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Abstract

Mountain topography alters the phase, amount, and spatial distribution of precipitation. Past efforts focused on how orographic

precipitation can alter spatial patterns in mean runoff , with less emphasis on how time-varying runoff statistics may also vary

with topography. Given the importance of the magnitude and frequency of runoff events to fluvial erosion, we evaluate whether

orographic patterns in mean runoff and daily runoff variability can be constrained using the global WaterGAP3 water model

data. Model runoff data is validated against observational data in the contiguous United States, showing agreement with mean

runoff in all settings and daily runoff variability in settings where rainfall-runoff predominates. In snowmelt-influenced settings,

runoff variability is overestimated by the water model data. Cognizant of these limitations, we use the water model data to

develop relationships between mean runoff and daily runoff variability and how these are mediated by snowmelt fraction in

mountain topography globally. A global analysis of topographic controls on hydro-climatic variables using a Random Forest

Model were ambiguous. Instead, relationships between topography and runoff parameters are better assessed at mountain

range scale. Rulesets linking topography to mean runoff and snowmelt fraction are developed for three mid-latitude mountain

landscapes—British Columbia, European Alps, and Greater Caucasus. Increasing topographic elevation and relief together

leads to higher mean runoff and lower runoff variability due to the increasing contribution of snowmelt. The three sets of

empirical relationships developed here serve as the basis for a suite of numerical experiments in our companion manuscript

(Part 2).
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Abstract 16 

Mountain topography alters the phase, amount, and spatial distribution of precipitation. Past 17 

efforts focused on how orographic precipitation can alter spatial patterns in mean runoff , with 18 

less emphasis on how time-varying runoff statistics may also vary with topography. Given the 19 

importance of the magnitude and frequency of runoff events to fluvial erosion, we evaluate 20 

whether orographic patterns in mean runoff and daily runoff variability can be constrained using 21 

the global WaterGAP3 water model data. Model runoff data is validated against observational 22 

data in the contiguous United States, showing agreement with mean runoff in all settings and 23 

daily runoff variability in settings where rainfall-runoff predominates. In snowmelt-influenced 24 

settings, runoff variability is overestimated by the water model data. Cognizant of these 25 

limitations, we use the water model data to develop relationships between mean runoff and daily 26 

runoff variability and how these are mediated by snowmelt fraction in mountain topography 27 

globally. A global analysis of topographic controls on hydro-climatic variables using a Random 28 

Forest Model were ambiguous. Instead, relationships between topography and runoff parameters 29 

are better assessed at mountain range scale. Rulesets linking topography to mean runoff and 30 

snowmelt fraction are developed for three mid-latitude mountain landscapes—British Columbia, 31 

European Alps, and Greater Caucasus. Increasing topographic elevation and relief together leads 32 

to higher mean runoff and lower runoff variability due to the increasing contribution of 33 

snowmelt. The three sets of empirical relationships developed here serve as the basis for a suite 34 

of numerical experiments in our companion manuscript (Part 2).   35 

 36 
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Plain Language Summary 37 

It has long been understood that mountain ranges can have profound influences on the location 38 

and intensity of precipitation, for example through the formation of rain shadows. Less clear is 39 

how these “orographic effects” are reflected in the details of river runoff, specifically how much 40 

runoff varies from day-to-day. Understanding this variability of runoff is important as 41 

differences in variability directly influence how rivers respond to changes in rock uplift rate. 42 

Here we use results from a global water model integrated with topography data to explore how 43 

runoff variability is related to topography in high relief landscapes. Consistent with prior work, 44 

we find and expand on the observation that mean runoff and runoff variability are inversely 45 

correlated and that the nature of their relation fundamentally depends on how much runoff comes 46 

from snowmelt as opposed to rain. In turn, both mean runoff and the importance of snowmelt are 47 

positively correlated with aspects of topography. Our results imply that incorporating variability 48 

into models of coupled developing orographic patterns in runoff and landscape evolution is 49 

critical and we identify a simple framework within which to develop such models. Examples of 50 

these models are presented in a companion work (Part 2).       51 

1 Introduction 52 

Weather systems develop over the course of hours to weeks depending on their size (e.g., 53 

Trenberth et al., 2003), while landscapes evolve over millennia and longer. Climatic drivers of 54 

the long-term evolution of mountain belts (Whipple, 2009) are impeded by this mismatch in 55 

timescale. Modeling weather and hydrology over long timescales is a substantial computational 56 

challenge (e.g., Shen et al., 2021), and thus the choices made in representation of the hydro-57 

climate are often baked into the simplified process laws we use to construct landscape evolution 58 

models. For fluvial landscapes, the most widely used model  for river incision and relief 59 
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development is the stream power model (Howard, 1994; Whipple & Tucker, 1999). The details 60 

of this model have been expounded elsewhere (e.g., see reviews in Kirby & Whipple, 2012; 61 

Lague, 2014; Whipple et al., 2022; Whipple & Tucker, 1999; Whittaker, 2012) and we present a 62 

more complete synopsis in Part 2. In short the shear stress formulation of stream power asserts 63 

that fluvial erosion can be expressed as the product of three terms: a coefficient describing the 64 

efficiency of erosion, drainage area raised to an exponent, and local slope raised to another 65 

exponent. The latter two terms and the ratio of the exponents can be constrained using 66 

topographic data alone (e.g., Wobus et al., 2006), leaving the coefficient of erosion and the value 67 

of the slope exponent to account for a large number of important process parameters including 68 

climate. While unpacking the assumptions underlying generalized forms of stream power have 69 

been addressed by many papers (e.g., Kirby & Whipple, 2012; Lague, 2014; Whipple et al., 70 

2022), we highlight two sets of assumptions of stream power that motivate our analysis of global 71 

runoff data. First, it is common to use drainage area as a proxy for discharge. Orographic 72 

precipitation (Galewsky, 2009; Roe, 2005) is mimicked in 1D stream power models by adding an 73 

additional area dependence on runoff that alters concavity (Roe et al., 2002) and fluvial relief 74 

(Roe et al., 2003). In 2D, these basic effects tend to be more ambiguous (Han et al., 2014) and 75 

produce discordance between mainstem and tributary morphology (Leonard & Whipple, 2021). 76 

Second, simple stream power typically assumes a characteristic discharge, thus entailing either 77 

that erosion thresholds are negligible or that the effects of thresholds are subsumed within the 78 

stream power parameters itself. This latter possibility has now been carefully examined by 79 

changing the temporal scale over which river erosion is modeled (i.e., at the daily scale). By 80 

integrating stream power over the probability distribution of flows above erosional thresholds 81 

(Lague et al., 2005; Snyder et al., 2003; Tucker, 2004; Tucker & Bras, 2000), the response of 82 
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river profiles to climate is not only embedded in the coefficient of erosion but also the effective 83 

slope exponent (DiBiase & Whipple, 2011; Lague, 2014). While the roles of both orographic 84 

precipitation and stochastic climate on stream power have each generated a lot of study on their 85 

own, there has been less effort examining them together.  86 

Integrating orographic effects with stochastic runoff into stream power models requires 87 

better constraints on how mean runoff and runoff variability are related (or unrelated) to each 88 

other via topography. Prior studies show that mean runoff and the shape of daily runoff 89 

distributions are correlated with each other in rainfall-dominated systems (Molnar et al., 2006; 90 

Rossi et al., 2016). Figure 1B illustrates this for contiguous United States using streamflow data 91 

from select watersheds where the impact of human disturbance and management has been 92 

minimized (Figure 1A). To select watersheds to motivate and validate the global water model 93 

data that we use for the majority of this effort (described in greater detail later), we used the 94 

Geospatial Attributes of Gages for Evaluating Streamflow (GAGES-II) reference gauges and the 95 

Hydro-Climatic Data Network (HCDN-2009). HCDN-2009 is a subset of GAGES-II and thus 96 

includes a smaller number of sites. Details for selection of those stations used for validation are 97 

described below along with how we derived the shape parameters of each distribution. However, 98 

note here that higher shape parameters shown in Figure 1 indicate lower runoff variability. The 99 

empirical data split into two broad relationships. Separation of the two trends appears to 100 

correspond to mean annual temperatures of around 0-10° C (Figure 1B), which we hypothesize is 101 

due to relatively small changes in the fraction of mean annual streamflow that is derived from 102 

snowmelt. While prior work has examined how orographic patterns in the spatial distribution of 103 

snow alters stream power predictions (Anders et al., 2008), we are not aware of any studies 104 

showing how snowmelt alters stochastic runoff and stream power predictions. As such, coupled 105 
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models of climate and tectonics using stream power (e.g., Beaumont et al., 1992; Willett, 1999) 106 

may be missing important feedbacks between topographic relief and snowmelt as mountain 107 

ranges grow.  108 

The lack of focus on integrating orographic precipitation and stochastic runoff into 109 

stream power models is likely due to data limitations and the dearth of simple hydrological 110 

relations that can be upscaled to landscape evolution timescales. Precipitation observations 111 

provide a starting point, though simplifying water inputs into streamflow outputs are riddled with 112 

nonlinearities that can be hard to generalize. Rainfall runoff is nonlinear due to scaling properties 113 

within watersheds and dynamical nonlinearities in hillslope runoff generation (e.g., Sivapalan et 114 

al., 2002). Furthermore, the relative contribution of different runoff generation mechanisms (i.e., 115 

extreme precipitation, soil moisture excess, snowmelt) to flood frequency is only beginning to be 116 

characterized under modern climate conditions (e.g., Berghuijs et al., 2019), let alone for time-117 

varying ones. Process-based hydrological models help unpack these nonlinearities for a given 118 

setting (Fatichi et al., 2016), but are typically applied at small spatial scales. Our approach is to 119 

use a global water model (Alcamo et al., 2003; Döll et al., 2003) to help constrain how 120 

topography, runoff generation, and streamflow statistics can be generalized for river incision 121 

modeling more broadly. 122 

2 Background 123 

2.1 Orographic effects 124 

Topography perturbs the equilibrium structure of the atmosphere by adding roughness, 125 

obstructing air masses, and serving as a heat source (Smith, 1979). The conventional treatment of 126 

orographic precipitation in landscape evolution studies (e.g., Beaumont et al., 1992; Willett, 127 
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1999) focuses on the thermodynamic implications of mountain topography on how precipitation 128 

is extracted from the atmosphere via forced ascent. The saturation vapor pressure of water in air 129 

is related to its temperature via the Clausius-Clapeyron equation (see review in Roe, 2005). As 130 

air masses move up and over mountain topography, precipitation on windward slopes increases 131 

as partially saturated air cools during ascent. A ‘rain shadow’ subsequently develops when the 132 

relatively drier air descends and warms on leeward slopes. This first-order description is well-133 

rooted in atmospheric physics and observations (Barros & Lettenmaier, 1994). To extend these 134 

dynamics to air parcels flowing over more complex terrain, Smith & Barstad (2004) developed a 135 

linear model of orographic precipitation that accounts for atmospheric dynamics, upwind 136 

advection, and downslope evaporation. In this context, linearity does not refer to a single 137 

function describing rainfall but is instead a property of the system of differential equations used 138 

such that they are analytically tractable. Because settling velocities of snow are an order of 139 

magnitude lower than rain, this model can be used to examine how snow alters the spatial 140 

distribution of water inputs (Anders et al., 2008). However, one notable limitation to the linear 141 

model of orographic precipitation is that it does not account for the blocking of air by terrain, a 142 

nonlinear process that depends on the Brunt-Vaisala frequency describing the horizontal 143 

propagation of waves, horizontal windspeed, and orogen-scale relief (Barros & Lettenmaier, 144 

1994; Galewsky, 2009; Jiang, 2003). Given that one of the key targets of landscape evolution 145 

models is to couple topography to climate through time, linear models of orographic 146 

precipitation are perhaps best suited to smaller mountain ranges. 147 

Another approach towards characterizing orographic precipitation is to use climatological 148 

observations, especially since the advent of satellite-based remote sensing. For example, the 149 

Tropical Rainfall Measuring Mission (TRMM) was spaceborne for 17 years and provided new 150 
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insights into complex spatial patterns in rainfall set up by high topography (e.g., Bookhagen & 151 

Burbank, 2006; Bookhagen & Strecker, 2008; Deal et al., 2017; Forte et al., 2016; Nesbitt & 152 

Anders, 2009). One of the key insights from these studies is the central importance of local relief 153 

to driving spatial patterns in rainfall. For example, in the Himalaya, TRMM rainfall revealed two 154 

narrow bands of rainfall that correspond to abrupt physiographic transitions into the Lesser 155 

Himalaya and into the Greater Himalaya which had not been previously identified (Bookhagen 156 

& Burbank, 2006, 2010). As such, spatial patterns derived from TRMM rainfall are increasingly 157 

being used to inform interpretations of river channel profiles (Adams et al., 2020; Bookhagen & 158 

Strecker, 2011; Leonard et al., 2023), though these approaches typically assume mean rainfall is 159 

directly proportional mean runoff. While other remote sensing products like MODIS can also 160 

help constrain snow cover to construct a full water budget (Bookhagen & Burbank, 2010), such 161 

products tend to require temperature-index or process-based hydrological models to reliably 162 

estimate snowmelt contributions to streamflow (Walter et al., 2005). 163 

Given the importance of snowmelt to streamflow in mid-latitude mountain ranges 164 

(Barnett et al., 2005; Barnhart et al., 2016), the difficulty of obtaining direct estimates of 165 

snowmelt leads to substantial uncertainty when using remotely sensed rainfall data as a proxy for 166 

runoff. Altering the phase of precipitation can cause  up to 100% reductions in snowmelt 167 

contributions to streamflow in settings near the freezing temperature window (Adam et al., 168 

2009). This has prompted some authors to suggest that climate change driven reductions in 169 

snowmelt fraction generally leads to lower streamflow as snowfall gives way to rain (Berghuijs 170 

et al., 2014). Such arguments rest on the premise that snowmelt runoff will lead to higher runoff 171 

ratios, all other things being equal, because solid water is stored in the snowpack and released 172 

more slowly than rainfall runoff. Better understanding of orographic effects on the snowmelt 173 
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contribution to streamflow in mountain landscapes is sorely needed to improve stream power 174 

models of river incision.  175 

2.2 Stochastic river incision 176 

Early efforts to integrate stochastic hydrology into stream power models of river incision 177 

(Snyder et al., 2003; Tucker, 2004; Tucker & Bras, 2000) were based on the pioneering work of 178 

Eagleson (1978). By simulating rainfall events as Poisson distributions of intensities, durations, 179 

and inter-storm periods, rainfall events were represented as rectangular pulses that can be 180 

converted to runoff and routed across the landscape in order to evaluate the impact erosion 181 

thresholds on landscape evolution. Complementary efforts by Lague et al. (2005) chose to 182 

simulate streamflow directly at the daily time step using the stochastic ‘precipiton’ model. This 183 

model considers the time travel distribution of quanta of precipitation that produces runoff and 184 

generates daily streamflow distributions that follow an inverse gamma distribution (Crave & 185 

Davy, 2001).  186 

Despite the differences in the hydrologic assumptions made by these early modeling 187 

efforts, together they highlighted the need for adding stochastic events to stream power in order 188 

to interpret the long-term evolution of river profiles. Under this view, the steady state form of 189 

river profiles was no longer  a simple function of mean climate, but instead reflected the complex 190 

interplay between the frequency of large flows and erosional thresholds set by coarse sediment 191 

(Shobe et al., 2016) and the detachment of bedrock (Whipple et al., 2000). While the overall 192 

approach of these efforts was similar, the functional form of probability distributions of 193 

streamflow differed. The use of daily data, while insufficient for short-duration flash floods, 194 

balances important tradeoffs in characterizing magnitude-frequency relationships while also 195 

being tractable to simulate over landscape evolution timescales. Poisson rectangular pulses 196 
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always generate light-tailed, exponential, daily runoff distributions while the inverse gamma 197 

distribution is able to produce heavy-tailed distributions that do not have a finite variance, 198 

depending on the value of shape parameter. There is still an open question as to how heavy-tailed 199 

streamflow distributions truly are (Malamud & Turcotte, 2006; Molnar et al., 2006), though the 200 

advantage of adopting these stochastic frameworks is that they are well-suited to simulating both 201 

frequent and infrequent flows and thus determining the geomorphically effective event (Huang & 202 

Niemann, 2006). Rossi et al. (2016) recently suggested that the stretched exponential, or 203 

Weibull, distribution provides a flexible probability distribution that spans light-tailed to 204 

apparently heavy-tailed distributions (Laherrère & Sornette, 1998), and thus is what we choose 205 

to fit observed and model runoff daily runoff data below. 206 

Regardless of how stochastic processes are represented, these early efforts prompted a 207 

large number of studies to take a closer look at whether relationships between long-term erosion 208 

rates and river morphology can be better explained using stochastic-threshold models of river 209 

incision (Campforts et al., 2020; Desormeaux et al., 2022; DiBiase & Whipple, 2011; Forte et al., 210 

2022; Scherler et al., 2017). While success is decidedly mixed, the general outcome of using 211 

stochastic-threshold models has been to provide an alternative interpretation to nonlinear 212 

relationships between river channel morphology and long-term erosion rates (Harel et al., 2016; 213 

Marder & Gallen, 2023). In these cases, nonlinear relationships between river morphology and 214 

long-term erosion rates arise because erosional thresholds are exceeded more frequently as 215 

erosion rate and relief increase. The climate driver on river profile evolution is not mean annual 216 

precipitation itself, but how the soil water balance (Deal et al., 2018) and the hydrologic structure 217 

of watersheds (Basso et al., 2023) mediate flood frequency. These concepts place the central 218 

focus on water storage-discharge relationships (Botter et al., 2009; Kirchner, 2009) to condition  219 
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how rainfall events are converted to runoff ones. The same kind of framework can be used to 220 

account for seasonal snowmelt contributions to streamflow (Schaefli et al., 2013).  221 

3 Datasets 222 

Our overarching goal is to better parameterize 1D models of fluvial profile evolution that 223 

account for both stochastic events and orographic controls on runoff generation. Model 224 

development is the focus of our companion manuscript (Forte & Rossi, 2023). The focus of this 225 

manuscript is on developing empirical relationships between topography and daily runoff 226 

statistics in mountain settings. Note that runoff and streamflow, i.e., discharge, are not 227 

synonymous terms. For empirical data, streamflow data are typically what is measured and 228 

runoff is inferred by normalizing the data by drainage area. For water model data, runoffs are 229 

simulated directly. We primarily rely on three datasets: (1) a daily, global water model derived 230 

from climate reanalysis data (WaterGAP3 data including daily runoff), (2) observational stream 231 

gauge data from the contiguous United States (HCDN-2009 daily streamflow), and (3) near 232 

global topographic data (SRTM-90 and derived HydroSHEDS v1 gridded elevation). 233 

 234 

3.1 Hydrology Data 235 

Because streamflow data availability and quality is globally variable, we sought a single 236 

global runoff dataset that could be used to interrogate modern relationships among topography, 237 

snowmelt, and runoff. We used the Water Global Assessment and Prognosis (WaterGAP3), the 238 

most recent version of a 20+ year old global water model (Alcamo et al., 2003; Döll et al., 2003). 239 

WaterGAP3 improves on prior versions by increasing the spatial resolution from the original 240 

0.5° to 0.25° pixel size (Eisner, 2015) and is one model included in the Earth2Observe Water 241 
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Resource Reanalysis project (Schellekens et al., 2017). These model data have broad utility (e.g., 242 

Schmied et al., 2014), including for parameterization of stochastic-threshold incision models 243 

(STIM) of river incision (Campforts et al., 2020). For this analysis, we downloaded the global, 244 

20-year, daily time series from the Earth2Observe portal (www.earth2observe.eu; last accessed 245 

April 8, 2022) spanning from January 1, 1980 to December 31, 1999. Daily data represent the 246 

mean value of each variable for each day. 247 

For each pixel and day, WaterGAP3 contains a large number of input and derived hydro-248 

climatological parameters including precipitation, runoff, discharge, and evapotranspiration. We 249 

primarily focus on the derived runoff variables from WaterGAP3, but also briefly consider 250 

temperature and precipitation. Daily average surface temperature is not distributed with 251 

WaterGAP3, so we rely on another reanalysis product of identical resolution from the 252 

Earth2Observe set, namely SURFEX-TRIP (Decharme et al., 2010, 2013). Surface temperature 253 

data are used to help interpret variation we see within the WaterGAP3 runoff data. Runoff data 254 

are subdivided into three components in WaterGAP3: surface runoff (Rs), subsurface runoff 255 

(Rsb), and snowmelt (Rsm), where total daily runoff (Rt) is the sum of the three. In the original 256 

WaterGAP3 dataset, all of these components of runoff are denoted with the variable ‘Q’. We do 257 

not use this notation here given the common association of Q with discharge [L3/t] as opposed to 258 

runoff [L/t]. For each pixel across the time-series, we calculated mean daily runoff (�̅�𝑡), mean 259 

daily precipitation (�̅�), means of each of the three runoff components (�̅�𝑠, �̅�𝑠𝑏, �̅�𝑠𝑚), and 260 

Weibull shape (c) and scale (R0) parameters of the daily total runoff distributions (see section 4.1 261 

for details). Given our interest in probing the importance of snowmelt, we also calculated the 262 

fraction of runoff contributed by snowmelt (SF), where: 263 

 264 
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𝑆𝐹 =
𝑅𝑠𝑚̅̅ ̅̅ ̅̅

�̅�𝑡
       (1) 265 

 266 

Similarly, we calculate baseflow fraction of runoff (BF), where: 267 

𝐵𝐹 =  
𝑅𝑠𝑏̅̅ ̅̅ ̅

𝑅𝑡̅̅ ̅
      (2) 268 

that we use to exclude watersheds with a substantial groundwater component to its daily fluxes. 269 

To validate model runoff data, we used observational streamflow data from the Hydro-270 

Climatic Data Network – 2009 (HCDN-2009) (Lins, 2012). These 743 stream gauges were 271 

identified by the USGS to be high quality, long, continuous records for watersheds with minimal 272 

impact by humans (e.g., due to landcover change, dams, and diversions). We downloaded 273 

streamflow data from the National Water Information System (NWIS) server for the dates 274 

between January 1, 1980 and December 31, 1999, to directly compare to the WaterGAP3 data. 275 

During the processing of individual HCDN-2009 time series data, any day that included 276 

provisional data or data where there was an extra qualifier on the quality (e.g., ‘ICE’) was 277 

removed and treated as NaN data. We characterize the completeness of the time series by 278 

dividing the number of days with reliable data by the total number of days. Because HCDN-2009 279 

stream gauges are a subset of the reference stations in the Gages for Evaluating Streamflow 280 

version II (GAGES-II) network, we were able to use watershed boundaries provided by Falcone 281 

et al.  (2011) to calculate watershed-averaged properties and normalize streamflow by drainage 282 

area. This latter calculation was used as an estimate for daily runoff. Processing and validation of 283 

the WaterGAP3 runoff model against HCDN-2009 observations is described in section 4.2. 284 
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3.2. Topography Data 285 

Because we are focused on how hydroclimatic parameters vary with topography in 286 

mountain settings, it is necessary to pair the WaterGAP3 data with a global topographic dataset. 287 

We largely used the HydroSheds v1, 15-arcsecond, digital elevation model that is derived from 288 

SRTM elevation data (Lehner et al., 2008). We also used the higher resolution SRTM-90 data 289 

(Farr et al., 2007) for watershed delineation when validating WaterGAP3 against HCDN-2009 290 

data. The HydroSheds v1 topographic data are used for two purposes: (1) To screen for portions 291 

of the global surface where orographic feedbacks with climate are relevant, and (2) To develop 292 

empirical relationships between topography and runoff statistics. With respect to data screening, 293 

we only used WaterGAP3 data where the mean elevations are greater than 250 meters above sea 294 

level and where local reliefs are greater than 500 meters. To calculate local relief at a fixed scale, 295 

we first reprojected the global geographic DEM into an equal area cylindrical projection and then 296 

calculated local relief within a 2.5 km radius circular moving window. This is a scale that prior 297 

studies have shown to linearly correlate with river channel steepness (e.g., DiBiase et al., 2010), 298 

and thus expect it to be well suited to developing empirical relationships between river 299 

morphology and local relief. After the relief calculation, we projected the data back into the 300 

original WGS 84 geographic coordinate system to facilitate calculation and comparisons with the 301 

rest of the datasets that were also in geographic coordinate systems. The initial screening of the 302 

WaterGAP3 data using local relief is then further filtered to exclude pixels where baseflow (eq. 303 

2) exceeds 0.25, with an eye towards minimizing the confounding factor of large groundwater 304 

contributions. To develop relationships between topography and runoff statistics we record 305 

minimum, mean, and maximum elevations within a WaterGAP3 pixel and the mean local relief 306 
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within a WaterGAP3 pixel as calculated from the enclosed 60 HydroSheds pixels (i.e., there are 307 

60 HydroShed pixels within each WaterGAP3 pixel).  308 

4 Data Analysis 309 

To develop empirical relationships between topography and runoff statistics from 310 

WaterGAP3, it was first important to figure out at which scale such relationships might emerge. 311 

To this end, we conduct both a global analysis and a set of regional ones that broadly correspond 312 

to the mountain range scale. These empirical relationships serve as the basis for the model 313 

development and analysis we conduct in Part 2 (Forte & Rossi, 2023). There are four main steps 314 

to the data analysis: (1) Characterization of statistical parameters for daily runoff; (2) Validation 315 

of WaterGAP3 model derived parameters with HCDN-2009 stream gage observations; (3) 316 

Global assessment of topographic controls on runoff, runoff variability, and snowmelt fraction, 317 

and (4) Development of regionally-based relationships between topographic metrics and runoff 318 

statistics. 319 

4.1. Daily Distributions 320 

A number of probability distributions have been considered for the problem of bedrock 321 

river incision, including exponential (Snyder et al., 2003; Tucker, 2004), power law (Molnar et 322 

al., 2006), inverse gamma (Campforts et al., 2020; DiBiase & Whipple, 2011; Lague et al., 2005; 323 

Scherler et al., 2017) and Weibull (Forte et al., 2022; Rossi et al., 2016) distributions. We follow 324 

Rossi et al., (2016) and use a two-parameter Weibull distribution to fit the right tail of the daily 325 

runoff distribution above a threshold value. Choosing thresholds to fit empirical distributions is a 326 

notoriously vexing challenge (e.g., Dupuis, 1998) and makes it more challenging to implement in 327 

numerical models (see Forte & Rossi, 2023), though it enables better fidelity to the observed 328 
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right tail. For this analysis, the threshold is treated as a third parameter that is held constant 329 

across sites to enable comparison of fit parameters. Above the threshold, distributions are 330 

described by a shape parameter (cx)  that describes daily variability and a scale (x0) parameter 331 

related to the mean of the distribution, where: 332 

𝑝𝑑𝑓(𝑥; 𝑥0, 𝑐𝑥) =  
𝑐𝑥

𝑥0
(

𝑥

𝑥0
)

𝑐𝑥−1
𝑒𝑥𝑝−1(𝑥 𝑥0⁄ )𝑐𝑥

        (3) 333 

Because we are only fitting the right tail of the distribution, the parametric mean and the 334 

empirical mean need not match. The mismatch between the two is a measure of how well tail 335 

fitting is able to represent the full distribution. We use the fit parameters to characterize both 336 

daily precipitation (p0, cp) and daily runoff (r0, cr).  Interpretations of fit parameters primarily 337 

focus on the shape parameter because it describes the right tail of daily values, which we 338 

colloquially refer to as the variability. Larger values of cx indicate lower variability (i.e., smaller 339 

relative differences between daily runoff values), where cx=1 is equivalent to the exponential 340 

distribution. The need for three parameters and the inability to analytically integrate the product 341 

of this distribution with stream power is not ideal, posing important challenges to numerical 342 

simulations of bedrock rivers (Forte & Rossi, 2023).   343 

To estimate shape parameters, we follow Wilson & Toumi (2005) and perform a linear fit 344 

on the natural log linearized right tail of the exceedance frequency distribution above a threshold. 345 

On the transformed data, the shape parameter, cx, is the slope of the regression, and the scale 346 

parameter, x0, is exp(-intercept/slope) of the regression. Because parametric fits will be sensitive 347 

to threshold choice, distribution parameters were calculated using two thresholds for the daily 348 

runoff data, the upper 5% and upper 1% of daily values. These thresholds reflect a compromise 349 

between fitting the majority of flows while also honoring the right tail, the latter of which 350 
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dictates the nonlinear relationship between channel steepness and long-term erosion rates. 351 

Figures and discussion are based on the 1% threshold for both runoff and precipitation 352 

distributions. This corresponds to the event magnitude that happens 3-4 times per year. While 353 

threshold choice did alter the best-fit values for cr, suggesting that a simple Weibull distribution 354 

is not able to fully characterize all cases, this variation in cr did not substantially alter the relative 355 

spatial patterns in the shape of the right tail. Runoff parameters were calculated on both the daily 356 

streamflow data (HCDN-2009) and the daily total runoff data from WaterGAP3. Pixel-based 357 

values in WaterGAP3 are not directly comparable to the watershed-averaged ones in HCDN-358 

2009. In the following section, we address this challenge in the context of validating water model 359 

runoff data against observations.  360 

4.2. Runoff Parameter Validation 361 

Prior validation of WaterGAP3 data suggests that model data robustly reproduce mean 362 

river discharge from gauging stations (Beck et al., 2017; Eisner, 2015; Schmied et al., 2014, 363 

2020). None of these prior assessments considered how well daily runoff variability is 364 

represented. Given the importance of daily runoff variability to bedrock river incision modeling, 365 

it is thus important to assess the extent to which shape parameters calculated from WaterGAP3 366 

are consistent with those observed at stream gauges. For the sake of comparison, we first 367 

screened the HCDN-2009 network using the same topographic criteria used to screen 368 

WaterGAP3. Namely, we excluded watersheds where catchment relief (i.e., maximum minus 369 

minimum elevation within the catchment) is less than 500 meters and where mean elevation is 370 

less than 250 meters. Of the retained sites, we also imposed the additional criterion that HCDN-371 

2009 daily runoff records are >95% complete within the WaterGAP3 time period (January 1, 372 
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1980 - December 31, 1999). We also removed data that occurs on leap days because these days 373 

are not calculated in the WaterGAP3 time series.    374 

Once candidate HCDN-2009 stations were identified for validation, we needed to process 375 

the WaterGAP3 data to enable fair comparison. The first approach uses the mean runoff and 376 

runoff variability parameters calculated for each pixel in WaterGAP3. By oversampling these 377 

raster datasets of stochastic parameters to 1.5 seconds per pixel, HCDN-2009 watershed 378 

boundaries were used to calculate spatially averaged values of runoff parameters. While this 379 

treatment may be valid for small HCDN-2009 watersheds of similar scale to the WaterGAP3 380 

pixels, this calculation may be problematic for larger watersheds where runoff should be routed 381 

downstream. As such, the second approach uses watershed boundaries to clip and route the 382 

WaterGAP3 data for each day within the 20-year time series. The mean runoff and shape 383 

parameter of the routed data are then calculated for the daily, routed data at the river outlet. For 384 

this computationally intensive approach, we used TopoToolbox (Schwanghart & Scherler, 2014) 385 

to: (1) acquire SRTM-90 digital elevation models (DEMs) for each watershed via the 386 

OpenTopography API, (2) project each DEM to the Universal Transverse Mercator (UTM) 387 

projection, (3) clip each day of the WaterGAP3 data to the watershed boundary and resample to 388 

the resolution of the DEM, (4) route discharge through the basin to build a time series of daily 389 

runoff at the outlet of each watershed, and (5) calculate mean runoff and shape parameters for 390 

the outlet time series. 391 

4.3. Global Analysis 392 

After understanding the strengths and limitations of WaterGAP3, these model data were 393 

used to identify the strongest predictors of mean runoff and daily runoff variability globally.  The 394 

global analysis used two complementary approaches: (1) Develop relationships between mean 395 
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runoff and variability (e.g., Molnar et al., 2006; Rossi et al., 2016), in a way that can account for 396 

the potential influence of snowmelt, and (2) Use unsupervised machine learning to probe the 397 

WaterGAP3 data and help identify strong predictors of mean runoff, snowmelt, and runoff 398 

variability.  399 

For the first approach, we used the snowmelt fraction (Eq. 1) to partition the filtered 400 

WaterGAP3 data (see Section 3.1) into bins. Within each bin, we fit both a linear and a power 401 

law function relating mean runoff and the shape parameters of each pixel within that bin. This 402 

approach was motivated by empirical (Rossi et al., 2016) and ecohydrological modeling (Deal et 403 

al., 2018) studies that show how climatically driven gradients in daily runoff variability differ 404 

between rainfall-runoff and snowmelt-runoff regimes. For example, Rossi et al. (2016) showed 405 

that watersheds with lower snowmelt contributions were better described by a power law 406 

relationship between mean runoff and its associated Weibull shape parameter. In contrast,  407 

regions with higher snowmelt contributions showed a more linear relationship between these 408 

parameters. To compare the fits of both functions, we consider both the RMSE and the reduced 409 

chi-squared statistic under the view that that minimization of RMSE and/or reducing the chi-410 

squared statistic closer to one should indicate the ‘better’ fit to the data. 411 

In the second approach, we consider a larger suite of hydro-climatological, topographic, 412 

and geographic variables. Random forest regression (RFR) was used to assess the relative 413 

importance of potential predictor variables with respect to a given ‘target’ variable (Grömping, 414 

2009). Target variables are hydro-climatic ones  chosen based on their potential relevance to 415 

relationship between mean runoff and runoff variability (i.e., mean temperature, mean 416 

precipitation, mean runoff, daily runoff variability, and snowmelt fraction).  The list of predictor 417 

variables are broader and varied according to each target. Predictor variables included 418 
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topographic (mean elevation, maximum elevation, mean local relief), geographic (latitude), and 419 

hydro-climatic (mean temperature, mean precipitation, daily precipitation variability, mean 420 

runoff, daily runoff variability, and snowmelt fraction) variables. We also attempted to thin 421 

predictor variables and remove what amounts to duplicates, e.g., as described in the results, 422 

latitude is the primary predictor of mean annual temperature and thus for other RFRs, we only 423 

include MAT as opposed to both MAT and latitude. Ultimately, we are not interested in the 424 

prediction per se, but to use the RFR to help identify which variables emerge as the most viable 425 

candidates linking mean runoff, snowmelt fraction, and daily runoff variability. In particular, we 426 

sought to discover which and whether any of the topographic metrics can be used to generalize 427 

hydro-climatic relationships that may co-evolve with growing topography. To perform the RFR, 428 

we used the RandomForestRegressor within SciKit-Learn, using the default values and a seed for 429 

the random state of 0. 430 

4.4. Regional Cases 431 

As we discuss in the context of our findings below, the global analysis revealed that 432 

generalizable relationships between topography and hydro-climatology were difficult to isolate at 433 

this largest spatial scale. While the global analysis reinforced the notion that snowmelt fraction 434 

mediates the relationship between mean runoff and daily runoff variability, scatter in these 435 

relationships clearly reflect the geographic diversity of montane hydrology. Furthermore, the 436 

lack of unambiguous topographic predictors that could be used to build rules for co-evolving 437 

stochastic parameters with the growth of mountain ranges limits the utility of the results from the 438 

global analysis to the application of 1D bedrock river incision modeling (Forte & Rossi, 2023). 439 

As such, we identified relationships between topography and stochastic runoff specific to 440 

individual mountain ranges, where differences in regional climate and geography can be partially 441 
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accounted for. To begin this regional analysis, we started at first at the global scale and used a 2° 442 

rectangular moving window to calculate the Spearman’s rank correlation coefficient between 443 

candidate topographic variables and hydro-climatological ones. The topographic variables 444 

considered were the same as in the global analysis (mean elevation, maximum elevation, and 445 

mean local relief). The hydroclimatic variables we focused on were mean runoff and snowmelt 446 

fraction, the latter of which can be linked to daily runoff variability using relationships from the 447 

global analysis. We opt to focus on snowmelt fraction instead of daily runoff variability directly 448 

because one of the hypotheses we are trying to test in the 1D river incision modeling (Forte & 449 

Rossi, 2023) is how and whether snowmelt dynamics alter interpretations of stream power based 450 

analyses of river profiles. The results of the rank correlation analysis were used as the basis of 451 

selecting three regions where well-defined relationships can be developed between topography 452 

and hydro-climate. Specifically, these regional cases focus on the mid-latitude mountains of 453 

British Columbia, European Alps, and the Greater Caucasus (Figure 2), where snowmelt 454 

contributes a sizable fraction of daily streamflow. 455 

5 Results 456 

5.1 Validation of WaterGAP3 457 

Figure 3 summarizes the results from our validation of WaterGAP3 model data against 458 

historical observations from select HCDN-2009 stream gages.  The mean values for both datasets 459 

plot around the 1:1 line without obvious bias (Figure 3A), lending support to prior assessments 460 

(e.g., Beck et al., 2017; Eisner, 2015; Schmied et al., 2014, 2020). However, scatter around this 461 

relationship shows that a >25% mismatch in mean values is not unusual. In general, simple 462 

spatial averaging (closed symbols) performs almost as well as the computationally intensive 463 
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routed approach (open symbols), though routing matters for individual cases. From this, we 464 

conclude that the HCDN-2009 watersheds are at the appropriate scale for WaterGAP3 validation 465 

and that downstream scaling of streamflow statistics is not strongly influencing our parameter 466 

estimates. This perhaps not surprising given that the filtered set of HCDN-2009 watersheds used 467 

are relatively small (interquartile range of 105-542 km2), well within the average pixel size of the 468 

WaterGAP3 data and typically smaller than the mountain range scale. For lower values of the 469 

shape parameter (i.e., higher runoff variability), the correspondence between the observations 470 

and the water model is acceptable (Figure 3B). However, for most watersheds, the shape 471 

parameters from WaterGAP3 are less than their empirical counterparts (Figure 3B; D) except at 472 

higher shape parameters (i.e., lower daily runoff variability). In these cases, WaterGAP3 values 473 

are systematically lower than the HCDN-2009 gage data. This implies that WaterGAP3 tends to 474 

overestimate variability for these watersheds. For the lower variability watersheds, the routed 475 

version of WaterGAP3 does slightly improve water model performance (Figure 3B), but does not 476 

remove the systematic bias. The residuals of the mismatch between the HCDN-2009 and 477 

WaterGAP3 values do not reveal a relationship between the mean and variability (Figure 3C), 478 

which might occur if the WaterGAP3 model was systematically altering storage-release 479 

relationships in hydrographs (e.g., due to limitations in how hydrologic processes are represented 480 

in the model). However, comparison of the residuals of the shape parameter to the mean annual 481 

temperature each the watershed (Figure 3D) indicates one possible interpretation for why 482 

variability in lower variability watersheds is overestimated in the WaterGAP3 data. The majority 483 

of lower variability basins tend to occur in colder settings, suggesting the possibility that 484 

snowmelt processes are not being adequately represented in the WaterGAP3 data. This result 485 

supports the argument that WaterGAP3 could benefit from improving the partitioning of runoff 486 
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into fast and slow components (Eisner, 2015). The direction of the mismatch is consistent with 487 

the notion that snow storage and release may not be fully resolved in WaterGAP3 data even 488 

though mean runoff is well represented in the water model. 489 

While systematic differences between model and empirical estimates of daily runoff 490 

variability is an important limitation to consider, we continue to use WaterGAP3 as our base 491 

dataset for a few reasons: (1) It is globally uniform, allowing for comparison of stochastic runoff 492 

in diverse settings, and (2) The systematic bias in variability has been quantified so that its 493 

effects can be considered. Importantly, the bias in WaterGAP3 estimates of daily runoff 494 

variability lead to a conservative estimate of the dynamics we are examining in our 1D modeling 495 

of bedrock river incision (Forte & Rossi, 2023). Because hypothesized orographic feedbacks 496 

induce lower runoff variability as a mountain range grows, thereby increasing the degree of 497 

nonlinearity between channel steepness and erosion rate, it is preferable for the underlying rules 498 

setting these feedbacks to overestimate variability than the alternative. 499 

5.2 Global relationships (relating mean and variability) 500 

Figures 4-5 summarize the results for how the parametric fit parameters relate to mean 501 

runoff after binning the data by snowmelt fraction. Across all bins, WaterGAP3 data show that 502 

mean runoffs are inversely related to daily runoff variabilities, consistent with prior studies (e.g., 503 

Molnar et al., 2006; Rossi et al., 2016).  The large gridded WaterGAP3 dataset allowed us to 504 

more systematically explore these relationships at relatively fine (5%) intervals of snowmelt 505 

fraction (Figure 4). Each subpanel in Figure 4 is a heatmap showing the density of WaterGAP3 506 

observations of how the best-fit shape parameters relate to the empirical mean. Regressions on 507 

the pixel-level data are shown (solid lines show the better fit between linear and power law 508 

regressions). HCDN-2009 observational data are also shown as points for reference. Figure 4 509 
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demonstrates that it would be difficult to constrain these relationships using observational data 510 

alone because representation of different snowmelt fractions can be sparse, especially at higher 511 

snowmelt fractions. More importantly, it shows that the functional form of the relationship 512 

between the mean and variability changes from sublinear to linear with increasing snowmelt 513 

fraction. Using Figure 4 as our guide, we identified a snowmelt fraction of 0.35 as the transition 514 

where sublinear relationships give way to linear relationships. Note that this transition is higher 515 

than the 10% snowmelt threshold used to delineate snowmelt from rainfall-runoff dominated 516 

watersheds in Rossi et al. (2016). This disparity likely arises from two factors. First, that prior 517 

analysis focused on the snow fraction of precipitation and not the snowmelt fraction of runoff. 518 

Second, the sparsity of observations at higher snowmelt fractions in the HCDN-2009 data are not 519 

sufficient to define such a threshold. 520 

To more succinctly summarize these findings, Figure 5A-B shows the same plots by 521 

binning the data above and below a threshold snowmelt fraction of 0.35. The best of the 522 

regression lines from Figure 4 are also plotted for reference. Figure 5A-B highlights that 523 

individual regressions largely cluster around each other, especially in the domain where they are 524 

well constrained by data. It also shows that the relative spread of parameter values is smaller 525 

when there is a high fraction of snowmelt. The linear relationships shown at higher snowmelt 526 

fractions (Figure 5B) are strongly underestimating the value of the shape parameter as estimated 527 

from gaged basins, consistent with validation results (Figure 3B). However, empirical 528 

observations still suggest a linear relationship between the empirical mean runoff and the shape 529 

of the daily runoff distribution at  higher snowmelt fractions.  530 

Because empirical means are not equivalent to the mean value implied by parametric fits, 531 

Figure S1 reports the mismatch between the scale parameter fit to the data (i.e., above the 1% 532 
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threshold or ~4 largest floods per year) and the scale parameter implied by the empirical mean. 533 

These results are summarized in Figure 5C-D. In general, the parametric fits produce scale 534 

parameters that are on par with the empirical means only at low snowmelt fractions. At higher 535 

snowmelt fractions, the parametric fits have much higher scale parameters than the empirical 536 

mean would imply, thereby suggesting that the Weibull distribution is not doing a good job at 537 

describing the full distribution of events. Finding a single distribution to describe empirical data 538 

is a well-known problem and poses unique challenges to simulating runoff distributions over 539 

landscape evolution timescales, a challenge we tackle in part 2 of this analysis (Forte & Rossi, 540 

2023). Nevertheless, by treating all the data in the same way, we show that the functional 541 

relationship between daily runoff variability and mean runoff is highly sublinear at low 542 

snowmelt fractions, much like shown in previous studies (Molnar et al., 2006; Rossi et al., 2016). 543 

At high snowmelt fraction, the relationship becomes more linear, albeit with the caveat that the 544 

form of the distribution may also be changing. Our estimates of this transition using WaterGAP3 545 

data provide conservative estimates of orographic feedbacks on runoff variability where both the 546 

mean and snowmelt fraction are expected to increase as mountain topography grows. It is 547 

conservative because biases in the water model data tend to dampen contrasts between rainfall 548 

and snowmelt dominated hydrology, and thus our 1D bedrock river incision modeling uses 549 

rulesets with weaker feedbacks than might be expected in reality (Forte & Rossi, 2023). 550 

While analyzing the global water model data was motivated by prior studies that 551 

identified an inverse relationship between mean runoff and daily runoff variability in the 552 

contiguous U.S. (Molnar et al., 2006; Rossi et al., 2016), we felt it also important analyze the 553 

global data more generically and explore whether hydro-climatic parameters can be linked to 554 

topography itself. This latter objective is essential to building rules that relate stochastic runoff 555 
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parameters to mountain range growth and decay. To this end, we opted to use Random Forest 556 

Regression to partition the relative influence of topographic, geographic, and hydro-climatic 557 

predictors on a small subset of target variables. 558 

5.3 Global relationships (Random Forest Regression) 559 

Figure 6 summarizes the results of the random forest regression (RFR) analysis 560 

performed on global, filtered WaterGAP3 data. While principally interested in understanding the 561 

controls on mean runoff (Figure 6E-F), daily runoff variability (Figure 6G-H), and snowmelt 562 

fraction (Figure 6I-J), we also consider influences on other hydro-climatological variables that 563 

emerged as important determinants of these target variables, specifically mean annual 564 

temperature (Figure 6A-B) and mean precipitation (Figure 6C-D). The results of the RFR are not 565 

particularly surprising, but do shed some light on potential causal chains that links mean runoff, 566 

snowmelt fraction, and daily runoff variability as a mountain range grows.  567 

Mean annual temperature and mean precipitation are the two strongest predictors of both 568 

mean runoff and snowmelt fraction, with temperature exerting a stronger influence on snowmelt 569 

fraction and precipitation exerting a stronger influence on runoff. Mean runoff is the strongest 570 

predictor of the shape of the daily runoff distribution, perhaps explaining why prior efforts have 571 

focused on this relationship (e.g., Molnar et al., 2006; Rossi et al., 2016).   572 

Importantly, topographic metrics were weak predictors of all three principal targets 573 

(mean runoff, snowmelt fraction, daily runoff variability). This may be due to the fact that 574 

topography is expected to exert its influence via precipitation and temperature. To assess this, we 575 

also set mean precipitation and temperature as target variables in the RFR. The relative 576 

predictive power of three topographic metrics and mean temperature on mean precipitation is 577 
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relatively uniform. In contrast, latitude is the strongest predictor of mean temperature with mean 578 

elevation providing modest predictive power. At this scale of analysis, topography does not 579 

appear to emerge as a strong predictor in the RFR modeling. 580 

To further probe how topographic relationships might be obscured in this global analysis, 581 

we binned the pixel-level data by its mean temperature and precipitation, which emerged above 582 

as first-order controls on snowmelt fraction and mean runoff. We first removed outlier values 583 

using the method described by Doane (1976) where bin boundaries are defined after clipping 584 

variables to values below the 99.9th percentile. Membership in a given bin was determined by the 585 

mean temperature and precipitation of the pixel in question. Within each temperature-586 

precipitation bin, we calculated Spearman’s rank correlation coefficient between one of three 587 

topographic metrics (mean elevation, maximum elevation, and mean local relief) and either mean 588 

runoff or snowmelt fraction. A correlation coefficient is only calculated if there are at least 10 589 

pixels within a given temperature-precipitation bin and if the significance of the correlation 590 

coefficient exceeds the 95% confidence interval. We used Spearman’s rank correlation 591 

coefficient because it does not assume linear correlation. 592 

Figure 7 summarizes the results of the correlation analysis of WaterGAP3 data after 593 

binning by mean temperature and precipitation. The colors in plots show correlations between 594 

topography and mean runoff (top row) and correlations between topography and snowmelt 595 

fraction (bottom row). Green values indicate strong positive correlations, magenta values 596 

indicate strong negative correlations, black values indicate weak to no correlation, and grey 597 

values indicate that there was not enough observations in the dataset to evaluate correlation. The 598 

patterns in correlation are  somewhat difficult to interpret as clusters of strong positive 599 

correlation are often adjacent to clusters of strong anti-correlation. Topographic predictors of 600 
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mean runoff show little sensible pattern (Figures 7A-C), with a hint of positive correlation 601 

between local relief and mean runoff at low values of mean precipitation (Figures 7C). 602 

Topographic predictors of snowmelt fraction are also complex with a band of positive correlation 603 

for lower mean temperatures next to a band of anti-correlation at higher temperatures (Figures 604 

7D-F). While we hesitate to interpret these subtle patterns, the snowmelt fraction results do 605 

suggest that increasing topographic elevation and relief only leads to more snowmelt where 606 

temperatures are conducive to it, though why this relation has a slope is not obvious.  607 

As we discuss in more depth in the discussion below, the results from the global analysis 608 

suggest that there is no single set of globally applicable ‘rules’ that relate topography to mean 609 

runoff and snowmelt fraction. We suspect this is a consequence of the scale of the analysis (i.e., 610 

orographic effects are inherently regional) and the lack of accounting for the predominant 611 

direction of weather systems with respect to topography (i.e., steep topography is not 612 

distinguished as windward versus leeward). Based on this, we next explore a set of three regional 613 

analyses that show more promise in constraining orographic controls on mean runoff and 614 

snowmelt fraction. 615 

5.4 Regional relationships of mean runoff and daily runoff variability  616 

Given the challenge of identifying simple relationships between topography (i.e.,  mean 617 

elevation, maximum elevation, and mean local relief) and either mean runoff or snowmelt 618 

fraction (Figures 6-7), we now examine whether regional relationships between these variables 619 

are being obscured by the global treatment. Of the six relationships shown in Figure 7, the 620 

relationship between local relief and mean runoff and the relationship between maximum 621 

elevation and snowmelt fraction seemed the most promising when evaluated spatially. Figure 8 622 

summarizes the sign and strength of these relationships for all WaterGAP3 data that meet our 623 
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selection criteria. The zoom insets highlight three regions of interest – namely the mid-latitude 624 

mountains of British Columbia, European Alps, and the Greater Caucasus. Each of these 625 

mountain ranges receive a large fraction of their precipitation as snow, with some alpine 626 

glaciation under modern climate. In these settings (and others), there is a relatively strong 627 

correlation between local relief and mean runoff across the study area (Figure 8A-insets), 628 

consistent with prior studies (Bookhagen & Burbank, 2006; Bookhagen & Strecker, 2008). The 629 

relationship between maximum elevation and snowmelt fraction is more nuanced (Figure 8B-630 

insets). The sign of the correlation depends on whether positioned on the windward or leeward 631 

side of prevailing weather systems, whereby windward sides show relatively strong positive 632 

correlations. Nevertheless, the most complex of these three regional sites is the Greater 633 

Caucasus, where relationships among maximum elevation, snowmelt fraction, and runoff 634 

generation has been verified using a finer-scale analysis of gauge records and hydroclimatic data 635 

(Forte et al., 2022). Taken as whole, this gives us confidence that these three locations are prime 636 

candidates for building regional relationships among topography, snowmelt, and runoff statistics. 637 

To develop these local relationships, we consider similar candidate relationships tested on the 638 

global scale (Figure 7), specifically mean runoff or snowmelt fraction as a function of either 639 

mean elevation, maximum elevation, or local relief (Figure S2). 640 

6 Discussion 641 

6.1 Mean runoff, runoff variability, and snowmelt 642 

The global analysis of WaterGAP3 data helped solidify interpretations that mean runoff 643 

and daily runoff variability are inversely correlated. This result was born out both in the Random 644 

Forest Regression (Figure 6) and in the individual regressions after binning by snowmelt fraction 645 
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(Figures 4-5), thereby supporting findings from prior studies (Molnar et al., 2006; Rossi et al., 646 

2016). The functional form of the relationship between mean runoff and the shape of the daily 647 

runoff distribution appears to bifurcate at snowmelt fractions around 0.35 (Figure 5).  Below this 648 

value, the relationship is highly nonlinear. Above this value, relationships vary but become much 649 

more linear. The nonlinearity in rainfall-runoff regimes can be interpreted using ecohydrological 650 

models where climatic parameters can exert different relative influences on mean and tail 651 

behavior (Deal et al., 2018). The transition to snowmelt hydrology resulting in lower variability 652 

flows (e.g., Pitlick, 1994) is expected due to the effects of both increased runoff ratios and the 653 

slow release of water from storage. That this transition is abrupt emphasizes the importance of 654 

the phase transition from rain to snow in event-scale runoff variability. The snowmelt fractions 655 

where this occurs are relatively low suggesting that snowmelt should not be ignored in fluvial 656 

erosion models. We also note here that stochastic-threshold models based on stream power were 657 

originally developed for small watersheds (e.g., Lague et al., 2005; Tucker, 2004). Given our 658 

focus on mountain range scales, it is important to also understand how the spatial footprint of  659 

runoff events varies for different runoff generation mechanisms.  660 

To assess the importance of spatial scale to runoff generation, Figure 9 compares the 661 

exceedance frequency of the spatial footprints of precipitation and runoff events in the 662 

WaterGAP3 data. The area of each ‘event’ is determined by finding spatially contiguous objects 663 

in the daily data above a given intensity threshold (i.e., 5 -  35 mm/day). It should be noted that 664 

unlike much of the analysis in previous sections, we do not filter by ‘mountainous topography’ 665 

(i.e., use elevation or relief to filter the data), and are considering events across all land surfaces. 666 

To convert the unprojected pixel-based objects into areas, we multiplied the number of pixels by 667 

the size of a pixel in degrees squared. We then calculated the radius of the circle that equals that 668 



manuscript submitted to Journal of Geophysical Research – Earth Surface 

31 

 

area. The radius of the circle is converted from degrees to km in both latitude and longitude. 669 

Because the conversion in longitude generally differs from the conversion in latitude, this 670 

transformation produces an ellipse with area units of km2. These are the x-coordinates used for 671 

plotting exceedance frequencies (Figure 9A,C,E,G). Furthermore, for runoff data, we labeled 672 

each event as snowmelt or rainfall runoff based on the 0.35 snowmelt fraction threshold. Because 673 

smaller footprints include both rainfall and snowmelt dominated runoff, the right hand panels 674 

(Figure 9B,D,F,H) shows the percent of daily runoff events that are classified as snowmelt for 675 

log distributed bins of exceedance frequency. Three important insights emerge from this 676 

analysis. First, and unsurprisingly, higher intensity thresholds produce smaller event areas. 677 

Second, at around the 25 mm/day threshold, the largest area events in runoff and precipitation 678 

(i.e., far right tails) are of similar magnitude. Higher thresholds produce runoff areas larger than 679 

comparable frequency precipitation events. Third, the far right tail of the size distribution of 680 

runoff is all snowmelt. Taken together, these results suggest that the relative contribution of 681 

snowmelt runoff becomes increasingly important for larger watersheds and for increasing 682 

intensities. 683 

6.2 Importance of constraining regional relationships 684 

While global relationships linking mean runoff and daily runoff variability via 685 

topography were elusive, regional assessment was much more promising. Figure 10 summarizes 686 

the kinds of regional rulesets that can be generated from an analysis like ours. At the regional 687 

scale, relationships between local relief and mean runoff emerge, consistent with other studies 688 

focused on explaining spatial patterns in rainfall (e.g., Bookhagen & Burbank, 2006; Bookhagen 689 

& Strecker, 2008). This is thought to arise because high relief corresponds to increased forced 690 

lifting of air masses. Local relief (not shown) and maximum elevation (shown) also correlate 691 
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with snowmelt fraction likely due to the role of high topography increasing the probability that 692 

precipitation will fall in the form of snow. Regardless of mechanisms, our analysis shows the 693 

value of producing regionally constrained links between mean runoff and snowmelt fraction via 694 

topography. To generate Figure 10, the pixel-based correlation coefficients presented earlier 695 

(Figure 8) are summarized into bins of either mean runoff or snowmelt fraction (y-axes). For 696 

each bin, the mean and standard deviation of the correlated topographic metric is shown (local 697 

relief for mean runoff and maximum elevation for  snowmelt fraction). Marker sizes are scaled to 698 

the number of observations within a bin. Power law fits for each relationship are shown as lines. 699 

In detail, we tested whether better correlations existed between the hydroclimatic variables of 700 

interest (mean runoff and snowmelt fraction) and either mean elevation, maximum elevation, and 701 

mean local relief (Figure S2). The selected relationships shown in Figure 10, that we also use to 702 

parameterize the models in Part 2, were chosen primarily based on either goodness of fit (i.e., 703 

which relationships had the lowest root mean squared error) or which ones would be more 704 

practical to implement in the models developed in Part 2 when goodness of fit metrics were 705 

similar. Each region is described by its own functional relationship, which we interpret as the 706 

orographic effects on mean runoff and snowmelt fraction for each mountain range. We suspect 707 

that some of the non-monotonic behavior of binned values, especially in snowmelt fraction, are a 708 

consequence of mixing windward and leeward components of a regional orographic effect (e.g., 709 

Figure 8), as well as along-strike complexity in precipitation sourcing. Nevertheless, 710 

summarizing the data in this way allows us to build empirically based rules for mean runoff and 711 

snowmelt fraction specific to each region. Together with the observation that the relationship 712 

between mean runoff and daily runoff variability abruptly shifts around snowmelt fractions of 713 
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0.35 allows us to drive a stochastic runoff model using regionally informed parameters from 714 

WaterGAP3 in part 2 of this analysis (Forte & Rossi, 2023). 715 

 The relationships shown in Figure 10 help explain why the role of topography was so 716 

hard to extract from the Random Forest Regression (RFR) that included these metrics (Figure 6). 717 

First, regional relationships relating topography to runoff generation are quite noisy. While 718 

casting runoff parameters as a simple function of topography was our goal, the relatively coarse 719 

resolution of water model data, the lack of distinguishing between windward from leeward 720 

slopes, and hydro-climatic diversity induced by regional climate will each confound simple 721 

relationships between topography and runoff parameters. Second, while the power law functions 722 

decently describe snowmelt fraction, the bin-averaged values suggest subtle, non-monotonic 723 

relationships with maximum elevation. Third, and perhaps most importantly, the relationship for 724 

each regional setting are distinctly different. Any global analysis would struggle to parse this 725 

difference. 726 

6.3 Implications on landscape evolution studies 727 

Two-way coupled models between climate and tectonics require erosion laws for either 728 

river incision, glacial erosion, or both. Those testing fluvial dynamics are typically built on the 729 

stream power model (e.g., Beaumont et al., 1992; Stolar et al., 2006; Whipple & Meade, 2004; 730 

Willett, 1999). Orographic effects in these models focus on the windward ascent and extraction 731 

of precipitation. By setting up a contrast in the efficiency of erosion on the windward and 732 

leeward sides of mountain ranges, mountain belts adjust their width and height in order to 733 

achieve a steady state morphology. The widespread use of stream power in these climate-tectonic 734 

models has subsequently motivated many studies to interrogate how orographically induced 735 

spatial patterns in precipitation might alter the long-term evolution of river profiles and relief 736 
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(Anders et al., 2008; Han et al., 2014; Leonard & Whipple, 2021; Roe et al., 2002, 2003). At the 737 

same time, stream power models are increasingly incorporating the role of stochastic streamflow 738 

and erosion thresholds to interpret river profiles (DiBiase & Whipple, 2011; Lague, 2014; Lague 739 

et al., 2005; Marder & Gallen, 2023; Scherler et al., 2017; Snyder et al., 2003; Tucker, 2004; 740 

Tucker & Bras, 2000). The aim in this study was integrate these two productive research threads 741 

and explore whether mean runoff, daily runoff variability, and snowmelt fraction can be linked to 742 

each other via topographic elevation and relief. As such, we focused our regional analyses on 743 

mid-latitude mountain ranges at or near the cusp of glaciation, and where snowmelt contributions 744 

to streamflow are significant. While this was our focus, it is worth noting that orographic 745 

gradients in stochastic rainfall itself are often poorly constrained. For example, in tropical 746 

settings, there can be complex interactions among rainfall type (e.g., convective, monsoonal) that 747 

can lead to lower elevation peaks in rainfall maxima (Anders & Nesbitt, 2015) than conventional 748 

orographic rules assume, a topic in need of more attention.  749 

Figure 11 is a conceptual diagram illustrating how stochastic runoff parameters might co-750 

evolve with mountain topography in settings where mountain range relief is sufficient to trigger 751 

the  transition from rainfall-dominated to snowmelt-influence runoff, but where river incision is 752 

still setting the relief structure of the landscape (e.g., Whipple et al., 1999). The color coded dots 753 

on the schematic mountains in Figure 11A are intended to correspond to the dots on the 754 

hypothetical plots relating topography to runoff and snowmelt (Figure 11B) and those relating 755 

mean runoff to daily runoff variability (Figure 11C). On the windward side of mountain ranges 756 

we expect that the growth of topography will increase mean runoff (Figure 11B solid line) in line 757 

with conventional treatments of orographic precipitation (Roe, 2005). This leads to concurrent 758 

increases in the frequency of snowfall and thus the snowmelt contribution to runoff (Figure 11B 759 
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dashed line). While snowmelt fraction has an upper bound of one, in practice, the upper bound 760 

we are envisioning in Figure 11B will be less than one because rain continues to fall at lower 761 

elevations and because the temperatures required to enhance very high snowmelt fractions would 762 

also entail a transition to glaciation. The key behavior in this conceptual framework is that 763 

accounting for snowmelt dynamics leads to a markedly different relationship between mean 764 

runoff and the shape parameter of the daily runoff distribution (Figure 11C). Our global analysis 765 

of WaterGAP3 data suggests that this transition might be abrupt. We identified a snowmelt 766 

fraction of ~0.35 corresponds to this transition, with the important caveat that this is based on a 767 

water model dataset that tends to produce underestimates of the shape parameter (Figure 3B). 768 

Furthermore, while the bulk of the data supports the notion that this transition is relatively 769 

abrupt, there are a number of exceptions to this pattern in both the water model and observational 770 

data (Figures 1B; 4; 5A). These exceptions may be due uncertainty in the proposed snowmelt 771 

transition or evidence for the numerous other hydrological considerations that can reduce daily 772 

variability in rainfall-dominated regimes (e.g., seasonality, groundwater, drainage basin size). 773 

Regardless, the global analysis reveals that the strength and form of these relationships need to 774 

be assessed independently for any given mountain range (Figure 10). However, by simplifying 775 

the hydrology into just two parameters, these kinds of relationships are well-suited to driving 776 

long term models of river incision (e.g., Lague et al., 2005; Tucker, 2004) in ways that can be 777 

linked to mean climate (DiBiase & Whipple, 2011) and ecohydrology (Deal et al., 2018). 778 

 While we think there is observational evidence for these dynamics in actual landscapes 779 

(Forte et al., 2022), we highlight a few important caveats to generalizing from our large-scale 780 

analysis of the WaterGAP3 water model data. First, this conceptual model is better suited to 781 

explaining the windward side of mountain ranges where precipitation, and thus runoff, is 782 
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enhanced by topography. To build better rulesets, higher resolution runoff datasets that honor 783 

physiographic transitions and water divides are likely needed. Second, this conceptual model 784 

requires that mean runoff and rare runoff events are linked via some common mechanism. This 785 

need not be the case. For example, recent work in the Colorado Front Range showed how mean 786 

runoff was largely driven by snowmelt throughout the landscape while daily runoff variability 787 

was driven by rainfall runoff at lower elevations in response to thinning soils (Rossi et al., 2020). 788 

Such mechanistic controls on mean runoff and daily runoff variability are at play in all 789 

landscapes and may partially explain the wide variance of runoff parameters observed in our 790 

regional rulesets (Figure 10). Third, statistical analyses all assumed independence of daily runoff 791 

events which is decidedly not true as runoff events, especially large ones, can extend over 792 

multiple days (synoptic-scale storms) to seasons (snowmelt, monsoons). Despite these caveats, 793 

this analysis produced empirically-based runoff parameters that vary in space and time. As such, 794 

this provides the minimal constraints needed to integrate orographic effects with stochastic 795 

runoff generation for river profile modeling (Forte & Rossi, 2023).  796 

7. Conclusions 797 

The results of our global analysis  of WaterGAP3 data largely confirm, and significantly 798 

expand upon, past results indicating a negative correlation between mean runoff and daily runoff 799 

variability. The form of the relationship between variability and mean runoff is linked to the 800 

fraction of runoff from snowmelt. For snowmelt fractions <0.35, mean runoff and variability are 801 

related via a power law. At higher snowmelt fractions, the two are linearly related. We also find 802 

that snowmelt produces runoff events with a much larger areal extent than rainfall runoff. 803 

Exploration of the extent to which mean runoff, runoff variability, and snowmelt fraction 804 

are related to topography produces ambiguous results at the global scale. Unsupervised machine 805 
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learning methods highlight that simple topographic variables such as mean elevation, maximum 806 

elevation, and local relief do not have strong predictive power for our target hydroclimatological 807 

parameters of mean runoff, snowmelt fraction, and daily runoff variability. Attempts to identify 808 

cross-correlations that may be masking the role of topography were more suggestive, but still 809 

difficult to interpret. Results from the global analysis emphasize that exploring relationships 810 

between topography and hydroclimatology requires a regional approach. For three mid-latitude 811 

mountain ranges - the European Alps, Greater Caucasus, and southern British Columbia – we 812 

find robust positive relationships between mean runoff and mean local relief and snowmelt 813 

fraction and maximum elevation.  814 

The links between topography, mean runoff, daily runoff variability, and snowmelt 815 

fraction highlight that multiple aspects of hydroclimate of mountain ranges should be expected to 816 

evolve as topography grows. Past work on this topic has primarily focused on the influence of 817 

growing topography on the development of orographic patterns in rainfall. When coupled to 818 

tectonic models and simple hydrologic models equating patterns in mean rainfall to mean runoff, 819 

orographic effects have been shown to drive a variety of feedbacks between surface processes 820 

and tectonics. Our results show how to move beyond mean precipitation or mean runoff when 821 

considering the coupled evolution of topography, tectonics, and climate. Both snowmelt fraction 822 

and mean runoff are expected to increase with growing topography and  reduce daily runoff 823 

variability, emphasizing the need to explicitly consider snowmelt dynamics in coupled tectonic – 824 

landscape evolution models.  825 
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  839 

Figure 1. Observational stream gauge data used in this study includes (A) gauged sites in the 840 

contiguous United States that are minimally impacted by human management, which are then 841 

used to characterize (B) the relationship between mean runoff and the shape parameters 842 

describing daily runoff distributions for each stream gauge. In A, a subset of the reference 843 

stations in the GAGES-II network were used for the water model validation presented below 844 
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(i.e., filtered HCDN-2009). In B, two broad trends between mean runoff and daily runoff 845 

variability organize around mean annual temperature, which prior authors have interpreted as 846 

reflecting the transition from snowmelt-dominated to rainfall-dominated systems (Rossi et al., 847 

2016). 848 

849 

Figure 2. Global mean runoff from the WaterGAP3 water model (1980-1999). The dotted black 850 

box corresponds to the area shown in Figure 1A and bounds the geographic extent of the 851 

validation data used. The three smaller colored boxes show the geographic extent of the three 852 

mid-latitude, regional case studies introduced in section 4.4. 853 

 854 
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 855 

Figure 3. Comparison of WaterGAP3 runoff parameters against selected HCDN-2009 stream 856 

gage data, colored by the log of the drainage area of individual gaged basins: (A) Mean runoff 857 

values, (B) Shape parameters of daily distributions, (C) Mean and shape residuals with respect to 858 

1:1 line, and (D) Shape residuals against mean annual temperatures for each watershed. Open 859 

squares are arithmetic means of WaterGAP3 values within watershed boundaries. Closed and 860 

colored circles route daily WaterGAP3 data to generate a time series that is then used to calculate 861 
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fit parameters. Dashed lines in the upper panels indicate the 1:1 relationship between the water 862 

model and gaged data whereas dashed lines in the lower panels reflect a 0 residual value. 863 

 864 

Figure 4. Density plots show the relationship between the shape parameter and mean runoff for 865 

the filtered WaterGAP3 data: (A-O) Plots binned by snowmelt fraction in increments of 0.05 up 866 



manuscript submitted to Journal of Geophysical Research – Earth Surface 

43 

 

to 0.75 snowmelt. (P) The last panel is for the remaining data that has >0.75 snowmelt. In all 867 

panels, both a power law and linear fit are shown. The better fit is shown using a solid line and is 868 

based on having a lower RMSE. Results are the same if using the reduced chi squared statistic. 869 
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Black dots are HCDN-2009 watersheds filtered in the same way. For HCDN-2009 data, 870 

snowmelt fraction was taken from WaterGAP3 data. 871 

 872 

Figure 5. Density plots showing relationships among the scale and shape parameters of 873 

parametric fits with the mean runoff observed for the filtered WaterGAP3 data. (A) Relationship 874 

between mean runoff and shape of the right tail for pixels where snowmelt fraction is <0.35. (B) 875 

Relationship between mean runoff and shape of the right tail for pixels where snowmelt fraction 876 
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is >0.35. Because parametric fits include a threshold, the mean of the distribution cannot be 877 

directly inferred from scale parameters. (C) Relationship between the scale parameters fit to the 878 

data versus those implied from the empirical mean for pixels where snowmelt fraction is <0.35. 879 

(D) Relationship between the scale parameters fit to the data versus those implied from the 880 

empirical mean for pixels where snowmelt fraction is >0.35.Black dots are HCDN-2009 881 

watersheds filtered in the same way. The strongest regressions from Figure 4 (A-B) and Figure 882 

S1 (C-D) subpanels are shown for reference.  883 

 884 
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 885 

Figure 6. Results from the random forest regression for predicting: (A-B) Mean Temperature, 886 

(C-D) Mean Precipitation, (E-F) Mean Runoff, (G-H) Runoff Variability, and (I-J) Snowmelt 887 
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Fraction. For each target variable, the left plot compares observed versus predicted data (linear 888 

fit with R2 shown for reference), and the right plot shows the relative importance of predictors. 889 

 890 

 891 

 892 

Figure 7. Spearman’s rank correlation coefficients within temperature-precipitation bins. (A-C) 893 

Coefficients relating topography and mean runoff. (D-F) Coefficients relating topography to 894 

snowmelt fraction. The topographic variables considered were mean elevation (A, D), maximum 895 

elevation (B, E), and local relief (C, F). For all plots, the gray area indicates regions of parameter 896 

space with less than 10 observations. Black regions indicate there were greater than 10 897 

observations, but that the correlation did not exceed the 95% confidence interval. Note that these 898 

plots obscure the number of observations in each precipitation – temperature bin. As such, see 899 

Figure 8 to assess the distribution of correlations coefficient within their spatial context. 900 

 901 
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 902 

Figure 8. Relationships among topography, mean runoff, and snowmelt fraction in map view. 903 

(A) Mean spearman rank correlation coefficient within a 2° moving window for mean runoff and 904 

local relief. (B) Mean spearman rank correlation coefficient within a 2° moving window for 905 

maximum elevation and snowmelt fraction. After filtering the WaterGAP3 data for mountain 906 

settings (see text for details), only a small area remains. Insets highlight results for the three 907 

regional cases considered. 908 

 909 
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 910 

Figure 9. Exceedance probability distributions of daily event sizes of different magnitudes: (A-911 

B) 5 mm/day, (C-D) 15 mm/day, (E-F) 25 mm/day, and (G-H) 35 mm/day. The left panels show 912 

probability plots for both precipitation and runoff, whereby the latter is color-coded by runoff 913 

generation source. After classifying runoff events in this way, the right panels show what 914 
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fraction of events are snowmelt dominated within exceedance probability bins. Note that 915 

regardless of intensity threshold the largest area runoff events are snowmelt dominated. At 916 

higher intensity thresholds, these event sizes can exceed the largest area precipitation events. 917 

 918 

 919 

Figure 10. Relationships among topography, mean runoff, and snowmelt fraction for the three 920 

regional cases (see Figure 8 for locations): (A) British Columbia, (B) European Alps, and (C) 921 

Greater Caucasus. In all three plots, circles are binned mean runoff to local relief, and squares 922 

are binned snowmelt fraction to maximum elevation. Symbols are scaled to number of 923 

observations in the bin and whiskers show one standard deviation. Power law fits for binned data 924 

relate local relief and mean runoff (solid line) and maximum elevation and snowmelt fraction 925 

(dashed line). In all three panels, the “Topography” x-axis plots both local relief (solid line) and 926 
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maximum elevation (dashed line). These fits serve as the basis for orographic rules used in our 927 

complementary model study (Forte & Rossi, 2023).  928 

 929 

 930 

Figure 11. Conceptual model for how orographic controls on runoff variability can be 931 

represented in a landscape evolution model. (A) Cartoon showing how precipitation and runoff 932 

generation mechanisms might change as a mountain range grows. (B) Example rules for how 933 

topography is translated into more runoff and a larger snowmelt fraction as topography grows. 934 

(C) Relationship between mean runoff and daily runoff variability in response to those rules. In 935 

B, the example ruleset shows that as mountain topography grows, increasing relief leads to more 936 

runoff generation on the windward side of a mountain range and increasing elevations lead to a 937 

higher fraction of snowmelt. In C, these topography-runoff relationships translate into a much 938 

different relationship between mean runoff and daily runoff variability that encodes the transition 939 

from rainfall- to snowmelt-dominated runoff events.  940 

 941 
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