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Abstract

This article comprises of four parts. First, it presents the essentials of DMFT algorithms in classical
Euclidean field theory, with Gibbs measure and Ising models. Second, it discusses an approximation method
to the interacting particles. Third, it investigates an extended impurity problem. The Legendre dual corre-
spondence, properties and formalism of Luttinger-Ward functional, and Φ-derivability of physical quantities
are proposed and verified. Finally, this article ends with a revised iterative DMFT to compute this extended
model.

1 Introduction

Traditionally, Feynman’s diagrammatic expansion of many-body perturbation theory provides an universal
method to compute physical quantities [2] in any statistical systems [4, 10]. But such diagrammatic expansions
are, unfortunately, only formal. On the one hand, divergence and renormalization destroys the strictness of
mathematics. On the other hand, applying this method to extremely large systems in statistical mechanics
becomes impossible, see also [11].

However, we could still extract information from this model (i.e. Gibbs measure) by omitting weak inter-
actions between clusters among the particles. Then we give the local Gibbs measures and tensoring them in
the hope that we retrieve the original local Green’s functions and first moments. The methods we adopt is the
DMFT algorithms that we introduce the following sections. For an exposition in this direction, see [3, 12].

2 Basic Settings

Let M = RL, xc = (x(c−1)L+1, . . . , xcL) and define the generalized interaction measure

dµ(x) = e−
1
2x
TAx

R∏
c=1

∑
σ∈{−1,1}L

dδ(xc − σ)

where dµ(x) specifies the global setting. and the partition function

Z =

∫
RM

dµ(x)

Theoretically, we could also attempt to compute the global Green’s correlator function G ∈ RM×M

G =
〈
xxT

〉
µ

=
1

Z

∫
RM

xxTdµ(x)
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But we want to avoid this tremendous computation [6], and approximate this global Ising model into local
impurities. In other words, we define the measure dµc(xc), c = 1, . . . , R on RL for each impurity such that

dµ(x) ≈ dµ1(x1)⊗ · · · ⊗ dµR(xR)

in the sense that we retrive each of the cth diagonal L× L block in the original Green’s function with dµc(xc).
Hence, for each c = 1, . . . , R, in principle, we want to find ∆c ∈ RL×L such that

dµc(xc) = e−
1
2x
T
c (Ac+∆c)xc

∑
σ∈{−1,1}L

dδ(xc − σ)

Notice that we call ∆c ∈ RL×L the exact hybridization, with which we retrive the original cth block of the
global Green’s function in RM×M . Hence, our aim is to choose ∆c such that

Gc = G[dµc(xc)] = G[dµ(x)]c

where

Gc =
〈
xcx

T
c

〉
dµc

=
∑

σ∈{−1,1}L
σσT e−

1
2σ(Ac+∆c)σ

T

/ ∑
σ∈{−1,1}L

e−
1
2σ(Ac+∆c)σ

T

This computation is confined in the L×L case, which makes life easier. And we could use Metropolis algorithm
to numerically solve Gc once we know ∆c.

3 Introducing DMFT Algorithms

In order to compute ∆c ∈ RL×L, we use DMFT algorithm. First, we choose the initial value

∆(0)
c = 0

Then the initial impurity measure

dµ(0)
c (xc) = e−

1
2x
T
c Acxc

∑
σ∈{−1,1}L

dδ(xc − σ)

And the initial cth impurity partition function

Z(0)
c =

∫
RL

dµ(0)
c (xc) =

∑
σ∈{−1,1}L

e−
1
2σ

TAcσ

And then follows the initial cth block Green’s function

G(0)
c =

〈
xcx

T
c

〉
µc

=
∑

σ∈{−1,1}L
σσT e−

1
2σAcσ

T

/ ∑
σ∈{−1,1}L

e−
1
2σAcσ

T

Since Ac + ∆
(0)
c = Ac ←→ Σ

(0)
c via Legendre correspondence, we have

Σ(0)
c = Ac + ∆(0)

c − (G(0)
c )−1

by Dyson’s equation. Then we use the direct sum of {Σ(0)
c ; c = 1, . . . , R} as an ansatz for the self-energy of the

original Ising model

Σ(0) =
⊕

1≤c≤R

Σ(0)
c [Ac + ∆(0)

c ]
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Then by the Dyson’s equation for the global setting, we have

G(0) = (A+ Λ(0) − Σ(0)
c )−1

Notice that theoretically Λ(0) ∈ RM×M should vanish. But we want a better approximation. Considering
that the global setting satisfies diag(G) = IdM , we could implement Λ(0) = diag(λ(0)) and diag(G(0)) =

diag((A+ Λ(0) − Σ
(0)
c )−1) = IdM .

Then, let πc : RM 7→ RL be the canonical projection map onto cth L-dimensional subspace. We have

∆(1)
c = Σ(0)

c −Ac + (πcG
(0)πTc )−1

Hence the iteration continues and ∀n ∈ N,

G(n)
c =

〈
xcx

T
c

〉
µnc

=
∑

σ∈{−1,1}L
σσT e−

1
2σ(Ac+∆(n)

c )σT

/ ∑
σ∈{−1,1}L

e−
1
2σ(Ac+∆(n)

c )σT

And the self-energy,
Σ(n)
c = Ac + ∆(n)

c − (G(n)
c )−1

Σ(n) =
⊕

1≤c≤R

Σ(n)
c

And the global Green’s function,
G(n) = (A+ Λ(n) − Σ(n))−1

And the exact hybridization,
∆(n+1)
c = Σ(n)

c −Ac + (πcG
(n)πTc )−1

where Λ(n) ∈ RM×M , Λ(n) = diag(λ(n)) are similarly defined as Λ(0) to ensure that diag(G(n)) = IdM . Notice
that we could use Metropolis algorithm to solve explicitly for Λ(n) once we are fully convinced that a unique
Λ(n) = diag(λ(n)) exists.

Notice that ∀n ∈ N, G(n) = (A+ Λ(n) − Σ(n))(−1). Hence, we know

diag(G(n))− IdM = diag((A+ Λ(n) − Σ(n))−1)− IdM
= diag((A− Σ(n) + diag(λ(n)))−1)− IdM
= ∇fn(λ(n))

where
fn(λ(n)) = log det

(
A− Σ(n) + diag(λ(n))

)
−

∑
1≤i≤M

λ
(n)
i

Since the map λ(n) 7→
∑

1≤i≤M
λ

(n)
i is convex, and since the map λ(n) 7→ log det

(
A− Σ(n) + diag(λ(n))

)
is strictly

concave on its domain {λ(n) ∈ RM ; det
(
A− Σ(n) + diag(λ(n))

)
> 0}, which is a convex set in RM . Therefore, we

could say there is at most one unique maximizer (also denoted as λ(n)) of fn : RM → R. Since the smoothness
of fn(λ(n)) is obvious, we know immediately that diag(G(n)) − IdM = ∇fn(λ(n)) = 0 becasue a maximizer is
always a stationary point.
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4 Interaction Potential Approximation

The Ising model incorporates measure µ and µc respectively on RM and RL, which are not absolutely contin-
uous with respect to the Lebesgue measure [7]. And this singularity prevents us from using ordinary methods
discussed in the dissertation paper. Hence, we want to find a way to approximate the local singular measure µc
with a measure ηc,α on RL, parametrized by α > 0, which is absolutely continuous with respect to the Lebesgue
measure. This section proceeds the previous work of [13].

For ∀n ∈ N, we have

dµ(n)
c (xc) = e−

1
2x
T
c (Ac+∆(n))xc

∑
σ∈{−1,1}L

dδ(xc − σ)

We choose

Uc(xc) =
1

8

L∑
i,j=1

vij(x
2
i − 1)(x2

j − 1) =
1

4

L∑
i,j=1

δij(x
2
i − 1)(x2

j − 1)

This is the interacting potential energy what we will use to approximate the measure µc. Then, define

dη(n)
c,α(xc) = e−

1
2x
T
c (Ac+∆(n)

c )xc−αUc(xc)dxc

Notice that dη
(n)
c,α(xc) → dµ

(n)
c (xc) weakly as α → ∞. Therefore, any proper integral with respect to dη

(n)
c,α

converges to its integral with respect to dµ
(n)
c in R because of the weak convergence.

Now choose α > 0 large enough. We know that αUc(xc) satisfies the strong growth condition. Hence

dom Ω
(n)
c = SL. Moreover, we have the Legendre correspondence Ac + ∆

(n)
c ←→ G

(n)
c,α under the potential

energy αUc(xc), where G
(n)
c,α =

〈
xcx

T
c

〉
η
(n)
c,α

And by the above discussed weak convergence of measures, we are

confident that
lim
α→∞

G(n)
c,α = G(n)

c

where G
(n)
c is the local Green’s function for µ

(n)
c discussed above.

5 Adding a Linear Term

When H(x) = 1
2x
∗Ax+ a∗x+ U(x), where U(x) satisfies the weak growth condition, we have

Z[A, a] =

∫
e−H(x)dx

Ω[A, a] = − logZ[A, a]

G[A, a] = 〈xx∗〉 =
1

Z[A, a]

∫
xx∗e−H(x)dx

g[A, a] = 〈x〉 =
1

Z[A, a]

∫
xe−H(x)dx

We want to compute the self energy Σ[G, g] and σ[G, g] such that the probability measure dµ ∼ e 1
2x

∗(A−Σ)x−(a−σ)∗xdx
modulo normalization, up to the same second moments G and first moments g with the probability measure

1
Z[A,a]e

−H(x)dx.

Notice that dµ turns out to be a Gaussian and hence dµ ∼ e−
1
2 (x−g)∗(G−gg∗)−1(x−g)dx. Therefore, through

matrix algebra, we calculate Σ = A − (G − gg∗)−1 and σ = a + (G − gg∗)−1g, see [14]. We want to consider
the transformation rule for this setting 1

Z[A,a]e
−H(x)dx, but we need to define some corresponding physical

4



quantities first.

Define G : M1 ∩ M2 → SN+ such that G(µ) =
∫
xx∗dµ, which is specification of second moment. Define

P : M1 ∩M2 → RN such that P(µ) =
∫
xdµ, which is the specification of first moments. Notice that the

Legendre dual

F [G, g] = sup
µ∈G−1(G)∩P−1(g)

[
H(µ)−

∫
Udµ

]
where H(µ) denotes the differential entropy, and hence we have

F [G, g] = sup
µ∈G−1(G)∩P−1(g)

[
−
∫

log

(
dµ

dλ

)
dµ−

∫
Udµ

]
where dλ refers to the Lebesgue measure.

When U ≡ 0, we have F [G, g] = sup
µ∈G−1(G)∩P−1(g)

H(µ). Notice that the random variable X achieving the

maximal differential entropy such that E[XiXj ] = Gij and E[Xi] = gi follows a Gaussian distribution, i.e.
X ∼ N (g,G− gg∗). Hence,

F [G, g] =
1

2
Tr[log(G− gg∗)] +

N

2
log(2πe)

. Then, for general U : RN → R, we define the Luttinger Ward functional

Φ[G, g, U ] = 2F [G, g]− Tr[log(G− gg∗)]−N log(2πe)

Going back to the definition of F , we express Φ as

Φ[G, g, U ] = −N log(2πe)− log[det(G− gg∗)] + 2 sup
µ∈G−1(G)∩P−1(g)

[
H(µ)−

∫
Udµ

]
= −N log(2πe)− log[det(G− gg∗)]− 2 inf

ρdx∈G−1(G)∩P−1(g)

[ ∫
(log(ρ) + U)ρdx

]
= −N log(2πe)− 2 inf

ρdx∈G−1(G)∩P−1(g)

[ ∫
(log[(detG− gg∗)1/2ρ] + U)ρdx

]
Let C = −N log(2πe), then we want to formulate the transformation rule for the setting e−H(x)dx. Suppose
T : RN → RN is a linear isomorphism. Then

Φ[TGT ∗, T g, U ] = C − 2 inf
ρdx∈G−1(TGT∗)∩P−1(Tg)

[ ∫
(log[(detTGT ∗ − Tgg∗T∗)1/2 · ρ] + U)ρdx

]
= C − 2 inf

ρdx∈G−1(TGT∗)∩P−1(Tg)

[ ∫
(log[(detG− gg∗)1/2 · |detT | · ρ] + U)ρdx

]
Consider the change of variable:

{ρ : ρdx ∈ G−1(TGT ∗) ∩ P−1(Tg)} = {ρ : |detT | · ρ ◦ T ∈ G−1(G) ∩ P−1(g)}

= {|detT |−1 · ρ ◦ T−1 : ρdx ∈ G−1(G) ∩ P−1(g)}

Because ρdx ∈ G−1(TGT ∗) ⇐⇒
∫
xx∗ρdx = TGT ∗ ⇐⇒

∫
Tyy∗T ∗ρ(Ty)|detT |dy = TGT ∗, where we

let x = Ty ⇐⇒ |detT | · ρ ◦ T ∈ G−1(G). Similarly, we know ρdx ∈ P−1(Tg) ⇐⇒
∫
xρdx = Tg ⇐⇒∫

Tyρ(Ty)|detT |dy = Tg, where we let x = Ty ⇐⇒ |detT |ρ ◦ T ∈ P−1(g). Hence we have verified that

{ρ : ρdx ∈ G−1(TGT ∗) ∩ P−1(Tg)} = {|detT |−1 · ρ ◦ T−1 : ρdx ∈ G−1(G) ∩ P−1(g)}
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Hence,

Φ[TGT ∗, T g, U ] = C − 2 inf
ρdx∈G−1(TGT∗)∩P−1(Tg)

[ ∫
(log[(detG− gg∗)1/2 · |detT | · ρ] + U)ρdx

]
= C − 2 inf

ρdx∈G−1(G)∩P−1(g)

[
|detT |−1

∫
(log[(detG− gg∗)1/2 · ρ ◦ T−1] + U)ρ ◦ T−1dx

]
= C − 2 inf

ρdx∈G−1(G)∩P−1(g)

[ ∫
(log[(detG− gg∗)1/2 · ρ] + U ◦ T )ρdx

]
= Φ[G, g, U ◦ T ]

Hence we have verified the transformation rule for Luttinger Ward functional in this setting.

Before investigating the sparsity patterns of impurity models, we present a natural consequence of the first
moments.

Consider URp → R, depending only on the first p variables. Then,

g2 =
1

Z

∫
x2e
−H(x)dx

=
1

Z

∫∫
x2e
− 1

2x
∗Ax−a∗x−U(x1)dx1dx2

=
1

Z

∫∫
x2e
− 1

2x
∗
1A11x1−a∗1x1−U(x1)dx1e

1
2 (a2+A21x1)∗A−1

22 (a2+A21x1)e−
1
2y

∗
2A22y2dy2

where y2 = x2 +A−1
22 (a2 +A21x1) and x2 = y2 −A−1

22 (a2 +A21x1). Then,

1

Z

∫
x2e
−H(x)dx =

1

Z

∫∫
y2e
− 1

2y
∗
2A22y2dy2dx1

− 1

Z

∫∫
A−1

22 (a2 +A21x1)e−
1
2x

∗
1A11x1−a∗1x1−U(x1)e

1
2 (a2+A21x1)∗A−1

22 (a2+A21x1)dx1dy2

= −A−1
22 (a2 +A21g1)

Hence, A22g2 + A21g1 + a2 = 0. Notice this result is quite consistent with the two known scenarios where
U : RN → R and U ≡ 0. In the first case, everything on the left-hand side vanishes. In the second case,
A = A22 and we have g = g2, e−H(x)dx ∼ e− 1

2x
xAx−a∗xdx ∼ N (−A−1a,A−1).

Now we come back to discuss the sparsity properties of the impurity model U : Rp → R. We have veri-
fied the transformation rule that ∀T ∈ GLn(R) =⇒ Φ[TGT ∗, T g, U ] = Φ[G, g, U ◦ T ].

As for the projection rule, we cannot brutally apply the canonical projection map π : RN → Rp to the
transformation rule. It is routine to give a rigorous but lengthy proof, but an intuitive reasoning may be more
appealing. In a word, we could imagine there is a sequence of linear invertible maps {Tk : k ∈ N} ⊆ GLn(R)
such that Tk → π is a proper sense of metric. Notice that the limit, if exists, must be unique, since GLn(R) is
a Hausdorff space. Intuitively, we have

Φ[πGπ∗, πg, U ] = lim
k→∞

Φ[TkGT
∗
k , Tkg, U ] = lim

k→∞
Φ[G, g, U ◦ Tk] = Φ[G, g, U ◦ π]

Hence, ΦN [G, g, U ] = Φp[G11, g1, U ] given that U : RN → R.

The above paragraph provides intuition to understand the projection rule via an informal application of

6



the transformation rule. However, a more rigorous proof is presented below to complete the picture. Since
(G− gg∗) ∈ SN++ and gg∗ ∈ S∗+, we know G ∈ S∗++. And write

G =

(
G11 G12

G21 G22

)
we know G11 is invertible and define

T =

(
Id 0

G21G
−1
11 Id

)
, G̃ =

(
G11 0

0 G22 −G21G
−1
11 G12

)
, g̃ =

(
g1

g2 −G21G
−1
11 g1

)
Then, TG̃T ∗ = G and T g̃ = g. Hence, via transformation rule,

ΦN [G, g, U ] = ΦN [G̃, g̃, U ◦ T ] = ΦN [G̃, g̃, U ]

since U : Rp → R depends only on the first p variables. Notice that G̃ is block-diagonal with the same upper
left block as G, and g̃ has the same first p entries as g, we could consider block-diagonal second moments cases.
So now we assume that G ∈ SN++ with

G =

(
G11 0

0 G22

)
, g =

(
g1

g2

)
Recall the expression for the dual,

FN [G, g, U ] = sup
µ∈G−1

N (G)∩P−1
N (g)

[
H(µ)−

∫
Udµ

]
Next we define π1 : RN → Rp and π2 : RN → Rq to be the projections onto the first p and last q components,
where q = N − p, respectively. Then, with π1#µ and π2#µ being the marginals of µ with respect to the
product RN = Rp×Rq. Recall the inequality for differential entropy H(µ) ≤ H(π1#µ)+H(π2#µ). Also notice
that π1#µ ∈ G−1

p (G11) ∩ P−1
p (g1) provided that µ ∈ G−1

N (G) ∩ P−1
N (g). Finally, with U : Rp → R, we know∫

Udµ =
∫
Ud(π1#µ)

Then,

FN [G, g, U ] ≤ sup
µ∈G−1

N (G)∩P−1
N (g)

[
H(π1#µ) +H(π2#µ)−

∫
Ud(π1#µ)

]
≤ sup
µ1∈G−1

p (G11)∩P−1
p (g1)

[
H(µ1)−

∫
Udµ1

]
+ sup
µ2∈G−1

q (G22)∩P−1
q (g2)

H(µ2)

= Fp[G11, g1, U ] +
1

2
log
(
(2πe)N−p detG22

)
where detG = detG11 detG22. Hence,

ΦN [G, g, U ] ≤ Φp[G11, g1, U ]

Conversely, ∀µ1 ∈ G−1
p (G11) ∩ P−1

p (g1), choose µ2 ∈ N (0, G22) and choose dµ = dµ1 ⊗ dµ2. Then,

FN [G, g, U ] ≥ H(µ)−
∫
Udµ = H(µ1)−

∫
Udµ1 +

1

2
log
(
(2πe)N−p detG22

)
Since µ1 is arbitrary in G−1

p (G11) ∩ P−1
p (g1), we take the supremum over µ1 and

FN [G, g, U ] ≥ Fp[G11, g1, U ] +
1

2
log
(
(2πe)N−p detG22

)
7



Hence,
ΦN [G, g, U ] ≥ Φp[G11, g1, U ]

which proves the quality and verifies the projection rule.

Here we comes to our result of sparsity pattern, the formalism of self energy.

ΣN [G, g, U ] =
1

2
∇φN [G, g, U ] =

(
Σp[G11, g1, U ] 0

0 0

)
and

σN [G, g, U ] = a+G−1g

= a+ (A− ΣN )g

=

(
a1

a2

)
+

(
A11 A12

A∗12 A22

)(
g1

−A−1
22 (a2 +A21g1)

)
+

(
Σp 0
0 0

)(
g1

A−1
22 (a2 +A21g1)

)
=

(
σp
0

)
where σp = a1 + (A11 − A12A

−1
22 A21 + Σp)g1 − A12A

−1
22 a2. Hence we have verified the sparsity pattern for this

setting.

Notice that the above discussion of the sparsity patterns of self energies follows a rather conceptual approach.
And we may switch to another avenue which involves more computations. Remember that Σ = A− (G−gg∗)−1

and σ = a+ (G− gg∗)−1g.

For the sparsity pattern of Σ, we want to show that Σ12 = 0, Σ21 = 0, and Σ22 = 0. We could show
that (G− gg∗)−1

22 = A22 and (G− gg∗)−1
12 = A12. Notice that Σ12 = 0 iff Σ21 = 0. Equivalently, by multiplying

both sides by (G− gg∗), we need to show that [(G− gg∗)A]12 = 0p×q and [(G− gg∗)A]22 = Idq.

Notice that (G− gg∗)A = 〈xx∗ − gg∗〉A, and

[(xx∗ − gg∗)A]12 =

[
x1

(
x∗1 x∗2

)
− g1

(
g∗1 g∗2

) ](A12

A22

)
and

[(xx∗ − gg∗)A]22 =

[
x2

(
x∗1 x∗2

)
− g2

(
g∗1 g∗2

) ](A12

A22

)
Moreover, A22g2 +A21g1 +a2 = 0 =⇒

(
g∗1 g∗2

)(A12

A22

)
= −a∗2. And of course we know that

(
x∗1 x∗2

)(A12

A22

)
=

x∗1A12 + x∗2A22. Choose y2 = x2 +A−1
22 (a2 +A21x1) and we see that

[(xx∗ − gg∗)A]12 = x1y
∗
2A22 − (x1 − g1)a∗2

[(xx∗ − gg∗)A]22 = y2y
∗
2A22 −A−1

22 (a2 +A21x1)y∗2A22 − (y2 − g2)a∗2 +A−1
22 (a2 +A21x1)a∗2

Then,

[(G− gg∗)A]12 =
1

Z

∫
x1e
− 1

2x
∗
1A11x1−a∗1x1−U(x1)

×
(∫

y∗2e
1
2 (a2+A21x1)∗A−1

22 (a2+A21x1)e−
1
2y

∗
2A22y2dy2

)
A22dx1

− 1

Z

∫
(x1 − g1)a∗2e

−H(x)dx = 0

8



and

[(G− gg∗)A]22 =
1

Z

∫
e−

1
2x

∗
1A11x1−a∗1x1−U(x1)

×
(
y2y
∗
2e

1
2 (a2+A21x1)∗A−1

22 (a2+A21x1)e−
1
2y

∗
2A22y2dy2

)
A22dx1

− 1

Z

∫
A−1

22 (a2 +A21x1)e−
1
2x

∗
1A11x1−a∗1x1−U(x1)

×
(∫

y∗2e
1
2 (a2+A21x1)∗A−1

22 (a2+A21x1)e−
1
2y

∗
2A22y2dy2

)
A22dx1

− 1

Z

∫
(y2 − g2)a∗2e

−H(x)dx1dy2

+
1

Z

∫
A−1

22 (a2 +A21x1)a∗2e
−H(x)dx1dy2

= A−1
22 A22 + g2a

∗
2 +A−1

22 a2a
∗
2 +A−1

22 A21g1a
∗
2

= Idq −A−1
22 (a2 +A21g1)a∗2 +A22a2a

∗
2 +A−1

22 A21g1a
∗
2

= Idq

which is equivalent to say that Σ12 = 0 and Σ22 = 0. Therefore, we reach our conclusion that ΣN =

(
Σp 0
0 0

)
.

And the sparsity pattern that σN =

(
σp
0

)
follows easily from the sparsity pattern of ΣN and simple calculations.

Moreover, if we return to our statement of the transformation rule, we are confined to the case where the
transformation T ∈ GLn(R) is general linear. In fact, other cases may occur. Consider an affine transform
φ : x 7→ Tx+ b, where T is invertible and b ∈ RN . And we want to explore any similar results to the ”transfor-
mation rule” for the Luttinger Ward functional when the map φ is not necessarily linear.

Now,

Φ[G, g, U ◦ φ] = 2F [G, g]− Tr[log(G− gg∗)]−N log(2πe)

= C − 2 inf
ρdx∈G−1(G)∩P−1(g)

[ ∫
(log[(detG− gg∗)1/2ρ] + U ◦ ρ)ρdx

]
= C − 2|detT |−1

inf
ρdx∈G−1(G)∩P−1(g)

[ ∫
(log[(detG− gg∗)1/2ρ ◦ φ−1] + U)ρ ◦ φ−1dx

]
Consider the change of variables

{|detT |−1 · ρ ◦ φ−1 : ρdx ∈ G−1(G) ∩ P−1(g)} = {ρ : |detT | · ρ ◦ φ ∈ G−1(G) ∩ P−1(g)}
= {ρ : ρdx ∈ G−1(TGT ∗ + Tgb∗ + bg∗T ∗ + bb∗) ∩ P−1(Tg + b)}

because |detT | · ρ ◦ φ ∈ G−1(G) ∩ P−1(g) ⇐⇒
∫
xx∗ρ(Tx + b)dx = G · |detT |−1

and
∫
xρ(Tx + b)dx =

g · |detT |−1 ⇐⇒
∫

(yy∗ − yb∗ − by∗)ρdy = TGT ∗ − bb∗ and
∫

(y− b)ρdy = Tg ⇐⇒
∫
yy∗ρdy = TGT ∗ + Tgb∗ +

bg∗T ∗ + bb∗ and
∫
yρdy = Tg + b, which verifies the change of variables.

For simplicity, we denote the condition that ρdx ∈ G−1(TGT ∗+Tgb∗+ bg∗T ∗+ bb∗)∩P−1(Tg+ b) as ρdx ∈ P.
Then,

Φ[G, g, U ◦ φ] = C − 2 inf
ρdx∈P

[ ∫
(log

[
(detG− gg∗)1/2|detT |ρ

]
+ U)ρdx

]
However,

|detT |
(

detG− gg∗
)

= det

(
TGT ∗ + Tgb∗ + bg∗T ∗ + bb∗ − (Tg + b)(Tg + b)∗

)
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Therefore, we reach our conclusion that

Φ[G, g, U ◦ φ] = Φ[TGT ∗ + Tgb∗ + bg∗T ∗ + bb∗, T g + b, U ]

where x
φ−→ Tx+ b is our affine transform.

In the old setting where H(x) = 1
2x
∗Ax + U(x), we have established the Legendre correspondence relations

∇F [G] = A[G], ∇Ω[A] = G[A] and Φ-derivative Σ[G] = 1
2∇GΦ[G,U ]. When we add a linear term to our new

Hamiltonian, it becomes H(x) = 1
2x
∗Ax+ a∗x+ U(x).

In this new setting, we would like to know whether there exists any similar relations among these physical
quantities. Now, the partition function Z =

∫
e−H(x)dx. And the free energy

Ω[A, a] = − logZ = −
∫

exp

{
−1

2
x∗Ax− a∗x− U(x)

}
dx

By matrix differentiation, we see

∇AΩ[A, a] =
1

Z

∫
xx∗e−H(x)dx = G

and

∇aΩ[A, a] =
1

Z

∫
xe−H(x)dx = g

And given the Legendre dual

F [G, g] = sup
µ∈G−1(G)∩P−1(g)

[
H(µ)−

∫
Udµ

]
via a delicate analysis of concave functions, we find

∇GF [G, g] = A, and ∇gF [G, g] = a

In this regard we have shown the mapping (A, a) 7→ (∇AΩ,∇aΩ) with its inverse (G, g) 7→ (∇GF ,∇gF).

Moreover, we already know the Luttinger Ward functional

Φ[G, g, U ] = 2F [G, g]− Tr[log(G− gg∗)]−N log(2πe)

Then,
1

2
∇GΦ = ∇GF [G, g]− 1

2
∇G Tr[log(G− gg∗)]

= A− (G− gg∗)−1

On the other hand,
1

2
∇gΦ = ∇gF [G, g]− 1

2
∇g Tr[log(G− gg∗)]

= a− (G− gg∗)−1 · 1

2
· (−2g)

= a+ (G− gg∗)−1g

where we use the result that the differential of the map g 7→ gg∗ is the linear map g 7→ g. Hence, the Φ-derivable
self energies

1

2
∇GΦ = Σ, and

1

2
∇gΦ = σ

10



Now we discuss the DMFT algorithm in this setting. Consider M = RL, and the interaction Uc : xc ∈ RL 7→
Uc(xc), c = 1, · · · , R satisfying the weak growth condition. We define the Gibbs measure

dµ(x) = e−
1
2x

∗Ax−a∗x
∏

1≤c≤R

e−Uc(xc)dxc

We want to compute the exact hybridization ∆ ∈ RM×M and δ ∈ RM such that the other measure⊗
1≤c≤R

dµc(xc) =
∏

1≤c≤R

e−
1
2x

∗
c(Ac+∆c)xc−(ac+δc)

∗xc−Uc(xc)dxc

has the same diagonal (local) Green’s functions (second moments) Gc ∈ RL×L and first moments gc ∈ RL.

We are interested in the case where the interactions are extremized, forming into an Ising model. But of
course, there is now an extre linear term in the Hamiltonian. Hence, from the given global Gibbs measure

dµ(x) = e−
1
2x

∗Ax−a∗x
R∏
c=1

∑
σ∈{−1,1}L

dδ(xc − σ)

we want to compute the (local) exact hybridization ∆c ∈ RL×L and δc ∈ RL such that the product measure
⊗Rc=1dµc(xc) has the same second moments Gc ∈ RL×L and first moments gc ∈ RL as the original measure,
where

dµc(xc)) = e−
1
2x

∗
c(Ac+∆c)xc−(ac+σc)∗xc−Uc(xc)

∑
σ∈{−1,1}L

δ(xc − σ)

Hence, given the explicit solutions {(∆c, δc), 1 ≤ c ≤ R}, we have

Gc = 〈xcx∗c〉µc =
∑

σ∈{−1,1}L
σσ∗e−

1
2σ

∗(Ac+∆c)σ−(ac+δc)
∗σ

/∑
σ

e−
1
2σ

∗(Ac+∆c)σ−(ac+δc)
∗σ

and

gc = 〈xc〉µc =
∑

σ∈{−1,1}L
σe−

1
2σ

∗(Ac+∆c)σ−(ac+δc)
∗σ

/∑
σ

e−
1
2σ

∗(Ac+∆c)σ−(ac+δc)
∗σ

Given the above discussions, we come to the DMFT algorithm to compute the exact hybridization {(∆c, δc), 1 ≤
c ≤ R} and hopefully we could approximate the product measure ⊗Rc=1dµc(xc).

Initially, we choose ∆
(0)
c = 0, δ

(0)
c . Then,

dµ(0)
c (xc) = e−

1
2x

∗
cAcxc−a

∗
cxc

∑
σ∈{−1,1}L

dδ(xc − σ)

And we compute the (local) partition function

Z(0)
c =

∫
dµ(0)

c =
∑

σ∈{−1,1}L
e−

1
2σ

∗Acσ−a∗cσ

And the (local) 2nd and 1st moments

G(0)
c = 〈xcx∗c〉µ(0)

c
, and g(0)

c = 〈xc〉µ(0)
c
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Remember that we have the global relations

A− (G− gg∗)−1 = Σ, and a+ (G− gg∗)−1g = σ

Then we define
Σ(0)
c = Ac + ∆(0)

c − (G(0)
c − g(0)

c g(0)∗
c )−1

and
σ(0)
c = ac + δ(0)

c + (G(0)
c − g(0)

c g(0)∗
c )−1g(0)

c

Then, via the direct sum, we define

Σ(0) =
⊕

1≤c≤R

Σ(0)
c , and σ(0) =

⊕
1≤c≤R

σ(0)
c

Hence we wet the iterative (global) 2nd and 1st moments

G(0) = (A+ Λ(0) − Σ(0))−1 + (⊕Rc=1g
(0)
c )(⊕Rc=1g

(0)∗
c )

and
g(0) =

(
(⊕Rc=1G

(0)
c )− (⊕Rc=1g

(0)
c )(⊕Rc=1g

(0)∗
c )

)
(σ(0) − a)

Let πc : RM → RL be the canonical projection to the cth cluster, we define the iteration

∆(1)
c = Σ(0)

c −Ac + (πcG
(0)π∗c − πcg(0)g(0)∗π∗c )−1

and
δ(1)
c = σ(0)

c − ac − (πcG
(0)π∗c − πcg(0)g(0)∗π∗c )−1(πcg

(0))

Hence the iteration continues and ∀n ∈ N,

G(n)
c = 〈xcx∗c〉µnc =

∑
σ∈{−1,1}L

σσ∗e−
1
2σ

∗(Ac+∆(n)
c )σ−(ac+δ

(n)
c )∗σ

/ ∑
σ∈{−1,1}L

e−
1
2σ

∗(Ac+∆(n)
c )σ−(ac+δ

(n)
c )∗σ

and

g(n)
c = 〈xc〉µnc =

∑
σ∈{−1,1}L

σe−
1
2σ

∗(Ac+∆(n)
c )σ−(ac+δ

(n)
c )∗σ

/ ∑
σ∈{−1,1}L

e−
1
2σ

∗(Ac+∆(n)
c )σ−(ac+δ

(n)
c )∗σ

And the nth (local) self-energy,

Σ(n)
c = Ac + ∆(n)

c − (G(n)
c − g(n)

c g(n)∗
c )−1

and
σ(n)
c = ac + δ(n)

c + (G(n)
c − g(n)

c g(n)∗
c )−1g(n)

c

And the nth (global) self-energy comes from direct sums

Σ(n) =
⊕

1≤c≤R

Σ(n)
c , and σ(n) =

⊕
1≤c≤R

σ(n)
c

And the 2nd and 1st moments

G(n) = (A+ Λ(n) − Σ(n))−1 + (⊕Rc=1g
(n)
c )(⊕Rc=1g

(n)∗
c )
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and
g(n) =

(
(⊕Rc=1G

(n)
c )− (⊕Rc=1g

(n)
c )(⊕Rc=1g

(n)∗
c )

)
(σ(n) − a)

And the iterated exact hybridization,

∆(n+1)
c = Σ(n)

c −Ac + (πcG
(n)π∗c − πcg(n)g(n)∗π∗c )−1

and
δ(n+1)
c = σ(n)

c − ac − (πcG
(n)π∗c − πcg(n)g(n)∗π∗c )−1(πcg

(n))

where Λ(n) ∈ RM×M , Λ(n) = diag(λ(n)) are similarly defined as Λ(0) to ensure that diag(G(n)) = IdM . Notice
that we could use Metropolis algorithm to solve explicitly for Λ(n) once we are fully convinced that a unique
Λ(n) = diag(λ(n)) exists.

6 One-Site Clusters

Consider the Ising model [1] with 1-site clusters. This model may not seem to be very good approximation, in
the sense that all quadratic part of the hybridization {(∆c, δc), 1 ≤ c ≤ R} vanishes. So there is essentially one
variable. Other very important phenomena and formulations are also presented in [5, 8, 9]. These references
mark essential progress in Statistical Mechanics.

In this setting, L = 1, and M = R, 1 ≤ c ≤M . Choose ∆
(0)
c = 0, δ

(0)
c = 0, and

dµ(0)
c (xc) =

∑
σ∈{−1,1}L

e−
1
2Acx

2
c−acxc dδ(xc ± 1)

Then the initial partition function

Z(0)
c =

∫
dµ(0)

c = e−
1
2Ac(eac + e−ac) = 2e−

1
2Ac cosh ac

And the (local) 2n and 1st moments
G(0)
c =

〈
x2
c

〉
µ
(0)
c

= 1

and

g(0)
c = 〈xc〉µ(0)

c
= 2e−

1
2Ac · e

−ac − eac

Z
(0)
c

= − tanh ac

And then the initial self energy

Σ(0)
c = Ac − (1− tanh2 ac)

−1 = Ac − cosh2 ac

and
σ(0)
c = ac − (1− tanh2 ac)

−1 tanh ac = ac − cosh ac sinh ac

And via direct sums,

Σ(0) =
⊕

1≤c≤M

Σ(0)
c = Ac · IdM − diag(cosh2 ac, 1 ≤ c ≤M)

and
σ(0) =

⊕
1≤c≤M

σ(0)
c = a− (cosh ac sinh ac, 1 ≤ c ≤M)T

13
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