop a 3D FNO model.367

Second, it’s worth noting that this study only focuses on the Eulerian part, specifically368

the velocity and temperature. It will be important to expand this study to the moisture369

variables, such as supersaturation and water vapor mixing ratio. Additionally, besides370

the Eulerian part, the Lagrangian part, such as particle motion and growth, should also371

be considered.372

In our work, an ‘offline’ learning method is employed, where the testing dataset is373

generated by the original PR-DNS. However, for more realistic usage, an ‘online’ learn-374

ing method should be used, where the current input of the deep learning model is de-375

rived from the previous output of the deep learning operator. However, it should be noted376

that in the online approach, the prediction errors may accumulate and significantly af-377

fect the accuracy of the simulation. To address this issue, the error can be constrained378

by the original PR-DNS model or through the use of the Physics-Informed Neural Net-379

work (PINN) method (Raissi et al., 2019), which incorporates the governing equations380

as constraints.381

Finally, in this study, the time step of FNO is the same as the original PR-DNS.382

Due to the use of different solvers, we will explore appropriate steps for the new deep383

learning solver in future work.384
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6 Open Research385

Data Availability Statement386

The deep learning models, including FNO, ResNet and UNet can be archived at387

https://doi.org/10.5281/zenodo.8077871. The PR-DNS time-step simulations at vari-388

ous initial conditions and various resolutions for training the deep learning models can389

be available at https://doi.org/10.5281/zenodo.8077871. The PR-DNS models can be390

accessed at https://github.com/PR-DNS/PR DNS base.391
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