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Key Points:  10 

 Relationships among mean runoff and variability with topography in mountainous terrain 11 

can explain pseudo-thresholds in channel steepness 12 

 Spatial asynchronicity of similar exceedance frequency runoff events is an unrecognized 13 

control on landscape evolution 14 

 Orographic patterns in variability, snowmelt, and the characteristic size of runoff events 15 

alter predictions of climate-tectonic coupling  16 
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Abstract  17 

The extent to which climate and tectonics can be coupled rests on the degree to which 18 

topography and erosion rates scales linearly. The stream power incision model (SPIM) is 19 

commonly used to interpret such relationships, but is limited in probing mechanisms. A 20 

promising modification to stream power models are stochastic-threshold incision models (STIM) 21 

which incorporate both variability in discharge and a threshold to erosion. In this family of 22 

models, the form of the topography erosion rate relationship is largely controlled by runoff 23 

variability. Applications of STIM typically assume temporally variable, but spatially uniform 24 

and synchronous runoff generating events, an assumption that is likely broken in regions with 25 

complicated orography. To address this limitation, we develop a new 1D STIM model, which we 26 

refer to as spatial-STIM. This modified version of STIM allows for stochasticity in both time and 27 

space and is driven by empirical relationships between topography and runoff statistics. 28 

Coupling between mean runoff and runoff variability via topography in spatial-STIM generates 29 

highly nonlinear relationships between steady-state topography and erosion rates. We find that 30 

whether the daily statistics of runoff are spatially linked or unlinked, which sets whether there is 31 

spatial synchronicity in the recurrence interval of runoff generating events, is a fundamental 32 

control on landscape evolution. Many empirical topography – erosion rate datasets are based on 33 

data that span across the endmember scenarios of linked versus unlinked behavior. It is thus 34 

questionable whether singular SPIM relationships fit to those data can be meaningfully related to 35 

their associated hydroclimatic conditions.  36 

 37 

Plain Language Summary 38 
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Tectonic activity has long been known to modify climate by constructing mountain topography. 39 

Perhaps less obvious is the question of whether climatically driven erosion can also modify 40 

tectonic activity. This latter causal chain is premised on the notion that higher uplift rates can 41 

lead to steeper topography, higher precipitation rates, and thus more vigorous erosion. However, 42 

many erosion rate studies suggest that topography is only weakly sensitive to changes in rock 43 

uplift rates, thereby posing an important challenge to the climate-tectonic coupling hypothesis. 44 

Prior studies suggests that variability in daily runoff may be central to understanding this 45 

sensitivity, though historically have focused on how runoff is variable in time and not in space. 46 

As such, we developed a new numerical model of river erosion that simulates spatial patterns in 47 

runoff generation. We ran a suite of numerical experiments based on observed relationships 48 

among runoff, runoff variability, and topography to better understand how new model elements 49 

affect model sensitivity. We found that our crude representation of the size of runoff events is 50 

fundamental to model behavior. Given that event size is rarely considered in studies of climate-51 

tectonic coupling, we argue that this property of runoff events requires more careful 52 

consideration. 53 

1 Introduction 54 

1.1. Motivation 55 

The potential for two-way coupling between climate and tectonics is premised on how 56 

climate, erosion, and topography are related. Stream power provides an effective way to model 57 

the role of climate on erosion via a single parameter, the erodibility coefficient (Howard, 1994; 58 

Whipple & Tucker, 1999). When stream power is used as the principal erosion law, landscape 59 

evolution studies predict that climate should strongly influence the pattern and style of 60 
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deformation in mountain belts (Beaumont et al., 1992; Whipple & Meade, 2006; Willett, 1999). 61 

These numerical models show how prevailing wind direction, along with an orographic 62 

enhancement of precipitation, leads to across-strike asymmetry in the efficiency of erosion of the 63 

landscape. However, field verification of such dynamics has been elusive, with ambiguous 64 

evidence both for and against coupling between mean precipitation and tectonics (see discussion 65 

in Whipple, 2009). One barrier to field verification is uncertainty in how well suited stream 66 

power predictions are for isolating relationships among climate, erosion, and bedrock river 67 

morphology. Given the proliferation of carefully curated datasets attempting to constrain how 68 

climate is embedded in the erodibility coefficient (e.g., Adams et al., 2020; Ferrier et al., 2013; 69 

Forte et al., 2022; Leonard et al., 2023b), the time is ripe to re-visit assumptions implied by 70 

conventional applications of stream power to landscape evolution studies, especially in the 71 

context of the complexities that result from spatial gradients in orographic precipitation (e.g., 72 

Anders et al., 2006, 2007; Bookhagen & Burbank, 2006; Bookhagen & Strecker, 2008; Roe, 73 

2005; Roe et al., 2003). 74 

Since development of these early landscape evolution models, a large body of work has 75 

refined our understanding of the strengths and limitations of stream power (see summary in 76 

Lague, 2014). We highlight three sets of insights: (1) Probabilistic assessment of floods are 77 

needed when erosional thresholds matter (Lague et al., 2005; Snyder et al., 2003; Tucker, 2004); 78 

(2) Orographic gradients in mean precipitation lead to spatially non-uniform patterns in runoff 79 

generation (Bookhagen & Strecker, 2008; Roe et al., 2002, 2003); and (3) Precipitation phase 80 

(i.e., rain versus snow) mediates spatio-temporal patterns in runoff generation (Anders et al., 81 

2008; Bookhagen & Burbank, 2010; Rossi et al., 2020). While there are a number of important 82 

limitations to using stream power (e.g., channel width scaling, tools-cover effects), we focus here 83 
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on those related to the characteristic discharge assumption typically used in stream power, 84 

specifically that the mean or bankfull discharge can be used to explain the long-term evolution or 85 

river morphology (e.g., see Wolman & Miller, 1960 for arguments based on alluvial rivers). 86 

Under this view, the characteristic discharge is generated from a characteristic runoff along 87 

hillslopes as it accumulates downstream. If runoff generation is uniform within a watershed, then 88 

the characteristic discharge is simply the product of the characteristic runoff and drainage area. 89 

In simple stream power, this set of assumptions entails that nonlinear relationships between 90 

channel steepness and long-term erosion rates will reflect differences in the incision process 91 

setting the slope exponent, n (Whipple and Tucker, 1999).  92 

However, if erosional thresholds matter, nonlinearity is also linked to the temporal 93 

variability of streamflow (Tucker, 2004; Lague et al., 2005; Lague 2014).  As such, there has 94 

been increasing interest in examining how such stochastic-threshold models (STIM) of river 95 

incision can be applied to empirical relationships between equilibrium channel steepness and 96 

long term erosion rates (Campforts et al., 2020; Desormeaux et al., 2022; DiBiase et al., 2010; 97 

Forte et al., 2022; Marder & Gallen, 2023; Scherler et al., 2017). Yet there has been less 98 

attention given to how orographic gradients in temporal dynamics may similarly alter predictions 99 

from simple stream power. Given the wide range of empirical estimates for n reported in the 100 

literature (Harel et al., 2016), we argue that river incision models likely require more hydrologic 101 

realism (e.g., Deal et al., 2018) to explain observed nonlinearities between channel steepness and 102 

erosion rate. In particular, we expand on STIM by: (1) allowing for orographic gradients in the 103 

magnitude-frequency relationships that describe runoff to evolve with growing topography, and 104 

(2) probing the influence of enforcing that magnitude-frequency relationships in runoff be 105 
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spatially synchronous, thereby altering the resultant probability distributions of streamflow. We 106 

refer to this new 1D model of river profile evolution as spatial-STIM. 107 

1.2. Approach and Scope 108 

The basis for our work is the stochastic-threshold incision model (STIM) proposed by 109 

Lague et al. (2005), which itself drew heavily from prior modeling efforts (Tucker & Bras, 2000; 110 

Tucker, 2004). We consider  a modified version of STIM whereby daily discharge distributions 111 

are treated as Weibull distributions instead of exponential or inverse gamma distributions 112 

(following Forte et al., 2022). As originally conceived, this river incision model uses the shear 113 

stress formulation of stream power as the instantaneous incision law. The equilibrium steepness 114 

of a longitudinal profile for a given rate of base level fall is then derived by integrating the 115 

product of the instantaneous incision law and the probability distribution of flows, with a lower 116 

bound of integration set by the erosion threshold. The original form of the Lague et al. (2005) 117 

model was zero-dimensional such that the scaling relationship between discharge and drainage 118 

area was fixed. When applied to a 1D river profile or a 2D drainage basin, this formulation 119 

applies (1) to bedrock rivers at equilibrium and (2) where STIM parameters are spatially 120 

invariant within the watershed.  While there are many hard-to-constrain parameters in STIM, this 121 

model improves on the stream power incision model (SPIM) by explicitly showing how two 122 

hydro-climatic parameters, the mean runoff and a shape parameter describing the distribution of 123 

streamflow events, alter the form of the relationship between long-term denudation rates and 124 

channel steepness (DiBiase & Whipple, 2011; Lague et al., 2005). While interpreting mean 125 

runoff is intuitive, the shape parameter is less so. In short,  the shape parameter describes the 126 

variability of streamflow. While we describe this parameter more fully below, we highlight here 127 

that a key simplifying assumption in STIM is that runoff generating events are stochastic in time 128 
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but not in space. For small catchments with relatively uniform surface properties, this is a 129 

reasonable assumption. As the size of watersheds increases and as surface properties become 130 

more heterogeneous, the potential importance of partial source areas for runoff generation during 131 

events are expected to become more important (Dunne & Black, 1970). This is likely 132 

exacerbated in high-relief landscapes where orographic effects lead to significant spatial and 133 

temporal variation in precipitation events (e.g., Anders et al., 2006, 2007; Barros et al., 2000; 134 

Campbell & Steenburgh, 2014; Frei & Schär, 1998; Minder et al., 2008). It is not our intention to 135 

embed a full hydrological model of event-scale runoff generation into a 1D profile model of river 136 

incision. Instead, we seek to add flexibility to STIM such that we can explore how runoff 137 

statistics that vary in both space and time alter model predictions. 138 

There are four key novelties to our new 1D model of bedrock river incision, which we 139 

refer to as spatial-STIM. First, the simulated longitudinal profile is subdivided into uniform bins 140 

of stream distance that allow us to evolve orographic gradients in runoff statistics as the river 141 

profile changes. Second, both mean runoff and daily runoff variability are dictated by their 142 

relationship to topography, specifically in response to local relief and elevation. Third, these 143 

topography-hydrology relationships are based on relationships observed in modern mountain 144 

ranges, which are described in our companion manuscript to this one (Forte & Rossi, 2024b), 145 

thus explicitly considering the role of snowmelt in modulating runoff variability. Fourth, the 146 

temporal stochasticity of each bin can either be linked or unlinked spatially. In other words, the 147 

recurrence probabilities of daily events within bins are either synchronous (linked) or 148 

asynchronous (unlinked) along the river profile. Asynchronous runoff generation will lead to 149 

much different streamflow distributions as upstream stochasticity modifies the downstream 150 
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accumulation of daily runoff. This last modification allows for examination into how the 151 

characteristic spatial scale of runoff events impacts model predictions.  152 

We focus our analysis of model sensitivity to the new model elements introduced in 153 

spatial-STIM, the orographic rules used to set streamflow parameters, and changes in rock uplift 154 

rates. Our results are not intended to provide formal model calibration and validation using 155 

erosion rate data. Instead, our goal is to show how spatial-STIM might alter interpretations of the 156 

numerous channel steepness-erosion rate relationships reported in the literature and to develop 157 

heuristics for how such relationships might evolve as a mountain range grows (Figure 1). The 158 

conceptual framework builds on the findings from the companion manuscript to this one (Forte 159 

& Rossi, 2024b). That analysis revealed that both mean runoff and snowmelt fraction are 160 

functionally related to topography at the mountain range scale (Figure 1A). Increases in both are 161 

tied to a decreasing variability in daily runoff (Figure 1B), which itself is expected to cause 162 

increasingly nonlinear relationships between channel steepness and erosion rates (Figure 1C). As 163 

suggested by Forte et al., (2022), this set of expected relationships predicts an orographic 164 

feedback in which the continued topographic growth of a mountain range may be limited by the 165 

decreasing variability of streamflow and increasing nonlinearity in topography and channel 166 

steepness relationships (Figure 1). Consequently, we first ask what these dynamics entail for 167 

realistic gradients in mean runoff, runoff variability, and snowmelt. We then ask how the 168 

assumption of spatially synchronous runoff events (i.e., linked or unlinked per our definition 169 

above) may alter interpretations of river profile morphology. Questions are addressed by 170 

conducting a suite of numerical experiments using spatial-STIM.   171 
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2. Background 172 

2.1. Channel Steepness and Erosion Rate Relationships 173 

For river analysis, it is useful to define a channel steepness index (ks) that accounts for the 174 

expected covariation of slope and drainage area within river systems (Flint, 1974):  175 

𝑘𝑠 = 𝐴𝜃𝑆      (1) 176 

where A is drainage area [L
2
], S is local river slope [L/L], and 𝜃 is a dimensionless constant that 177 

describes the concavity of the river profile. In order to compare channel steepnesses for rivers 178 

with different concavities, the steepness index ks can be normalized by setting 𝜃 to a reference 179 

value, 𝜃𝑟𝑒𝑓, thereby defining a normalized channel steepness index, ksn (Wobus et al., 2006). 180 

Normalized channel steepness can be determined via regression of the log-transformed, slope-181 

area data along river profiles (Kirby & Whipple, 2012). However, it is now more common to use 182 

the so-called 𝜒-transform to calculate ksn because of the noise inherent in slope-area data 183 

(Whipple et al., 2022). As defined by Perron & Royden (2013), 𝜒 is an integral transform of 184 

distance such that: 185 

𝜒 =  ∫ (𝐴0 𝐴(𝑥)⁄ )𝜃𝑟𝑒𝑓𝑑𝑥
𝑥

𝑥𝑏
     (2) 186 

where A0 is a reference drainage area, x is distance from the catchment outlet, and xb is the 187 

position of the outlet. On a plot of 𝜒 and elevation, an equilibrium channel with a uniform ksn 188 

appears as a straight line, assuming an appropriate 𝜃𝑟𝑒𝑓 is used in the calculation of 𝜒. When A0 189 

is set to one, the slope of the 𝜒-elevation line equals ksn. 190 

Relationships between catchment-averaged normalized channel steepness and long-term 191 

erosion rates, E, show that: (1) ksn tends to be positively correlated with average erosion rate, but 192 
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that (2) the exact form of ksn-E relationships varies substantially among landscapes (see 193 

compilations in Harel et al., 2016; Kirby & Whipple, 2012; Lague, 2014; Marder & Gallen, 194 

2023). The general form of these relationships follow: 195 

𝑘𝑠𝑛 = 𝐶𝐸Φ      (3) 196 

where C and Φ are constants that vary between locations. To interpret these empirical 197 

relationships, it is common to recast Equation 3 in terms of the parameters used in the stream 198 

power incision model (SPIM, Howard, 1994; Whipple & Tucker, 1999). SPIM considers erosion 199 

in terms of an erosional efficiency parameter (K) that encapsulates aspects of both climate and 200 

lithology, along with A and S: 201 

𝐸 = 𝐾𝐴𝑚𝑆𝑛      (4) 202 

where m and n are constants thought to represent details of the hydrological and erosional 203 

processes, respectively. In Equation 4, drainage area is a proxy for mean discharge �̅� [L
3
/t] and 204 

implicitly assumes a simple relationship between mean discharge, mean runoff �̅� [L/t], and 205 

drainage area such that �̅� = �̅�𝐴 and where �̅� and �̅� are the characteristic discharge and 206 

characteristic runoff, respectively. The erosional efficiency parameter, K, embeds �̅�𝑚 thereby 207 

directly relating K to the hydro-climatology. By combining Equations 1, 3, and 4 in SPIM, it can 208 

be readily shown that:  209 

𝜃𝑟𝑒𝑓 =
𝑚

𝑛
 ,      (5) 210 

𝐶 =  𝐾−1 𝑛⁄ ,      (6) 211 

Φ =  
1

𝑛
 ,      (7) 212 

and thus, 213 
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𝑘𝑠𝑛 =  𝐾−1 𝑛⁄ 𝐸1 𝑛⁄  or 𝐸 = 𝐾𝑘𝑠𝑛
𝑛      (8) 214 

Equation 8 predicts that the form of the ksn-E relationship can be cast in terms of variations in 215 

climate and lithology (represented by K) and erosional process (represented by n). Implicit in this 216 

relationship are the assumptions that the basin-averaged value of  ksn and E are steady state 217 

values where the erosion rate approximately equals the long-term rock uplift rate and that the ksn 218 

within the watershed in question is spatially uniform and free of transients (i.e., no prominent 219 

knickpoints). 220 

 Recently, it has been shown that relationships between channel steepness and erosion 221 

rates can be further interrogated by disentangling the climatic and lithologic components of the 222 

erosional efficiency parameter, K, by defining an alternate form of ksn that includes a proxy for 223 

discharge. This new index, ksnQ, was defined by Adams et al., (2020): 224 

𝑘𝑠𝑛𝑄 = �̅�𝜃𝑟𝑒𝑓𝑆.      (9) 225 

Calculations of ksnQ typically use mean precipitation as a proxy for mean runoff to calculate 226 

discharge, embedding the notion that mean runoff linearly scales with mean precipitation. Using 227 

the same assumption in Equation 3 that �̅� = �̅�𝐴, it is then possible to recast K as:  228 

𝐾 =  𝐾𝑙𝑝�̅�𝑚      (10) 229 

where Klp is the component of the erosional efficiency related to lithology and other factors such 230 

as sediment flux dynamics and erosion thresholds. The relationship between ksn-E in Equation 8 231 

can then be reformulated as:  232 

𝑘𝑠𝑛𝑄 =  𝐾𝑙𝑝
−1 𝑛⁄

𝐸1 𝑛⁄  or 𝐸 =  𝐾𝑙𝑝𝑘𝑠𝑛𝑄
𝑛      (11) 233 
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This alternative formulation of channel steepness acknowledges spatially varying precipitation 234 

and runoff and thus should help reduce the role of climate in the steepness – erosion rate 235 

relationship, allowing both more accurate use of topography to estimate erosion rates (Adams et 236 

al., 2020) and isolation of lithologic controls on erosion rate (Leonard et al., 2023b, 2023a).  237 

Interpretation of either ksn-E and ksnQ-E relationships within a SPIM framework relies on 238 

a similar set of simplifying assumptions that have been articulated in more detail elsewhere (e.g., 239 

Harel et al., 2016; Kirby & Whipple, 2012; Lague, 2014). However, we highlight one important 240 

implication of SPIM to how the slope exponent in stream power, n, and the empirical exponent, 241 

Φ, are interpreted. Considering a steady state system where erosion rates balance uplift rates, the 242 

value of n controls the degree of nonlinearity, Φ (Eq. 7). When 𝑛 ≈ 1, the linear relationship 243 

between topography and erosion rate implies that rivers maintain a uniform sensitivity to 244 

changes in rock uplift rate as they steepen. In contrast, when 𝑛 ≫ 1, and E is plotted on the 245 

abscissa, the strongly sublinear relationship (i.e., very small values of Φ) between topography 246 

and erosion rate implies that channel steepness reaches a pseudo-threshold as uplift rates 247 

continue to increase. Consequently, higher values of n lead to a reduced potential for two-way 248 

coupling between climate and tectonics as topography is no longer able to adjust to increases in 249 

rock uplift rates (Whipple & Meade, 2004). Global compilations of ksn-E suggest that 𝑛 ≈ 2 250 

(e.g., Harel et al., 2016; Lague, 2014), implying a sublinear response, but not one where 251 

significant pseudo-thresholds in ksn limits the relief of mountain landscapes (Hilley et al., 2019). 252 

However, at the individual landscape scale, substantial differences in the values of n are 253 

observed, with some locations suggesting more linear relationships (e.g., Ferrier et al., 2013; 254 

Safran et al., 2005; Wobus et al., 2006) while others exhibit strongly sublinear relationships (e.g., 255 
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Cyr et al., 2010; Forte et al., 2022; Hilley et al., 2019). Diagnosing the underlying mechanisms 256 

for these large differences across landscapes is thus limited by relying on stream power alone.   257 

2.2. Stochastic-Threshold Incision Model (STIM) 258 

To probe controls on the nonlinear ksn-E relationships described above, it is useful to 259 

consider an alternative fluvial incision model, specifically the stochastic-threshold incision 260 

model (STIM). STIM shares some similarities with SPIM, but adds two important modifications: 261 

(1) discharge magnitudes vary in time and (2) not all discharges are able to erode bedrock. While 262 

different variants of stochastic-threshold incision models have been presented (e.g., Snyder et al., 263 

2003; Tucker, 2004), we focus on the version presented by Lague et al., (2005). The details of 264 

this model have been discussed in depth previously (e.g., Campforts et al., 2020; DiBiase & 265 

Whipple, 2011; Lague et al., 2005; Scherler et al., 2017), to which we refer interested readers. 266 

Nevertheless, we briefly present the governing equations here, focusing on differences from the 267 

original formulation of Lague et al., (2005).  268 

STIM uses a stream power equation for instantaneous (e.g., daily) incision rates and then 269 

integrates the incision law over a probability distribution of daily discharges to calculate an 270 

average erosion rate. In the original formulation by Lague et al., (2005), both the instantaneous 271 

incision and average erosion rates were cast in terms of dimensionless discharge. For our 272 

application, it is more useful to define the instantaneous law in terms of a dimensional version of 273 

daily discharge (Q): 274 

𝐼 = 𝐾𝑘𝑠𝑛
𝑛 �̅�𝑚−𝛾𝑄𝛾 − Ψ𝑐     (12)  275 

where 𝛾 is an exponent describing local discharge and Ψ𝑐 is the threshold parameter. K, m, and n 276 

are similar to their counterparts in Equation 3, but have more formal definitions such that 277 
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𝐾 =  𝑘𝑒𝑘𝑡
𝑎𝑘𝑤

−𝑎𝛼      (13) 278 

𝑚 = 𝑎𝛼(1 − 𝜔𝑎)      (14) 279 

𝑛 = 𝑎𝛽     (15) 280 

𝛾 = 𝑎𝛼(1 − 𝜔𝑠)     (16) 281 

where ke is a rock erodibility coefficient, kt, 𝛼, and 𝛽 are hydraulic and frictional constants, kw, 282 

𝜔𝑎, and 𝜔𝑠 are constants related to channel width scaling with discharge, and a is an constant 283 

related to incisional process. The threshold parameter Ψ𝑐 is related to both the rock erodibility 284 

and incisional process such that 285 

Ψ𝑐 =  𝑘𝑒𝜏𝑐
𝑎     (17) 286 

where 𝜏𝑐 is the critical shear stress for initiating incision. To calculate an average, steady state 287 

erosion rate, E, Equation 12 must be integrated across a distribution of discharges 288 

𝐸 =  ∫ 𝐼(𝑄, 𝑘𝑠𝑛)𝑝𝑑𝑓(𝑄)𝑑𝑄
𝑄𝑚

𝑄𝑐(𝑘𝑠𝑛)
     (18) 289 

where Qc is the critical discharge above the incision threshold, Qm is an arbitrarily high upper 290 

bound on discharge assuming that the integral is convergent, and the pdf(Q) is the probability 291 

distribution of daily discharge. In the original formulation of Lague et al., (2005), the inverse 292 

gamma distribution of normalized discharge was used, thus fixing the scale parameter to 1. Here, 293 

we follow recent work (Forte et al., 2022; Rossi et al., 2016) by using a two parameter Weibull 294 

distribution to describe daily statistics. Because we allow runoff to vary as a function of profile 295 

position which then accumulates downstream, our model simulates daily runoff distributions 296 

instead of streamflow ones:  297 

𝑝𝑑𝑓(𝑅; 𝑅0, 𝑐𝑅) =  
𝑐𝑅

𝑅0
(

𝑅

𝑅0
)

𝑐𝑅−1
𝑒𝑥𝑝−1(𝑅 𝑅0⁄ )𝑐𝑅    (19) 298 
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where R0 is a scale parameter, related to the mean of the distribution, and cR is a shape parameter, 299 

describing the variability of daily runoff generation. Higher values of cR imply lower variability. 300 

Because the original formulation was a zero-dimensional model, runoff variability and 301 

streamflow variability were equivalent, an important distinction that differs in our numerical 302 

model. The rationale for explicitly considering orographic gradients in runoff statistics is 303 

explained more fully in section 4. 304 

 Prior studies using STIM highlight that the degree of linearity between channel steepness 305 

and erosion rate is strongly mediated by the discharge variability (Lague et al., 2005; Tucker, 306 

2004; DiBiase & Whipple, 2011). Specifically, the value of Φ (eq. 7) is a function of the shape 307 

parameter of the daily discharge distribution when erosion thresholds are large with respect to 308 

erosion rates (Regime III in Lague et al., 2005). As such, one explanation of the wide range of 309 

empirical values for n and Φ might be due to regional differences in daily discharge variability 310 

(Marder & Gallen, 2023). Given that the shape parameters of inverse gamma and Weibull 311 

distributions are linearly related (Rossi et al., 2016), we are confident that the Weibull 312 

distribution can be reliably used in Equations 18-19. However, by using this alternative 313 

distribution, our modified version of STIM moderates the impact of heavy tailed distributions, 314 

allows discharge distributions to emerge from spatially variable runoff ones, and requires 315 

numerical simulation (i.e., there is no analytical solution).  316 

3 Orographic Relationships Between Hydroclimatology and Topography 317 

In our companion manuscript to this one (Forte & Rossi, 2024b), we used a 20-year 318 

global, daily time series of hydroclimate from the Water Global Assessment and Prognosis 319 

(WaterGAP3 - Alcamo et al., 2003; Döll et al., 2003) along with the HydroSheds v1, 15 320 

arcsecond digital elevation model (Lehner et al., 2008) and SRTM-90 data (Farr et al., 2007) to 321 
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develop empirical relationships between hydro-climatological and topographic variables. We 322 

refer interested readers to Forte & Rossi (2024b) for more details, but summarize the primary 323 

results of that analysis here (Figure 2). Specifically, Forte & Rossi (2024b) found a similar 324 

inverse correlation between �̅� and variability (Figure 2A) as identified in smaller datasets from 325 

gauged watersheds (e.g., Molnar et al., 2006; Rossi et al., 2016). The form of the relationship 326 

between �̅� and variability is mediated by the relative contribution of snowmelt to total runoff 327 

(Rossi et al., 2016). The snowmelt fraction, SF, is the total amount of runoff from snowmelt 328 

divided by the total runoff. A distinct change in the functional form of this relationship occurs at 329 

a SF of ~0.35. When SF is relatively low, the relationship between �̅� and 𝑐𝑅 is more linear than 330 

when SF is high (Figure 2A).  331 

 Because the shape (cR) and scale (R0) parameters shown in Figure 2 were determined by 332 

fitting the right tail of runoff distributions above a 1% threshold, these fit parameters are no 333 

longer related to the mean of the distribution in a simple way (Forte & Rossi, 2024b). The scale 334 

parameter from the fits of daily data (R0) is linearly related to the scale estimated from the mean 335 

runoff (𝑅0
∗) using the general equation for a Weibull distribtuion: 336 

 337 

𝑅0
∗ =

�̅�

Γ(1+1 𝑐𝑅⁄ )
      (20) 338 

But deviates substantially from the 1:1 line, especially in snowmelt influenced settings (Figure 339 

2B). To account for this in our numerical model, we use the relationship between R0  and 𝑅0
∗ 340 

(Figure 2B) to estimate the appropriate R0 from the calculated 𝑅0
∗ based on the appropriate mean 341 

runoff and cR for a given bin.   342 
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 Our main aim in the numerical modeling is to evolve stochastic runoff parameters as a 343 

mountain topography grows. In order to uniquely prescribe the distribution of flows (e.g., 344 

Equation 19) within a part of a river profile, we need to know both �̅� and SF so that we can 345 

modify 𝑅0
∗ and 𝑐𝑅. As described in Forte & Rossi (2024b), identifying singular, global 346 

relationships between either �̅� or SF and topographic metrics is challenging. As such, we use the 347 

three regional relationships between mean local relief and �̅� and maximum elevation and SF in 348 

the Greater Caucasus, European Alps, and northern British Columbia (Figure 2C-D). It is worth 349 

emphasizing that the lack of global relationships between either �̅� or SF and topography implies 350 

that rules for how runoff statistics coevolve with mountain growth needs regional constraints. 351 

However, the similar forms of these relationships is not surprising given prior work showing 352 

how local relief sets orographic precipitation (e.g., Bookhagen & Burbank, 2006; Bookhagen & 353 

Strecker, 2008). Furthermore, the increasing importance of snowmelt as mountain ranges grow is 354 

grounded in physical theory (i.e., typical temperature lapse rates imply decreasing temperatures 355 

with elevation and thus a potential for increasing snow fraction with elevation).     356 

  The two topographic metrics we focus on are local relief and local maximum elevation 357 

(e.g., within a WaterGAP3 pixel). While these topographic metrics are thought to be linked to 358 

river morphology at certain spatial scales (e.g., Ahnert, 1970), how to best use them to drive 359 

rules in a 1D river incision model is not obvious. Given our discretization of river profiles into 360 

bins, we argue there is a sensible way to honor the empirical relationships we show in Figure 2 361 

into a 1D river incision model. For example, it has been shown that local relief at the 2 to 2.5 km 362 

radius scale is linearly correlated with channel steepness (e.g., DiBiase et al., 2010). Channel 363 

steepness is a property of the river profile that can be readily calculated (Equation 1) and updated 364 

as the river profile evolves through time. How local relief is related to channel steepness for our 365 
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three selected regions is developed using the methods described in Forte et al., (2016), which 366 

itself uses a combination of TopoToolbox (Schwanghart & Scherler, 2014) and the Topographic 367 

Analysis Kit (Forte & Whipple, 2019). First, we extract all watersheds with a drainage area >50 368 

km
2
 and an outlet elevation above 300 m. Any watershed from this initial extraction with a 369 

drainage area >250 km
2
 was then subdivided into tributary watersheds that connect to the trunk 370 

channel using drainage areas >50 km
2
 as a threshold. For each catchment, mean channel 371 

steepness and local relief (2500 m radius) was calculated along with the R
2
 value for a linear fit 372 

between 𝜒 (Equation 2) and elevation. Values of R
2
 close to 1 imply that a river profile is largely 373 

free of major knickpoints. The R
2
 values were thus used to screen for reaches in quasi-374 

equilibrium such that only reaches above a high threshold (>0.90; Figure S1) were used to 375 

develop regionally based relationships between channel steepness and local relief. By 376 

establishing the channel steepness to local relief relationship for each site, we can then apply 377 

these rulesets based on local relief into our river incision model. It is worth noting that, in this 378 

transformation, we used a relationship between ksn and 2.5-km relief  (as described above) using 379 

SRTM-90 data. In contrast, the relationship between mean runoff and 2.5-km relief used the 380 

HydroSheds 15-second data (Figure 2C). For our regions of interest, the distributions of these 381 

two local relief datasets do not suggest meaningful differences (Figure S1). As channel steepness 382 

evolves in the numerical model, it is directly tied to local relief and indirectly tied to maximum 383 

elevation, the latter of which is calculated by adding the local relief to the minimum elevation of 384 

the profile for a given bin. The choice of using the lowest maximum elevation is a conservative 385 

one because it produces the smallest possible snowmelt fraction for a given value of local relief.  386 
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4 River Incision Model 387 

There are now many studies testing the utility of the Stochastic-Threshold Incision 388 

Models (STIM) (e.g., Campforts et al., 2020; Desormeaux et al., 2022; DiBiase & Whipple, 389 

2011; Forte et al., 2022; Marder & Gallen, 2023; Scherler et al., 2017). However, we believe this 390 

paper is the first attempt to modify a longitudinal profile version of STIM to allow for stochastic 391 

events in space as well as time, which we refer to as spatial-STIM. Our modelling strategy shares 392 

some similarity with recent 2D efforts that consider the role of spatial variability in precipitation 393 

events (e.g., Coulthard & Skinner, 2016; Peleg et al., 2021), but these efforts considered 394 

landscape evolution at timescales orders of magnitude shorter than we do here.  By subdividing 395 

the long profile into bins we coevolve the hydrology with the local channel morphology. Using a 396 

binned approach requires a decision for whether spatial bins should depend on each other (i.e., 397 

the recurrence interval of runoff events on a given day are synchronous across the profile) or 398 

whether they should be treated independently (e.g., bins experience storm or snowmelt events of 399 

different recurrence intervals at a given time). We refer to the former as linked cases and the 400 

latter as unlinked ones, referring to whether the recurrence intervals between bins are linked to 401 

each other or unlinked. In both linked and unlinked cases, the profiles experience orographic 402 

gradients in mean daily runoff  and daily runoff variability. We further describe the nuances of 403 

linked versus unlinked cases in section 4.2. 404 

4.1. Spatial-STIM  405 

Our new 1D river profile bedrock incision model was developed in Python 3.10 by 406 

implementing an explicit upwind finite difference solution of Equation (12) for daily incision 407 

along the profile. The model itself is available from Forte (2024). The starting condition for each 408 
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model run uses a drainage area distribution based on the relationship between profile length (L) 409 

[L] and drainage area (A) [L
2
] from Sassolas-Serrayet (2018): 410 

𝐿 = 𝑐𝐺𝑐𝐴𝑛𝐴      (21) 411 

𝑐 = 0.5𝐺𝑐√𝜋 + 0.25√𝐺𝑐
2𝜋 − 4    (22) 412 

where Gc, or the Gravelius coefficient, is set to 1.5 and the exponent nA is set to 0.54. This form 413 

of the relationship between drainage area and stream distance is useful because it allows for 414 

direct consideration of the shape of the drainage basin using a single parameter. A watershed 415 

with a Gc of 1 has a perfectly circular boundary and a watershed with a Gc of 2 is an narrow, 416 

elongated watershed. Because we are only simulating the river profile, we use a threshold 417 

drainage area, Ac, of 1 km
2
. Using the specified Gc and nA from above, this is equivalent to the 418 

Hack (1957) relationship: 419 

𝐴 = 𝑘𝑎𝐿ℎ + 𝐴𝑐      (23) 420 

where ka = 0.969 and h =1.851. For all runs, we set the spacing between nodes at 100 meters and 421 

the time step to one day, with saved outputs every 5000 years. All runs are initialized using a 422 

profile with a low and constant ksn of 25 m. 423 

Spatial variations in both mean runoff and runoff variability are handled by adopting 424 

uniform river length bins along the longitudinal profile. This implies that the proportion of total 425 

drainage area represented by each bin varies along the profile. We test the sensitivity of the 426 

model to this style of discretization in section 5.4. Each bin has a single scale and shape 427 

parameter describing the runoff distribution that is used for all the nodes within the bin. At each 428 

time step, these parameters are recalculated based on the current topography. Figure 3 shows an 429 

example of how the mean runoff and shape parameter vary as a function of bin location at one 430 
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time step during a transient. The location and dimensions of bins are fixed for each model run to 431 

maintain computational efficiency. However, our analysis of model sensitivity includes varying 432 

the bin size and number of bins within a profile to test the sensitivity of results to these choices 433 

(see section 5.4). The key property of our model that allows hydro-climatology to coevolve with 434 

the topography occurs in the method we use to the recalculate the shape and scale parameters at 435 

every time step.  436 

As described in section 3, we used both global (Figure 2A-B) and regional relationships 437 

(Figure 2C-D) to define the mean runoff, scale parameter, and shape parameter within each bin. 438 

For a given time step and bin, the chain of action is: (1) Use the channel steepness from the 439 

previous step to calculate local relief using the linear relationships developed from the SRTM-90 440 

elevation data (e.g., Figure S1); (2) Use the local relief to calculate mean runoff using the power 441 

law relationships developed from the regional WaterGAP3 analysis (Figure 2C); (3) Also use the 442 

local relief to determine the maximum elevation by adding it to the minimum elevation within 443 

the bin; (4) Use the maximum elevation to calculate the snowmelt fraction using the power law 444 

relationships developed from the regional WaterGAP3 analysis (Figure 2D); and finally (5) Use 445 

the snowmelt fraction to choose an appropriate mean runoff and shape parameter (Figure 2A) 446 

and do the scale parameter adjustment (Figure 2B) based on the global WaterGAP3 analysis. In 447 

this way, the mean runoff, scale, and shape parameters are updated from channel topography 448 

alone and follow data driven rules. 449 

To ensure that the model does not extrapolate into an unreasonable part of parameter 450 

space, we impose a maximum relief that any bin can achieve. We set this to 2500 m for most 451 

runs based on a conservative estimate of what is observed in modern landscapes (e.g., Figure 452 

S1), though we also test the sensitivity of model results to this choice in Section 5.4. The 453 
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imposition of a maximum relief is broadly motivated by limits to local relief set by hillslope 454 

strength (e.g., Montgomery & Brandon, 2002; Schmidt & Montgomery, 1995). Embedded in the 455 

assumption of a maximum local relief is the expectation that this should be controlled by 456 

processes not considered in our model (e.g., hillslope creep or mass wasting). While we do not 457 

impose a limit on maximum elevation, it has an implicit limit set by the local relief maximum. 458 

We also make sure that the snowmelt fraction cannot exceed 1. After meeting all these 459 

constraints, each bin has a scale and shape parameter describing the probability distribution of 460 

runoffs expected for each bin at a given time step (e.g., Figure 3). To simulate the stochasticity 461 

implied by these derived parameters, we use the SciPy weibull_min and appropriate sub-462 

functions to randomly extract a runoff magnitude from the relevant probability distribution for 463 

that bin. In detail, for every 100 years of model run time, the model generates a 100 year daily 464 

time series (i.e., 36,500 days) of runoffs within each bin. This is done for efficiency because the 465 

random selection of numbers from a distribution is one of the more computationally time 466 

intensive steps. The compute time required to generate one random number is comparable to 467 

generating a large quantity of random numbers from a given distribution. The impact of this 468 

decision means that mean runoff and variability are only updated every 100 years. However, 469 

even for the maximum 8 mm/yr rock uplift rate we impose, the amount of profile change - and 470 

thus change in either relief or maximum elevation -  in 100 years is sufficiently small as to not 471 

significantly influence results. At each 100-year increment where the runoff time series is 472 

generated, the current iteration number is used as the starting seed for the generation of 473 

subsequent random numbers. This ensures that the random numbers (i.e., runoff magnitudes) 474 

change through the model run. 475 
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 For each day, runoff within each bin is first routed along the profile before calculating 476 

fluvial incision. Specifically, on a given day and within each bin along the stream profile, a 477 

random magnitude of runoff is drawn from the runoff distribution for that bin. Any stream nodes 478 

within that bin are assigned that runoff magnitude. This is done for all bins. Then, at each node, 479 

the daily runoff [L/T] is converted into a volume by multiplying by the drainage area (A) 480 

contributed by that node (i.e., dA/dx). The volumes within each node are cumulatively summed 481 

downstream to convert to daily discharge (Q) for use in the finite difference solution of equation 482 

12. An identical procedure is performed using the mean runoff in each bin (base on the relevant 483 

regional relationship between mean runoff and mean local relief) to generate a mean discharge 484 

(�̅�) for use within equation 12.   485 

4.2. Linked versus Unlinked Cases 486 

Whether neighboring bins are correlated or independent in time depends on how runoff 487 

events are generated in the landscape. The spatially correlated case mimics scenarios where 488 

storm or snowmelt runoff events vary in magnitude along the profile but represent the same 489 

recurrence interval (linked). The spatially independent case mimics scenarios where storm or 490 

snowmelt runoff events also vary in magnitude along the profile but where the runoff magnitudes 491 

are randomly drawn from the probability distributions for each bin independent of each other 492 

(unlinked). It is critical to clarify that both the linked and unlinked cases produce along-profile 493 

gradients in runoff magnitudes that coevolve with growing topography (e.g., see example 494 

probability distributions in Figure 3F). Linking the probability of events within bins along the 495 

profile enforces that runoff is spatially autocorrelated and is analogous to asserting a nonlinear 496 

scaling between streamflow and drainage area in prior treatments of STIM. In contrast, the 497 

unlinked case allows for crude assessment of the relative scales between runoff source areas and 498 
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the size of basin. By specifically considering the two endmember scenarios where exceedance 499 

probabilities are either uniform (linked) or independent (unlinked) across the basin, we are able 500 

to evaluate the potential importance of spatial autocorrelation in daily runoff on the efficiency of 501 

erosion. We consider how to physically interpret linked and unlinked cases in section 6.2.2, but it 502 

is important to emphasize that with respect to the model setup, we are largely agnostic as to 503 

possible physical or hydroclimatological processes these two endmembers represent. This 504 

agnosticism includes the somewhat generic terminology we adopt for these two scenarios, i.e. 505 

linked vs unlinked, to avoid association of them with any specific process as we expect that there 506 

are non-unique sets of process interactions that can lead to these behaviors. Finally, we 507 

emphasize that these two behaviors are extreme endmembers, and we would fully expect most 508 

real landscapes to behave as a mixture of these two endmembers.  509 

 Implementation of the unlinked versus linked scenarios is set by changing the 510 

pseudorandom seed number. For a given seed number, the pseudorandom number generator will 511 

produce a reproducible sequence of numbers. In the linked scenarios, the seed for the 100-year 512 

time series is set by the iteration number for all bins. In the unlinked case, the seed number for 513 

bins are incremented by 1, such that for bin 1, the seed is i, for bin 2, the seed is i+1, and so on. 514 

For the linked cases, this forces the exceedance frequency of events in all bins to be identical at a 515 

given timestep (e.g., Figure 3F). For the unlinked cases, this allows the exceedance frequency of 516 

events in bins to vary at a given timestep (e.g., Figure 3E). In the unlinked case, the size of the 517 

bins crudely represents an assumed characteristic size of runoff events. Real landscapes likely 518 

experience a mixture of small footprint, convective rain events, large footprint, synoptic-scale 519 

rain events, temperature-induced snowmelt events, and rain-on-snow events. For example, in our 520 

companion manuscript (Forte & Rossi, 2024b), we showed how the largest area runoff events 521 
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above a given magnitude tend to be increasingly produced by snowmelt. We anticipate that 522 

mixtures of event sizes, like those suggested by the WaterGAP3 data, will produce intermediate 523 

behaviors and response times, which is why we consider both the  linked and unlinked 524 

endmember scenarios for all parameter sets. The question of whether landscapes are better 525 

represented by unlinked versus linked scenarios is revisited in the discussion. 526 

4.3 Model parameterization  527 

Our main objectives in this study are to extend the zero-dimensional stochastic-threshold 528 

incision model (STIM) of Lague et al. (2005) to a 1D profile model that includes spatially 529 

varying daily runoff variability (spatial-STIM). The purpose of this new model is to see how 530 

coupling orographic patterns in runoff variability can alter predictions in the steady state and 531 

transient evolution of river longitudinal profiles using stream power. It is beyond the scope of 532 

this effort to do a full sensitivity analysis on all the STIM parameters, which have already been 533 

explored in great depth (DiBiase & Whipple, 2011; Lague, 2014; Lague et al., 2005). Instead, we 534 

focus on driving our new model using empirical relationships for how mean runoff and daily 535 

runoff variability vary as a function of local relief and testing the sensitivity of our results to the 536 

differences in model structure we have added to spatial-STIM. As such, most STIM parameters 537 

(like thresholds, rock erodibilities, width scaling) are fixed in all model runs, typically to values 538 

that were used in  our prior work in the Greater Caucasus (Forte et al., 2022). The values of fixed 539 

parameters are reported in Table S1. Table S2 summarizes the parameters we vary in our 540 

numerical experiments and contains a complete list of model runs. The suite of numerical 541 

experiments we conduct address two central questions: (1) What do orographic relationships 542 

between mean runoff and daily runoff variability entail for STIM-based predictions of the 543 

relationship between channel steepness and rock uplift rates, and (2) How sensitive are spatial-544 
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STIM results to the new elements of model structure (i.e., by varying stochastic parameters along 545 

bins in the longitudinal profile)?  546 

5 Results 547 

We report results in three parts. The first part provides results for a series of baseline 548 

cases that use a similar model structure (50-km long rivers, 2-km wide bins), albeit for both the 549 

linked and unlinked scenarios. These baseline cases represent how a ~488 km
2
 area watershed 550 

responds to range of uplift rates (0.25 to 8 mm/yr) under modern hydro-climatic conditions of the 551 

mountainous regions of the Greater Caucasus, European Alps, and British Columbia. The second 552 

part uses the results from the Greater Caucasus runs to interrogate the large differences in 553 

transient and steady state behavior that are observed between linked and unlinked cases. 554 

Specifically, we examine when and where erosional thresholds are exceeded. The third part tests 555 

the sensitivity of our findings to other differences in model structure, specifically to profile 556 

length, bin size, bin number, maximum local relief, and binning criteria. To do this, we use the 557 

linked Greater Caucasus baseline case at rock uplift rates of 1 mm/yr as the starting point for the 558 

majority of sensitivity analyses. Sensitivity experiments vary: (1) stream length and number of 559 

bins using model setups of 10, 20, 30, 40, 50 and 100 km width bins fixed at 2 km wide, (2) 560 

maximum relief within a bin using model setups of 1500, 2000 and 2500 m, and (3) bin size 561 

using model setups of 2, 5, and 10 km wide bins. Because profile length and bin size together 562 

define the number of bins, we also run a sensitivity experiment designed to: (4) test the notion 563 

that number of bins, and thereby the granularity of how we represent the hydroclimate, is 564 

controlling the steady state channel steepness. This latter test compares two profile lengths of 10 565 

and 50 km long using both 5 and 10 bins.  Finally, we test the sensitivity of the model results to 566 
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the binning scheme by: (5) running a full suite of models where we divide the profile into bins of 567 

equal drainage area as opposed to equal stream distance. 568 

The dynamics of individual runs are decidedly complex despite them being 1D models. 569 

In the sections below, much of the behavior of individual model runs is not discussed in detail 570 

because we focus on general behavior. Outputs of all models are available in Forte & Rossi 571 

(2024a), along with summary plots of all model runs. Codes to interpret and interrogate the 572 

model results are available in Forte (2024). 573 

5.1 Model behavior across regional cases 574 

Comparison of the regional cases provides important insights into the behavior of spatial-575 

STIM. Figure 4 shows the steady state results for three cases inspired by the modern hydro-576 

climate of the Greater Caucasus, Alps, and British Columbia. Model results are shown for both 577 

linked and unlinked runoff parameters, a bin size of 2 km, a river length of 50 km, and uplift 578 

rates spanning from 0.25 to 8 mm/yr. Note that we refer to these results as reflecting ‘steady 579 

state’, even though the majority of the model runs never truly reach steady state in the sense of 580 

invariant properties along the river profile. In detail, several behaviors can be gleaned from these 581 

comparisons. First, for all unlinked scenarios, there is a distinct upstream decrease in channel 582 

steepness. In contrast, channel steepness occupies a much smaller range of values for linked 583 

scenarios (Figure 4B). As a spatial gradient in ksn effectively suggests a different true concavity 584 

than the imposed reference concavity, this result implies that, especially for the unlinked 585 

scenarios, the concavity of river profiles can substantially deviate from the 0.5 reference value 586 

used to calculate ksn, a point we return to in the discussion. Second, upstream decreases in 587 

channel steepness (and thus local relief) are associated with decreases in mean runoff  in those 588 

high elevation bins(Figure 4D) as should be expected from the imposed empirical relationships 589 
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(e.g., Figure 2). Daily runoff variability also decreases upstream in line with increases in 590 

snowmelt fraction, though most of the longitudinal profiles generally remain below the 591 

snowmelt-dominated regime (Figure 4C). Third, Figure 4 reveals important differences between 592 

regional cases as a function of uplift rate. For example, despite the highest uplift rate being 32X 593 

the lowest uplift rate, the steady state river profiles for the unlinked British Columbia region are 594 

remarkably similar across the full range of rock uplift rates (Figure 4A), likely related to the 595 

higher snowmelt fraction (Figure 4C), mean runoff (4D), and lower variability (4E) of these 596 

model runs.   597 

One main hypothesis of this study (Figure 1B) envisioned periods of time or locations in 598 

which the snowmelt-dominated regime (i.e., high mean runoff and low runoff variability) can 599 

substantially modify the sensitivity of channel steepness to increases in rock uplift rates. While 600 

motivated by three landscapes (and hydro-climatic rulesets) that might sample across this 601 

transition, only British Columbia achieves enough total relief to even begin to sample this part of 602 

parameter space (Figure 4C). For the other two rulesets, model runs rarely exceed the snowmelt 603 

fraction of 0.35 (Figure 4C), consistent with the empirical data from WaterGAP3 (Figure 2D). 604 

As a test of internal consistency, we also checked the mean runoffs and shape parameters for 605 

each bin across the full range of uplifts at all timesteps for the Greater Caucasus unlinked model 606 

run.  The majority of bins stay within empirical ranges without any formal restriction to this 607 

range (Figure S2). This suggests that our new model is not extrapolating to unrealistic portions of 608 

parameter space during the transient evolution of these river longitudinal profiles. 609 

When generalizing across all model runs in Figure 4, two main results emerge: (1) 610 

Differences in the steady state form of river profiles induced by different hydro-climatic forcings 611 

are relatively modest for a given rock uplift rate (Figure 4A); (2) Whether the recurrence interval 612 
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of runoff events in spatial bins are linked or unlinked is more significant, especially when rock 613 

uplift rates are low (Figure 4A-B). Examining the mean values of metrics (far right column in 614 

Figure 4) highlights that differences among regional rulesets for a given set of model parameters 615 

(i.e., linked versus unlinked, rock uplift rate) generally span a smaller range within a given 616 

region than the larger contrast between linked and unlinked scenarios. Because of this, we focus 617 

our initial analysis of transient model dynamics on the assumption of linked versus unlinked 618 

runoff events.  619 

5.2 Explaining differences between unlinked versus linked scenarios  620 

We use the contrast between the Greater Caucasus unlinked recurrence interval of runoff 621 

events scenario with a 1 mm/yr uplift rate (GC1U) and its linked equivalent (GC1L) to help 622 

unpack model dynamics. As the longitudinal profile evolves towards steady state, a transient 623 

slope-break knickpoint migrates upstream (e.g., Figure 3), much like in other stream-power 624 

based models of river incision (e.g., Crosby & Whipple, 2006; Rosenbloom & Anderson, 1994). 625 

However, the key novelty to our model is that runoff statistics vary both in space and in time. For 626 

both the unlinked and linked scenarios, we identified a time when the knickpoint had obtained a 627 

similar relative upstream position (Figure 3A-B; 1 Ma for unlinked; 0.63 Ma for linked). Figures 628 

3C-F show the runoff parameters for every bin in the profile at that time. On these plots, we 629 

show the spatially averaged values for the shape parameter and mean runoff. We also show the 630 

median values of those parameters for a Monte Carlo simulation (500 trials) of randomly 631 

sampled, 100-year long discharge records using the orographic rules for this timestep. Both the 632 

unlinked and linked scenarios show that mean runoff is similar whether averaging across bins or 633 

routing runoff down the profile (i.e., the Monte Carlo estimates). In contrast, a persistent feature 634 

of unlinked scenarios is that the variability of routed discharge is significantly lower (i.e., larger 635 
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shape parameter) than the corresponding averages of bins would suggest (Figure 3C & 3E), a 636 

behavior not observed in the linked scenarios (Figure 3D & 3F).  637 

To expand beyond one moment in time, Figure 5 shows the contrast in model runs as a 638 

function of 𝜒 and stream distance for the Greater Caucasus hydro-climatic ruleset  (e.g., Figure 639 

2C & D). The temporal evolution of 𝜒-elevation plots (Figure 5A-B) and longitudinal profiles 640 

(Figure 5C-D) reiterate that unlinking the runoff statistics as a function of profile position 641 

reduces the efficiency of erosion (i.e., generates steeper steady profiles). However, while the 642 

overall erosional efficiency is lower, the unlinked hydroclimatic parameters actually produce 643 

more significant (and temporally isolated) pulses in erosion during the transient evolution of the 644 

profile (contrast stripes in Figure 5E with 5F) and greater mean runoffs (more blue in Figure 5G 645 

than 5H). Unlinked cases also generally take longer to reach a quasi-steady state (Figure 5). Here 646 

specifically we consider these profiles to be in a quasi-steady state in the sense that the elevations 647 

(and associated parameters, e.g., relief, etc.) never reach a truly static value, but effectively 648 

oscillate around an average value. We briefly offer our explanation for this apparent disconnect 649 

between long-term model behavior and what would be observed during a single snapshot of 650 

erosion along the river profile.  651 

Interpreting the dynamics in spatial-STIM requires understanding the frequency of 652 

exceedance of erosional thresholds in the model (Figure 6). In our numerical experiments this 653 

threshold is held constant for all model runs. For both the linked and unlinked scenarios, areas 654 

above knickpoints rarely exceed the threshold for erosion and are thus passively uplifted until a 655 

knickpoint passes. The knickpoint itself focuses threshold exceedances to an area just below 656 

where channels are steepest (red areas along profile in Figure 6A-B). This hotspot in threshold 657 

exceedance is localized near the knickpoint for the linked case and persists in downstream 658 
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reaches for the unlinked case. Because the knickpoint is migrating upstream, cumulative 659 

threshold exceedances as a function of stream position are relatively smooth when averaged over 660 

the long-term (Figure 6C-D) with an average that stabilizes to a single value (Figure 6E-F). 661 

Threshold exceedance frequencies are generally higher in the unlinked case (Figure 6E-H). In 662 

addition, local erosion rates can get much higher in the unlinked case (e.g., Figure 5E-F, 6G-H). 663 

Taken alone, these observations might suggest a more efficient hydroclimate in the unlinked 664 

case. However, both river profiles are approaching a quasi-steady state suggesting that river 665 

profiles needed to adjust to more frequent temporal exceedances to overcome the spatial 666 

heterogeneity in runoff generation. Specifically, the unlinked case inhibits the “benefit” of water 667 

flowing from upstream. Higher probabilities of exceedance are needed in upstream reaches to 668 

balance rock uplift, which are accommodated by steepening, because rare runoff events are not 669 

synchronous along the river profile. These dynamics result in a negative upstream trend in 670 

cumulative exceedance (Figure 6C) that is not observed in the linked case (Figure 6D). The 671 

linked scenarios are thus able to maintain lower relief at lower mean discharges because of the 672 

spatial autocorrelation of events in a river basin. The assumption for how runoff events 673 

accumulate downstream appears to be an under-appreciated governor of model dynamics, that is 674 

perhaps more important than the orographic rules for hydro-climate we use. 675 

Finally, an additional difference between unlinked and linked cases is the perpetuation of 676 

some amount of dynamic instability in the unlinked models. This can be seen in comparisons of 677 

temporal and spatial variations in erosion rate (contrast Figure 5E with 5F) and the frequency of 678 

exceedance of erosion thresholds (contrast Figure 6A with 6B) between the unlinked and linked 679 

models. Even after the main transient knickpoint has propagated completely through the 680 

landscape, there are quasi-periodic erosional “events” that continue to impact the unlinked 681 
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models, which lead to small-scale variations in profile topography. To understand this behavior, 682 

it is worth considering the dynamics at play after the profile reaches its quasi-steady form. In 683 

both cases, not every daily event will erode. In the linked cases, whether a given event will erode 684 

(i.e., whether it exceeds the erosion threshold) will be tend to be spatially uniform as the whole 685 

profile has nearly adjusted to the same threshold condition. In contrast, for unlinked cases, events 686 

that exceed the erosion threshold will occur only in a portion of the profile (i.e., the bin where 687 

the event occurs and possibly in bins downstream). This effectively generates small knickpoints 688 

in the profile that subsequently propagate upstream. The local change in steepness will similarly 689 

modify the critical discharge necessary to exceed the erosion threshold, further accentuating this 690 

new perturbation. Because there is no damping mechanism for these small perturbations in the 691 

unlinked scenarios, the river profile is inherently less stable. 692 

5.3 Sensitivity of spatial-STIM to other elements of model structure  693 

While the most significant difference between model outcomes is tied to whether the 694 

runoff distributions are linked or unlinked along the river profile, other structural elements of the 695 

model are also important to model dynamics. Specifically, we interrogate how the three new 696 

model parameters added to spatial-STIM (bin size, maximum local relief, profile length) and one 697 

derived parameter (number of bins) influence model behavior (Figure 7). This latter parameter 698 

encodes the ratio between the size of the system (profile length) and the scale over which 699 

changes in hydro-climatic parameters are represented (bin size). We also test the importance of 700 

how the profile is binned, namely when uniformly subdivided by river length versus contributing 701 

drainage area. 702 

For all sensitivity experiments, we use the Greater Caucasus hydroclimatic parameters 703 

and generally use rock uplift rates of 1 mm/yr, except for experiments testing the way the profile 704 
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was discretized (Figure 7E). In all cases, the steady-state channel steepness is what is being 705 

compared. Reference conditions (black squares and circles) assume 50-km river lengths, bin 706 

sizes of 2 km, and a maximum imposed relief of 2.5 km. For unlinked scenarios, the sensitivity 707 

of ksn to bin size is substantial (Figure 7A, S3). A 5X increase in bin size corresponds to ~33% 708 

reduction in ksn. Increasing the size of bins both decreases the granularity with which orographic 709 

gradients in hydro-climatic parameters are represented as well as increases the degree of spatial 710 

autocorrelation. To the latter point, we also plot the linked case to show that the effect of 711 

increasing bin size is approaching the ksn values observed when the events are linked over the 712 

entire river profile. For the majority of model runs, we consider bins of equal river distance. 713 

Because of the power-law scaling between distance and drainage area, this implies that the 714 

contributing area of each bin is not the same. As such, we test a set of both linked and unlinked 715 

model runs that use bins of equal drainage area (Figure 7E). When the number of bins are the 716 

same, the results for linked models are identical to the distance bin models. For unlinked cases, 717 

the area and distance bin results are different, but overlap within uncertainty. The sensitivity of 718 

ksn to maximum local relief is near zero (Figure 7B, S3). It is worth noting that this threshold in 719 

maximum local relief was set to prevent extrapolating our runoff parameter relationships to 720 

unrealistic values. The insensitivity of channel steepness to this maximum local relief gives us 721 

confidence our model interpretations are not unduly sensitive to this threshold parameter. We 722 

suspect that if the maximum relief was set unrealistically low or high values, it would begin to 723 

influence model results. For unlinked scenarios, the sensitivity of ksn to profile length, and thus 724 

system scale, is substantial (Figure 7C, S3). A 10X increase in profile length corresponds to 725 

~50% increase in ksn. Increasing the length of profiles, while holding bin size constant, increases 726 

the granularity with which orographic gradients in hydroclimatic parameters are represented by 727 
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creating more bins for a given elevation gradient. Because both bin size and profile length impact 728 

the granularity of orographic gradients in runoff parameters, we also did a test where we changed 729 

the length of the profiles (10- and 50-km) for different bin numbers (Figure 7D). Systems of 730 

different lengths had similar values for ksn as long the number of bins was the same. More bins, 731 

and thus finer resolving power of gradients in runoff parameters, led to slight increases in steady 732 

ksn. For example, a 2X increase in bin number led to ~15% increase in ksn, albeit within 733 

uncertainty of estimated values. 734 

6 Discussion  735 

Adding complexity to geomorphic transport laws like stream power is only useful to the 736 

degree that a new model is able to: (1) Be implemented over the spatiotemporal scales of 737 

interest; (2) Capture dynamics that cannot otherwise be simulated; and (3) Improve the ability to 738 

calibrate models and test hypotheses with empirical data. Given that stream power is one of the 739 

most widely used erosion laws in landscape evolution studies, we critically evaluate the results 740 

from our model analysis using spatial-STIM. First, we first compare spatial-STIM model results 741 

to its stream-power based predecessors. Second, we articulate the scenarios where and when 742 

spatial-STIM has the potential to provide more physically based and empirically constrained 743 

predictions. Third, we discuss the limitations of this new 1-D model, along with ideas for future 744 

research directions.  745 

6.1 Spatial-STIM and its predecessors 746 

One useful lens through which to consider model results is in how spatial-STIM 747 

predictions compare to other 1D models built on stream power (Howard, 1994; Whipple & 748 

Tucker, 1999). We focus on three important metrics to evaluate how our new model compares to 749 
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its predecessors—namely the steady state channel steepness, the steady state concavity, and the 750 

response times to steady state.  751 

6.1.1 Steady state channel steepness 752 

Figure 8 shows the steady state relationships between channel steepness and erosion rates 753 

for our regional cases using both linked and unlinked parameters. We plot results both in terms 754 

of ksn and ksnQ using a reference channel concavity of 0.5 (see section 6.1.2 for discussion on 755 

patterns in concavity). For any given scenario, all model results are well approximated by a 756 

power law, similar to predictions from simple stream power (e.g., Equation 8). In general, power 757 

law fits of channel steepness show strongly sublinear behavior and imply stream power values of 758 

n of 4.5-5.5 for linked scenarios and 6.1-16.6 for unlinked scenarios (Figure 8A). That individual 759 

scenarios imply different values for K  and n should be expected because these stream power 760 

parameters encode details of both climate and rock properties (e.g., Kirby & Whipple, 2012; 761 

Whipple et al., 2022), the former of which we are explicitly varying in each different scenario. 762 

However, the wide range and large magnitudes of n are a bit more surprising and could be 763 

interpreted in empirical datasets as channel steepness thresholds (Hilley et al., 2019). Consistent 764 

with other stochastic-threshold models of river incision (see Lague, 2014), effective values of n 765 

are expected to correlate with the shape parameter of the runoff distribution (Figure 9A), though 766 

our results are not entirely analogous. The relationship between the shape parameter of the runoff 767 

distribution and n largely emerges from the unlinked cases in our model results. For the linked 768 

cases, which are more analogous to the Lague et al. (2005) model, similar runoff variabilities 769 

produce a more modest range of values for n. Our data does largely overlap with the predicted 770 

relationship between the shape parameter and 1/n from Lague et al., (2005) assuming a case 771 

where erosion thresholds are large with respect to erosion rates (Figure 9A), but is slightly better 772 
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explained by a simple linear relationship. Intriguingly, a negative correlation between K and 773 

mean runoff emerges from the spatially varying hydroclimatic rules used to evolve the profiles 774 

(Figure 9C).  775 

We also present the corresponding topography - erosion rate relationships using an 776 

alternative calculation of channel steepness, ksnQ. We do this to explore whether normalizing our 777 

calculations by spatial gradients in runoff can help collapse model results onto a single functional 778 

form, thus following up on the recent empirical successes of using ksnQ (Adams et al., 2020; 779 

Leonard et al., 2023b, 2023a). Using ksnQ instead of ksn does reduce the overall range of stream 780 

power values of n to ~3.3 – 3.6 for linked cases and ~3.8 – 10.3 for unlinked cases (Figure 8B). 781 

Within either linked or unlinked models, this also collapses the range for individual regions, 782 

though much more so for the linked than unlinked scenarios. Despite these modest improvements 783 

in using ksnQ, this modified form of channel steepness does not collapse model results onto a 784 

single relationship as might otherwise be expected for model runs with the same underlying rock 785 

properties (i.e., same values for ke, 𝜏c, and kw). The point is emphasized further in the persistence 786 

of trends between shape parameter and n (Figure 9B) and runoff and Klp (Figure 9D) for values 787 

from the ksnQ-E relationships (Figure 8B). The overall relationships between stream power 788 

parameters and the two different calculations of channel steepness are quite similar, though they 789 

differ in detail as the rank order of values change between ksn (Figure 9A; 9C) and ksnQ (Figure 790 

9B; 9D). 791 

6.1.2 Steady state concavity 792 

Other 1D river incision models show that steady state concavity is differentially sensitive 793 

to orographic gradients in precipitation as a function of rock uplift rate (Roe et al., 2003), though 794 

they typically fall within the range of expected values between 0.4 and 0.6 (Whipple et al., 795 
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2022). As such, we consider best-fit concavities both using drainage area (Figure 8C) and 796 

precipitation-weighted drainage area (Figure 8D). For each model run, we determine the best-fit 797 

concavity by using the linear relationship between 𝜒-elevation or 𝜒Q-elevation (sensu Leonard et 798 

al., 2023b). All model runs use a ratio of the area exponent, m, to the slope exponent, n, of 0.5. 799 

Deviations from this value thus indicate concavity anomalies induced by differences in how 800 

runoff is generated in the model. The range of concavities spans from ~0.3 to 0.5. Importantly, 801 

unlinked scenarios consistently develop profiles with concavities < 0.5, consistent with the 802 

spatial pattern of ksn observed in the steady state profiles of those models (e.g., Figure 4B). In 803 

contrast, linked scenarios consistently develop profiles with concavities ~0.5. For linked 804 

scenarios, the largest negative anomalies (i.e., negative deviations from 0.5) occur at the lowest 805 

uplift rates, which then approach the expected concavity of 0.5 at higher rock uplift rates. 806 

However, examination of along profile patterns in ksn for these high uplift rate, linked models 807 

(e.g., Figure 4B) suggest that the apparent match of concavities masks persistent deviations in ksn 808 

in the upper reaches of the profile. Because there is a tradeoff between the relative roles of mean 809 

runoff and daily runoff variability on erodibility, numerical models like spatial-STIM are needed 810 

to identify how sensitive concavity is to rock uplift rates. For a given set of hydroclimatic 811 

parameters, concavity can vary by ~0.1. We also note that precipitation-weighted concavity for 812 

unlinked models (Figure 8D) shows more sensitivity to rock uplift rates than conventional 813 

calculations of concavity. This is the opposite of the effect described in Leonard et al. (2023b) 814 

where these authors showed that precipitation-weighted concavity reduces the dynamic range of 815 

values observed in central Andean drainages. Based on this, we suggest that systematic changes 816 

in channel concavity with rock uplift rates may provide important insights into the importance of 817 

orographic effects on runoff parameters. In particular, we hypothesize that the relative scale of 818 
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runoff generating events to the size of a watershed may be imprinted in the concavity. We return 819 

to this idea in section 6.2.  820 

6.1.3 Transient response timescales 821 

Stream power predictions of steady state morphology are non-unique (Gasparini & 822 

Brandon, 2011). By instead targeting the functional relationship between channel steepness and 823 

erosion rate for a given set of environmental conditions (e.g., rock properties, climatic setting), 824 

stream power predictions are more discriminating, but are still non-unique. For example, there is 825 

always a K and n - or Klp and n - pair that can describe the expected steady state topography 826 

produced by our model outputs in each of the simulated scenarios (Figures 8-9). As such, we 827 

consider here whether differences in model dynamics are observed in the transient response of 828 

the 1D river profiles. To assess this, we compared the response times to steady state for both 829 

spatial-STIM and simple stream power. We calculated the analytical solution to stream power 830 

using the equations in Whipple (2001). Using the Hack parameters from model initialization (Eq. 831 

21), we can derive the analytical solution for response times using the fit values for K and n in 832 

each model scenario. To do this, we first back-calculate the initial rock uplift rates that 833 

correspond to the initial ksn of 25 m used in all model runs. We then calculate the fractional 834 

change in rock uplift rates and apply the equations in Whipple (2001) to calculate a response 835 

time. For comparison to spatial-STIM, we have to also define steady state in our numerical runs. 836 

We define the time to steady state as the time it takes for the absolute value of the difference 837 

between maximum elevations of the profiles to fall below 10% of the amount of uplift per 838 

timestep. This was used to account for the continual time variation in profiles for unlinked cases. 839 

Figure 10 summarizes these calculations and includes direct comparison between spatial-STIM 840 

and the analytical solutions for stream power (Figure 10C). Response times for spatial-STIM plot 841 
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very close to the 1:1 line, suggesting broad agreement. Importantly, while simple stream power 842 

model can reproduce the transient dynamics of spatial-STIM, the values of K and n cannot be 843 

derived from first principles. In other words, the values for these parameters are not readily 844 

inferred from known differences in modern estimates of mean runoff and daily runoff variability 845 

used in  our three regional scenarios.  846 

6.1.4 Comparison of spatial-STIM and STIM 847 

Some of the behavior we observe in our results are expected from prior applications of 848 

STIM (DiBiase & Whipple, 2011; Lague, 2014; Lague et al., 2005), namely that Φ is directly 849 

related to the shape parameter of the streamflow distribution (Figure 9A). Furthermore, the 850 

general expectation that increasing relief and elevation leads to commensurate increases in mean 851 

runoff, snowmelt fraction, and the shape parameter of runoff distributions can be partially 852 

represented in zero-dimensional versions of STIM by altering the scaling exponent that relates 853 

drainage area to discharge. In fact, one key advantage of prior applications of STIM is that 854 

streamflow distributions can be linked to ecohydrological models driven by rainfall (e.g., Botter 855 

et al., 2009) or snowmelt (e.g., Schaefli et al., 2013). Under this theoretical framing, streamflow 856 

variability can then be derived from the characteristic timescale of runoff generating events, the 857 

hydrological response timescale, and the shape of the recession limb of the hydrograph (Deal et 858 

al., 2018). This physically based theory allows for the coupling of hydrology to bedrock river 859 

incision with a minimal set of parameters. However, at the mountain range scale, orographic 860 

effects can be substantial and runoff generation heterogeneous, making it difficult to couple 861 

ecohydrological models to bedrock river incision.  862 

To begin to address this challenge, we adopted an empirical, rules-based approach to 863 

simulate how stochastic runoff coevolves with topography (Forte & Rossi, 2024b). By 864 
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incorporating orographic patterns in mean runoff and daily runoff variability that may or may not 865 

be autocorrelated, spatial-STIM can predict profile evolution with upstream variations in 866 

topography (Figure 4A-B) and hydroclimate (Figure 4C-E) that are not possible in spatially 867 

uniform variants of STIM. Importantly, predictions of relationships between ksn and erosion rate 868 

differ between STIM and spatial-STIM (Figure 11, S5). To aid comparison, we use the mean ksn 869 

of the steady state profile and estimates of mean runoff and daily runoff variability to contrast 870 

spatial-STIM with its zero-dimensional equivalent using equation 18. This is akin to treating the 871 

model results as a natural watershed, with which we might attempt to characterize using STIM. 872 

Such comparisons highlight that erosion rates within spatial-STIM and those predicted by STIM 873 

are different by between 0.5-1.5x (Figure 11A, S6A-B). The differences between STIM and 874 

spatial-STIM are more extreme for the unlinked cases than the linked ones. As catchments 875 

become smaller (and thus the degree of orographic variation within catchments becomes 876 

smaller), predictions of zero-dimensional STIM and spatial-STIM become more similar (e.g., 877 

note the 10-km long profile runs in Figure 11A).  Similarly, if we use the mean runoff and 878 

variability of individual model runs to predict suites of ksn-erosion rate relationships, we find 879 

relatively large differences in n between zero-dimensional STIM and spatial-STIM (Figure 11B, 880 

S6C-D). Spatial-STIM tends to be less linear (i.e., higher n) for linked models and more linear 881 

(i.e., lower n) for unlinked models (Figure 11D). This analysis highlights that when interpreting 882 

empirical ksn-erosion rate relationships from cosmogenic erosion rates, one should be mindful of 883 

the potential for orographic gradients in relevant STIM parameters (i.e., mean runoff and 884 

variability), but also the spatial scale of runoff events (i.e., whether a linked or unlinked case is 885 

more appropriate). In scenarios where there appear to be orographic gradients within individual 886 

basins and/or that the scale of runoff individual events tend to be smaller than the basin itself, 887 
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interpreting ksn-erosion rate data with a zero-dimensional STIM model may be difficult to relate 888 

to empirical constraints on runoff parameters.  889 

6.2 Why use spatial-STIM? 890 

The stream power approximation for each scenario simulated in this study adequately 891 

explains both the steady state and transient response of river profiles. However, there are other 892 

reasons to favor using spatial-STIM for some applications. In particular, it provides insight into 893 

how process representation dictates model dynamics. Tethering process to the stochastic 894 

properties of runoff generation as function of relief development and spatial scale has potentially 895 

important implications on climate tectonic coupling. 896 

6.2.1 Process representation in spatial-STIM 897 

Any attempt to calibrate a 1D model of river incision is going to attempt to constrain free 898 

parameters using observational data. While most of our model parameters are fixed, we were 899 

able to produce a wide range of behaviors in spatial-STIM by simply including empirical 900 

patterns between mean runoff and daily runoff variability for three regional settings. 901 

Surprisingly, the details of hydroclimatic rules were less important than one new structural 902 

element to our model (i.e., the linking or unlinking of the recurrence interval of individual runoff 903 

events across bins) that essentially handles the spatial autocorrelation of runoff events. As an 904 

illustrative example, consider that we have good evidence for mixed populations of runoff 905 

generating events being sourced from snowmelt and rainfall-runoff in the Greater Caucasus 906 

(Forte et al., 2022). Using the same set of hydroclimatic rules, the K and n for linked and 907 

unlinked cases are very different. Attempting to fit stream power parameters to explain a mixture 908 

of the two endmembers and would likely produce hybrid values of K and n that are not reflective 909 
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of either runoff source or the expected behavior of the system (e.g., response times or the use of 910 

channel steepness to predict erosion rates). One could imagine that the differences between 911 

linked and unlinked models in terms of ksn-erosion rate relationships (e.g., Figure 8A) reflect 912 

envelopes on possible ksn-erosion rate datasets, and thus a wide array of K and n values (with K 913 

being in part of a function of n) that could be fit to the data. In all circumstances, the fit K and n 914 

would not be physically meaningful.     915 

Because of how runoff processes are represented in spatial-STIM, our model analysis 916 

highlights that unlinked models arere quite sensitive to event size (Figure 7A) and watershed size 917 

(Figure 7C). These findings place central importance on understanding the hydroclimatic 918 

controls on the ratio of these two spatial scales (Figure 7D) if we want to understand the 919 

topographic response to base level fall. Empirical studies (e.g., Binnie et al., 2007; Cyr et al., 920 

2010; DiBiase et al., 2010; Forte et al., 2022; Harkins et al., 2007; Miller et al., 2013; Olivetti et 921 

al., 2012; Ouimet et al., 2009; Rossi et al., 2017; Safran et al., 2005; Scherler et al., 2014) 922 

typically sample across a range of watershed sizes that may be interacting in complex ways with 923 

the characteristic scale of runoff generating events. Given this strong sensitivity to spatial scale, 924 

it is unclear how generalizable empirical estimates of K and n are when comparing across 925 

landscapes. While typical uncertainties associated with erosion thresholds (e.g., Shobe et al., 926 

2018), rock erodibility (e.g., Yanites et al., 2017), channel width scaling (e.g., Gallen & 927 

Fernández‐Blanco, 2021), and sediment flux dynamics (e.g., Whipple & Tucker, 2002) still 928 

remain (and were not explored in this analysis), we argue from our simulations that we may not 929 

be accounting even for the most important aspects of climate in current models of bedrock river 930 

incision. As such, there is a need for providing mechanistic explanations of the “linked” versus 931 

“unlinked” scenarios. 932 
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6.2.2 Physical interpretations of unlinked vs linked scenarios 933 

Given the central importance of whether the recurrence times of daily runoff are 934 

synchronous along the river profile (i.e., “linked” in the parlance of the model), there is a need to 935 

provide physical interpretations to this new structural element in the model. We argue that 936 

linking or unlinking runoff statistics spatially embeds a variety of physically distinct 937 

mechanisms. The first broad class of interpretations of the linking the recurrence times of daily 938 

runoff is that it, in part, it captures the spatial scale of rainfall events—particularly, the contrast 939 

between synoptic scale rainfall versus convective rainfall. While actual rainfall fields vary 940 

continuously, our bin-based treatment facilitates representing orographic gradients in daily 941 

rainfall that vary in magnitude but where the relative frequency is uniform (or not in the 942 

“unlinked” scenarios). Whether recurrence times are uniform at the event scale is an important 943 

consideration. In some cases, precipitation patterns during individual storms mirror long-term 944 

means (e.g., Garvert et al., 2007; Minder et al., 2008; Roe, 2005). In contrast, there is also deep 945 

literature documenting how event-scale gradients in precipitation properties are more sensitive to 946 

finer-scale topography leading to more complex outcomes (e.g., Cosma et al., 2002; Marra et al., 947 

2022). To some extent, spatial-STIM can capture some of this nuance. Even the linked scenarios 948 

can develop significant complications in spatial patterns in runoff when lower relief areas persist 949 

upstream, leading to a relatively lower magnitude of runoff events. Nevertheless, the linked and 950 

unlinked scenarios reflect not only the atmospheric forcing but also how the hydrologic response 951 

self-organizes in the landscape as function of topography. 952 

The second broad class of mechanistic interpretations of whether runoff events are 953 

spatially linked lies in the assumed hydrology that converts precipitation events into daily runoff 954 

distributions. At even the simplest level, this probabilistic transformation is nontrivial (e.g., 955 
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Rossi et al., 2016) such that a naïve correspondence between runoff generating events and the 956 

spatial characteristics of precipitation events becomes problematic. Land surface properties like 957 

vegetation (Deal et al., 2018), soil thickness (Rossi et al., 2020), among others, may plausibly co-958 

evolve with topography in ways that can partition the landscape into domains with distinctively 959 

different rainfall runoff statistics. Furthermore, we showed in our companion paper (Forte & 960 

Rossi, 2024b) that the spatial extent of snowmelt dominated runoff events tends to dominate the 961 

far right tail of runoff distributions, especially at higher intensity thresholds. While our treatment 962 

only provides a crude representation of the endmember cases of linked versus unlinked 963 

scenarios, it provides a useful baseline for the range of outcomes for a given hydroclimatic 964 

ruleset. From the perspective of steady state relationships between channel steepness and erosion 965 

rates, reality likely lies somewhere in between the linked and unlinked scenarios, producing a 966 

large number of potential K – n pairs that can be plausibly produced for even a simple 967 

hydroclimatic ruleset. More attention to understanding and characterizing how the statistics of 968 

runoff might be spatially autocorrelated via a variety of physical mechanisms is a potentially 969 

fruitful, and important, future research direction. 970 

6.2.3 Isolating the effect of snowmelt 971 

While the snowmelt transition was in part our initial target of model development, the 972 

model behavior we show in this analysis provides a suite of more general insights. As long as 973 

there is an inverse relationship between mean runoff and daily runoff variability (e.g., Molnar et 974 

al., 2006; Rossi et al., 2016) and erosional thresholds are large relative to characteristic discharge 975 

(e.g., Lague et al., 2005; Tucker, 2004), then the dynamics of our model simulations apply. To 976 

help isolate the role of integrating snowmelt statistics with rainfall runoff ones, we ran an 977 

additional suite of models that removes the chain of reasoning used to account for snowmelt. 978 
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Specifically, these additional model runs (referred to as Rain Only) use a single relationship 979 

between mean runoff and variability based on the WaterGAP3 analysis but that ignores the role 980 

of snowmelt fraction (Figure S6). For this set of experiments, we still use the regional 981 

relationships between local relief and runoff as baselines cases but ignore relationships between 982 

maximum elevation and snowmelt fraction. We consider both linked and unlinked scenarios 983 

using the Greater Caucasus and British Columbia rulesets. In the earlier runs, the Greater 984 

Caucasus models barely entered into the snowmelt-dominated regime whereas, at high uplift 985 

rates, the British Columbia models were well into the snowmelt dominated regime (e.g., Figure 986 

4C). 987 

The suite of Rain Only models highlight again that whether a model is linked or unlinked 988 

dominates the nature of the ksn-E relationship (Figure 12A). Comparing the original and Rain 989 

Only Greater Caucasus models reveals very minor differences in the nonlinearity of the ksn-E 990 

relationship. Comparison of the British Columbia original and Rain Only models reveals a more 991 

substantial difference in nonlinearity for the unlinked cases. The original models that included 992 

snowmelt are more nonlinear (i.e., higher n) than the Rain Only models. However, the Rain Only 993 

models are still extremely nonlinear (e.g., n = 12). Together, this suite of models strongly 994 

suggests that the dominant controls on the nature of the ksn-E relationship are: (1) the 995 

development of an orographic gradient in both mean runoff and variability—which may be 996 

influenced by, but does not require, a transition to snowmelt hydrology, and (2) the spatial scale 997 

of runoff events.  998 

Finally, it is worth highlighting that because the snowmelt transition is elevation 999 

dependent and base level is fixed to zero in all runs, our results represent a minimum effect of 1000 

snowmelt for a given stream length. The snowmelt transition would be more dominant if either 1001 
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stream profiles were longer or if we considered streams that represented catchments in ranges 1002 

that drain to other base levels. We illustrate the importance of this assumption using a limited 1003 

suite of unlinked model runs at 1 mm/yr uplift rates for the Greater Caucasus and British 1004 

Columbia hydroclimatic rulesets, but where we set the local base level to either 1000 or 2000 m 1005 

(Figure 12C-G). For the Greater Caucasus rules, raising the base level to 1 km and 2 km 1006 

decreases the catchment averaged ksn by 8.8% and 18.6%, respectively, compared to the 0 km 1007 

baselevel.  For the British Columbia hydroclimatic rules, raising the base level by 1 km 1008 

decreases ksn by 14.1%. Because almost of all the profile is in the snowmelt dominated regime at 1009 

1 km (Figure 12E), raising the baselevel to 2 km leads to a similar reduction in ksn of 14.3%. The 1010 

reduction in ksn from increasing snowmelt contribution at a constant uplift rate is a direct 1011 

outcome of the increasing value of both the mean runoff and the shape parameter, thus leading to 1012 

a general increase in the sublinearity of the ksn-erosion rate relationship. 1013 

6.2. Implications on climate-tectonic coupling 1014 

 We undertook this analysis to understand how orographic gradients in mean runoff and 1015 

daily runoff variability alter predictions for the topographic evolution of mountain ranges as they 1016 

grow (e.g., Figure 1). Specifically, we focused on the important transition from rainfall-1017 

dominated probability distributions to snowmelt-dominated ones as topography grows, based on 1018 

our own findings in the Greater Caucasus (Forte et al., 2022). Analysis of WaterGAP3 model 1019 

data revealed that these hydrological transitions may be generally important to mid-latitude 1020 

mountain ranges where glacial erosion is limited (Forte & Rossi, 2024b). Our new 1D model of 1021 

river incision shows that if such orographic gradients are honored, then it is relatively easy to 1022 

generate highly sub-linear (5 < n < 16) relationships between channel steepness and erosion 1023 

rates. We also found that this model behavior is generalizable, only requiring that variability is 1024 
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inversely correlated with mean runoff and that there are orographic gradients in mean runoff. 1025 

Snowmelt can act as an amplifier of this effect but is not required.  1026 

Assuming a constant set of hydroclimatic variables as mountain ranges grow is likely 1027 

unrealistic, leading us to argue that increasingly sublinear relationships between topography and 1028 

erosion may be the norm and not the exception. Early hypotheses on climate-tectonic feedbacks 1029 

assumed that the most important orographic effects are in extracting precipitation on the 1030 

windward side and diminishing precipitation on the leeward size of topographic barriers (e.g., 1031 

Beaumont et al., 1992; Whipple & Meade, 2006; Willett, 1999). Subsequent efforts focused on 1032 

the importance of mountain topography setting the spatial distribution of precipitation (Roe et 1033 

al., 2003) and phase of precipitation in mountain landscapes (Anders et al., 2008).  While all 1034 

these orographic effects are undoubtedly important, our model simulations provide a natural 1035 

progression to these insights by also accounting for how stochastic runoff generation (DiBiase & 1036 

Whipple, 2011; Lague et al., 2005; Tucker, 2004) will itself be a function of the relief evolution 1037 

of mountain ranges. Our results highlight that a critical, and largely ignored, set of parameters 1038 

associated with the scale of runoff events with respect to watershed size may be fundamental to 1039 

understanding potential feedbacks between climate and tectonics. 1040 

6.3 Limitations and Future Directions 1041 

While our new model provides important insights into how orographic gradients in runoff 1042 

generation can impact stream-power based predictions for topographic relief, there are several 1043 

important limitations to our model analysis. First, we only use modern relationships between 1044 

local relief, mean runoff, maximum elevation, and snowmelt fraction at select locations to drive 1045 

model scenarios. Related to this assumption is that the observed relationships will persist across 1046 

geologically long periods of time, even though we know that mean precipitation varies across 1047 



manuscript submitted to Journal of Geophysical Research – Earth Surface 

 

climate cycles, including glacial-interglacial forcing (e.g., Cruz et al., 2005; Wang et al., 2008). 1048 

As such, we would expect that both mean runoff, runoff variability, and snowmelt fraction 1049 

should all vary across glacial-interglacial cycles or larger climate transitions. The impact of these 1050 

fluctuations will be a function of both the elevation range of the orogen in question, but also its 1051 

latitude. One novelty of our model is that it makes the rules that describe how hydroclimatology 1052 

will coevolve with topographic relief explicit. To take advantage of this model feature in 1053 

simulating glacial-interglacial cycles, we need more detailed accounting for how these cycles 1054 

impact mean runoff and daily runoff variability through time. Second, in some locations, as 1055 

elevations and snow accumulation increases, glaciers will begin to develop. In such settings, we 1056 

would expect a transition from rainfall-dominated fluvial processes to snowmelt-dominated 1057 

fluvial processes to glacial-dominated processes as mountain ranges grow. We similarly expect 1058 

that the relative balance of these processes will fluctuate according to interglacial-glacial cycles 1059 

and/or climate transitions. We do not model the impact of glaciers here, but this would be an 1060 

important extension, especially in higher latitude locations. As such, our results are most relevant 1061 

to orogens that do not fully transition into being dominated by glacial erosion during glacial-1062 

interglacial cycles. Third, the assumption of static relationships between hydroclimatic and 1063 

topographic variables assumes that these relationships are valid through all parts of a transient 1064 

topographic response. In reality, changing topography could impart more complicated 1065 

relationships. Fully addressing this would require something more akin to a 2D model of 1066 

orographic precipitation and runoff. Fourth, the discrete boundaries imposed by binning the river 1067 

profile is quite imperfect. Not only does it imply a scale beyond which runoff parameters can be 1068 

treated independently, it also fixes the location of these event boundaries in space. The arbitrary 1069 

locations of these bins are likely an unrealistically hard constraint on the event-scale properties 1070 
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of snowmelt- and rainfall-runoff events.  Fifth, we make a simplifying assumption that the 1071 

erosional threshold (Eq. 17) is temporally and spatially fixed in all models. In reality, erosional 1072 

thresholds might be expected to vary in both time and space, e.g., as a function of erosion rate 1073 

and delivery of large blocks to streams from hillslopes (e.g., Shobe et al., 2018). In theory, one 1074 

could attempt to build similar empirical relationships between topographic, tectonic, or 1075 

hydroclimatic parameters in the model to also vary the threshold in a sensible way, making it an 1076 

important future research direction. 1077 

Keeping these limitations in mind, we highlight a few promising directions for future 1078 

modeling and data analysis on this topic. As computational power increases, we are seeing more 1079 

realistic simulations of orographic precipitation in bedrock river incision modeling (e.g., Han et 1080 

al., 2015; Shen et al., 2021). Our results suggest that these efforts would benefit from bringing 1081 

commensurate improvement in the land surface models that convert precipitation to runoff. For 1082 

mid-latitude mountain landscapes, it is important to honor the importance of precipitation phase 1083 

on orographic gradients in runoff patterns (e.g., Anders et al., 2008; Forte et al., 2022; Rossi et 1084 

al., 2020). Similarly, prior studies highlight the potential importance of Milankovitch forcings on 1085 

precipitation for landscape evolution (Godard et al., 2013). How these cyclical variations of 1086 

precipitation are then converted to mean runoff, daily runoff variability, and snowmelt fraction is 1087 

thus an important unknown. Our focus on the form of ksn-E relationships suggests that a natural 1088 

extension of this work should also be to examine how spatial-STIM might alter coupled models 1089 

between climate and tectonics. Relatively simple analytical approaches to this problem (Whipple 1090 

& Meade, 2004, 2006), as well as more complex dynamical models (e.g., Braun & Yamato, 1091 

2010; Roe et al., 2006; Stolar et al., 2007), have yielded important insights into potential 1092 

feedbacks between climate and tectonics. While we can say that the dynamics in our 1D model 1093 
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will act to dampen such feedbacks, the question of how much is still open and deserves more 1094 

careful study.  1095 

Finally, the assumption of spatial autocorrelation of runoff events proved to be the 1096 

strongest regulator of erosional efficiency in our new model structure. Within the context of a 1D 1097 

profile model like ours, having events that are stochastic in space and time is challenging, but not 1098 

insurmountable. As such, we need more hydrological studies that can help us generalize the 1099 

spatial statistics of rainfall- and snowmelt-runoff events. Promising work characterizing 1100 

potentially significant spatial variability in precipitation patterns in high relief landscapes exist 1101 

(e.g., Anders et al., 2006, 2007; Barros et al., 2000; Campbell & Steenburgh, 2014; Frei & Schär, 1102 

1998; Minder et al., 2008), but generalizing these into how this spatial stochasticity is, or is not, 1103 

reflected in runoff at a similar scale remains unclear. Similarly, the analysis of WaterGAP3 data 1104 

by Forte & Rossi (2024b) suggested a fundamental relationship between runoff event size and 1105 

the contribution from snowmelt. Events with larger spatial footprints appear to be dominated by 1106 

snowmelt events, further highlighting the interconnectedness of many of the parameters we 1107 

consider. While fully distributed hydrological models come at a high computational cost for 1108 

landscape evolution studies, statistical descriptions of these dynamics may be tractable over 1109 

landscape evolution timescales. Furthermore, the way space is represented in 1D river profiles 1110 

may not be able to fully mimic the spatial statistics of runoff events, thereby requiring 2D 1111 

landscape evolution modeling. The Landlab modeling library (Barnhart et al., 2020; Hobley et 1112 

al., 2017) already has many of the process components suited to implementing spatial-STIM in a 1113 

2D framework. Thus, understanding how well we have captured spatiotemporal stochasticity 1114 

using the assumptions of our 1D model is an important open question that should be tested in 2D 1115 

(Tucker, 2004; Tucker & Bras, 2000). Despite the clear needs for refining and understanding the 1116 
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applicability of spatial-STIM, our findings show that simply accounting for spatial variations in 1117 

daily runoff variability is an important step towards generating testable predictions for the 1118 

erosion laws used by our community. 1119 

7 Conclusions 1120 

Results from simulations using our new empirically driven 1D profile model that 1121 

considers both temporal and spatial stochasticity in runoff and snowmelt events highlight that 1122 

generally sublinear relationships between channel steepness and erosion rate are an expected 1123 

outcome of orographic development within mountain ranges. Specifically, because of the linkage 1124 

between mean runoff and runoff variability, the development of orographic gradients in runoff 1125 

statistics should be expected. Such feedbacks may also be strengthened by the tendency for the 1126 

increasing elevation of mountain ranges to preferentially accumulate snow, driving a greater 1127 

component of runoff to be related to snowmelt, and further reducing the variability of runoff. 1128 

Given the expectation that decreasing runoff variability should lead to increasingly sublinear 1129 

channel steepness erosion rate relationships, this implies a potential negative feedback on the 1130 

topographic growth of mountain ranges, providing a process-based explanation for the 1131 

observation of pseudo-thresholds in channel steepness erosion rate relationships. While basic 1132 

aspects of this are expected and predictable from prior analyses using STIM, we show here that 1133 

orographic gradients in mean runoff and variability change fundamental details of model 1134 

predictions. 1135 

A critical outcome of our model results is also that a fundamental parameter for 1136 

controlling the nature of channel steepness erosion rate relationships is the extent to which the 1137 

probability of exceedance of runoff events within a given catchment are linked or unlinked. 1138 

These two endmember states roughly correspond to the extent to which runoff generating events 1139 
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in a given catchment tend to be dominated by spatially restricted convective storm events or 1140 

larger-scale synoptic events. All other things equal, unlinked scenarios predict steeper landscapes 1141 

than the equivalent linked scenarios. This implies a fundamental scale dependence on the nature 1142 

of the relationship between channel steepness and erosion rates. For a given set of 1143 

hydroclimatological parameters the resulting channel steepness erosion rate pattern can be fit by 1144 

a simple stream power relationship. However, the extent to which this is meaningful in real 1145 

datasets, where linked and unlinked dynamics are ignored, is unclear. Ultimately, our results 1146 

have important implications not only for our understanding of expected coupling between 1147 

hydroclimatology, topography, and tectonics as a mountain range grows, but also the type of 1148 

observations we as a community should be considering within our datasets. Future work should 1149 

focus on considering the implications of spatial and temporal stochasticity of runoff and 1150 

snowmelt events. There is also a great need for better empirical quantification of the 1151 

characteristic spatial and temporal scale of runoff events within mountainous catchments and 1152 

how they evolve with time through glacial-interglacial cycles. 1153 
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Figure 1. Conceptual model of how the covariation of topography, mean runoff, snowmelt 1170 

fraction of runoff, and runoff variability might influence the ksn-E relationship as topography 1171 

grows, based on expectations from empirical relationships developed in Forte & Rossi (2024b). 1172 

A) Relationships between local relief and mean runoff (solid line) and maximum elevation and 1173 

the fraction of runoff derived from snowmelt (dashed line). Horizontal dotted line indicates 1174 

snowmelt fraction where runoff-variability relationships transition from a power law to a linear 1175 

form. Colored dots represent hypothetical states as topography grows. B) Relationship between 1176 

mean runoff and variability. Solid line is a power law relationship that characterizes conditions 1177 

when snowmelt contribution is low. Dashed line is a linear relationship that characterizes 1178 

conditions when the snowmelt contribution is significant. C) Implied ksn-E relationships for the 1179 

different mean runoff - variability relationships from B. D) Schematic envisioning how the 1180 

relationships in A-C might evolve through time and space as a mountain range grows. The color 1181 

of dots correspond to colors shown in A-C. 1182 

 1183 

Figure 2. Summary of empirical results from Forte & Rossi (2024b) relate topography and 1184 

hydroclimatological variables of interest. A) Relationship between mean daily runoff (�̅�) and 1185 

daily runoff variability as parameterized by the Weibull shape parameter (𝑐𝑅). Colored lines 1186 

indicate individual fits to �̅� and 𝑐𝑅 within bins of snowmelt fraction (SF). Red solid lines are 1187 

power law fit for bins with SF < 0.35 and blue dashed lines for bins with SF > 0.35. B) 1188 

Relationship between the scale parameter implied by the mean runoff and that fit to the runoff 1189 

distributions above an exceedance threshold. Symbology is similar to A but lines show linear 1190 

regressions. C) Power law fits between mean local relief and �̅� for three regional examples using 1191 

WaterGAP3 data. D) Power law fits between maximum elevation and SF for three regional 1192 
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examples using WaterGAP3 data. In both C and D, the symbols are scaled to the number of 1193 

observations and whiskers show one standard deviation. More details on regressions for each 1194 

panel can be found in Forte & Rossi (2024b, 2024a). 1195 

 1196 

Figure 3. A) Longitudinal profile of model GC1U at 1 Myr into the model run (colored line with 1197 

black squares), where colors indicate individual bins and black squares mark bin boundaries. 1198 

Also shown is the mean ksn for each bin (colored circles) B) Same as in A but for model GC1L at 1199 

0.63 Myr into the model run, which represents a comparable point in the transient response. C) 1200 

Mean runoff and variability for GC1U at 1 Myr. Colored squares are mean runoff and variability 1201 

for the individual bins. White square is runoff and variability from a drainage area weighted 1202 

mean of the bins. The black circle is the median of 500 trials of mean runoff and variability from 1203 

routing 100 years of discharge for each trial, where small gray dots are mean runoff and 1204 

variability for individual trials. This overlain on a histogram of the runoff within bins to 1205 

emphasize that many of the bins have runoffs clustered around the mean. D) Same as in C but for 1206 

model GC1L at 0.6 Myr. E) Exceedance frequency plot for GC1U at 1 Myr, showing the 1207 

probability distributions for individual bins as thin colored lines, the area-weighted mean runoff 1208 

and variability as the black dashed line, and the mean runoff and variability from the median of 1209 

the 500 trials as the black dashed line. The colored squares represent runoff for each individual 1210 

bin on a random day. F) Same as E but for model GC1L at 0.6 Myr. Note that the difference 1211 

between the assortment of frequencies and runoffs on the random days (small squares) between 1212 

E) and F) result from E) being an unlinked model and F) being a linked model. Because F) is 1213 

linked, the runoff magnitude for the random day shown all plot at a single recurrence interval. 1214 

 1215 
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Figure 4. Steady-state results for both unlinked (solid lines) and linked (dashed lines) models 1216 

across the full range of uplift rates (0.25 – 8 mm/yr) for three regional cases (left column - 1217 

Greater Caucasus, middle column – Alps, right column – British Columbia). The fourth column 1218 

shows mean values of each quantity within the row for all three locations. Lines are colored by 1219 

uplift rate. Rows show how A) elevation, B) mean ksn within bins,  C) snowmelt within bins, D) 1220 

mean daily runoff within bins, and E) runoff variability within bins vary as a function of stream 1221 

distance. Note that these values represent the final 40 timesteps (representing 200,000 years of 1222 

model time). This time-averaging was done because the individual timesteps show significant 1223 

variability between output timesteps.  1224 

 1225 

Figure 5. Representative stream profile evolution for an unlinked (left column) versus linked 1226 

model (right column) for the Greater Caucasus uplifting at 1 mm/yr. A) χ-elevation for model 1227 

GC1U through time showing 40 equally spaced time slices. B) Same as in A but for GC1L. C) 1228 

Stream profile for model GC1U through time for the same 40 equally spaced time slices as in A. 1229 

D) Same as in C but for GC1L. E) Average erosion rate between outputs along the profile for 1230 

model GC1U for all output time slices. F) Same as in E but for GC1L. G) Mean runoff within 1231 

bins for all output time slices for model GC1U. H) Same as in G but for model GC1L. 1232 

 1233 

Figure 6. Frequency of exceedance of the erosion threshold between output timesteps in an 1234 

unlinked (left column) versus linked (right column) scenarios, specifically for the Greater 1235 

Caucasus uplifting at 1 mm/yr. A) Plot of frequency of exceedance as a function of profile 1236 

distance (x) and model time (y) for the unlinked GC1U model. The area of consistently higher 1237 

frequency of exceedance tracks the movement of the knickpoint through the profile. B) Same as 1238 
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in A but for the linked GC1L model. C) Cumulative frequency of exceedance of the erosion 1239 

threshold across the entire model run as a function of stream distance for unlinked model GC1U. 1240 

D) Same as in C but for linked model GC1L. E) Mean (solid lines) and maximum and minimum 1241 

(dashed lines) frequency of erosion threshold exceedance through time for the GC1U model. F) 1242 

Same as in E, but for the linked model GC1L. G) Individual frequencies of exceedance of 1243 

erosion threshold at a specific node compared to the average erosion rate of that node for all time 1244 

steps for unlinked model GC1U. H) Same as in G, but for linked model GC1L. 1245 

 1246 

Figure 7. Summary of sensitivity experiments. Black circles and squares indicate results of 1247 

reference experiments shown previously, and gray symbols indicate results from sensitivity test. 1248 

Triangles are used to show results using area binning. In A-D, uplift rate is 1 mm/yr and the 1249 

Greater Caucasus hydroclimatic ruleset is used. A) Sensitivity to bin size used for runoff 1250 

parameters. See Figure S3 for steady-state output of relevant models. B) Sensitivity to the 1251 

imposed maximum relief. See Figure S3 for steady-state output of relevant models. C) 1252 

Sensitivity to the profile length. See Figure S3 for steady-state output of relevant models. Note 1253 

that for all of these models, the bin size is kept at 2 km, so different profile lengths imply a 1254 

different number of bins. D) Sensitivity to the number of bins, comparing models that are either 1255 

50 km (squares - GC1U-5B, GC1U-10B) or 10 km (circles - GC1U-10L, GC1U-10L-1B) long. 1256 

E) Sensitivity to equal river length binning (black circles and squares) versus equal area binning 1257 

(AB - gray triangles) across the full range of uplift rates used in numerical experiments.  1258 

 1259 
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Figure 8. A) Mean ksn and erosion rate at quasi-steady state. Lines are power law fits to model 1260 

results in a stream power context. Equivalent n values for each stream power relationship are 1261 

shown in the legend. Note each point includes uncertainty as the standard error on the mean, but 1262 

are generally are less than the width of the symbols. B) Same as in A but calculating ksnQ sensu 1263 

Adams et al., (2020), which uses precipitation as a proxy for runoff to calculate discharge. To 1264 

accomplish this in our 1D model results (which do not formally calculate precipitation), we use 1265 

empirical relationships between runoff and precipitation from WaterGAP3 for each region to 1266 

estimate precipitation based on the modelled runoff. We compare the results of calculating ksnQ 1267 

directly from runoff in Figure S4, but ultimately the differences are subtle. C) Best fit concavity 1268 

(𝜃) for models using drainage area. Dotted line is the expected concavity of 0.5 given the input 1269 

values in the model D) Best fit concavity for models using precipitation weighted drainage area 1270 

sensu Leonard et al., (2023b). 1271 

 1272 
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Figure 9. A) Mean shape parameter across models for a given scenario compared to 1/n from fits 1273 

in 8A. Solid line is linear fit through the data. Dashed line is expected relationship from Lague et 1274 

al., (2005) after converting Weibull shape parameters to inverse gamma ones using the 1275 

relationship in Rossi et al., (2016). B) Mean variability across models for a given scenario 1276 

compared to 1/n from fits in 8B, i.e., when fitting a relationship between ksnQ and erosion rate. C) 1277 

Mean runoff across models for a given scenario compared to K from fits in 8A. D) Mean runoff 1278 

across models for a given scenario compared to Klp from fit in 8B. Symbol style is shared across 1279 

all plots. 1280 

 1281 

Figure 10. Comparison of analytical steady state (SPIM) to empirical steady state (STIM). A) 1282 

Estimated time to steady-state from model initiation using the change in maximum elevation 1283 

between saved timesteps and defining steady-state as when the absolute value of this metric 1284 

drops below 10% of the amount of uplift per timestep. B) Analytical solution for response times 1285 

using estimates of K and n from Figure 8. The initial uplift rate for each model uses this K and n 1286 

and the starting ksn (25 m) to calculate the appropriate fractional change in uplift rate sensu 1287 

Whipple (Whipple, 2001). C) Comparison of the empirical and analytical response times. 1288 

 1289 

Figure 11. Comparison of zero-dimensional STIM predictions and spatial-STIM results. A) 1290 

Ratio of erosion rates from two models as a function of spatial-STIM erosion rates. Direct 1291 

comparison of values with uncertainty shown in Figure S5A. B) Comparison of power law 1292 

exponent n for zero-dimension STIM and spatial-STIM. Note that for each model suite (i.e., a 1293 

given regional hydroclimatic ruleset where bin are either linked or unlinked), there are 6 possible 1294 



manuscript submitted to Journal of Geophysical Research – Earth Surface 

 

values of n predicted from zero-dimensional STIM. This is because each uplift rate generally 1295 

produces a different catchment averaged runoff and variability and thus predicts a different ksn-E 1296 

relationship with a corresponding n value. Error bars represent uncertainty on the exponent from 1297 

the fitting algorithm. Individual zero-dimensional STIM ksn-E relationships are shown in Figure 1298 

S5C. 1299 

 1300 

Figure 12. Comparison of Rain Only models and the influence of base level. A) Erosion rate 1301 

versus ksn and relevant power law fits for unlinked and linked models for the Greater Caucasus 1302 

and British Columbia compared against similar runs using the Rain Only model. B) Maximum 1303 

snow fraction as a function of erosion rate for scenarios that include snowmelt fraction in ruleset. 1304 

Right column compares along-profile variation in C) Elevation relative to imposed base level 1305 

(BL), D) ksn, E) Snow fraction, F) Mean runoff, and G) Variability. All models on right column 1306 

were run with a 1 mm/yr uplift rate and are unlinked. This compares the regular models (set to a 1307 

base level of 0), rain only models (set to a base level of 0), and a suite of models with base level 1308 

to set to either 1 or 2 km. 1309 
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Figures S1 to S6 

Tables S1 to S2  

Introduction  

This supplemental file contains seven supplemental figures that contain additional 

details on model results. It also contains two tables. Table S1 are the invariant STIM 

parameters common to all models, whereas Table S2 highlights the values or properties 

that change between model runs. Table S2 is provided an Excel sheet. 
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Figure S1. A) Mean basin ksn compared to mean local 2500 m relief for randomly 

selected basins for the three example locations. B) Mean hillslope gradient compared to 

mean local 2500m relief for the same basins. C) Filtered mean basin ksn compared to 

mean local 2500 m relief, using a cutoff of 0.9 for the R2 of the χ-elevation relationship as 

a proxy for basins without major knickpoints. Also shown are linear fits between ksn and 

relief which are used in the models. D) Same as B but for the filtered basins shown in C. 
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E) Comparison of the cumulative probability of 2500 m local relief calculated from the 

Hydrosheds 15 arcsecond DEM and 2500 m local relief from SRTM 90 for the British 

Columbia region. F) Same as E but for the Alps region. G) Same as E but for the Greater 

Caucasus. 

 

Figure S2. 2D density plots of individual pairs of runoff and variability within all bins 

across all timesteps between model initiation and achievement of steady state for the 

base Greater Caucasus unlinked runs. Generally, the majority of the time in the models 

are spent in portions of parameter space well represented in the WaterGAP3 data (e.g., 

Figure 2A), which are shown with the contours.   
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Figure S3. Comparison of evolution of model GC1U to the sensitivity test runs discussed 

in the main text. Setup of figure is identical to that of main text Figure 4.  The right 

column considers similar models with different size runoff bins, specifically 5000 m 

(GC1U-5B) and 10000 m (GC1U-10B). Model GC1L is also included for reference. The 

center column considers models with different imposed maximum local relief, specifically 

1500 m (GC1U-1500R) and 2000 m (GC1U-2000R). The right column considers models 
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with different stream lengths, specifically 10 km (GC1U-10L), 20 km (GC1U-20L), 30 km 

(GC1U-30L), 40 km (GC1U-40L), and 100 km (GC1U-100L). 

 

 

 

 
Figure S4. Comparison of predictions of different versions of ksnQ. A) B) Relationship 

between erosion rate and mean ksnQR along with power law fits. ksnQR is calculating ksnQ 

sensu Adams et al. (2020) but using runoff as opposed to precipitation. B) Relationship 

between erosion rate and mean ksnQP along with power law fits. ksnQP is calculating ksnQ 

identical to Adams et al. (2020). For this, runoff is converted to precipitation using the 

local linear relation between runoff and precipitation from the WaterGap3 data for each 

area and then this precipitation value is routed along the profile as if it was runoff. This is 

what is displayed in Figure 8B. C) Ratio of ksnQP to ksnQR as a function of erosion rate.   
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Figure S5. Comparison of predictions of spatialSTIM and a point based version of STIM 

from Lague et al., (2005) modified to use a Weibull distribution of runoff. A) Mean 

erosion rate of the main models as determined from spatialSTIM vs the prediction from 

STIM using the mean ksn, mean daily runoff, and estimated variability for the steady-state 

of individual  spatialSTIM runs. A 1:1 line is plotted for reference. B) Mean erosion rate of 

the main models as determined from spatialSTIM vs a ratio of the spatialSTIM erosion 

rate to the predicted STIM erosion rate from A. This panel appears as Figure 11A in the 

main text. C) ksn-erosion rates for the spatialSTIM models (circles and squares) compared 

to predicted ksn-erosion rate relationships for comparable STIM models (lines). Note 

because generally each model for a given hydroclimatic ruleset (e.g., GC vs Alps vs BC), 

linked vs unlinked, and uplift rate produces a different mean runoff and cR, there are a 

suite of predicted ksn-erosion rate relationships for a given family of models. E.g., GC 

unlinked models produce 6 different ksn-erosion rate relationships, one for each of the 6 
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uplift rates tested. D) Approximation of the power law exponent (i.e., n in the stream 

power equation) from fitting the spatialSTIM relationships compared to fitting each ksn-

erosion rate relationship in C as predicted by STIM. This panel appears as Figure 11B in 

the main text. 

 

 
Figure S6. Singular relationships between A) mean runoff and shape parameter and B) 

scale parameter estimate from the mean runoff and the fit scale parameter for rain 

dominated WaterGAP3 pixels (i.e., where snowmelt fraction < 0.35). These relationships 

are used to parametrize the Rain Only models that are presented in main text Figure 11. 

 

 

 

Parameter Value Units 

ke 1e-11 m2.5s2kg-1.5 

𝜏c 45 Pa 

kw 15 m-0.5s0.5 

kt 1000 m-7/3s-4/3kg 

𝜔a 0.5 Dimensionless 

𝜔s 0.25 Dimensionless 

a 3/2 Dimensionless 

𝛼 2/3 Dimensionless 
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𝛽 2/3  Dimensionless 

dx 100 m 

dt 1 days 

Table S1. STIM and other model parameters fixed for all runs. STIM parameters are 

similar to those used by Forte et al., (2022) for the Greater Caucasus. 

  See included Excel sheet for Table S2. 

Table S2. Model runs and key parameters or properties that are varied between 

individual model runs. Columns are Model Name  (how the model is referred to in the 

main text), Site (either GC, Alps, or BC), Length (length of the modeled river profile in 

km), Bin Size (size of individual bins in km, if this is empty, it implies that bin size was a 

constant area as opposed to a constant length), Bin Size (size of individual bins in km2 , if 

this is empty, it implies that bin size was a constant length as opposed to a constant 

area), Bin Relation (either linked or unlinked), Uplift Rate (imposed uplift rate in mm/yr), 

Maximum Relief (the imposed maximum relief that the model is allowed to reach in m), 

Base Level (the base level  in meters to which the profile is fixed), Snowmelt (indicating 

whether snowmelt was included or excluded as it was for the rain only models), and 

Figures (a list of main text figures and supplemental figures in which results from that 

model appears). 
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