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Abstract

Subglacial drainage networks regulate the response of ice sheet flow to surface meltwater input to the subglacial environment.

Simulating subglacial hydrology evolution is critical to projecting ice sheet sensitivity to climate, and contribution to sea-level

change. However, current numerical subglacial hydrology models are computationally expensive, and, consequently, evolving

subglacial hydrology is neglected in large-scale ice sheet simulations. We present a deep learning emulator of a state-of-the-art

subglacial hydrology model, trained at multiple Greenland glaciers. Our emulator performs strongly in both temporal (R2>0.99)

and spatial (R2>0.96) generalization, offers high computational savings, and can be used to force numerical ice sheet models.

This will enable century- and large-scale ice sheet model simulations, including interactions between ice flow and increased

meltwater input to the subglacial environment. Generally, our work demonstrates that machine learning can further improve

ice sheet models, reduce computational bottlenecks, and exploit information from high-fidelity models and novel observational

platforms.
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Key Points:5

• We develop a deep learning emulator to simulate evolving subglacial hydrology6

in response to meltwater input for ice sheet simulations.7

• The emulator shows generalization capabilities, large computational savings, and8

can be used to force numerical ice sheet models.9

• We demonstrate that machine learning has substantial potential in improving ice10

sheet models, through using information-rich data sets.11
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Abstract12

Subglacial drainage networks regulate the response of ice sheet flow to surface meltwa-13

ter input to the subglacial environment. Simulating subglacial hydrology evolution is crit-14

ical to projecting ice sheet sensitivity to climate, and contribution to sea-level change.15

However, current numerical subglacial hydrology models are computationally expensive,16

and, consequently, evolving subglacial hydrology is neglected in large-scale ice sheet sim-17

ulations. We present a deep learning emulator of a state-of-the-art subglacial hydrology18

model, trained at multiple Greenland glaciers. Our emulator performs strongly in both19

temporal (R2 >0.99) and spatial (R2 >0.96) generalization, offers high computational20

savings, and can be used to force numerical ice sheet models. This will enable century-21

and large-scale ice sheet model simulations, including interactions between ice flow and22

increased meltwater input to the subglacial environment. Generally, our work demon-23

strates that machine learning can further improve ice sheet models, reduce computational24

bottlenecks, and exploit information from high-fidelity models and novel observational25

platforms.26

Plain Language Summary27

Meltwater at the surface of ice sheets can drain to the subglacial environment, lu-28

bricate the bed, and influence ice sheet flow. Complex numerical subglacial hydrology29

models represent the subglacial drainage system, but are too computationally expensive30

to be included in large-scale and long-term ice sheet simulations. Consequently, model31

predictions of future ice sheet contribution to sea-level rise ignore ice flow modulation32

by evolving subglacial hydrology. Here, we use deep learning to emulate a state-of-the-33

art subglacial hydrology model. The emulator can directly force large-scale ice sheet mod-34

els to capture ice flow sensitivity to subglacial hydrology. The computational speed and35

accuracy of our emulator show the potential to use machine learning to efficiently incor-36

porate previously neglected processes into ice sheet models.37

1 Introduction38

The Greenland ice sheet has experienced accelerating mass loss since the early 1990s39

(Otosaka et al., 2023). Ice loss has been driven by increasing surface melt (Fettweis et40

al., 2016) and accelerating ice flow into the ocean (King et al., 2020). These two processes41

are linked by surface meltwater drainage into the subglacial environment. The evolution42

of the subglacial drainage system in response to meltwater input determines the subglacial43

water pressure, which regulates the speed of ice sliding over the bed (Nienow et al., 2017).44

Observations have demonstrated a strong sensitivity of ice flow speed to meltwater sup-45

ply to the bed on timescales ranging from days to months (Zwally et al., 2002; Shepherd46

et al., 2009; Smith et al., 2021). The subglacial drainage system modulates this sensi-47

tivity, and there is no simple relationship between meltwater forcing and ice flow speed,48

due to the complexities of subglacial hydrology (Bartholomew et al., 2011; van de Wal49

et al., 2015).50

Subglacial hydrology models simulate the evolution of subglacial water pressure un-51

der different conditions of ice sheet geometry and meltwater input (Werder et al., 2013;52

de Fleurian et al., 2018). They represent the transient evolution of the subglacial drainage53

system, are highly complex, and require many parameters and substantial computational54

expense (Werder et al., 2013; Hoffman et al., 2016). When applied to individual Green-55

land glaciers, studies have shown that accurately representing the evolution of the sub-56

glacial hydrology system with such complex models is necessary to explain observed vari-57

ability in ice flow (Hewitt, 2013; Hoffman et al., 2016; Ehrenfeucht et al., 2022). How-58

ever, their computational expense prohibits long, ice sheet scale simulations. In contrast,59

simple first-order formulations of the growth and decay of subglacial water flux do ex-60

ist, facilitating large-scale simulations (Kazmierczak et al., 2022). But these formulations61
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do not represent the different drainage components and assume a constant transmissiv-62

ity. As such, they have critical limitations when considering high meltwater input sce-63

narios, complex topographies, or reproducing realistic variability in subglacial hydrol-64

ogy and ice flow (de Fleurian et al., 2018).65

Most subglacial hydrology models divide subglacial drainage into distributed and66

channelized systems (Schoof, 2010; Werder et al., 2013; de Fleurian et al., 2018). The67

former is typical of the early melt season, when the subglacial hydrology system is in-68

efficient and water pressure increases strongly with meltwater supply. Later in the melt69

season, the system develops into a channelized system, efficiently evacuating meltwater,70

and causes water pressure to decrease with increasing meltwater input (Schoof, 2010; Bartholomew71

et al., 2011; Cowton et al., 2013). Ice flow variability is sensitive to the representation72

of, and transitions between different forms of drainage. Nevertheless, because of their73

computational expense, subglacial hydrology models are not included in model simula-74

tions at ice sheet scale (Goelzer et al., 2020; Seroussi et al., 2020). Consequently, cur-75

rent sea-level projections ignore a critical process regulating ice flow.76

The climate modeling community has used machine learning techniques success-77

fully to parameterize processes unresolved in coarse resolution global models (e.g., Brenowitz78

& Bretherton, 2018; Rasp et al., 2018). In particular, artificial neural networks (ANNs)79

are particularly powerful tools for parameterizing complex relationships between input80

and output variables, as they are capable of approximating any continuous function (the81

universal approximation theorem, Hornik et al., 1989). Furthermore, recent improvements82

in computational hardware, software, and optimization techniques have led to impor-83

tant ANN developments in multiple fields, including the Earth sciences (LeCun et al.,84

2015; Reichstein et al., 2019). Once trained, ANN models are computationally efficient,85

and ANNs have been used previously to emulate glacier flow models (Brinkerhoff et al.,86

2021; Jouvet et al., 2021). In this study, we use deep learning to enable representation87

of subglacial hydrology in large-scale ice sheet model simulations. Specifically, we develop88

an ANN emulator of the Glacier Drainage System model (GlaDS, Werder et al., 2013),89

an advanced and computationally expensive subglacial hydrology model. More gener-90

ally, our work is a proof of concept for an important advancement in ice sheet model-91

ing: we demonstrate that deep learning techniques can replace computationally-demanding92

or poorly constrained processes in large-scale ice sheet models.93

2 Methods94

We run GlaDS for 40 years at eight major Greenland glaciers (Petermann, Jakob-95

shavn, Helheim, Kangerlussuaq, Humboldt, Koge Bugt, Russell, and Upernavik, see Fig.96

S1 for locations). The glacier geometries and ice flow velocities are taken from present-97

day observations (Joughin et al., 2017; Morlighem et al., 2017), and the meltwater runoff98

forcing from the 1970-2009 output of the diurnal Energy Balance Model (Krebs-Kanzow99

et al., 2020) (see Supporting Information). GlaDS simulates the evolution of the sub-100

glacial hydraulic potential, ϕ, in time and space by representing both channelized and101

distributed drainage. Accurate representation of ϕ in ice sheet models is critical, as it102

directly determines the subglacial water pressure, pw. In turn, pw determines the effec-103

tive pressure at the ice-bed interface, N :104


N = pice − pw

pw = ϕ− gρwB

pice = gρiceHice

, (1)

where pice is ice pressure [Pa], g is gravitational acceleration [m s-2], Hice is thickness105

of the above-lying ice column [m], B is bed elevation [m], and ρw and ρice are water and106

ice density [kg m-3], respectively. Critically, N [Pa] is a key variable in basal sliding laws107
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for ice flow (Budd et al., 1984; Hewitt, 2013). We run GlaDS at a 2-hourly time step to108

preserve numerical stability.109

Dynamics of ϕ are governed by the amount of surface meltwater draining through110

the ice sheet to the bed, followed by the routing of the water through the subglacial sys-111

tem. The goal of our ANN is to predict ϕ based on ice sheet state and meltwater runoff112

forcing, such that our pw emulation accounts for spatio-temporal evolution of subglacial113

hydrology. Specifically, our ANN uses as inputs ice thickness, ice velocities, bedrock to-114

pography, and meltwater runoff fields, as well as moulin locations where meltwater reaches115

the subglacial domain. All these variables are common variables, parameters, or inputs116

to typical ice sheet models. Similar to current subglacial hydrology models, our ANN117

is aimed at one-way coupling with ice sheet models, i.e., it needs to be run prior to the118

ice sheet model and the ANN output is subsequently used as a forcing to the ice sheet119

model. We discuss prospects for full two-way coupling in the Discussion section.120

Our ANN is a convolutional neural network, based on the U-Net architecture (Ronneberger121

et al., 2015). Our ANN thus uses two-dimensional input fields, and outputs a two-dimensional122

ϕ field at any given time step (see Supporting Information). In total, the ANN has 259,953123

trainable parameters that are optimized such that ANN predictions of ϕ match train-124

ing targets with accuracy. We calibrate our ANN to the GlaDS 1975-2004 output at seven125

of the eight glaciers. We keep the last 5 years (2005-2009) of output at these seven glaciers126

as test data to evaluate the temporal generalization capabilities of the ANN. Further-127

more, we keep all the output of the eighth glacier for test data in order to evaluate the128

ANN spatial generalization capabilities. All the GlaDS output test data were totally un-129

seen by the deep learning algorithm or the authors during the calibration. The calibra-130

tion data are separated into training data, used to optimize the ANN parameters, and131

validation data, used to optimize hyperparameters and to avoid overfitting (see Support-132

ing Information). All the results presented in the next sections have been computed on133

the test data.134

3 Results135

3.1 Temporal Generalization Performance136

To assess the ability of the ANN to reproduce GlaDS hydraulic potential (ϕ) fields,137

we start by comparing their respective outputs at the 7 calibration glaciers over the last138

5 years of simulations (2005-2009), which have not been used for the ANN training. Fig-139

ures 1a and 1b show for one of the calibration glaciers (Helheim glacier) that the mean140

ϕ field of the ANN over these 5 test years reproduces the spatial patterns of GlaDS out-141

put well. In particular, the ANN captures the radial patterns of high ϕ values and vari-142

ability centered at moulin locations, where meltwater runoff drains to the subglacial en-143

vironment. The ANN performs well throughout the domain, as the root-mean-square144

error (RMSE) is mostly lower than 0.5 MPa (Fig. 1c). The temporal dynamics are also145

captured well, as ϕ time series show close correspondence between ANN and GlaDS out-146

puts in most of the domain (Fig. 1d). The ANN captures the different ranges in season-147

ality and inter-annual variability of ϕ. It also reproduces the asymmetry between early148

and late melt season, which is due to changing drainage efficiency (Nienow et al., 2017).149

In Figure 1d, the orange curve shows a time series selected within the high RMSE area150

(Fig. 1c). This example illustrates that the ANN still captures the temporal variabil-151

ity, but is biased low at this particular location.152

Figure 1e shows the ANN performance over the 5 years of test data at all the seven153

calibration glaciers, demonstrating low bias and RMSE. Furthermore, the ANN explains154

>99% of the variance in GlaDS ϕ output, as quantified by the coefficient of determina-155

tion (R2). These results demonstrate that the ANN is able to predict ϕ with good ac-156

curacy over years, and thus meltwater input conditions, unseen during training.157

–4–



manuscript submitted to Geophysical Research Letters

Figure 1. Temporal generalization performance of the ANN over the test period. Maps of

mean 2005-2009 ϕ fields at one calibration glacier (Helheim, Fig. S1 for location) simulated by

(a) GlaDS, and (b) the ANN. The Root-Mean-Square Error (RMSE) of the ANN with respect to

GlaDS is shown in (c). Time series (d) of ϕ at specific grid points simulated by GlaDS (dashed

lines) and the ANN (solid lines), with color-coded locations shown in (a). Performance statistics

(e) of the ANN with respect to GlaDS evaluated at all the grid points of the 7 calibration glaciers

for all the 2005-2009 time steps.

3.2 Spatial Generalization Performance158

We now perform a similar evaluation, but at the test glacier (Upernavik), not in-159

cluded in the ANN calibration. This task presents a harder challenge, as both years of160

meltwater runoff and glaciological characteristics have not been used in calibration. The161

time-mean spatial patterns of ϕ at the test glacier are well-reproduced (Fig. 2a, 2b). The162

RMSE is low throughout the domain (Fig. 2c), except on a small portion near the glacier163

terminus. The time series shown in Figure 2d demonstrate that the ANN performance164

in reproducing temporal dynamics at seasonal and inter-annual scales are similar to its165

performance on calibration glaciers (compare with Fig. 1d). Here also, the orange lines166

in Fig. 2d show a time series corresponding to a low-performance location. Again, the167

ANN still captures temporal dynamics correctly, but has a consistent bias over the time168

series at this location. Finally, the metrics of performance for this test glacier show an169

RMSE lower than 0.56 MPa, a small positive bias of 0.24 MPa, and R2 >0.96.170

3.3 Sensitivity to number of calibration years171

To calibrate the ANN, we have used 30 years (1975-2004) of GlaDS output at the172

calibration glaciers, and preserved 5 years (2005-2009) of output for testing (see Support-173

ing Information). In this section, we investigate the sensitivity of ANN accuracy to the174

number of calibration years. Starting with all 30 years of available GlaDS output, we175

reduce the calibration data by 3-year increments, re-train the ANN at each increment,176

and evaluate performance metrics always on the 2005-2009 years.177

Figure 3a shows the ratios in the R2, RMSE and absolute bias metrics for each sen-178

sitivity experiment, with respect to the results computed when all the 30 calibration years179

are used in the ANN calibration. There is no decrease in accuracy for calibration data180

–5–
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Figure 2. Spatial generalization performance of the ANN. Maps of mean 1975-2009 ϕ fields at

the test glacier (Upernavik, Fig. S1 for location) simulated by (a) GlaDS, and (b) the ANN. The

Root-Mean-Square Error (RMSE) of the ANN with respect to GlaDS is shown in (c). Time series

(d) of ϕ at specific grid points simulated by GlaDS (dashed lines) and the ANN (solid lines), with

color-coded locations shown in (a). Performance statistics (e) of the ANN with respect to GlaDS

evaluated at all the grid points of the test glacier for all the 1975-2009 time steps.

Figure 3. Sensitivity experiments (a) for number of years included in the calibration data,

with evaluation on the 2005-2009 test years. Sensitivity experiments (b) for number of glacier

domains included in the calibration data, with evaluation on the test Upernavik glacier domain.

Leave-one-out experiments (c) in which each calibration glacier domain is separately excluded

from the calibration data, with evaluation on the test Upernavik glacier domain. Dashed lines

show no performance change with respect to the model calibrated with the default calibration

data (30,9,’None’ in a,b,c).
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reduced down to 21 years. Small accuracy variations down to this limit are likely due181

to the inherent randomness in the training procedure of neural networks, through the182

parameter initialization method and the optimization algorithm. If calibration years are183

reduced to 18 years or less, performance metrics decrease and show more volatility. RMSE184

is increased by 21 % for 18 years, and by >250% for <6 years of calibration data.185

3.4 Sensitivity to number of calibration glaciers186

We also perform a sensitivity analysis to the number of glacier domains included187

in the calibration. Our initial calibration data set consists of seven glaciers, two of which188

have been split in two to match with the ANN domain input size, thus resulting in nine189

distinct glacier domains for calibration (see Supporting Information). Here, we sequen-190

tially drop one additional random glacier domain from the calibration data, and eval-191

uate the ANN performance metrics always on the same test glacier (Upernavik).192

Figure 3b shows the sensitivity of the performance metrics to the number of cal-193

ibration glaciers. Accuracy decrease is minor when the calibration data are reduced to194

8 and 7 domains, except for increases in the absolute bias. However, we observe a strong195

deterioration in accuracy for calibration data sets of 6 or fewer glacier domains. At 4 do-196

mains, the increase in RMSE reaches 21%. The ANN accuracy has levelled off for >6197

glacier domains, showing that we have used sufficient calibration data.198

Finally, we investigate if any single glacier domain is disproportionately important199

to the ANN accuracy at the test glacier. We repeat the ANN training with each one of200

the 9 calibration glacier domains left out of the calibration data, and then evaluate per-201

formance metrics on the test glacier (Fig. 3c). In agreement with the results from ex-202

cluding only a single glacier domain shown above, changes in performance metrics are203

mostly small. For some of these leave-one-out experiments, performance metrics even204

improve slightly. The maximal increase in RMSE is 10.6 %, occurring when Koge Bugt205

glacier is left out (Fig. 3c). These results show that the ANN calibration is not exces-206

sively sensitive to any particular glacier. This verifies that the ANN does not predict at207

an out-of-sample glacier based only on the characteristics from the most similar glacier208

seen in training, but rather that it learns general relationships controlling ϕ patterns across209

different glaciological contexts.210

3.5 Ice sheet model forcing211

We now demonstrate that our ANN emulator can readily be used as forcing for an212

ice sheet model. We run the Ice-sheet and Sea-level System Model (Larour et al., 2012)213

at the test glacier of our data set: Upernavik (see Supporting Information for simula-214

tion details). We perform two 1975-2009 simulations: one forced with pw from GlaDS215

output (GlaDS-forced run), and the other with pw from the ANN (ANN-forced run). Ex-216

cept for the pw forcing, the two simulations share identical initial conditions, climatic217

forcing, and other parameterizations, thus isolating differences in ice thickness and ice218

flow caused by discrepancies in the ANN emulation of GlaDS.219

Figures 4a and 4b show the change in ice thickness (∆Hice) over the 35 years of220

simulations for the GlaDS-forced and ANN-forced runs, respectively. The patterns of ∆Hice221

are very close between these two runs, which is confirmed at a grid point level (Fig. 4c,222

R2=0.88). To quantify ice flow variability, we compute the temporal standard deviation223

in ice velocity (σ (uice)) at each grid point. For this metric also, the GlaDS-forced and224

ANN-forced runs are in close agreement throughout the domain (Fig. 4d, 4e). However,225

σ (uice) is slightly underestimated by the ANN-forced run at the glacier terminus, espe-226

cially at the northernmost branch where we observed the modest bias on ϕ of the ANN227

(Fig. 2c, 2d). At the two other branches, σ (uice) in our two simulations agree well. Through-228

out the domain, the ANN-forced run explains 78% of the variance in σ (uice) of the GlaDS-229

–7–
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Figure 4. Results of 1975-2009 ice sheet model runs at the test glacier (Upernavik), with

subglacial hydrology forcing from GlaDS (a,d) and from the ANN (b,e). Maps show ice thickness

change (a,b, variable ∆Hice), and standard deviation in ice velocities (d,e, variable σ (uice)) over

1975-2009. Performance of the ANN-forced run with respect to the GlaDS-forced run in ∆Hice

(c) and σ (uice) (f). Note the logarithmic colorbar in (d,e) and axes in (f).

forced run (evaluated on logarithmic scale). The previous sections demonstrated the high230

accuracy of the ANN in reproducing ϕ spatio-temporal evolution as modeled by GlaDS.231

This section shows that this accuracy translates into dynamical ice sheet model results232

being only weakly sensitive to substituting our ANN for GlaDS to prescribe the pw forc-233

ing.234

In terms of computation, savings are large: simulating the 1975-2009 period in GlaDS235

over the Upernavik domain requires 859.9 CPU-hours, compared to 1.0 CPU-hour for236

predictions from our ANN on an identical core, i.e., close to O(103) faster. Finally, the237

35-year GlaDS simulation required 268 times more CPU-hours than the ice sheet model238

simulation itself (3.2 CPU-hours), showing that subglacial hydrology models are a ma-239

jor computational bottleneck for large-scale ice sheet simulations.240

4 Discussion241

Our ANN produces realistic spatio-temporal patterns of subglacial hydraulic po-242

tential. It is skillful at temporal and spatial generalization on out-of-sample cases, when243

trained on as few as seven glacier domains and two decades of data. We do find small244

discrepancies between the ANN and GlaDS ϕ outputs, typically ranging between 0.2 and245

1.5 MPa. Such values are smaller than discrepancies between subglacial hydrology mod-246

els calculated in a recent intercomparison study (de Fleurian et al., 2018). Note that this247

comparison is not exact, because the intercomparisons used idealized configurations, whereas248

we use realistic Greenland glacier configurations. Still, because subglacial hydrology mod-249

els are themselves an imperfect representation of real subglacial hydrology, the ANN out-250

put falling within typical inter-model spread reinforces our confidence that the ANN per-251

forms similarly to state-of-the-art numerical models.252

Despite the demonstrated generalization capabilities of our ANN, we emphasize that253

deep learning models are prone to large errors, and possibly implausible behavior, when254

–8–
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used to extrapolate beyond their range of training conditions (Rasp et al., 2018; Reich-255

stein et al., 2019). Training data should encompass the range of meltwater runoff and256

glaciological conditions that will be targeted for predictions of the subglacial hydrology257

deep learning model. For future Greenland ice sheet projections, training should include258

high-runoff forcing, as surface melting is predicted to increase (Fettweis et al., 2013). We259

have verified the quality of our ANN training through sensitivity analyses, demonstrat-260

ing that calibration data are sufficient, and that the ANN does not overfit but has learned261

general spatio-temporal relationships inherent to subglacial hydrology.262

The ANN presented in this study, and machine learning techniques more gener-263

ally, provide solutions to the extreme computational expense of running subglacial hy-264

drology models in realistic ice sheet simulations. In addition to subglacial hydrology, ma-265

chine learning techniques could also potentially replace other inaccurate parameteriza-266

tions of ice sheet processes, where sufficient observations and/or high-fidelity model out-267

put exist to use as training data. For example, the physics of iceberg calving remain chal-268

lenging to simulate, but capturing observed temporal dynamics of calving rates could269

be the target of machine learning parameterizations. As another example, such param-270

eterizations can aim to represent ice sheet surface mass balance at fine scales without271

the need for expensive climate model downscaling, as has already been demonstrated for272

Alpine glaciers (Bolibar et al., 2020) and for the Antarctic Peninsula (van der Meer et273

al., 2023).274

Observations of subglacial water pressure are scarce, especially when considering275

the large data requirements for deep learning. Thus, our emulator has been calibrated276

exclusively with output from high-fidelity models, which may themselves be biased. The277

value of observations could be exploited through pre-training on model output followed278

by fine-tuning on existing, spatio-temporally sparse observations (e.g., Rasp & Thuerey,279

2020). In addition, there are other possible future avenues for improving this deep learn-280

ing emulator. Associating the convolutional nature of our ANN with recurrent neural281

networks would allow to simulate temporal dependencies explicitly, in addition to spa-282

tial patterns. Temporal dependencies are here accounted for in an ad-hoc manner through283

our processing of inputs (see Supporting Information). Also, here the coupling of the ANN284

and the ice sheet model is one-way; the ANN is run first, and its output used as forc-285

ing to the ice sheet model. This approach allows the subglacial hydrology emulator to286

be used directly with any ice sheet model. Tight two-way coupling would capture feed-287

back processes between subglacial hydrology and changes in ice sheet geometry and ve-288

locities, but requires implementation of the ANN within the source code of an ice sheet289

model. The lack of deep learning libraries in low-level languages, which are the basis of290

most modern ice sheet and climate model architectures, makes such implementation chal-291

lenging (Partee et al., 2022). Recent development of new ice sheet models within high-292

level languages (e.g., Shapero et al., 2021) hold promise for better integration of machine293

learning directly into ice sheet models.294

5 Conclusion295

Our study demonstrates that deep learning techniques enable simulation of sub-296

glacial hydrology for ice sheet model forcing. Our emulator reproduces output of a state-297

of-the-art subglacial hydrology model with great fidelity, strong generalization skills, and298

O(103) savings in computation time. This advance has the potential to enable coupled299

simulations of ice sheet flow and evolving subglacial hydrology over entire ice sheets on300

centennial and longer time scales. Our work also demonstrates how machine learning tech-301

niques can be adopted in the ice sheet modeling community to resolve current issues re-302

lated to knowledge gaps and computational bottlenecks. This general methodology is303

not limited to emulating subglacial hydrology models, but can potentially improve the304

representation of many other ice sheet model processes. Recent advances in computa-305
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tional capabilities and machine learning will, in parallel with traditional ice sheet model306

development, bring key improvements in predictions of ice sheet response to climate change.307

6 Open Research308

Model code is openly available at: https://doi.org/10.5281/zenodo.8006962309

The code includes all scripts to run GlaDS, to process data, to train the ANN, and310

to predict with the ANN. The input files, hydrology model results, trained ANN param-311

eter files, and final ANN predictions at the 8 glaciers of this study are included. Detailed312

data and code descriptions are provided.313
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Abstract12

Subglacial drainage networks regulate the response of ice sheet flow to surface meltwa-13

ter input to the subglacial environment. Simulating subglacial hydrology evolution is crit-14

ical to projecting ice sheet sensitivity to climate, and contribution to sea-level change.15

However, current numerical subglacial hydrology models are computationally expensive,16

and, consequently, evolving subglacial hydrology is neglected in large-scale ice sheet sim-17

ulations. We present a deep learning emulator of a state-of-the-art subglacial hydrology18

model, trained at multiple Greenland glaciers. Our emulator performs strongly in both19

temporal (R2 >0.99) and spatial (R2 >0.96) generalization, offers high computational20

savings, and can be used to force numerical ice sheet models. This will enable century-21

and large-scale ice sheet model simulations, including interactions between ice flow and22

increased meltwater input to the subglacial environment. Generally, our work demon-23

strates that machine learning can further improve ice sheet models, reduce computational24

bottlenecks, and exploit information from high-fidelity models and novel observational25

platforms.26

Plain Language Summary27

Meltwater at the surface of ice sheets can drain to the subglacial environment, lu-28

bricate the bed, and influence ice sheet flow. Complex numerical subglacial hydrology29

models represent the subglacial drainage system, but are too computationally expensive30

to be included in large-scale and long-term ice sheet simulations. Consequently, model31

predictions of future ice sheet contribution to sea-level rise ignore ice flow modulation32

by evolving subglacial hydrology. Here, we use deep learning to emulate a state-of-the-33

art subglacial hydrology model. The emulator can directly force large-scale ice sheet mod-34

els to capture ice flow sensitivity to subglacial hydrology. The computational speed and35

accuracy of our emulator show the potential to use machine learning to efficiently incor-36

porate previously neglected processes into ice sheet models.37

1 Introduction38

The Greenland ice sheet has experienced accelerating mass loss since the early 1990s39

(Otosaka et al., 2023). Ice loss has been driven by increasing surface melt (Fettweis et40

al., 2016) and accelerating ice flow into the ocean (King et al., 2020). These two processes41

are linked by surface meltwater drainage into the subglacial environment. The evolution42

of the subglacial drainage system in response to meltwater input determines the subglacial43

water pressure, which regulates the speed of ice sliding over the bed (Nienow et al., 2017).44

Observations have demonstrated a strong sensitivity of ice flow speed to meltwater sup-45

ply to the bed on timescales ranging from days to months (Zwally et al., 2002; Shepherd46

et al., 2009; Smith et al., 2021). The subglacial drainage system modulates this sensi-47

tivity, and there is no simple relationship between meltwater forcing and ice flow speed,48

due to the complexities of subglacial hydrology (Bartholomew et al., 2011; van de Wal49

et al., 2015).50

Subglacial hydrology models simulate the evolution of subglacial water pressure un-51

der different conditions of ice sheet geometry and meltwater input (Werder et al., 2013;52

de Fleurian et al., 2018). They represent the transient evolution of the subglacial drainage53

system, are highly complex, and require many parameters and substantial computational54

expense (Werder et al., 2013; Hoffman et al., 2016). When applied to individual Green-55

land glaciers, studies have shown that accurately representing the evolution of the sub-56

glacial hydrology system with such complex models is necessary to explain observed vari-57

ability in ice flow (Hewitt, 2013; Hoffman et al., 2016; Ehrenfeucht et al., 2022). How-58

ever, their computational expense prohibits long, ice sheet scale simulations. In contrast,59

simple first-order formulations of the growth and decay of subglacial water flux do ex-60

ist, facilitating large-scale simulations (Kazmierczak et al., 2022). But these formulations61

–2–



manuscript submitted to Geophysical Research Letters

do not represent the different drainage components and assume a constant transmissiv-62

ity. As such, they have critical limitations when considering high meltwater input sce-63

narios, complex topographies, or reproducing realistic variability in subglacial hydrol-64

ogy and ice flow (de Fleurian et al., 2018).65

Most subglacial hydrology models divide subglacial drainage into distributed and66

channelized systems (Schoof, 2010; Werder et al., 2013; de Fleurian et al., 2018). The67

former is typical of the early melt season, when the subglacial hydrology system is in-68

efficient and water pressure increases strongly with meltwater supply. Later in the melt69

season, the system develops into a channelized system, efficiently evacuating meltwater,70

and causes water pressure to decrease with increasing meltwater input (Schoof, 2010; Bartholomew71

et al., 2011; Cowton et al., 2013). Ice flow variability is sensitive to the representation72

of, and transitions between different forms of drainage. Nevertheless, because of their73

computational expense, subglacial hydrology models are not included in model simula-74

tions at ice sheet scale (Goelzer et al., 2020; Seroussi et al., 2020). Consequently, cur-75

rent sea-level projections ignore a critical process regulating ice flow.76

The climate modeling community has used machine learning techniques success-77

fully to parameterize processes unresolved in coarse resolution global models (e.g., Brenowitz78

& Bretherton, 2018; Rasp et al., 2018). In particular, artificial neural networks (ANNs)79

are particularly powerful tools for parameterizing complex relationships between input80

and output variables, as they are capable of approximating any continuous function (the81

universal approximation theorem, Hornik et al., 1989). Furthermore, recent improvements82

in computational hardware, software, and optimization techniques have led to impor-83

tant ANN developments in multiple fields, including the Earth sciences (LeCun et al.,84

2015; Reichstein et al., 2019). Once trained, ANN models are computationally efficient,85

and ANNs have been used previously to emulate glacier flow models (Brinkerhoff et al.,86

2021; Jouvet et al., 2021). In this study, we use deep learning to enable representation87

of subglacial hydrology in large-scale ice sheet model simulations. Specifically, we develop88

an ANN emulator of the Glacier Drainage System model (GlaDS, Werder et al., 2013),89

an advanced and computationally expensive subglacial hydrology model. More gener-90

ally, our work is a proof of concept for an important advancement in ice sheet model-91

ing: we demonstrate that deep learning techniques can replace computationally-demanding92

or poorly constrained processes in large-scale ice sheet models.93

2 Methods94

We run GlaDS for 40 years at eight major Greenland glaciers (Petermann, Jakob-95

shavn, Helheim, Kangerlussuaq, Humboldt, Koge Bugt, Russell, and Upernavik, see Fig.96

S1 for locations). The glacier geometries and ice flow velocities are taken from present-97

day observations (Joughin et al., 2017; Morlighem et al., 2017), and the meltwater runoff98

forcing from the 1970-2009 output of the diurnal Energy Balance Model (Krebs-Kanzow99

et al., 2020) (see Supporting Information). GlaDS simulates the evolution of the sub-100

glacial hydraulic potential, ϕ, in time and space by representing both channelized and101

distributed drainage. Accurate representation of ϕ in ice sheet models is critical, as it102

directly determines the subglacial water pressure, pw. In turn, pw determines the effec-103

tive pressure at the ice-bed interface, N :104


N = pice − pw

pw = ϕ− gρwB

pice = gρiceHice

, (1)

where pice is ice pressure [Pa], g is gravitational acceleration [m s-2], Hice is thickness105

of the above-lying ice column [m], B is bed elevation [m], and ρw and ρice are water and106

ice density [kg m-3], respectively. Critically, N [Pa] is a key variable in basal sliding laws107
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for ice flow (Budd et al., 1984; Hewitt, 2013). We run GlaDS at a 2-hourly time step to108

preserve numerical stability.109

Dynamics of ϕ are governed by the amount of surface meltwater draining through110

the ice sheet to the bed, followed by the routing of the water through the subglacial sys-111

tem. The goal of our ANN is to predict ϕ based on ice sheet state and meltwater runoff112

forcing, such that our pw emulation accounts for spatio-temporal evolution of subglacial113

hydrology. Specifically, our ANN uses as inputs ice thickness, ice velocities, bedrock to-114

pography, and meltwater runoff fields, as well as moulin locations where meltwater reaches115

the subglacial domain. All these variables are common variables, parameters, or inputs116

to typical ice sheet models. Similar to current subglacial hydrology models, our ANN117

is aimed at one-way coupling with ice sheet models, i.e., it needs to be run prior to the118

ice sheet model and the ANN output is subsequently used as a forcing to the ice sheet119

model. We discuss prospects for full two-way coupling in the Discussion section.120

Our ANN is a convolutional neural network, based on the U-Net architecture (Ronneberger121

et al., 2015). Our ANN thus uses two-dimensional input fields, and outputs a two-dimensional122

ϕ field at any given time step (see Supporting Information). In total, the ANN has 259,953123

trainable parameters that are optimized such that ANN predictions of ϕ match train-124

ing targets with accuracy. We calibrate our ANN to the GlaDS 1975-2004 output at seven125

of the eight glaciers. We keep the last 5 years (2005-2009) of output at these seven glaciers126

as test data to evaluate the temporal generalization capabilities of the ANN. Further-127

more, we keep all the output of the eighth glacier for test data in order to evaluate the128

ANN spatial generalization capabilities. All the GlaDS output test data were totally un-129

seen by the deep learning algorithm or the authors during the calibration. The calibra-130

tion data are separated into training data, used to optimize the ANN parameters, and131

validation data, used to optimize hyperparameters and to avoid overfitting (see Support-132

ing Information). All the results presented in the next sections have been computed on133

the test data.134

3 Results135

3.1 Temporal Generalization Performance136

To assess the ability of the ANN to reproduce GlaDS hydraulic potential (ϕ) fields,137

we start by comparing their respective outputs at the 7 calibration glaciers over the last138

5 years of simulations (2005-2009), which have not been used for the ANN training. Fig-139

ures 1a and 1b show for one of the calibration glaciers (Helheim glacier) that the mean140

ϕ field of the ANN over these 5 test years reproduces the spatial patterns of GlaDS out-141

put well. In particular, the ANN captures the radial patterns of high ϕ values and vari-142

ability centered at moulin locations, where meltwater runoff drains to the subglacial en-143

vironment. The ANN performs well throughout the domain, as the root-mean-square144

error (RMSE) is mostly lower than 0.5 MPa (Fig. 1c). The temporal dynamics are also145

captured well, as ϕ time series show close correspondence between ANN and GlaDS out-146

puts in most of the domain (Fig. 1d). The ANN captures the different ranges in season-147

ality and inter-annual variability of ϕ. It also reproduces the asymmetry between early148

and late melt season, which is due to changing drainage efficiency (Nienow et al., 2017).149

In Figure 1d, the orange curve shows a time series selected within the high RMSE area150

(Fig. 1c). This example illustrates that the ANN still captures the temporal variabil-151

ity, but is biased low at this particular location.152

Figure 1e shows the ANN performance over the 5 years of test data at all the seven153

calibration glaciers, demonstrating low bias and RMSE. Furthermore, the ANN explains154

>99% of the variance in GlaDS ϕ output, as quantified by the coefficient of determina-155

tion (R2). These results demonstrate that the ANN is able to predict ϕ with good ac-156

curacy over years, and thus meltwater input conditions, unseen during training.157
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Figure 1. Temporal generalization performance of the ANN over the test period. Maps of

mean 2005-2009 ϕ fields at one calibration glacier (Helheim, Fig. S1 for location) simulated by

(a) GlaDS, and (b) the ANN. The Root-Mean-Square Error (RMSE) of the ANN with respect to

GlaDS is shown in (c). Time series (d) of ϕ at specific grid points simulated by GlaDS (dashed

lines) and the ANN (solid lines), with color-coded locations shown in (a). Performance statistics

(e) of the ANN with respect to GlaDS evaluated at all the grid points of the 7 calibration glaciers

for all the 2005-2009 time steps.

3.2 Spatial Generalization Performance158

We now perform a similar evaluation, but at the test glacier (Upernavik), not in-159

cluded in the ANN calibration. This task presents a harder challenge, as both years of160

meltwater runoff and glaciological characteristics have not been used in calibration. The161

time-mean spatial patterns of ϕ at the test glacier are well-reproduced (Fig. 2a, 2b). The162

RMSE is low throughout the domain (Fig. 2c), except on a small portion near the glacier163

terminus. The time series shown in Figure 2d demonstrate that the ANN performance164

in reproducing temporal dynamics at seasonal and inter-annual scales are similar to its165

performance on calibration glaciers (compare with Fig. 1d). Here also, the orange lines166

in Fig. 2d show a time series corresponding to a low-performance location. Again, the167

ANN still captures temporal dynamics correctly, but has a consistent bias over the time168

series at this location. Finally, the metrics of performance for this test glacier show an169

RMSE lower than 0.56 MPa, a small positive bias of 0.24 MPa, and R2 >0.96.170

3.3 Sensitivity to number of calibration years171

To calibrate the ANN, we have used 30 years (1975-2004) of GlaDS output at the172

calibration glaciers, and preserved 5 years (2005-2009) of output for testing (see Support-173

ing Information). In this section, we investigate the sensitivity of ANN accuracy to the174

number of calibration years. Starting with all 30 years of available GlaDS output, we175

reduce the calibration data by 3-year increments, re-train the ANN at each increment,176

and evaluate performance metrics always on the 2005-2009 years.177

Figure 3a shows the ratios in the R2, RMSE and absolute bias metrics for each sen-178

sitivity experiment, with respect to the results computed when all the 30 calibration years179

are used in the ANN calibration. There is no decrease in accuracy for calibration data180
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Figure 2. Spatial generalization performance of the ANN. Maps of mean 1975-2009 ϕ fields at

the test glacier (Upernavik, Fig. S1 for location) simulated by (a) GlaDS, and (b) the ANN. The

Root-Mean-Square Error (RMSE) of the ANN with respect to GlaDS is shown in (c). Time series

(d) of ϕ at specific grid points simulated by GlaDS (dashed lines) and the ANN (solid lines), with

color-coded locations shown in (a). Performance statistics (e) of the ANN with respect to GlaDS

evaluated at all the grid points of the test glacier for all the 1975-2009 time steps.

Figure 3. Sensitivity experiments (a) for number of years included in the calibration data,

with evaluation on the 2005-2009 test years. Sensitivity experiments (b) for number of glacier

domains included in the calibration data, with evaluation on the test Upernavik glacier domain.

Leave-one-out experiments (c) in which each calibration glacier domain is separately excluded

from the calibration data, with evaluation on the test Upernavik glacier domain. Dashed lines

show no performance change with respect to the model calibrated with the default calibration

data (30,9,’None’ in a,b,c).
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reduced down to 21 years. Small accuracy variations down to this limit are likely due181

to the inherent randomness in the training procedure of neural networks, through the182

parameter initialization method and the optimization algorithm. If calibration years are183

reduced to 18 years or less, performance metrics decrease and show more volatility. RMSE184

is increased by 21 % for 18 years, and by >250% for <6 years of calibration data.185

3.4 Sensitivity to number of calibration glaciers186

We also perform a sensitivity analysis to the number of glacier domains included187

in the calibration. Our initial calibration data set consists of seven glaciers, two of which188

have been split in two to match with the ANN domain input size, thus resulting in nine189

distinct glacier domains for calibration (see Supporting Information). Here, we sequen-190

tially drop one additional random glacier domain from the calibration data, and eval-191

uate the ANN performance metrics always on the same test glacier (Upernavik).192

Figure 3b shows the sensitivity of the performance metrics to the number of cal-193

ibration glaciers. Accuracy decrease is minor when the calibration data are reduced to194

8 and 7 domains, except for increases in the absolute bias. However, we observe a strong195

deterioration in accuracy for calibration data sets of 6 or fewer glacier domains. At 4 do-196

mains, the increase in RMSE reaches 21%. The ANN accuracy has levelled off for >6197

glacier domains, showing that we have used sufficient calibration data.198

Finally, we investigate if any single glacier domain is disproportionately important199

to the ANN accuracy at the test glacier. We repeat the ANN training with each one of200

the 9 calibration glacier domains left out of the calibration data, and then evaluate per-201

formance metrics on the test glacier (Fig. 3c). In agreement with the results from ex-202

cluding only a single glacier domain shown above, changes in performance metrics are203

mostly small. For some of these leave-one-out experiments, performance metrics even204

improve slightly. The maximal increase in RMSE is 10.6 %, occurring when Koge Bugt205

glacier is left out (Fig. 3c). These results show that the ANN calibration is not exces-206

sively sensitive to any particular glacier. This verifies that the ANN does not predict at207

an out-of-sample glacier based only on the characteristics from the most similar glacier208

seen in training, but rather that it learns general relationships controlling ϕ patterns across209

different glaciological contexts.210

3.5 Ice sheet model forcing211

We now demonstrate that our ANN emulator can readily be used as forcing for an212

ice sheet model. We run the Ice-sheet and Sea-level System Model (Larour et al., 2012)213

at the test glacier of our data set: Upernavik (see Supporting Information for simula-214

tion details). We perform two 1975-2009 simulations: one forced with pw from GlaDS215

output (GlaDS-forced run), and the other with pw from the ANN (ANN-forced run). Ex-216

cept for the pw forcing, the two simulations share identical initial conditions, climatic217

forcing, and other parameterizations, thus isolating differences in ice thickness and ice218

flow caused by discrepancies in the ANN emulation of GlaDS.219

Figures 4a and 4b show the change in ice thickness (∆Hice) over the 35 years of220

simulations for the GlaDS-forced and ANN-forced runs, respectively. The patterns of ∆Hice221

are very close between these two runs, which is confirmed at a grid point level (Fig. 4c,222

R2=0.88). To quantify ice flow variability, we compute the temporal standard deviation223

in ice velocity (σ (uice)) at each grid point. For this metric also, the GlaDS-forced and224

ANN-forced runs are in close agreement throughout the domain (Fig. 4d, 4e). However,225

σ (uice) is slightly underestimated by the ANN-forced run at the glacier terminus, espe-226

cially at the northernmost branch where we observed the modest bias on ϕ of the ANN227

(Fig. 2c, 2d). At the two other branches, σ (uice) in our two simulations agree well. Through-228

out the domain, the ANN-forced run explains 78% of the variance in σ (uice) of the GlaDS-229
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Figure 4. Results of 1975-2009 ice sheet model runs at the test glacier (Upernavik), with

subglacial hydrology forcing from GlaDS (a,d) and from the ANN (b,e). Maps show ice thickness

change (a,b, variable ∆Hice), and standard deviation in ice velocities (d,e, variable σ (uice)) over

1975-2009. Performance of the ANN-forced run with respect to the GlaDS-forced run in ∆Hice

(c) and σ (uice) (f). Note the logarithmic colorbar in (d,e) and axes in (f).

forced run (evaluated on logarithmic scale). The previous sections demonstrated the high230

accuracy of the ANN in reproducing ϕ spatio-temporal evolution as modeled by GlaDS.231

This section shows that this accuracy translates into dynamical ice sheet model results232

being only weakly sensitive to substituting our ANN for GlaDS to prescribe the pw forc-233

ing.234

In terms of computation, savings are large: simulating the 1975-2009 period in GlaDS235

over the Upernavik domain requires 859.9 CPU-hours, compared to 1.0 CPU-hour for236

predictions from our ANN on an identical core, i.e., close to O(103) faster. Finally, the237

35-year GlaDS simulation required 268 times more CPU-hours than the ice sheet model238

simulation itself (3.2 CPU-hours), showing that subglacial hydrology models are a ma-239

jor computational bottleneck for large-scale ice sheet simulations.240

4 Discussion241

Our ANN produces realistic spatio-temporal patterns of subglacial hydraulic po-242

tential. It is skillful at temporal and spatial generalization on out-of-sample cases, when243

trained on as few as seven glacier domains and two decades of data. We do find small244

discrepancies between the ANN and GlaDS ϕ outputs, typically ranging between 0.2 and245

1.5 MPa. Such values are smaller than discrepancies between subglacial hydrology mod-246

els calculated in a recent intercomparison study (de Fleurian et al., 2018). Note that this247

comparison is not exact, because the intercomparisons used idealized configurations, whereas248

we use realistic Greenland glacier configurations. Still, because subglacial hydrology mod-249

els are themselves an imperfect representation of real subglacial hydrology, the ANN out-250

put falling within typical inter-model spread reinforces our confidence that the ANN per-251

forms similarly to state-of-the-art numerical models.252

Despite the demonstrated generalization capabilities of our ANN, we emphasize that253

deep learning models are prone to large errors, and possibly implausible behavior, when254
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used to extrapolate beyond their range of training conditions (Rasp et al., 2018; Reich-255

stein et al., 2019). Training data should encompass the range of meltwater runoff and256

glaciological conditions that will be targeted for predictions of the subglacial hydrology257

deep learning model. For future Greenland ice sheet projections, training should include258

high-runoff forcing, as surface melting is predicted to increase (Fettweis et al., 2013). We259

have verified the quality of our ANN training through sensitivity analyses, demonstrat-260

ing that calibration data are sufficient, and that the ANN does not overfit but has learned261

general spatio-temporal relationships inherent to subglacial hydrology.262

The ANN presented in this study, and machine learning techniques more gener-263

ally, provide solutions to the extreme computational expense of running subglacial hy-264

drology models in realistic ice sheet simulations. In addition to subglacial hydrology, ma-265

chine learning techniques could also potentially replace other inaccurate parameteriza-266

tions of ice sheet processes, where sufficient observations and/or high-fidelity model out-267

put exist to use as training data. For example, the physics of iceberg calving remain chal-268

lenging to simulate, but capturing observed temporal dynamics of calving rates could269

be the target of machine learning parameterizations. As another example, such param-270

eterizations can aim to represent ice sheet surface mass balance at fine scales without271

the need for expensive climate model downscaling, as has already been demonstrated for272

Alpine glaciers (Bolibar et al., 2020) and for the Antarctic Peninsula (van der Meer et273

al., 2023).274

Observations of subglacial water pressure are scarce, especially when considering275

the large data requirements for deep learning. Thus, our emulator has been calibrated276

exclusively with output from high-fidelity models, which may themselves be biased. The277

value of observations could be exploited through pre-training on model output followed278

by fine-tuning on existing, spatio-temporally sparse observations (e.g., Rasp & Thuerey,279

2020). In addition, there are other possible future avenues for improving this deep learn-280

ing emulator. Associating the convolutional nature of our ANN with recurrent neural281

networks would allow to simulate temporal dependencies explicitly, in addition to spa-282

tial patterns. Temporal dependencies are here accounted for in an ad-hoc manner through283

our processing of inputs (see Supporting Information). Also, here the coupling of the ANN284

and the ice sheet model is one-way; the ANN is run first, and its output used as forc-285

ing to the ice sheet model. This approach allows the subglacial hydrology emulator to286

be used directly with any ice sheet model. Tight two-way coupling would capture feed-287

back processes between subglacial hydrology and changes in ice sheet geometry and ve-288

locities, but requires implementation of the ANN within the source code of an ice sheet289

model. The lack of deep learning libraries in low-level languages, which are the basis of290

most modern ice sheet and climate model architectures, makes such implementation chal-291

lenging (Partee et al., 2022). Recent development of new ice sheet models within high-292

level languages (e.g., Shapero et al., 2021) hold promise for better integration of machine293

learning directly into ice sheet models.294

5 Conclusion295

Our study demonstrates that deep learning techniques enable simulation of sub-296

glacial hydrology for ice sheet model forcing. Our emulator reproduces output of a state-297

of-the-art subglacial hydrology model with great fidelity, strong generalization skills, and298

O(103) savings in computation time. This advance has the potential to enable coupled299

simulations of ice sheet flow and evolving subglacial hydrology over entire ice sheets on300

centennial and longer time scales. Our work also demonstrates how machine learning tech-301

niques can be adopted in the ice sheet modeling community to resolve current issues re-302

lated to knowledge gaps and computational bottlenecks. This general methodology is303

not limited to emulating subglacial hydrology models, but can potentially improve the304

representation of many other ice sheet model processes. Recent advances in computa-305
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tional capabilities and machine learning will, in parallel with traditional ice sheet model306

development, bring key improvements in predictions of ice sheet response to climate change.307

6 Open Research308

Model code is openly available at: https://doi.org/10.5281/zenodo.8006962309

The code includes all scripts to run GlaDS, to process data, to train the ANN, and310

to predict with the ANN. The input files, hydrology model results, trained ANN param-311

eter files, and final ANN predictions at the 8 glaciers of this study are included. Detailed312

data and code descriptions are provided.313
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Jouvet, G., Cordonnier, G., Kim, B., Lüthi, M. P., Vieli, A., & Aschwanden, A.369

(2021). Deep learning speeds up ice flow modelling by several orders of magni-370

tude. Journal of Glaciology , 68 , 651 - 664.371

Kazmierczak, E., Sun, S., Coulon, V., & Pattyn, F. (2022). Subglacial hydrology372

modulates basal sliding response of the antarctic ice sheet to climate forcing.373

The Cryosphere.374

King, M. D., Howat, I. M., Candela, S. G., Noh, M.-J., Jeong, S., Noël, B. P. Y., . . .375
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the study. Text S1 details the simulations performed with the Glacier Drainage System

model. Text S2 details the architecture of the artificial neural network (ANN) developed

in this study. Text S3 details our selection and processing of inputs for the ANN. Text S4

details how training, validation, and test data have been separated. Text S5 details the

training procedure of the ANN. Text S6 details the configuration of the ice sheet model

simulations, which are presented in section Ice sheet model forcing of the main text. Text

S7 presents an additional sensitivity analysis to quantify the importance of each input in
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the performance of the ANN.

Table S1 provides the parameters used for the Glacier Drainage System model. Table

S2 shows the architecture of the ANN. Table S3 shows the separation between training,

validation, and test data. Figure S1 shows the configuration of the glaciers used for

the subglacial hydrology model simulations. Figure S2 shows the results of the input

importance sensitivity analysis.

All references are provided here, as well as in the reference list of the main text.
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Text S1: Hydrology model simulations

We use the Glacier Drainage System model (GlaDS, Werder et al., 2013) implemented

into the Ice-sheet and Sea-level System Model (ISSM, Larour et al., 2012) to generate data

for this study. GlaDS is run separately over the seven calibration glaciers (Petermann,

Jakobshavn, Helheim, Kangerlussuaq, Humboldt, Koge Bugt, and Russell, see Fig. S1)

for 40 years with a two hour time step, saving outputs every three days. Outputs from

these simulations are used to train, validate, and test our Artificial Neural Network (ANN)

in mapping a set of inputs to a spatial field of hydraulic potential (ϕ). All domains have

dimensions 100× 100 km2, except Petermann and Jakobshavn which have dimensions of

100 × 200 and 200 × 100 km2, respectively (Fig. S1). We use a mesh resolution varying

between 800 m in areas of fast ice flow and 2 500 m in areas of slow ice flow. We prescribe

ice velocities from Joughin et al. (2017), and bedrock topography and ice thickness fields

from Morlighem et al. (2017). We note that limited areas need bedrock smoothing to help

with numerical stability of GlaDS for the Helheim, Petermann, and Jakobshavn domains

(14%, 3%, and 4% of the domains, respectively). For our simulations, we integrate surface

runoff over the glacier domains from the diurnal Energy Balance Model over the period

1970-2009 (Krebs-Kanzow et al., 2020). The surface runoff is directed to the bedrock at

30 locations representing moulins. The moulin locations are randomly distributed, under

the conditions that ice thickness is greater than 500 m, ice velocity is greater than 25

m/yr, and that there is at least 10 km distance to the ocean, to the domain borders,

and to any other moulin location (see Fig. S1). We refine the mesh resolution to 800

m around moulin locations to help with numerical stability. At any time step, runoff is

equally partitioned between the 30 moulins.
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We use an ice viscosity parameter corresponding to an ice temperature of 271.15 K in

the parameterization of (Cuffey & Paterson, 2010). The spatial fields of the basal friction

coefficient are obtained through an inversion method, based on the present-day geometry

and ice velocities. GlaDS requires several parameters for the subglacial hydrology system.

We take all the parameter values following the original implementation (Werder et al.,

2013) and the default values of a recent intercomparison of subglacial hydrology models

(de Fleurian et al., 2018). The parameter values of the subglacial hydrology system are

listed in Table S1. Emulating GlaDS with other parameter values would require re-training

the ANN. For the subglacial water system, we use zero-flux boundary conditions on the

domain borders, and fixed hydrostatic ocean pressure at the grounding line. To preserve

numerical stability, GlaDS is run with a 2 hour time step. Numerical instabilities still

appeared in the simulations, in the form of infinite growth of the subglacial hydrological

sheet thickness at some mesh elements on domain boundaries, close to the grounding line,

or close to peripheral ice zones. This was caused by a negative cavity closing term, due

to negative effective pressure values. At such mesh elements, we enforce a zero effective

pressure, i.e, floatation.

In addition to these seven simulations, we perform a simulation at a test glacier (Uper-

navik, Fig. S1h) to generate additional test data. This simulation uses the same strategy

for runoff generation and meshing as described above. The domain of Upernavik is of size

100× 100 km2, and all the GlaDS parameter values remain the same (Table S1).

We note here that GlaDS calculations can lead to unphysical negative water pressure

values. Water pressure, pw is defined as the hydraulic potential, ϕ, minus the elevation

potential: pw = ϕ−ϕm, where ϕm = ρwgB with ρw, g, B being water density, gravitational
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acceleration, and bedrock elevation, respectively. In the GlaDS routine for computing ϕ,

there is no constraint on enforcing that ϕ ≥ ϕm, and negative pw values can arise in areas

with high bed elevation and thin ice thickness (Siu, 2022). This only affects zones of

peripheral ice.

Text S2: Architecture of the Artificial Neural Network

Our ANN is implemented with the Pytorch library (Paszke et al., 2019), and is a

modified version of the U-Net architecture developed in Ronneberger et al. (2015). Our

ANN architecture, detailed in Table S2, consists of an encoding and a decoding path-

way. In the encoding stage, features are extracted from the two-dimensional input fields

and spatial resolution is progressively reduced. Encoding is performed through a series

of down-convolution blocks. Each down-convolution block consists of three operations:

two convolution operations, each with a nonlinear activation function, and one pooling

operation. The convolutions use a 3×3 kernel size, a stride of 1, zero-padding, and a bias

term. We use the ReLU activation function after each convolution:

ReLU(x) = max(0, x). (1)

The pooling operation is a 2× 2 max-pooling, and thus reduces the horizontal resolution

at each down-convolution block by a factor of 2 along each spatial dimension. The number

of output features from the first down-convolution block is 24, and is then doubled for

each subsequent down-convolution block. We experimented with different numbers of

output features from the first down-convolution block, and found that 24 gives optimal

model performance. The last down-convolution does not use pooling and has 94 output

features instead of 96 to allow concatenation of two additional inputs at the end of the

encoding stage. Specifically, we concatenate the time inputs to the 94 features. The time
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inputs are the cosine and sine of the time step (in units of years) multiplied by 2π. The

decoding stage is symmetric to the encoding stage. It consists of up-convolution blocks.

Each up-convolution block consists of four operations: one transpose convolution, one

concatenation, and two convolutions. Every transpose convolution uses a 2×2 kernel size,

halves the number of features, and enhances the horizontal resolution by a factor of 2 along

each spatial dimension. The concatenation process allows to concatenate the features

from the corresponding encoding level, allowing propagation of information from higher-

resolution features. The convolution operations are similar to those from the encoding

stage. We exclude the concatenation operation from the last up-convolution block, as we

found that excluding it improves the spatial smoothness of the results from the ANN, in

better agreement with the validation data. This is explained by not passing information

at the high resolution of the initial data directly to the last up-convolution block, but

rather forcing all features to undergo at least one pooling operation. The final layer of

the ANN is a 1×1 convolution operation. No activation function is applied to this last

convolution, of which the output is the standardized predicted ϕ field.

Text S3: Inputs to the Artificial Neural Network

Because our ANN is a convolutional neural network, its input consists of two-

dimensional images, referred to as input features. We use as input features the bed

topography, the ice thickness, and the ice velocity fields. These input features are fixed

in time, and are therefore the same at any time step. However, they differ between the

seven calibration glaciers, and are thus different for training samples corresponding to the

different glaciers. In addition to these three input features, we use the spatial distribution

of surface meltwater inflow. Surface meltwater inflow is non-zero only at moulin locations,
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over which the meltwater is distributed uniformly at any time step. We integrate the spa-

tial meltwater inflow over different past time periods to be provided as input features to the

ANN. To select these past time periods, we use a feature selection method. This consists

of adding an increasing number of input features until no performance gain is achieved.

In our feature selection method, our baseline case is considering only the instantaneous

meltwater inflow, and meltwater inflow integrated over the previous 10 days. The first

step is to add also meltwater inflow integrated over the previous month. The second step

is to add meltwater inflow integrated over month-minus-1 to month-minus-2. We proceed

iteratively, adding one month of meltwater inflow information at a time. We find that the

optimal combination of features includes meltwater inflow (i) at the current time step,

integrated over (ii) the previous 10 days, (iii) the previous month, (iv) month-minus-1 to

month-minus-2, (v) month-minus-2 to month-minus-3, and (vi) month-minus-3 to month-

minus-4. Including months beyond this time period does not improve model performance,

when evaluated on the validation data. However, through our feature selection process,

we find that adding (vii) the meltwater inflow integrated over the entire previous year

further improves the ANN performance. This feature selection process results in a total

of 12 inputs: 10 two-dimensional input features, and the cosine and sine of the time step.

One input sample thus consists of the 12 inputs for a given glacier at a given time step.

While GlaDS is run at a 2-hourly time step to ensure numerical stability, model outputs

are saved every three days for storage reasons.

The two-dimensional input features have an inherent spatial scale, which our ANN is

sensitive to. For this reason, we consistently train and evaluate our ANN over 100×100

km2 windows. GlaDS runs on an irregular finite-element mesh, but results are bilinearly
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interpolated on a regular 128×128 mesh. It is important to preserve consistency in the

spatial scaling, and using the ANN for predictions over a domain size different than

the domain size used for training would be inappropriate. However, for larger domains

of interest, it is straightforward to use the ANN multiple times over separate 100×100

km2 parts of the domain, and concatenate the results. This is what has been done for the

Jakobshavn and Petermann glaciers in this study, each being separated in two subdomains.

As such, our data set of 8 glaciers corresponds to 10 domains. The ANN could also be

trained, and thus used for predictions, on any other domain size.

As explained in Section Architecture of the Artificial Neural Network, we concatenate

the time input at the end of the encoding stage as cosine and sine of the current time

multiplied by 2π (Table S2). This improves the ANN performance due to the assymetry

between early- and late-melt season behavior of the subglacial hydrology system. The

time inputs are not passed in the first input layer because they are not spatial fields. Still,

passing them at the end of the encoding stage allows the ANN to capture interactions

between time of year and the other inputs through the decoding stage. Each time step is

treated independently by the ANN, but our method of integrating past meltwater inflow

provides, de facto, some temporal dependence. Future work can focus on associating

the convolutional structure of our ANN with recurrent neural networks, which explicitly

simulate temporal dependencies.

Text S4: Separation of training, validation, and test data

The first 5 years (1970-1974) of the GlaDS simulations are discarded, as GlaDS evolves

transiently from an arbitrary initial state. For the seven calibration glaciers, years 1975-

2004 are used as calibration years, and years 2005-2009 are preserved for test data. The
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data of the seven calibration glaciers consist of nine domains because two glaciers (Jakob-

shavn and Petermann) span the size of two domains, and are therefore provided separately

to the ANN. The calibration years are further split between training and validation data,

with 90% (years 1975-2001) and 10% (years 2002-2004) of the data, respectively. For

the test glacier (Upernavik), all the data (years 1975-2009) are preserved for test data.

Furthermore, we proceed to data augmentation by applying three transformations of each

glacier domain and its input fields to use as additional training and validation data.

Data augmentation improves performance of artificial neural networks by increasing the

amount of data for calibration (Lemley et al., 2017). The transformations are a vertical

axial symmetry, a horizontal axial symmetry, and a diagonal axial symmetry. For each

training glacier, one of these transformations is used exclusively as validation data , and

the two others are used as training (years 1975-2001) and validation (years 2002-2004)

data. The splitting of the data between training, validation, and test data is detailed in

Table S3.

Text S5: Training of the Artificial Neural Network

For training efficiency, we standardize every two-dimensional input feature and the

ϕ output feature, such that our variables have zero mean and unit standard deviation.

For predictions, our ANN thus requires inputs standardized accordingly, and predicted

ϕ must be rescaled accordingly. Cosine and sine of time are not scaled, because they

range between -1 and 1. We initialize the parameters of our ANN using the He Normal

initialization method (He et al., 2015). We train our ANN with the training data such

that parameter values are updated through backpropagation by minimizing a loss function

measuring the misfit between ϕ fields predicted by the ANN and the GlaDS output. We
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use the L2 loss function, as it showed better results than when using alternative loss

functions such as mean absolute error or the Huber loss. The L2 loss is defined as:

L(ϕANN) =

√
1

N

∑
i

(ϕi,ANN − ϕi,GlaDS)
2, (2)

where ϕi,GlaDS denotes a ϕ value calculated by GlaDS, ϕi,ANN denotes the corresponding

value of ϕ calculated by the ANN, and ϕANN denotes the full sample of ϕ values calculated

by the ANN, with dimensions determined by the number of samples, and by the number

of pixels in the two-dimensional spatial domain. In the loss calculation, we exclude all

pixels with ice thickness less than 20 m or ice velocity less than 5 m/yr. Simulating ϕ

in such regions is not necessary, as ice flow variability has minimal impact on ice sheet

dynamics. And, because these outlier regions lead to different behaviors of subglacial

hydrology models, we prefer to make the ANN calibration insensitive to these regions.

During training, an epoch consists of passing the entire training data in sequences of

randomly selected batches to the ANN. We use a batch size of 32 samples, as we found

that it results in optimal model performance and training speed. The loss function is

evaluated on the training batch, used to update parameter values via backpropagation,

and on the validation data. Our backpropagation algorithm uses the Adam optimizer

(Kingma & Ba, 2014) with an initial learning rate of 0.001. We use an adaptive learning

rate, decreasing it by a factor of 2 after 5 consecutive epochs without improving the

validation loss. This allows more localized search in the parameter space as the training

procedure approaches a local minimum of the loss function. We stop the training after 10

consecutive epochs without improving the validation loss to avoid overfitting the training

data. The final parameter values saved from the training procedure are those having

led to the best validation loss score. As an additional tool to avoid overfitting, we use
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dropout. Similarly to (Ronneberger et al., 2015), we implement dropout only after the last

convolution operation of the encoding stage (layer 8 in Table S2), and we use a dropout

probability of 0.2. We train separately an ensemble of 20 networks. The training procedure

is identical for these networks, and they only differ due to the random initialization of

the parameters and the randomness of the optimization algorithm. Our final ANN is the

ensemble mean output of these 20 members, as this averaging approach has been shown

to improve deep neural network performance (Lakshminarayanan et al., 2016).

Text S6: Details on ice sheet model runs

The ice sheet model runs at Upernavik glacier, shown in section Ice sheet model runs,

are performed using the Ice sheet and Sea-level System model (Larour et al., 2012). The

ice rheology and basal friction coefficient parameters are kept identical as in the GlaDS

simulations (see Supporting Information). As initial conditions, we use the ice geometry

and ice velocity fields applied in the GlaDS runs. We prescribe a surface mass balance

field that is constant in space and time, which is taken as the mean 1970-2009 surface

mass balance averaged over the domain from the diurnal Energy Balance Model (Krebs-

Kanzow et al., 2020). We start the simulations from 1975, to avoid impacts from the first

5 years of GlaDS run, during which GlaDS evolves from an arbitrary initial state. We

perform a GlaDS-forced run, which applies the pw field as predicted by GlaDS. Similarly,

we perform an ANN-forced run, which applies the pw field as predicted by the ANN. Ice

flow dynamics are coupled to pw through the basal sliding law, for which we use the Budd

sliding law (Budd et al., 1984):

τb = −C2ubN, (3)
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where τb is the basal stress [Pa], ub is the basal ice velocity [m yr-1], and C2 is the basal

friction coefficient, varying in space [m-1 yr]. We also perform a control run, in which the

pw assumes a simple hydrostatic connection to the ocean: pw = −gρwB. The control run

captures the transient changes caused by the initial ice geometry not being in equilibrium.

We subtract these transient changes from the GlaDS-forced and ANN-forced runs when

analyzing the results in terms of ice thickness and ice velocities. As existing ice sheet

sliding laws are not applicable at very low effective pressures, we follow (Ehrenfeucht et

al., 2022) in applying a lower limit on N equal to 6% of the ice overburden pressure.

Text S7: Input importance

We evaluate the importance of each input feature to the quality of the ANN predictions.

To this end, we perturb randomly each input feature individually. After each perturbation,

we use the ANN to predict a ϕ̃ANN field, which is of lower accuracy than the ϕANN field

predicted without input perturbation. To perturb a given input feature, we add white

Gaussian noise of standard deviation 1 to the input feature. We add the noise to the

standardized features. In this way, each input feature is perturbed in a similar fashion,

because all the standardized input features have mean 0 and standard deviation 1 by

construction. The cosine and sine of time are not standardized. As such, we perturb

these variables by their standard deviation, which is approximately 0.67. We evaluate

ϕ̃ANN on the validation data of the non-transformed glacier domains (see Table S3).

Figure S2 shows the ratio in coefficient of determination (R2), in Root Mean Square

Error (RMSE), and in absolute bias of ϕ̃ANN with respect to these metrics evaluated

with ϕANN . These ratios thus show the reduction in model accuracy caused by each

perturbation. Results are shown for each perturbed input individually. Figure S2 shows

June 30, 2023, 12:00pm



VERJANS AND ROBEL: X - 13

that perturbing the ice thickness input has the most consequential impact on the ANN

accuracy, as both the R2 coefficient and the RMSE are more strongly impacted than

when perturbing any other input. The different time periods over which we integrate the

meltwater inflow show a similar importance on the ANN accuracy, except for the period

over the entire previous year, which has a stronger impact on accuracy. This could be

due to the strong correlation between each meltwater inflow input with its neighboring

meltwater inflow input, for example month-minus-0 to month-minus-1 and month-minus-1

to month-minus-2. In contrast, the meltwater inflow integrated over the entire previous

year has no neighboring time period with which it is strongly correlated. Finally, we find

that perturbing any input causes a decrease in the ANN accuracy, which implies that all

the inputs are to some extent useful for prediction.
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Table S1. Parameters of the GlaDS simulations
Parameter Value Units

Englacial void ratio 10−3 /
Pressure melt coefficient 7.5× 10−8 K Pa-1

Latent heat of fusion 334× 103 J kg-1

Bedrock bump height 0.1 m
Cavity spacing 2.0 m

Sheet conductivity 0.01 m7/4 kg-1/2

Channel conductivity 0.1 m3/2 kg-1/2
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Table S2. Architecture of the ANN
Layer Layer used Layer Activation Output
number as input type shape

0 - Input - 128×128×10
1 0 Conv 3×3 ReLU 128×128×24
2 1 Conv 3×3 ReLU 128×128×24
3 2 MaxPool 2×2 - 64×64×24
4 3 Conv 3×3 ReLU 64×64×48
5 4 Conv 3×3 ReLU 64×64×48
6 5 MaxPool 2×2 - 32×32×48
7 6 Conv 3×3 ReLU 32×32×94
8 7 Conv 3×3 ReLU (dropout p=0.2) 32×32×94
9 8,cos(2πt),sin(2πt) Concat - 32×32×96
10 9 Trans-Conv 2×2 - 64×64×48
11 5,10 Concat - 64×64×96
12 11 Conv 3×3 ReLU 64×64×48
13 12 Conv 3×3 ReLU 64×64×48
14 13 Trans-Conv 2×2 - 128×128×24
15 14 Conv 3×3 ReLU 128×128×24
16 15 Conv 3×3 ReLU 128×128×24
17 16 Conv 1×1 - 128×128×1
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Table S3. Training, validation, and test data split

Glacier (subdomain) Transformation Years 0-5 Years 5-32 Years 32-35 Years 35-40
Jakobshavn (0) None Discarded Train Validation Test
Jakobshavn (0) Diagonal symmetry Discarded Validation Validation Discarded
Jakobshavn (0) Vertical symmetry Discarded Train Validation Discarded
Jakobshavn (0) Horizontal symmetry Discarded Train Validation Discarded
Jakobshavn (1) None Discarded Train Validation Test
Jakobshavn (1) Diagonal symmetry Discarded Train Validation Discarded
Jakobshavn (1) Vertical symmetry Discarded Validation Validation Discarded
Jakobshavn (1) Horizontal symmetry Discarded Train Validation Discarded
Helheim (0) None Discarded Train Validation Test
Helheim (0) Diagonal symmetry Discarded Train Validation Discarded
Helheim (0) Vertical symmetry Discarded Train Validation Discarded
Helheim (0) Horizontal symmetry Discarded Validation Validation Discarded

Petermann (0) None Discarded Train Validation Test
Petermann (0) Diagonal symmetry Discarded Validation Validation Discarded
Petermann (0) Vertical symmetry Discarded Train Validation Discarded
Petermann (0) Horizontal symmetry Discarded Train Validation Discarded
Petermann (1) None Discarded Train Validation Test
Petermann (1) Diagonal symmetry Discarded Train Validation Discarded
Petermann (1) Vertical symmetry Discarded Validation Validation Discarded
Petermann (1) Horizontal symmetry Discarded Train Validation Discarded

Kangerlussuaq (0) None Discarded Train Validation Test
Kangerlussuaq (0) Diagonal symmetry Discarded Train Validation Discarded
Kangerlussuaq (0) Vertical symmetry Discarded Train Validation Discarded
Kangerlussuaq (0) Horizontal symmetry Discarded Validation Validation Discarded
Humboldt (0) None Discarded Train Validation Test
Humboldt (0) Diagonal symmetry Discarded Validation Validation Discarded
Humboldt (0) Vertical symmetry Discarded Train Validation Discarded
Humboldt (0) Horizontal symmetry Discarded Train Validation Discarded
Koge Bugt (0) None Discarded Train Validation Test
Koge Bugt (0) Diagonal symmetry Discarded Train Validation Discarded
Koge Bugt (0) Vertical symmetry Discarded Validation Validation Discarded
Koge Bugt (0) Horizontal symmetry Discarded Train Validation Discarded
Russell (0) None Discarded Train Validation Test
Russell (0) Diagonal symmetry Discarded Train Validation Discarded
Russell (0) Vertical symmetry Discarded Train Validation Discarded
Russell (0) Horizontal symmetry Discarded Validation Validation Discarded

Upernavik (0) None Discarded Test Test Test
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Figure S1. Model domains of the seven calibration glaciers ((a) Jakobshavn, (b) Helheim,

(c) Petermann, (d) Kangerlussuaq, (e) Humboldt, (f) Koge Bugt, (g) Russell), and of the test

glacier ((h) Upernavik). Map in the inset shows glacier locations. Light-grey points show mesh

vertices.
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Figure S2. Ratio of performance metrics on the validation data after random white noise

perturbation of input fields. The ratio is computed as the performance metric of the ANN

with input perturbation with respect to the performance metric of the ANN without input

perturbation. Metrics are (a) the coefficient of determination, (b) the Root Mean Square Error,

and (c) the absolute bias. The black horizontal dashed line shows the value of 1, corresponding

to no performance deterioration due to random input perturbation. Bed Topo is bed topography,

Runoff denotes the meltwater inflow at the instantaneous time step, Runoff x-y period denotes

the meltwater inflow integrated over the time interval between the past period x and period y.
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