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Abstract

A holistic review is given of the Southern Ocean dynamic system, in the context of the crucial role it plays in the global climate

and the profound changes it is experiencing. The review focuses on connections between different components of the Southern

Ocean dynamic system, drawing together contemporary perspectives from different research communities, with the objective

of “closing loops” in our understanding of the complex network of feedbacks in the overall system. The review is targeted

at researchers in Southern Ocean physical science with the ambition of broadening their knowledge beyond their specific field

and facilitating better-informed interdisciplinary collaborations. For the purposes of this review, the Southern Ocean dynamic
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system is divided into four main components: large-scale circulation; cryosphere; turbulence; and gravity waves. Overviews

are given of the key dynamical phenomena for each component, before describing the linkages between the components. The

reviews are complemented by an overview of observed Southern Ocean trends and future climate projections. Priority research

areas are identified to close remaining loops in our understanding of the Southern Ocean system.
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Key Points:39

• Contemporary perspectives on the different components of the Southern Ocean dy-40

namic system from distinct research communities are reviewed41

• Key connections between different components of Southern Ocean dynamics are high-42

lighted43

• Cross-cutting priorities for future Southern Ocean physical science are identified44
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Abstract45

A holistic review is given of the Southern Ocean dynamic system, in the context of the crucial46

role it plays in the global climate and the profound changes it is experiencing. The review47

focuses on connections between different components of the Southern Ocean dynamic sys-48

tem, drawing together contemporary perspectives from different research communities, with49

the objective of “closing loops” in our understanding of the complex network of feedbacks in50

the overall system. The review is targeted at researchers in Southern Ocean physical science51

with the ambition of broadening their knowledge beyond their specific field and facilitating52

better-informed interdisciplinary collaborations. For the purposes of this review, the South-53

ern Ocean dynamic system is divided into four main components: large-scale circulation;54

cryosphere; turbulence; and gravity waves. Overviews are given of the key dynamical phe-55

nomena for each component, before describing the linkages between the components. The56

reviews are complemented by an overview of observed Southern Ocean trends and future57

climate projections. Priority research areas are identified to close remaining loops in our58

understanding of the Southern Ocean system.59

Plain Language Summary60

The United Nations has identified 2021–2030 as the Decade of Ocean Science, with a61

goal to improve predictions of ocean and climate change. Improved understanding of the62

Southern Ocean is crucial to this effort, as it is the central hub of the global ocean. The63

Southern Ocean is the formation site for the dense water that fills the deep ocean, sequesters64

the majority of anthropogenic heat and carbon, and controls the flux of heat to Antarctica.65

The large-scale circulation of the Southern Ocean is strongly influenced by interactions66

with sea ice and ice shelves, and is mediated by smaller scale processes, including eddies,67

waves and mixing. The complex interplay between these dynamic processes remains poorly68

understood, limiting our ability to understand, model and predict changes to the Southern69

Ocean, global climate and sea level. This article provides a holistic review of Southern70

Ocean processes, connecting the smallest scales of ocean mixing to the global circulation71

and climate. It seeks to develop a common language and knowledge-base across the Southern72

Ocean physical science community to facilitate knowledge-sharing and collaboration, with73

the aim of closing loops on our understanding of one of the world’s most dynamic regions.74
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1 Introduction75

The Southern Ocean is a harsh, dynamic and remote environment, which has profound76

influence over Earth’s present and future climates. It is home to the global ocean’s strongest77

winds, coldest ocean surface temperatures, largest ice shelves, most voluminous ocean cur-78

rents, most extreme surface waves, and more. The Southern Ocean acts as a central hub79

of the global ocean where waters from the Atlantic, Pacific and Indian basins converge and80

mix. As such, it regulates the uptake of heat and carbon at a global scale. To the south, the81

unique dynamics of the Southern Ocean control the flux of heat to Antarctica’s fringes, thus82

controlling the stability of the Antarctic Ice Sheet (which holds the volumetric equivalent of83

about 60m in global mean sea level; Fretwell et al., 2013; Morlighem et al., 2020). However,84

the Southern Ocean is experiencing profound, large-scale changes, many at unprecedented85

and accelerating rates. These include the lowest ever recorded sea ice minima in the past86

two Austral summers (NISDC, 2023), rapid melting of the West Antarctic Ice Sheet (Paolo87

et al., 2015), and the warming and freshening of the abyssal waters formed in the Southern88

Ocean (Purkey & Johnson, 2013).89

The observed large-scale changes in the Southern Ocean climate assimilate a rich spec-90

trum of dynamics, spanning thousand-kilometre scale ocean currents, tens- to hundred-91

kilometre scale polynyas, ten-kilometre wide eddies, kilometre-scale convection, hundred-92

metre scale surface waves, metre-scale pancake sea ice and millimetre-scale turbulent mixing.93

The network of linkages and feedbacks between the different components of the Southern94

Ocean dynamic system creates challenges in understanding and predicting this vitally im-95

portant region and its role in global climate and ecosystems. The objective of this review96

is to “close loops” in understanding of the Southern Ocean dynamic system by drawing to-97

gether contemporary perspectives on the different components of the system from different98

research communities within the broader field of Southern Ocean physical science. It aims99

to to help the range of Southern Ocean researchers understand the context of their own work100

within the broader field, thereby facilitating better informed collaborations. As such, the101

focus is on a holistic physical understanding of the Southern Ocean, rather than associated102

aspects of atmospheric dynamics, land-based ice, and dynamical interactions with biogeo-103

chemistry. Instead, the reader is directed to reviews by Noble et al. (2020) for Antarctic Ice104

Sheet dynamics and Henley et al. (2020) for Southern Ocean biogeochemistry. In addition,105

there exist a number of reviews into different aspects of atmospheric dynamics and air–sea106

coupling, including the Southern Annular Mode (Fogt & Marshall, 2020), Southern Ocean107

precipitation (Siems et al., 2022) and air–sea–ice exchanges (S. Swart et al., 2019).108

There are several definitions of the Southern Ocean extent; we take a dynamical per-109

spective and consider the Southern Ocean system to be bounded by the northern most110

extent of the Antarctic Circumpolar Current, and that its southern boundary includes the111

sub-ice shelf cavities fringing the Antarctic continent, which terminate at the glacial ice112

shelf grounding zone. In the vertical direction, we consider dynamics stretching from the113

ocean surface, which is occupied by surface gravity waves or sea ice, to the ocean bottom,114

which is a key region for the generation of internal waves and subsequent mixing. We115

divide the Southern Ocean dynamic system into four main components: large-scale circu-116

lation; cryosphere; turbulence; and gravity waves. Large-scale circulation incorporates the117

Antarctic Circumpolar Current, Antarctic Slope Current, sub-polar gyres, and the merid-118

ional overturning circulation. The cryosphere includes sea ice and glacial ice shelves, as119

well as dynamic phenomena in the sub-shelf cavities. We define turbulence as chaotic dy-120

namics spanning from mesoscale eddies and polynya convection at the largest end, down to121

millimetre-scale diapycnal mixing. Gravity waves includes surface waves, internal waves and122

tides. Fig. 1 gives a spatio-temporal perspective of phenomena reviewed, which shows the123

broad range of scales covered. We focus the review on the connected nature of interactions124

between the different phenomena.125

We structure the review around the four main dynamical components identified above,126

commencing with large-scale circulation (§ 2) to provide an global perspective on the South-127

–3–
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Figure 1. Spatio–temporal perspective of key dynamic phenomena reviewed, where colours

indicate association to the four key dynamical components. The scales represented in this diagram

indicate the time (and space) scales of the phenomena themselves, rather the much broader range

of time scales over which these phenomena vary (e.g., internal waves exist at timescales of hours,

but internal wave amplitudes vary on daily, seasonal and interannual timescales due to changes in

stratification and atmospheric forcing).
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ern Ocean dynamical environment, followed by cryosphere (§ 3), turbulence (§ 4) and gravity128

waves (§ 5). In each section, we give an overview of the fundamental physics of the dynam-129

ical component being considered, before describing the linkages between these components.130

In prioritising these linkages, we focus on the most impactful, those in areas of growing131

research activity, and those where significant outstanding questions remain. We typically132

describe the linkages in the section corresponding to the component that is being impacted,133

thereby minimising repetition. Each section ends with a short overview of the impacts of the134

component in the other sections to ‘close the loops’. The sections dedicated to the four dy-135

namical components are followed by an overview of relevant Southern Ocean climate trends136

and future climate projections (§ 6). We close the review with a summary of our present137

understanding of Southern Ocean dynamics and by identifying cross-cutting priorities for138

future Southern Ocean physical science (§ 7).139
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2 Large-scale circulation140

Figure 2. Schematic of the Southern Ocean’s large-scale circulation, where the ocean colours

indicate the density, ranging from lighter (dark orange) to denser (dark blue) waters, and isopycnal

contours are the interfaces between the layers. The horizontal gradients in density are correlated

with largely geostrophic currents, including the Antarctic Circumpolar Current (ACC) and Antarc-

tic Slope Current (ASC), above the shelf slope/break. Antarctic Bottom Water is generated by

convection and brine rejection on the continental shelf, and flows down into the abyssal ocean.

Warmer Circumpolar Deep Water (CDW) is upwelled in the mid-depths and plays a key role in

the melt rate of glacial ice shelves. These processes collectively form the Southern Ocean compo-

nent of the upper and abyssal overturning cells, as indicated by the dashed lines. Farther to the

north, at the density fronts of the ACC, are the formation sites of northward flowing mode and

intermediate waters. The topography, isopycnals, and glacial ice shelf profile on the southern side

of the schematic are from observations in the Ross Sea, although they are artificially extended to

the north to represent a more typical condition for the Antarctic Circumpolar Current. Note that

the depth scale is not linear.

Large-scale circulation is here interpreted as flows at horizontal scales larger than141

mesoscale eddies (greater than ∼ 300 km). A schematic representation of the large-scale142

circulation in the vertical–latitude plane (Fig. 2) identifies the ‘meridional overturning cir-143

culation’, which includes the upper (clockwise in Fig. 2; §2.4) and abyssal (anticlockwise;144

§2.5) branches. Figure 3 shows a plan view of the entire Southern Ocean to highlight the145

horizontal circulation features: the Antarctic Circumpolar Current (§ 2.1), Antarctic Slope146

Current (§ 2.2), and Weddell and Ross gyres (§2.3).147

The large-scale circulations are broadly in geostrophic balance, although multi-scale148

interactions play a fundamental role in their variability and response to forcing. The aim of149

this section is to offer a perspective on the processes involved in sustaining these circulations150

and the links that bring them together. In broad terms, they are sustained through multi-151

scale interactions between mean flows, turbulence, topography, dynamic stresses, isopycnal152

mixing and buoyancy fluxes. The understanding of how the exchange of tracers, momentum,153

and vorticity connect the different components of the large-scale Southern Ocean circulation154

together is rapidly evolving. The reader is referred to previous reviews on Southern Ocean155

circulation for more details on specific processes. In particular, Rintoul and Naveira Gara-156

–6–
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Figure 3. A schematic plan view of the large-scale circulation of the Southern Ocean. The key

features are the braided network of eddies and jets circumnavigating the continent that comprise

the eastward-flowing Antarctic Circumpolar Current (for which the northern and southern limits,

or fronts, are represented by black contours), the Weddell and Ross gyres (blue dotted lines),

and the westward-flowing Antarctic Slope/Coastal Current nearer the continent (brown line). The

Slope Current exists everywhere except along the western side of the Antarctic Peninsula, where

the Circumpolar Current flows very close to the shelf slope. The current/gyre lines represent

contours of streamfunction, sketched based on typical time-mean flows in a global ocean model.

The background image shows a typical snapshot of daily mean surface flow speed from the ACCESS-

OM2-01 global ocean model (Kiss et al., 2020).

bato (2013) provide a detailed discussion of the Southern Ocean’s role in the global ocean157

circulation and climate, while A. F. Thompson et al. (2018) and Vernet et al. (2019) provide158

detailed reviews of the Antarctic Slope Current and Weddell Gyre, respectively. There is no159

review article specifically focused on the Ross Gyre; however, the research article of Dotto160

et al. (2018) provides a focused examination of its strength, forcing and variability.161

2.1 Antarctic Circumpolar Current162

The Antarctic Circumpolar Current is the largest ocean current in the world by volume163

flux. It encircles Antarctica, in places extending from the surface to the seafloor, connecting164

the Atlantic, Pacific and Indian ocean basins, and forming the hub of the global ocean165

–7–
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circulation (e.g., see Fig. 1 of Meredith, 2022). The sloping density surfaces (isopycnals)166

associated with the Antarctic Circumpolar Current provide a connection between the ocean167

surface and the abyss. They allow fluid from the deep ocean to upwell without changing its168

density, which is a crucial component of the global overturning circulation (§§ 2.4–2.5). The169

regions of sharpest meridional density gradient at the surface are described as the (density)170

fronts of the Antarctic Circumpolar Current, with the northern- and southern-most fronts171

(Fig. 3) enclosing the region of strongest current speed.172

The geometry of the Antarctic Circumpolar Current is unique; unlike other ocean cur-173

rents, there are no continents blocking its quasi-zonal flow around the globe. This unique174

configuration means that the dynamics of the Antarctic Circumpolar Current cannot be ex-175

plained using the classical geophysical fluid dynamics theories that govern gyres, although176

some have tried to apply these concepts, such as the Sverdrup balance (e.g., Stommel, 1957;177

Webb, 1993; C. W. Hughes, 1997). The integrated momentum balance of the Antarctic Cir-178

cumpolar Current is extremely simple: wind stress at the surface is predominantly balanced179

by topographic form stress at the bottom (Masich et al., 2015a), as originally proposed by180

Munk and Palmén (1951). However, despite the wind stress being the dominant source of181

momentum for the Antarctic Circumpolar Current, changing the wind has almost no effect182

on the total zonal baroclinic transport (Straub, 1993; Hallberg & Gnanadesikan, 2001; Tans-183

ley & Marshall, 2001; Munday et al., 2013; Constantinou & Hogg, 2019), and increasing the184

bottom drag increases the total zonal transport (D. P. Marshall et al., 2017; Constantinou,185

2018). Moreover, although mesoscale turbulence is believed to play a crucial role in fluxing186

momentum downwards from the surface to be dissipated at depth, the momentum budget187

adjusts to wind changes within a month (Ward & Hogg, 2011; Masich et al., 2015b), while188

the response of the mesoscale turbulence is much slower, taking months to years to adjust189

(Meredith & Hogg, 2006; Sinha & Abernathey, 2016; Hogg et al., 2022). Modelling results190

also suggest that the Antarctic Circumpolar Current responds in different ways to specific191

spatial patterns of wind stresses, such as those associated with the interplay of the different192

phases of the Southern Annular Mode and El Niño-Southern Oscillation (Langlais et al.,193

2015).194

The Antarctic Circumpolar Current appears as a single monolithic current in a time-195

mean view, but the instantaneous current is better described as a complex network of196

interconnected jets and eddies (§ 4.1). This smaller-scale structure supports a plethora of197

multiscale interactions: eddy-jet interactions shorten eddy lifetimes (R. Liu et al., 2022);198

jet-topography interactions can lead to rapid changes in ocean ventilation (Klocker, 2018);199

and a unique set of interactions occur where the eastward flowing Antarctic Circumpolar200

Current in the Southern Ocean is fast enough to arrest westward propagating Rossby waves201

(Klocker & Marshall, 2014). Downstream of large bathymetric features, the time-mean flow202

field exhibits standing meanders, which are thought to be the result of arrested Rossby203

waves (A. F. Thompson & Naveira Garabato, 2014). Arrested Rossby waves also affect204

the stability of the current, allowing instabilities to grow when the wave speed matches or205

exceeds the flow speed and is oriented in the opposing direction, i.e., the wave is travelling206

upstream (Stanley et al., 2020). These standing meander regions are also highly energetic,207

with enhanced cross-frontal exchange (A. F. Thompson & Sallée, 2012), eddy heat flux208

(Foppert et al., 2017) and upwelling (Tamsitt et al., 2017). The Antarctic Circumpolar209

Current flows along standing meanders, whose curved paths lead to horizontal divergence210

and vortex stretching that couples the upper and lower water column, modifying deep211

currents and cross-frontal exchange in patterns locked to the phase of the meander (Meijer212

et al., 2022).213

2.2 Antarctic Slope Current214

The steep gradient of the Antarctic continental shelf slope imposes a strong geometric215

constraint on cross-slope flow as it invokes a large potential vorticity gradient. Consequently,216

ocean flows in this region are (to first order) oriented in an along-slope direction, and217
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known as the Antarctic Slope Current. The Antarctic Slope Front is the associated front218

and is manifested by a large cross-slope density gradient; the slope front may at times219

be composed of multiple individual fronts. The Antarctic Slope Current is strongest in220

East Antarctica and exists everywhere along the continental slope except for the western221

Antarctic Peninsula, where the Antarctic Slope Current is replaced by the southernmost222

edge of the Antarctic Circumpolar Current (Mathiot et al., 2011; Armitage et al., 2018;223

A. L. Stewart et al., 2019; Pauthenet et al., 2021; Huneke et al., 2022). The Antarctic Slope224

Current advects tracers, such as heat, salt and nutrients around the continent, and the225

exchange of distinct water masses across the current is pivotal for the climate system (see226

§ 3.1.1, § 2.5). The advancement of numerical ocean model capabilities over the past decade,227

as well as increased efforts to collect observations (ship-based, moorings/fixed, animal-borne,228

autonomous vehicles), has led to a rapidly improved understanding of the Antarctic Slope229

Current dynamics.230

The Antarctic Slope Current is driven primarily by winds and buoyancy forcing from231

both the atmosphere and meltwater. At leading order, easterly winds around Antarctica232

are oriented in an along-slope direction (Hazel & Stewart, 2019), driving onshore Ekman233

transport, creating a cross-slope density gradient, and thereby driving an along-slope current234

in thermal wind balance. The momentum transfer from the atmosphere to the ocean occurs235

via the sea ice that covers the continental shelf for most of the year. Recent high resolution236

model simulations indicate that the surface stress over the continental shelf slope vanishes in237

the presence of sea ice (A. L. Stewart et al., 2019; Si et al., 2021), and the sea ice distributes238

the momentum input provided by the wind away from the continental slope. In addition239

to winds, buoyancy fluxes from sea ice, ice shelves and the atmosphere help sustain the240

cross-slope pressure gradients that support the Antarctic Slope Current. Freshwater forcing241

from ice shelf melting plays a particularly important role (Fahrbach et al., 1992; Moffat et242

al., 2008), with new observations suggesting that glacial melt is especially important for the243

generation of the Antarctic Slope Current in the Amundsen Sea (A. F. Thompson et al.,244

2020). This mechanism is supported by model simulations with amplified freshwater forcing245

(to represent basal melting of ice shelves), which show an increased cross-slope density246

gradient and enhanced Antarctic Slope Current (Naughten et al., 2018; Moorman et al.,247

2020; Beadling et al., 2022). The Antarctic Slope Current is reinforced by tides through a248

process called tidal rectification (§ 5.2.1; A. L. Stewart et al., 2019; Si et al., 2021).249

The state of the Antarctic Slope Current is closely related to Dense Shelf Water export,250

which occurs downstream of the Ross Sea, Adelie Land, Prydz Bay, and the Weddell Sea251

(A. F. Thompson et al., 2018). The presence of dense water lifts the isopycnals at depth,252

connecting the shelf with the offshore ocean and creating a pathway for eddy-driven cross-253

slope heat exchange (A. L. Stewart & Thompson, 2015). Further, the Dense Shelf Water254

descending the continental shelf gives rise to a bottom-intensified Antarctic Slope Current255

flow in these locations, unlike other regions where it is surface intensified (e.g., Heywood et256

al., 1998; Huneke et al., 2022).257

2.3 Weddell and Ross Gyres258

The Weddell and Ross gyres are dominant features of the lateral circulation of the259

Southern Ocean, located south of the Antarctic Circumpolar Current and north of the260

Antarctic continental shelf (Fig. 3). They play a mediating role in the exchange of waters261

between the relatively warm waters within the Antarctic Circumpolar Current and the cold262

continental shelf. Both gyres are located adjacent to one of the formation sites of Dense263

Shelf Water around Antarctica (Purkey et al., 2018; Meredith, 2013). Thus, the properties264

of exported Antarctic Bottom Water (Bai et al., 2022; Meredith et al., 2014) and the source265

waters that participate in Dense Shelf Water production (Narayanan et al., 2019; Foster266

& Carmack, 1976) can be influenced by gyre circulation. Therefore, there is a connection267

between the Ross and Weddell Gyre circulation and processes relevant to global climate,268

such as ocean heat and carbon uptake (MacGilchrist et al., 2019; P. J. Brown et al., 2015).269
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The circulation of the gyres has also been found to influence polynya formation (Zhou et al.,270

2022; Cheon & Gordon, 2019; Cheon et al., 2018), sea ice variability (Morioka & Behera,271

2021; Neme et al., 2021) and iceberg drift (Barbat et al., 2021; Bouhier et al., 2018).272

The average climatological wind field makes the gyres a region of divergent Ekman273

transport, fostering a vertical structure characterised by isopycnals sloping upwards towards274

the centre of the gyre, with local upwelling and mixing of subsurface Circumpolar Deep275

Water (Jullion et al., 2014). Circumpolar Deep Water is able to enter the gyres through276

permeable eastern boundaries, where there is no topographic constraint to their circulation277

(Bebieva & Speer, 2021; Roach & Speer, 2019; Donnelly et al., 2017; Ryan et al., 2016;278

Cisewski et al., 2011; Fahrbach et al., 2011; A. H. Orsi & Wiederwohl, 2009). Due to the279

lack of a topographic constraint, the eastern extent of the gyres is highly variable (Wilson280

et al., 2022; Vernet et al., 2019; Dotto et al., 2018; Roach & Speer, 2019), with eddies and281

high frequency variability associated with topographic discontinuities playing an important282

role in the exchange of waters (Bebieva & Speer, 2021; Roach & Speer, 2019; Donnelly et283

al., 2017; Ryan et al., 2016). Within the gyres, Circumpolar Deep Water is shielded from284

interaction with the atmosphere by a shallow layer of colder and fresher water that builds up285

during winter and erodes during summer. Upwelling and entrainment via diapycnal mixing286

of warm and salty Circumpolar Deep Water into the surface layer contributes to sea ice melt287

(Bebieva & Speer, 2021; Wilson et al., 2019) and polynya formation (§ 4.2.3; Campbell et288

al., 2019).289

As Dense Shelf Water cascades down the continental shelf it enters the gyres and290

undergoes further transformation as it becomes entrained with ambient waters to produce291

Antarctic BottomWater (Akhoudas et al., 2021; Gordon et al., 2009; A. Orsi et al., 1999). In292

the Weddell Gyre, it has been suggested that the properties and rates of export of Antarctic293

Bottom Water across gyre boundaries are dependent on the gyre’s horizontal circulation294

due to two different mechanisms. From a baroclinic perspective, an acceleration of the gyre295

induces an increase in the isopycnal tilt at its northern boundary, effectively trapping the296

densest varieties of bottom waters that are not able to overflow through the shallow passages297

(Gordon et al., 2009; Meredith et al., 2008). From a barotropic perspective, an acceleration298

of the gyre induces changes in the strength of the deep boundary current near the outflow299

locations (Meredith et al., 2011). The Ross Gyre is more sparsely observed, but there is300

evidence that its circulation modulates the salinity of the Dense Shelf Water formed at301

the western Ross Sea (Guo et al., 2020) and induces changes in the properties and volume302

of Antarctic Bottom Water in the south-eastern Pacific Ocean (Bai et al., 2022). Warm303

intrusions of Circumpolar Deep Water onto the Amundsen and Bellingshausen shelf are also304

related to the Ross Gyre’s strength (Nakayama et al., 2018). In addition to dense waters,305

meltwater coming from ice shelves in the Ross and Weddell Seas is also partly distributed306

within the gyres’ circulation (Kusahara & Hasumi, 2014).307

There are few studies addressing the variability of the Ross and Weddell gyres across308

different time scales in connection to possible forcing mechanisms. Satellite-based studies309

have found links between the gyres’ sea surface height and wind stress curl (Auger, Sallée,310

et al., 2022; Armitage et al., 2018). However, the extensive sea ice coverage in the region311

modulates the transfer of momentum from the wind to the ocean surface, which has to be312

taken into account when considering surface stresses (Neme et al., 2021; Naveira Garabato,313

Dotto, et al., 2019; Dotto et al., 2018). By including sea ice in the total stress over the314

ocean surface, the correlation with sea surface height breaks down (Auger, Sallée, et al.,315

2022), as it does with gyre strength on both seasonal and interannual timescales (Neme et316

al., 2021). There are different processes within the gyres that could be playing a role in their317

variability, thus obscuring a direct relation with surface stress, such as variability of water318

mass exchange across gyre boundaries or variability of dense water formation. Fahrbach319

et al. (2011) suggest that the northern and southern limbs of the Weddell Gyre can vary320

independently due to variations in wind forcing across the gyre. Moreover, there are studies321

suggesting that ocean gyres can develop in response to surface buoyancy fluxes (Hogg &322
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Gayen, 2020; Bhagtani et al., 2023). In support of this hypothesis, the Ross and Weddell323

Gyre strengths in climate models have been found to be correlated with the near-surface324

meridional density gradients generated by gradients in surface buoyancy fluxes, whilst being325

largely independent of wind stress curl (Z. Wang & Meredith, 2008).326

2.4 Upper overturning circulation327

The upper overturning circulation of the Southern Ocean consists of southward up-328

welling flow along steeply tilted isopycnals in the mid-depths and a return northward flow329

of lighter waters (called ‘mode’ or ‘intermediate’ waters, due to their density being inter-330

mediate between abyssal and surface waters) in the upper ocean (Fig. 2). The lifting (or331

‘upwelling’) of deep waters to the surface and subsequent subduction north of the Antarctic332

Circumpolar Current has a large impact on the global climate by enabling rapid exchange333

of heat and carbon between the atmosphere and interior ocean (Morrison et al., 2015). A334

large fraction of the global ocean uptake of anthropogenic heat (∼70%) and carbon (∼40%)335

has occurred in the Southern Ocean, due to the constant replenishment of surface waters336

with colder and carbon-depleted water from below (Frölicher et al., 2015; Zanna et al., 2019;337

Khatiwala et al., 2009).338

Buoyancy fluxes (i.e., the combined effect of sensible, latent, radiative and freshwater339

fluxes) and wind stresses at the ocean surface have a strong control over the strength and340

structure of the upper overturning circulation. The westerly winds drive Ekman upwelling341

south of the maximum wind stress (∼55◦S) and downwelling to the north (Toggweiler &342

Samuels, 1993; Speer et al., 2000; J. Marshall & Speer, 2012). In the absence of additional343

diabatic processes, this Ekman pumping at the surface drives along-isopycnal flows below344

the mixed layer (Wolfe & Cessi, 2015). The overturning transport increases with increasing345

wind stress (e.g., Viebahn & Eden, 2010; Bishop et al., 2016), although the sensitivity is less346

than the Ekman transport response due to the additional impact of buoyancy forcing and347

eddies on the dynamics (e.g., Abernathey et al., 2011). Buoyancy input, predominantly from348

sea ice melt and precipitation, transforms the dense upwelled waters into lighter, northward349

flowing waters at the surface (Abernathey et al., 2016). Surface buoyancy forcing also350

plays a critical role in the formation of mode waters on the northern edge of the Antarctic351

Circumpolar Current in the Indian and Pacific sectors (Wong, 2005; Sloyan & Rintoul, 2001;352

Sallée et al., 2010). In particular, surface cooling and evaporation drive strong wintertime353

convection, forming Subantarctic Mode Water (Hanawa & Talley, 2001; Abernathey et al.,354

2016). The shoaling of the deep mixed layers during spring then results in a net subduction355

of waters from the mixed layer to beneath the permanent pycnocline (Z. Li et al., 2022;356

Morrison et al., 2022).357

Eddies (§ 4.1) play a critical role in the upwelling branch of the overturning circulation.358

Southward flow in the mid-depths of the Southern Ocean is dominated by eddy transport359

along isopycnals, due to the lack of land barriers required for zonal mean geostrophic flows360

in the meridional direction (J. Marshall & Speer, 2012). The generation of eddy kinetic361

energy through baroclinic instability extracts available potential energy from the sloping362

isopycnals. This energy conversion results in a flattening of the isopycnals and, therefore,363

a net southward (and upwards) transport in the upper and mid-depth ocean (Morrison et364

al., 2015). The southward flow has a highly heterogeneous spatial distribution around the365

Southern Ocean, with southward volume transport collocated with baroclinic eddy gener-366

ation downstream (eastward) of topographic hotspots (Tamsitt et al., 2017; Barthel et al.,367

2022; Yung et al., 2022). The hotspots of eddy generation and southward transport are368

located ∼100 km upstream (westward) of the eddy kinetic energy hotspots (Foppert et al.,369

2017; Yung et al., 2022). Eddies impact the dynamics of the upper overturning circula-370

tion by limiting the sensitivity of the overturning transport to changing wind stress (e.g.,371

Hallberg & Gnanadesikan, 2006; Viebahn & Eden, 2010; Gent, 2016), and by influencing372

the formation rate of mode and intermediate waters (Sallée et al., 2010; Z. Li et al., 2022).373

The eddy response in limiting the overturning circulation sensitivity to wind changes is374
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known as “eddy compensation” (Fig. 4). Eddy compensation occurs because the southward375

eddy transport extends all the way into the surface layers, directly opposing the northward376

Ekman transport in the upper ocean (J. Marshall & Radko, 2003). Following an increase377

in westerly wind stress, and if the buoyancy forcing is able to adapt (Abernathey et al.,378

2011), the northward Ekman transport and the southward eddy transport in the surface379

layers both increase. This results in a reduced sensitivity of the overturning to wind stress380

compared to a hypothetical situation with no change in eddy activity. However, the over-381

turning transport (i.e., the maximum value of the zonal-mean overturning streamfunction382

in latitude-depth coordinates) still increases with increasing wind stress, because much of383

the southward eddy transport occurs below the Ekman layer and does not play a role in the384

compensation (Morrison & Hogg, 2013).385
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Figure 4. Simulated eddy compensation of the upper overturning circulation in a numerical

model with no eddy parameterisation. With no eddy compensation (by resolved or parameterised

eddies), the overturning would linearly increase with the magnitude of the westerly wind stress

following the surface Ekman transport (black dashed line). As model resolution is increased such

that mesoscale eddies become fully resolved (red line), the sensitivity of the overturning circulation

to wind stress decreases, but remains non-zero. Figure reproduced from Morrison and Hogg (2013).

Isopycnal mixing (§ 4.3) is capable of driving diapycnal flow by coupling to two nonlin-386

earities in the equation of state of seawater (McDougall, 1987), and these play a key role in387

the overturning circulation. First, mixing two water parcels with the same density but differ-388

ent temperature and salinity yields a mixture that is denser than the original parcels. This389

process, known as cabbeling, is particularly strong in the Southern Ocean where mesoscale390

eddies stir the strong along-isopycnal temperature and salinity gradients. In fact, cabbeling391

is essential to the formation of Antarctic Intermediate Water (part of the northward return392

limb of the upper overturning circulation; Fig. 2), and numerical models that use a linear393

equation of state, and therefore lack cabbeling, do not reproduce the salinity minimum asso-394

ciated with Antarctic Intermediate Water (Fig. 5; Nycander et al., 2015; Groeskamp et al.,395

2016; Z. Li et al., 2022). Second, mixing two water parcels having different pressures but the396

same density when brought to their average pressure (i.e., isopycnal mixing of two parcels397

with an isopycnal pressure gradient) yields a mixture that may be either denser or lighter398

than the original parcels. This process, known as thermobaricity, occurs (primarily) because399
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the thermal expansion coefficient of seawater depends on pressure. This thermobaric effect400

is responsible for making North Atlantic Deep Water lie above Antarctic Bottom Water: the401

density of the relatively colder yet fresher Antarctic Bottom Water increases more rapidly402

with depth (pressure) than does the density of North Atlantic Deep Water (Nycander et al.,403

2015).404

Figure 5. Impact of the nonlinear equation of state (i.e., the equation describing the dependence

of the density of seawater on temperature, salinity and pressure) on simulated Antarctic Interme-

diate Water formation. (a–b) Latitudinal transects along 23.5◦W of salinity (colour, with contours

labelled in black) and potential density (white labelled contours) in the South Atlantic. The sim-

ulation shown in (a) uses a full non-linear equation of state, while (b) uses a linear equation of

state. Antarctic Intermediate Water (blue to green freshwater pathway shown in a) forms through

isopycnal mixing leading to cabbeling and is only able to form in the model configuration using a

nonlinear equation of state. Figure reproduced from Nycander et al. (2015).

2.5 Abyssal overturning circulation405

The Southern Ocean abyssal overturning circulation is considered, in a zonally inte-406

grated sense, to consist of two compensating flows: (i) a poleward flow of Circumpolar Deep407

Water; and (ii) an equatorward flow of Antarctic Bottom Water (Fig. 2). Circumpolar408

Deep Water is modified by mixing as it travels poleward to the Antarctic continental shelf,409

where it is transformed into Dense Shelf Water through surface buoyancy fluxes and brine410

rejection due to sea ice formation. Dense Shelf Water mixes with and entrains Circumpolar411

Deep Water as it descends into the abyssal ocean to form Antarctic Bottom Water (A. Orsi412

et al., 1999). The resulting water mass accounts for 30–40% of the ocean’s total volume,413

and fills the abyssal depths of the Atlantic, Pacific and Indian Oceans with carbon- and414

oxygen-rich water (Johnson, 2008). It is estimated that the maximum northward Antarctic415

Bottom Water transport is about 20–30 Sv near 30◦S (Ganachaud et al., 2000; Lumpkin &416

Speer, 2007; Talley et al., 2003; Talley, 2008, 2013).417
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The cryosphere influences abyssal overturning by modulating Dense Shelf Water forma-418

tion through three main pathways: ice shelves, sea ice, and major cryospheric events (i.e.,419

major changes in the cryosphere). Regions of strong ice shelf basal melting support the420

formation of polynyas within areas of landfast ice (Nihashi & Ohshima, 2015), and glacial421

meltwater has been connected to changes in Antarctic Bottom Water properties (§ 6.1).422

Brine rejection during sea ice formation influences the amount of Dense Shelf Water forma-423

tion, and its salinity and density (e.g., Jacobs, 2004; Iudicone et al., 2008; Abernathey et424

al., 2016; Silvano et al., 2020). Large cryospheric events, such as the calving of the Mertz425

Glacier Tongue (Tamura et al., 2012; Shadwick et al., 2013; Aoki et al., 2017; Snow et426

al., 2018) or the opening of the Weddell Sea polynya (Martinson, 1991; Akhoudas et al.,427

2021), reorganise the circulation and stratification and, therefore, alter Dense Shelf Water428

formation (see the discussion of polynya convection in §4.2.2).429

The export of Dense Shelf Water occurs predominantly in submerged canyons that cross430

the continental shelf (Nakayama, Ohshima, et al., 2014). Dense Shelf Water accumulates in431

these deeper sections of the shelf and eventually spills down the continental slope, sometimes432

in short bursts lasting a few days (Foppert et al., 2021). The export of Dense Shelf Water433

is modulated by tidal mixing, which modifies the water mass properties and helps to bring434

Circumpolar Deep Water onshore (Muench et al., 2009; Q. Wang et al., 2013; Bowen et435

al., 2021). Morrison et al. (2020) find that the Circumpolar Deep Water inflow is partly436

forced by a pressure gradient set up by the overflowing Dense Shelf Water. Eddies are437

also a major contributor to Dense Shelf Water and Circumpolar Deep Water transport438

across the continental slope (A. L. Stewart & Thompson, 2015; Q. Wang et al., 2009;439

Nakayama, Ohshima, et al., 2014; Nøst et al., 2011). The Dense Shelf Water component of440

Antarctic Bottom Water is primarily formed in the Weddell Sea, Prydz Bay, Ross Sea, and441

Adelie Coast regions (Purkey et al., 2018), which links the properties of Antarctic Bottom442

Water globally to conditions in these small formation regions. The degree of mixing of the443

exported Antarctic Bottom Water is unclear from observations (Purkey et al., 2018), but444

high-resolution modelling shows the export is split by the topography of Drake Passage445

and Kerguelen Plateau to form distinct Weddell–Prydz-sourced and Ross–Adelie-sourced446

mixtures in the Atlantic–Indian and Indian–Pacific, respectively (Solodoch et al., 2022).447

This result suggests that regional changes in Dense Shelf Water formation could produce448

planetary-scale contrasts in Antarctic Bottom Water properties, and associated changes in449

the three-dimensional structure of the global overturning circulation.450

In contrast to upper overturning circulation, which is largely adiabatic at depth with451

upwelling along sloped isopycnals in the Southern Ocean (Toggweiler & Samuels, 1995),452

abyssal overturning circulation fundamentally requires diabatic transformation below the453

sea-surface, because the northward flowing Antarctic Bottom Water must reduce its den-454

sity and upwell across stable (albeit weak) stratification in the abyss before it can return455

to the sea-surface (Ganachaud & Wunsch, 2000; Talley, 2013). Diapycnal mixing is the456

main process that lightens water masses in the abyssal ocean, with geothermal heating a457

secondary contribution accounting for perhaps 20% (Hofmann & Morales Maqueda, 2009;458

Emile-Geay & Madec, 2009). Thus, the planetary-scale abyssal overturning is supported459

by turbulent processes at the Batchelor scale (i.e., the scale on the order of millimetres at460

which molecular diffusion effectively smooths tracer gradients; Munk, 1966; Ferrari et al.,461

2016). How and where this buoyancy gain occurs is poorly understood, in part because462

the interaction between these largest and smallest scales is mediated on intermediate scales,463

notably by eddies (§ 4.1) and internal gravity waves (§ 5.3).464

Diapycnal mixing (§ 4.3.2) of Antarctic Bottom Water is thought to primarily occur465

where abyssal flows encounter rough bathymetry (Bryden & Nurser, 2003; Fukamachi et al.,466

2010). Observations near Southern Ocean bathymetry find diapycnal diffusivities that are467

10–1000 times greater than upper ocean values (e.g., Heywood et al., 2002; Garabato et al.,468

2004; Polzin, Naveira Garabato, Abrahamsen, et al., 2014). This rapid increase of diapycnal469

diffusivity with depth causes downwelling in the ocean interior, as water mixes rapidly with470
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denser water beneath it and mixes more slowly with lighter water above it. However, this471

is compensated by upwelling in the bottom boundary layer where the diapycnal diffusivity472

goes to zero at the seafloor (Stanley, 2013; de Lavergne et al., 2016; McDougall & Ferrari,473

2017; de Lavergne et al., 2017; Cimoli et al., 2019; Holmes & McDougall, 2020). Diapycnal474

mixing is thought to be sustained by breaking internal gravity waves created from two475

primary sources: barotropic tides and lee waves resulting from currents interacting with476

rough topography (§ 5.3.1). Estimates of the amount of Antarctic Bottom Water upwelling477

driven by tides and lee waves ranging from 7–25 Sv (Nikurashin & Ferrari, 2013; Melet et478

al., 2014; de Lavergne et al., 2016). Meanwhile, geothermal heat fluxes are estimated to479

sustain roughly 2–6 Sv of the abyssal flow (Hofmann & Morales Maqueda, 2009; Emile-Geay480

& Madec, 2009). These two upwelling effects are offset by a net downwelling driven by the481

cabbeling and thermobaric effects of the non-linear equation of state of seawater of 6–10 Sv,482

occurring primarily in the Southern Ocean (Klocker & McDougall, 2010). For the purposes483

of rough comparison, assuming that the mixing and geothermal upwelling occurs north of484

30◦S and the non-linear equation of state driven downwelling occurs south of 30◦S, gives a485

mass flux of 9–31 Sv, which is broadly consistent with the maximum northward Antarctic486

Bottom Water transport of 20–30 Sv near 30◦S estimated from observations (Talley, 2013).487

Accounting for multiscale processes can alter our fundamental understanding of the488

dynamics of the abyssal overturning circulation, such as its response to changing the west-489

erly winds over the Southern Ocean. The classic view is that stronger Southern Hemisphere490

westerly winds, by steepening Southern Ocean isopycnals and altering the abyssal stratifi-491

cation, should weaken the abyssal overturning (Ito & Marshall, 2008; Nikurashin & Vallis,492

2011; Shakespeare & Hogg, 2012). However, there is an energetic pathway through which493

some of the extra wind energy input at the surface leads to enhanced diapycnal diffusion494

in the abyss, thereby strengthening the abyssal overturning; specifically, stronger winds495

steepen isopycnals, driving more baroclinic instability and stronger mesoscale eddies. In the496

Southern Ocean, these mesoscale eddies are deep-reaching and lead to larger eddy bottom497

velocities that interact with rough bathymetry to generate lee waves and, ultimately, diapy-498

cnal mixing that strengthens the abyssal overturning (D. P. Marshall & Naveira Garabato,499

2008; Saenko et al., 2012). When this energetic link is included in idealized models, stronger500

Southern Ocean westerly winds can actually drive a stronger abyssal overturning (Stanley501

& Saenko, 2014). Using an estimated climatology of wave energy fluxes, Melet et al. (2014)502

also found that accounting for lee wave-driven mixing accelerates the abyssal overturning in503

a realistic global ocean model.504

2.6 Closing the loops505

The large scale circulation of the Southern Ocean exerts a major control on the global506

climate state. In particular, the meridional overturning circulation in the Southern Ocean507

regulates heat transfer across the Antarctic margin, the strength of bottom water and mode508

water formation, and heat and carbon uptake by the global oceans. This section has de-509

scribed how this meridional circulation is closely coupled to the other components of the510

large scale circulation (the subpolar gyres and Antarctic Circumpolar Current) and, cru-511

cially, other components of the Southern Ocean dynamic system. These connections include512

the role of mesoscale turbulence (§4.1) and associated seafloor interactions (§4.1.5) in regu-513

lating the response of the circulation to forcing changes, the role of brine rejection during sea514

ice formation in supporting the formation of the dense water that fills the Southern Ocean515

abyss (§3.2.3), and the role of diapycnal mixing in supporting the upwelling of abyssal water516

and closing the global overturning circulation (§4.3). These dynamics will be described in517

more detail in subsequent sections, starting with the Cryosphere in § 3.518
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Figure 6. Schematic of the oceanic margin of the southern cryosphere, including key dynamic

connections with the Southern Ocean. The ice shelf is the floating extension of the Antarctic Ice

Sheet formed from multiple glaciers flowing onto the ocean surface that fuse in suture zones. The

ice shelf contains features, such as a melt pond at its surface (that can result in hydrofracture),

crevasses and meltwater channels at its base, and rifts that extend throughout the shelf depth and

propagate to the shelf front to calve tabular icebergs, from which bergy bits break off. Here, the

giant ice shelf partially encloses a cold-water cavity that experiences Mode One circulation (§ 3.1.1),
involving bottom inflow of cold water fed by dense shelf water created in a polynya, and outflow of

basal meltwater that exits the cavity as a plume of Ice Shelf Water (ISW). At the ice shelf grounding

zone, subglacial discharge of ice sheet meltwater flows into the cavity, which creates platelets that

attach to the underside of local sea ice. The shelf front is occupied by a polynya (created by katabatic

winds) and immobile landfast sea ice (attached to the shelf). Pack ice bounds the polynya and

landfast sea ice towards the ocean. The pack consists predominantly semi-consolidated sea ice with

features, such as pressure ridges, leads and fractures, but with a shear zone at its boundary with

the landfast sea ice and a marginal ice zone at its boundary with the open ocean, where floe sizes

are relatively small due to the presence of surface waves. Large-scale sea ice drift is dictated by

winds, such as those during polar cyclones, as well as ocean tides, currents and gyres.

3 Cryosphere519

Amajor characteristic of the Southern Ocean is that its waters interact with segments of520

an icy shell created from both freshwater and salt water, respectively, ice shelves and sea ice521

(Fig. 6). Ice shelves and sea ice (along with icebergs and polynyas) form an oceanic margin522

of the cryosphere that interacts with the Southern Ocean at a number of scales, ranging from523

large-scale circulation, via many processes, to the small diffusive-viscous scales influencing524

melt and dissolution rates. There are several existing monographs on sea ice, such as Weeks525

(2010) and Leppäranta (2011), which include the fundamental governing equations of sea ice526

dynamics. There are also collections of reviews, such as D. N. Thomas (2017), including its527

dynamic interactions with the ocean, although often focused on Arctic sea ice. In addition,528

there are review articles and collections on specific components of sea ice, including its529

rheology (Feltham, 2008), its engineering properties (Timco & Weeks, 2010), landfast sea530
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ice (Fraser et al., 2023), and marginal ice zone dynamics (Bennetts, Bitz, et al., 2022b).531

Wadhams (2000) is a monograph covering both sea ice and icebergs and their role in the532

climate system. In contrast to sea ice, there is little synthesis information on ice shelves533

(and/or ice shelf cavities), other than in the context of numerical modelling (Dinniman534

et al., 2016) or basal melt (Burgard et al., 2022), where the former contains some of the535

fundamental governing equations.536

3.1 Ice shelves and sub-ice shelf cavities537

Ice shelves (and ice tongues) comprise many merged glacial flows fused together in538

suture zones (Fig. 6). Ice shelves create unique ocean environments in the sub-ice shelf539

water cavities they enclose. The cavities are bound on the landward side at the “grounding540

zone” where the ice sheet leaves the land and begins to float. The oceanward open boundary541

is beneath the “shelf front”, i.e., the terminal face of the ice shelf, which is typically a sharp542

vertical wall formed by calving of icebergs from the ice shelf (Fig. 6). The ice shelf–ocean543

basal interface is the upper boundary of the cavity, where melting and re-freezing takes544

place. Total ice shelf mass loss is roughly equally divided between melting and iceberg545

calving (Rignot et al., 2013; Depoorter et al., 2013; Greene et al., 2022). The rate and546

distribution of melting is determined by a complex set of processes (§§ 3.1.1–3.1.6), which547

start with the transport of ocean heat into and within sub-shelf cavities.548

3.1.1 Ice shelf cavity exchange with the Southern Ocean549

Water mass exchange between the Southern Ocean and ice shelf cavities is typically550

divided into three modes of circulation (Fig. 7) resulting in the “cold” or “warm” cavity551

descriptor, based on the absence or presence of water well above the local freezing point552

(typically Circumpolar Deep Water) in the cavity (Jacobs et al., 1992; Joughin et al., 2012;553

Silvano et al., 2016). The giant cold cavities of the Filchner-Ronne, Ross and Amery Ice554

Shelves span hundreds of kilometres across and are typically dominated by Mode One cir-555

culation. In this situation, katabatic winds (cold, dense air masses flowing off the polar556

plateau; L. Thompson et al., 2020; Gutjahr et al., 2022) drive sea ice production in coastal557

polynyas (§ 4.2.2) at the ice shelf front. This creates dense shelf water, which floods the558

cavity and ensures relatively low average melt rates, with some areas of the shelf underside559

re-freezing (Galton-Fenzi et al., 2012). In addition, the circulation provides protection from560

warm water inflow (Hattermann et al., 2021; Darelius et al., 2016). Results from smaller561

shelves, such as the Nansen (Friedrichs et al., 2022) and Sorsdal (Gwyther et al., 2020) Ice562

Shelves, indicate cold conditions and Mode One circulation can possibly also exist at these563

scales.564

As well as being closer to the Antarctic Circumpolar Current, warm water cavities lack565

the protection of wide, shallow continental shelves, so that (relatively warm) Circumpolar566

Deep Water has direct access to the underside of the ice shelves. Warm water cavities567

typically sustain Mode Two circulation (Fig. 7), whereby the inflow of Circumpolar Deep568

Water leads to high melt rates deep within the cavity. Ice shelves of the Amundsen and569

Bellingshausen seas (e.g., Thwaites, Pine Island, Dotson, Crosson and Getz ice shelves) are570

particularly vulnerable and have been observed to have the highest basal melt rates around571

Antarctica (Rignot et al., 2013; Adusumilli et al., 2020).572

Mode Three cavity circulation is associated with the melting that results from an accu-573

mulation of warm water along the shelf front. This tends to be more variable than the other574

modes. In the Amundsen Sea region, Mode Three circulation is associated with Circumpo-575

lar Deep Water circulation near the ice shelf front (Davis et al., 2022). Recent observations576

from the frontal region of the Ross Ice Shelf cavity have shown evidence of high melt rates577

caused by surface water inflow in the frontal zone directly connected with summer surface578

ocean warming (C. L. Stewart et al., 2019; Aoki et al., 2022). This buoyant water can579

potentially pool against the shelf terminal face and form a blocking “wedge” that can in-580
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Figure 7. Idealised modes of cavity circulation (Jacobs et al., 1992; Tinto et al., 2019) and

the influence of a polynya, which are visualised for the Ross Sea and cavity and to emphasize the

three-dimensionality. The modes (one, two and three) are shown together for convenience but do

not necessarily co-exist nor is there a substantial amount of direct observation of these modes.

Mode 2a refers to uncertainty of the penetration of modified Circumpolar Deep Water (mCDW)

into the cavity. Additional features include (a) melt water from the east (Nakayama, Timmermann,

et al., 2014), (b) Antarctic Slope Current (ASC) (A. L. Stewart et al., 2019), (c) continental shelf

troughs and possible penetration of mCDW, and (d) high salinity shelf water (HSSW) draining

off the continental shelf. On the continental shelf itself there are (e) sea ice driving polynya and

convection and (f) the shelf front wedge, which is a buoyant front associated with summer warming

that interacts with the Mode Three circulation (Malyarenko et al., 2019). Within the cavity there

are (g) cavity interleaving (Stevens et al., 2020) affecting the cavity circulation and (h) subglacial

discharge flows at the grounding line.
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fluence how waters offshore of the wedge are advected beneath the ice shelf (Malyarenko et581

al., 2019). While localised, this circulation mode may still have a profound effect on the582

entire shelf system, depending on where the warming is happening. For example, increased583

melt rates near Ross Island influence the flow rate of the entire ice shelf (Reese et al., 2018).584

Meltwater from these ice shelves moves westward in the Antarctic Slope Current (§2.2), and585

may affect vertical mixing, sea ice production and downstream cavities (Silvano et al., 2018;586

Nakayama, Timmermann, et al., 2014).587

3.1.2 Cavities, gyres and eddies588

The three modes of large-scale cavity circulation (§ 3.1.1; Fig. 7) need to be augmented589

with improved understanding of mesoscale variability. Here, the literature uses terms like590

“gyre” and “eddy” inconsistently. The terms describe rotating coherent horizontal-plane591

motions, with gyres being larger, wind-driven and relatively stationary compared to the592

smaller, mobile eddying motions. These structures have been observed to influence cavity–593

open ocean exchange, whereby the circulation and associated influence on mixing increases594

the heat flux into the cavity, thus enhancing basal melting and ultimately resulting in greater595

freshwater flux into the ocean. This is seen in both warm cavities (Naveira Garabato et al.,596

2017; Yoon et al., 2022) and cold cavities (Friedrichs et al., 2022). The Pine Island Glacier597

Ice Shelf is a warm cavity example, which shows a system dominated by a gyre that fills598

the bay in front of the glacier. The Nansen Ice Shelf is an example of a small cold cavity599

influenced by eddies, which acts as a pump for moving warm water into the cavity (Friedrichs600

et al., 2022). In this case, the eddies are associated with regional topography, including the601

large Drygalski Ice Tongue.602

Topographically-influenced gyres (such as those discussed above) are relatively large603

(several tens of kilometres in scale) and stationary, whereas in large cavities and/or away604

from direct topographic control, eddies are smaller and free to move. Freely moving eddies605

are typically at the scale of the local Rossby radius of deformation at which rotation effects606

are comparable to buoyancy effects, which is typically around a few kilometres. Numerical607

modelling has been the primary way to examine eddy processes within cavities (e.g., Mack608

et al., 2019). However, there are a few recent direct observations of the ocean within ice609

shelf cavities, via boreholes (Stevens et al., 2020) or using robotic technology (providing a610

view of the vertical structure and its spatial variations; Gwyther et al., 2020; Graham et611

al., 2022; Davis et al., 2022). Data of this type provide direct evidence of water masses,612

meltrate drivers and mixing in these under-observed environments. This is particularly613

important because of the often long circulation timescales (several years in some cases)614

within cavities, and limited set of drivers. As models have been developed with little direct615

data, even modest departures from modelled diffusion, because of the long timescales and616

limited drivers, can result in a different outcomes for the cavity. This is in contrast to617

boundary-driven mixing in the Southern Ocean with many coincident driving processes618

(§ 4.3.3).619

3.1.3 Tidal influence on cavities620

Due to the absence of direct weather forcing within a cavity, ocean tides (both internal621

and surface; § 5.2) are the primary forcing at periods within the 0.5–10 day range. The622

elastic response of an ice shelf to any large-scale perturbation means that, other than close623

by the shore (at the grounding zone), the ice shelf responds hydrostatically and rapidly.624

Thus, determination of tidal excursions and currents can be achieved in the same way as625

elsewhere in the oceans, by combining water column height observations, knowledge of the626

bathymetry and numerical tools to extrapolate to any location in space and time (Padman627

et al., 2018). There are subtleties to tidal mechanics at such high latitudes, as the influence628

of tides on ice shelf melting is related to the latitude of an ice shelf relative the semidiurnal629

critical latitude, where the tidal frequency equals the inertial frequency (§ 5.3.3; Robertson,630

2013). In general, tides can be important drivers of meltwater production for ice shelves on631
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cold water cavities (e.g., Makinson et al., 2011; Arzeno et al., 2014; Mueller et al., 2018;632

Hausmann et al., 2020), but are less important for ice shelves on warm water cavities (e.g.,633

Robertson, 2013; Jourdain et al., 2020).634

Accepted melt rate parameterisations involve the local under-ice velocity (D. M. Holland635

& Jenkins, 1999; Rosevear, Galton-Fenzi, & Stevens, 2022). However, including tides in636

regional/cavity scale models is computationally expensive due to required short timesteps.637

Despite this, recent regional (Mueller et al., 2018; Hausmann et al., 2020) and pan-Antarctic638

(Richter et al., 2022) modelling studies have shown that tide-enhanced melting significantly639

increases boundary layer turbulence, and the increase can be offset by the cooling associated640

with the increased meltwater (which is exported slowly). In addition, there is the potential641

for tides interacting with the basal underside to drive internal waves (§5.3) within the cavity642

(Foster, 1983), which would influence overall thermal dynamics (Stevens et al., 2020) and643

requires more advanced approaches to modelling cavity circulation (Mack et al., 2019).644

3.1.4 Meltwater plumes and marine ice645

In the far reaches of an ice shelf cavity, once the inflowing oceanic water mass comes646

in contact with the ice shelf, production of meltwater results in a buoyant plume at the ice647

shelf base (Fig. 6). The meltwater plume typically ascends as it travels oceanwards, steered648

by the ice base topography and coastlines, and drives cavity-scale convective circulation.649

The evolution of the meltwater plume is governed by friction, planetary rotation and the650

entrainment of underlying watermasses (Jenkins, 1991). Since the in situ melting point is651

reduced by approximately 0.75◦ C per kilometer of depth, cold water, such as Dense Shelf652

Water that is typically at the surface freezing temperature, drives rapid melting at depth.653

For cold cavities, rapid melting at deep grounding zones can lead to potentially “su-654

percooled” plumes that rise along the ice base to a point where in situ freezing occurs —655

the so-called “ice pump”. This occurs when basal melting at the grounding zone results656

in a meltwater plume that then can re-freeze at shallower depths (Lewis & Perkin, 1986;657

Schodlok et al., 2016), sometimes through the formation of platelet ice crystals (Hoppmann658

et al., 2020). At that point, ice forms and rises to accrete to the ice shelf base as “marine659

ice” (Stevens et al., 2020). The spatial patterns of melting and refreezing can be seen in660

satellite altimetry data (Adusumilli et al., 2020). Under warm cavities, not all in-flowing661

ocean heat is consumed. Instead, the meltwater plume brings ocean heat to the surface and662

forms near-ice-front sensible heat polynyas (e.g., Mankoff et al., 2012).663

The characteristics of the meltwater plumes are influenced by ice base topography, with664

basal channels being sites of enhanced basal melting (e.g. W. Wei et al., 2020), and the665

presence of other forcing (primarily tides; § 5.2) of turbulent mixing at the ice shelf–ocean666

interface. Plume circulation and melt rates are expected to be altered by the presence667

of tides, but the direction and magnitude of the change depends on the balance between668

tide-enhanced drag, entrainment and melting (Anselin et al., 2023).669

3.1.5 Subglacial discharge670

Subglacial discharge is the flow of meltwater from the ice sheet basal bedrock interfacial671

zone that finds its way into the cavity coastal zone (Fig. 8a). The meltwater is formed672

by pressure and geothermal warming (Fricker et al., 2016). While difficult to access in673

Antarctica, subglacial discharges of meltwater have been extensively studied in the context674

of the Greenland Ice Sheet, where they are often linked to elevated melt rates (I. J. Hewitt,675

2020). Satellite observations provide evidence for a large number of active subglacial lakes676

across Antarctica, which experience sporadic but rapid drainage events (Fricker et al., 2007;677

Siegfried & Fricker, 2018). As in Greenland, it is likely that these drainage events alter678

the water properties at the edge of the ice sheet and have a significant effect on ice shelf–679

ocean processes (Miles et al., 2018; Jouvet et al., 2018). However, the nature, frequency,680
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(a) (b)

Figure 8. Small-scale views of an ice shelf and sub-shelf water cavity showing some of the under-

observed but critical processes likely to be present. (a) Grounding zone region including subglacial

discharge of meltwater from beneath the ice sheet, basal crevasses, stratification/baroclinic waves

(dashed lines), in/outflow. (b) The basal boundary layer (bbl), temperature and salt stratification

and roughness variations. The basal boundary layer shows the 1–10m thick region close to the ice-

shelf base, where the fluid velocity and turbulence is affected by the presence of buoyant meltwater.

Temperature and salinity increase rapidly through the boundary layer from diffusion-controlled

melting conditions at the ice–ocean interface through to the boundary layer itself and then to

ocean-cavity conditions at the edge of the boundary (the circulation of which is not well known).

and location of these subglacial drainage events remain unclear, largely due to challenges in681

making oceanographic observations deep within the ice shelf cavity.682

The injection of freshwater, either from sub-glacial discharge or from basal melt, causes683

the water column near grounding lines to exhibit aspects of an estuary with landward-flowing684

deeper water exchanging with this freshwater flux (Horgan et al., 2013). The resulting685

stratification is influenced by tidal mixing processes through both mixing and baroclinic686

waves (Fig. 8a), with a key question being at what point does the tidal mixing become687

sufficient to homogenize the water column (P. R. Holland, 2008). The few observations688

available suggest stratification can persist in even quite thin water columns (e.g., 10–30m;689

Begeman et al., 2018; Lawrence et al., 2023; Davis et al., 2023). This suggests that inflowing690

warm water can directly access the basal boundary layer right at the formation of the ice691

shelf meltwater plume.692

3.1.6 Cavity basal boundary layers693

The basal boundary layer is the oceanic boundary layer just beneath the base of an694

ice shelf (Fig. 8b), which is responsible for setting the ice shelf basal melt rate and drives695

the basal meltwater outflow from the cavity. The archetypal model of the ice shelf basal696

boundary layer (Fig. 8b) is of a boundary layer formed by velocity shear due to friction697

between the ice shelf base and ocean currents. These currents may be buoyant meltwater698

plumes, tidal currents, eddies, or other mean circulation within the cavity (Stanton et al.,699

2013; Padman et al., 2018), all of which are poorly known in cavities (Fig. 8b). In this700

“shear-driven” regime, the basal melt rate depends on the friction velocity (a turbulent701

velocity scale related to the current speed) and ocean temperature (Davis & Nicholls, 2019;702

Vreugdenhil & Taylor, 2019; Rosevear, Gayen, & Galton-Fenzi, 2022). This model forms the703
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basis of common ice shelf–ocean parameterizations (e.g., D. M. Holland & Jenkins, 1999;704

Jenkins et al., 2010). However, comparisons between observed and predicted melt rates of705

ice shelves, as well as idealised models, have brought into question the appropriateness of this706

approach when current velocities are low (Malyarenko et al., 2020; Rosevear, Galton-Fenzi,707

& Stevens, 2022) or the near-ice stratification is strong (Vreugdenhil & Taylor, 2019).708

Meltwater is less dense than ambient seawater, primarily due to salinity differences, and709

will drive convection in the form of a buoyant plume if the ice shelf base is sloped (Figs. 6,8).710

This gives rise to a convective melting regime (seen in laboratory experiments and sim-711

ulations), in which melting is driven by gravitational instability (Kerr & McConnochie,712

2015; McConnochie & Kerr, 2017b; Gayen et al., 2016). Antarctic ice shelves typically713

have low slope angles, which inhibits the gravitational instability. Thus, convective melting714

may be more relevant to near-vertical ice, such as icebergs and shelf fronts. A transition715

from convective- to shear-driven melting is expected as a buoyant plume gains momentum716

(Malyarenko et al., 2020; McConnochie & Kerr, 2017a). However, this transition is poorly717

constrained and may vary over only small scales (Schmidt et al., 2023a). A general de-718

scription of this important boundary condition has yet to be derived. The role played by719

buoyant meltwater depends on whether the ice shelf base is sloped or horizontal, and what720

other forcing is present. For a shear-dominated boundary layer beneath a horizontal ice721

shelf base, meltwater is expected to stratify the boundary layer and suppress turbulence.722

Recent numerical simulations have shown that buoyancy inhibits melting by decreasing the723

efficiency of heat and salt transport to the ice shelf boundary (Vreugdenhil & Taylor, 2019)724

and insulating the ice shelf from warmer water below (Rosevear, Gayen, & Galton-Fenzi,725

2022). When shear is weak, the heat and salt fluxes associated with basal melting provide726

an opportunity for double-diffusive convection to occur, and the formation of well mixed727

layers separated by thin interfaces called “thermohaline staircases” (Radko, 2013). Obser-728

vations from beneath the George VI Ice Shelf show a persistent staircase (Kimura et al.,729

2015), and weak dissipation, which is uncorrelated to current speed (L. Middleton et al.,730

2022), suggesting that diffusive-convection is the primary driver of turbulence. There is also731

evidence of diffusive-convection-susceptible conditions beneath the Ross Ice Shelf (Begeman732

et al., 2018).733

Smaller-scale basal texture or “roughness” (Fig. 8b) is expected to enhance boundary-734

layer turbulence, leading to higher melt rates (Gwyther et al., 2015), and sapping momentum735

from buoyant plumes through increased drag (e.g., Smedsrud & Jenkins, 2004). There are736

very few direct measurements of turbulence or drag beneath ice shelves (Stanton et al.,737

2013; Davis & Nicholls, 2019; Venables et al., 2014; L. Middleton et al., 2022). This is738

in part because boreholes can affect the boundary layer making undisturbed measurement739

challenging. Autonomous vehicles are providing a platform that circumvents this challenge740

(Davis et al., 2022). Beneath the warm Larsen C Ice Shelf, a relatively low drag coefficient741

was observed (Davis & Nicholls, 2019). However, sea ice analogs for marine ice zones742

(refreezing regions formed by the accretion of frazil ice) suggest that drag coefficients up to743

two orders of magnitude higher are possible (N. J. Robinson et al., 2017).744

3.1.7 Iceberg calving745

Ice shelf calving events are a consequence of the propagation of rifts (crevasses that746

penetrate the full shelf thickness) to the shelf front, such that they isolate ice blocks from747

the main shelf (an anticipated calving site is represented in Fig. 6). Spatial variations in748

ice shelf velocity are the “first-order control” on calving, as they cause strain rates that749

determine the location and depth of crevasses and, subsequently, propagate the crevasses750

and resulting rifts (Benn et al., 2007). These phenomena occur at the scale of the ice shelf751

flow structure (Meier, 1997). However, smaller scale processes are also present, such as752

“hydrofracturing”, where the water in surface melt ponds flows into and expands surface753

crevasses, which can have significant influence on ice shelf resilience (Fig. 6; Lai et al., 2020).754
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Once crevasses or rifts have formed in ice shelves, force imbalances due to the sur-755

rounding water also drive crevasse and rift propagation (Benn et al., 2007). Hence, dynamic756

couplings between ice shelves and the Southern Ocean exert important “second-order con-757

trols” on iceberg calving (i.e., superimposed on the first-order control; Benn et al., 2007;758

Y. Liu et al., 2015). There is evidence that this only occurs once the ice shelf has thinned759

sufficiently or for a rift system that is close to detachment (Bassis et al., 2008). Moreover,760

if present, fast ice or mélange (a consolidated agglomeration of icebergs and fast ice) exerts761

a backstress on ice shelves (Massom et al., 2010; Greene et al., 2018), which can delay or762

prevent iceberg calving (Stevens et al., 2013; Massom et al., 2015, 2018; Arthur et al., 2021;763

Gomez-Fell et al., 2022).764

In addition to these slowly varying drivers of iceberg calving, there are wave-driven765

mechanisms of relevance. Ice shelf flexure has been detected in response to swell (§ 5.1),766

as well as tides (§ 5.2), infragravity waves and tsunamis (Bromirski et al., 2010; Brunt767

et al., 2011; Padman et al., 2018). Flexure due to swell is greatest in the outer shelf768

margins (Chen et al., 2018; Bennetts, Liang, & Pitt, 2022) and during summer when the769

sea ice barrier is at its weakest or absent (Massom et al., 2018; Chen et al., 2019). Swell-770

induced shelf stresses peak at crevasses (Bennetts, Liang, & Pitt, 2022), and they have been771

associated with crevasse and rift propagation (Banwell et al., 2017; Lipovsky, 2018), iceberg772

calving (MacAyeal et al., 2006; Cathles IV et al., 2009) and triggering catastrophic ice shelf773

disintegration events (Massom et al., 2018).774

Surface waves also initiate small-scale calving through a combination of warm surface775

water and forced convection. The combination of conditions causes a relatively high rate776

of melting at the shelf front waterline and a so-called “wavecut”. The wavecut isolates the777

overhanging ice, which becomes unstable and collapses (Orheim, 1987; T. Hughes, 2002),778

leaving behind a protruding “ice bench” (or “ice foot”) at the shelf front. The bench exerts779

a buoyant vertical force, deforming the shelf front into a so-called “rampart moat” structure.780

The associated internal ice stresses can propagate basal crevasses and, hence, calve relatively781

small, but full-thickness icebergs along the crevasse.782

3.2 Sea ice783

The Antarctic sea ice zone is divided into four seasonally changing areas: (i) the largely784

immobile landfast sea ice (or fast ice), which is attached to many stretches of the coastline,785

including ice shelf fronts; (ii) the shear zone that sits between the coastline/fast ice and786

(iii) the semi-consolidated ice pack; and (iv) the highly dynamic outer tens to hundreds of787

kilometres of the ice cover, known as the marginal ice zone, which is characterised by the788

presence of surface waves (Fig. 6). Sea ice forms a nearly-continuous torus (interrupted by789

the Antarctic Peninsula) around Antarctica, which usually expands to an annual maximum790

of 18–19 million km2 in extent during winter and contracts to a minimum of 2–4 million km2
791

during summer. The majority of Antarctic sea ice is less than one year old, and only792

approximately half a metre to two metres thick on average (Kacimi & Kwok, 2020; Magruder793

et al., 2024), with the thickest ice resulting from mechanical deformation, for example, into794

pressure ridges (Fig. 6). From the global climate perspective, there is a focus on circumpolar795

Antarctic sea ice extent and/or volume metrics. A range of large- to small-scale dynamic796

(and thermodynamic) ocean processes directly determine the Antarctic sea ice distribution797

and properties relevant to the global scale.798

Polynyas are an additional phenomenon that form around the Antarctic margin. They799

are typically large openings within the sea ice (i.e., not leads or fractures) where sea ice800

would be expected for thermodynamic reasons alone, which are created by local melting801

of sea ice by warm water upwelling and/or katabatic winds driving sea ice offshore from802

near-coastal areas. Polynyas range from small, ephemeral polynyas, through to the very803

large Ross Sea and Cape Darnley polynyas, as well as the open ocean Maud Rise polynya.804

In winter, they are “sea ice factories”, in which ≈ 10% of Antarctic sea ice is producted805
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and with the Ross Sea polynya by far the most prolific (Tamura et al., 2008; Ohshima et806

al., 2016; Zhou et al., 2023). A contemporary review of polynyas is given in §§ 4.2.2–4.2.3,807

rather than in § 3.2, due to their important influence on turbulent convection.808

3.2.1 Sea ice drift809

Sea ice away from the coast, islands or icebergs (where it is usually found as fast ice)810

is able to drift under forcing from the atmosphere and ocean, and is known as “drift ice” or811

“pack ice”. This drift redistributes the pack, and influences sea ice extent, with changes in812

concentration and thickness being the result of differential ice velocities. Generally slower813

speeds are found in the shear zone, where grinding, rafting and locking between ice floes814

(discrete chunks of sea ice) create internal stresses that slow the drift. Faster drift speeds815

occur at more equatorward latitudes (north of the Antarctic Divide), where the sea ice816

cover follows the Antarctic Circumpolar Current (§ 2.1). The fastest speeds are found in the817

unconsolidated outer margins of the ice cover, i.e., in the marginal ice zone (Heil & Allison,818

1999; Doble & Wadhams, 2006; Alberello et al., 2020).819

On time scales of hours or less, atmospheric stress due to winds is generally the dominant820

driver of sea ice drift (Weeks, 2010), with the motion opposed by oceanic stress. Both821

atmospheric and oceanic stresses are usually modelled using quadratic drag laws (Weeks,822

2010). The drag coefficients can be decomposed into viscous “skin” drag and “form” drag,823

where the latter depends on the sea ice roughness, created by an accumulation of relatively824

small-scale features, particularly floe edges in the marginal ice zone and pressure ridges in825

the semi-consolidated sea ice pack (Tsamados et al., 2014). The oceanic stress also involves a826

turning angle, which represents the difference in direction between the geostrophic flow and827

the stress on the sea ice surface due to the Coriolis force (counter-clockwise in the Southern828

Hemisphere; Weeks, 2010). For simplicity, turning angles are often applied directly in the829

sea ice–ocean drag term, but more sophisticated models derive them from the ocean surface830

Ekman layer (Park & Stewart, 2016).831

Atmospheric and oceanic drag manifest from similar underlying physics (Leppäranta,832

2011). However, as typical sea ice motion are much slower than wind speeds but comparable833

to ocean current speeds, the wind acts as an external force, whereas ice and ocean dynamics834

are coupled as the sea ice is embedded within the upper ocean (Heil & Hibler, 2002). The835

coupled ice and ocean dynamics are dependent on the relative sea ice velocity, sea ice basal836

roughness and the ocean stratification, all under the influence of the Coriolis force (McPhee,837

2008). The Coriolis force influences sea ice drift through the sea surface tilt, which has been838

attributed as the source of sea ice drift rotation close to the inertial frequency in water too839

deep to be caused by tidal currents (Alberello et al., 2020).840

3.2.2 Surface wave–floe interactions in the marginal ice zone841

The outer fringes of Antarctic sea ice are in contact with the sea ice-free Southern842

Ocean and its energetic surface waves (§ 5.1.3). Thus, Antarctic sea ice has a wide and843

almost circumpolar marginal ice zone (Day et al., 2023). Surface waves affect sea ice in844

the marginal ice zone (Fig. 9) by (i) breaking up larger floes (see below), (ii) herding the845

floes into bands (Wadhams, 1983; Shen & Ackley, 1991), (iii) promoting growth of new ice846

(e.g., frazil) during freezing conditions, (iv) forcing ice drift through momentum transfer847

(radiation stress; T. D. Williams et al., 2017; P. Sutherland & Dumont, 2018; Dumont,848

2022), (v) causing floes to collide and raft (S. Martin & Becker, 1987, 1988; Dai et al., 2004;849

Rottier, 1992; Bennetts & Williams, 2015; Yiew et al., 2017; Herman et al., 2019), which850

may erode the floe edges and produce ice rubble, (vi) overwashing the floes (Skene et al.,851

2015; Nelli et al., 2020; Pitt et al., 2022), which influences thermodynamic ice properties852

by removing snow cover and creating saline ponds on the floe surfaces (Ackley & Sullivan,853

1994; Massom et al., 1997, 2001), and (vii) generating turbulence in the water below floes854

that increases basal melt (Wadhams et al., 1979; M. Smith & Thomson, 2019). Overall,855
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Figure 9. Schematic of surface wave–ice floe interaction processes in the marginal ice zone,

including (from left to right): wave-induced breakup of a large floe; subsequent northward drift

of small broken floes due to off-ice winds, and enhanced melt in summer (indicates by white tear

drops below ice floes); wave overwash of a floe; herding and rafting of small floes; floe–floe collisions;

production of frazil in the open water created between floes during winter. The spirals indicate

turbulent mixing.

the waves create a fragmented ice matrix in the marginal ice zone, containing a mixture of856

floes (smaller than in the semi-consolidated sea ice pack) and unconsolidated sea ice (grease,857

pancakes, etc.). Sea ice in the marginal ice zone is highly mobile and responds rapidly to858

forcing by strong winds over the Southern Ocean (Vichi et al., 2019; Alberello et al., 2020).859

Breakup of large floes is considered to be the primary effect of waves on sea ice. Ice860

floes larger than prevailing wavelengths experience a hydroelastic response to wave motion861

(Montiel, Bonnefoy, et al., 2013; Montiel, Bennetts, et al., 2013; Meylan et al., 2015),862

creating so-called “flexural-gravity waves” (Bennetts et al., 2007; Vaughan et al., 2009).863

Sea ice is a brittle material (Timco & Weeks, 2010), which fractures when the flexural864

stresses/strains exceed the material strength (Montiel & Mokus, 2022). The generally held865

view of the wave-induced breakup process (Squire et al., 1995) is of a large wave event866

breaking up a quasi-continuous sea ice (e.g., a very large floe) into smaller floes that then867

form or expand the marginal ice zone, in which floes larger than the prevailing wavelengths868

are broken up further, thus forming a marginal ice zone where mean floe sizes increase869

away from the sea ice edge as wavelengths increase (Squire & Moore, 1980). The standard870

theoretical description of the wave-induced breakup process is of regular (unidirectional871

and monochromatic) flexural-gravity waves in a homogeneous floating elastic plate causing872

stresses/strains that exceed a critical threshold (Kohout & Meylan, 2008; Vaughan & Squire,873

2011; Mokus &Montiel, 2021; Montiel & Mokus, 2022). Experiments in ice tanks (Dolatshah874

et al., 2018; Herman et al., 2018; Passerotti et al., 2022) and in a “natural laboratory” (in875

a bay of the Gulf of St Lawrence using ship generated waves; Dumas-Lefebvre & Dumont,876

2023) have given new understanding of the breakup process. However, measuring breakup877

in the marginal ice zone remains challenging, despite it being identified as a priority three878

decades ago (Squire et al., 1995; Voermans et al., 2020, 2021).879
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Figure 10. The main panel (left-hand side) is a schematic of sea ice at finescale. Above the

dashed line, air bubbles (white circles) and brine inclusions (elongated blue shapes) are trapped

within the impermeable, solid ice (sky blue). Below the line the ice is permeable, allowing brine

drainage and fresh water inflow, i.e., a mushy layer. A zoom in on the microscale for a brine

inclusion is given (right). The liquid brine region is surrounded by ice, and the arrows point in the

direction of the salt flux during the freezing process.

Wave–floe interaction potentially link directly to sea ice extent and, hence, the large-880

scale climate, through a positive (summer) feedback (Bennetts et al., 2010; Montiel &881

Squire, 2017; Horvat, 2022). The positive feedback involves an initial weakening of the sea882

ice that allows waves to travel farther into the sea ice-covered ocean, so that a wave event883

can break the ice cover at a deeper location than prior to the initial weakening. The breakup884

leaves the floes more susceptible to lateral melting during the summer (Steele, 1992), which885

further weakens the sea ice and allows waves to travel even deeper, and so on. It has been886

suggested that the positive feedback has already been triggered in the Arctic due to initial887

weakening by warming temperatures (Squire, 2011), although this has not been quantified888

through direct measurements yet. However, the feedback is implicit in the comparison889

between trends in Antarctic ice edge latitude and local significant wave heights (Kohout890

et al., 2014). A negative (winter) feedback has also been proposed, in which wave-induced891

breakup creates openings in the ice cover (leads; Fig. 6) that freeze over to strengthen the892

sea ice and protect the location against future wave events (Squire, 2011; Horvat, 2022).893

3.2.3 Brine inclusions to convective channels894

The small-scale structure of sea ice alters its thermal and physical properties, which is895

important to understand how it interacts with the Southern Ocean (and the atmosphere).896

Sea ice is a complex blend of solid H2O crystals, liquid brine inclusions, air bubbles and897

precipitated salts (Fig. 10), whose volume fractions, distributions and connectedness depend898

strongly on temperature, salinity and depth (Perovich & Gow, 1996; Light et al., 2003;899

Golden et al., 2007; Golden, 2009; D. N. Thomas, 2017; Kraitzman et al., 2022). Moreover,900

sea ice usually consists of a layer of “granular textured ice” with random crystal orientations,901

above a layer of “columnar textured ice” with well-ordered ice crystals, separated by a902

transition layer (Eicken, 2003; Lund-Hansen et al., 2020; Oggier & Eicken, 2022). Due to903

dynamic growth conditions in the Southern Ocean, more than 60% of the total thickness of904
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Antarctic sea ice is primarily composed of frazil ice, and, in the upper layer of the ocean,905

frazil ice tends to form floes that contain a significant amount of ice with a granular texture.906

This leads to the dominant layer of Antarctic sea ice being characterised by a granular907

texture (Lange et al., 1989; D. N. Thomas, 2017).908

The Southern Ocean controls Antarctic sea ice melt from mid-November to mid-January.909

During the melt season, brine inclusions in the sea ice (micrometre–centimetre length scale910

regions of high salt concentration; Fig. 10 zoom; Kraitzman et al., 2022) expand and merge911

to form up to metre-long brine channels, which allow fluid, nutrients and salt to exchange912

between the ocean and the ice (Golden et al., 1998; Golden, 2001). For Antarctic sea ice,913

brine channels are vertically oriented with diameters ≈ 200µm (Weissenberger et al., 1992),914

and the brine fluid flow in the channels is a critical factor in the facilitation of thermal915

fluxes, which leads to an enhancement in the thermal conductivity (Lytle & Ackley, 1996;916

Trodahl et al., 2001). Moreover, the brine drainage leads to the formation of air bubbles,917

which result in greater sea ice albedo (Perovich, 1996).918

On the centimetre–metre length scale, sea ice is commonly described as a “mushy919

layer” (solid ice crystals mixed with interstitial liquid brine), bounded from above by an920

impermeable layer and from below by a fully liquid layer (Fig. 10; Feltham et al., 2006). The921

dense, salty interstitial fluid is trapped and stagnant within the ice matrix and is assumed922

to be in local thermodynamic equilibrium, which prevents the solid ice from melting. As sea923

ice grows, the interstitial liquid in the mushy layer undergoes convection due to differences924

in temperature and density, leading to the release of salt into the ocean. This brine drainage925

phenomenon is accompanied by inflow of less saline seawater from the surrounding mushy926

layer (Worster et al., 2000; Worster & Jones, 2015; A. Wells et al., 2011; A. J. Wells et927

al., 2019). With a local convective flow partially occupying the mushy layer, brine drainage928

occurs in only part of the sea ice. However, as the temperature increases and the sea929

ice becomes more porous, the convective flow eventually spreads throughout the entire sea930

ice depth, utilising the network of brine channels. Oceanic currents exert pressure on the931

interface layer between the sea ice and the ocean, affecting the convective brine flow (Feltham932

et al., 2002). The brine rejection process is crucial in the formation of Dense Shelf Water933

and ultimately the Antarctic Bottom Water that fills the abyss of the global oceans (see934

§2.5).935

3.3 Closing the loops936

The Southern Ocean connects to the southern cryosphere through Antarctic ice shelves937

(§ 3.1) and sea ice cover (§ 3.2). The Southern Ocean influences the extents and strengths of938

both ice shelves and sea ice covers. Exchanges between the Southern Ocean and sub-ice shelf939

water cavities over a range of scales dictate basal melting of ice shelves (§§ 3.1.1–3.1.6). The940

Southern Ocean also plays a role in ice shelf mass loss via iceberg calving, through ice shelf941

flexure forced by surface waves, although this phenomenon is suppressed in the presence942

of surrounding sea ice cover (§ 3.1.7). Southern Ocean circulation influences the large-scale943

redistribution of sea ice via drift (§ 3.2.1) and heat flux from the ocean connects with sea944

ice microstructure to control sea ice melt (§ 3.2.3). Surface waves have a major impact on945

the outer part of the sea ice cover (the marginal ice zone), which modulates its dynamics946

and thermodynamic coupling with the ocean (and atmosphere; § 3.2.2). In turn, ice shelves947

and sea ice have a major influence on Southern Ocean dynamics, by reducing or eliminating948

momentum transfer between the atmosphere and ocean, which affects large-scale circulation949

(§ 2), although sea ice drift can have the opposite effect and increase internal ocean stresses950

(4.1.1). Ice shelves and sea ice can generate and trap internal waves (§ 5.3). In contrast, sea951

ice also suppresses or eliminates the generation of surface waves by winds and attenuates952

waves over distance travelled through the sea ice-covered ocean (§ 5.1.3), which reduces953

upper ocean mixing in these regions (§ 4.3.1). Ice shelves also influence upper ocean mixing954

(in combination with tides; § 4.3.1), as well as mesoscale turbulence (§ 4.1.5). Another955

major influence of the Southern Ocean sea ice is through ice melt, which creates buoyancy956
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forcing to support large-scale circulation (as already described; § 2) and turbulence, such957

as convection in coastal polynyas (§ 4.2.2). These turbulence processes will be described in958

detail in the next section (§ 4), with wave processes to follow in § 5.959
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4 Turbulence960

Southern Ocean turbulence is driven by a wide range of processes and acts on many961

different scales. Turbulence is inherently characterised by nonlinear and chaotic motions.962

It is often difficult to establish the drivers of turbulence, which makes quantifying and963

categorising turbulence a challenge. Here, Southern Ocean turbulence is broadly categorised964

into eddies, jets and fronts (§ 4.1), convection (§ 4.2) and mixing (§ 4.3). Eddies, jets and965

fronts lie broadly in the realm of mesoscale turbulence, close to geostrophic and hydrostatic966

balance. Mesoscale turbulent processes are affected by a large range of factors, such as wind967

and buoyancy forcing, along with interactions with the mean flow, eddies, topography and968

more. Convection is driven by vertical buoyancy differences and is characterised by vigorous969

vertical motion and turbulent plumes. It can be confined to the upper ocean or extend to970

depth as polynya convection (§§ 4.2.2–4.2.3). Mixing refers to three-dimensional turbulent971

processes that act to blend waters of different properties. To help categorise the wide range972

of processes that contribute to turbulence, we break the Southern Ocean into upper, interior973

and bottom layers (Fig. 11).974

There exist past reviews and books on various aspects of ocean turbulence. For eddies,975

jets and fronts, the review by A. F. Thompson et al. (2018) (also mentioned in § 2) considers976

the Antarctic Slope Current, which is an area of strong mesoscale turbulence processes,977

Ferrari and Wunsch (2009) discuss the energy framework for oceans, and McGillicuddy Jr978

(2016) examines a range of interactions at the oceanic mesoscale. For convection, J. Marshall979

and Schott (1999) review open ocean convection across the whole of the Earth’s oceans,980

while Morales Maqueda et al. (2004) review polynyas, including polynya convection and981

dense water formation. For more detailed reviews of mixing processes, the reader is referred982

to Whalen et al. (2020), Moum (2021) and Gille et al. (2022), as well as other relevant983

chapters of the recent Ocean Mixing book by Meredith and Naveira Garabato (2021).984

4.1 Eddies, Jets and Fronts985

The Southern Ocean is renowned for having one of the strongest turbulence fields in the986

global ocean, which has been shown using the metric of eddy kinetic energy (Ferrari & Wun-987

sch, 2009). A common definition of eddy kinetic energy is the kinetic energy of deviations988

from the time-mean velocity field (A. R. Robinson, 1983). Most of this energy is found in the989

form of mesoscale turbulence, defined here as nonlinear motion close to geostrophic and hy-990

drostatic balance. Mesoscale turbulence spreads energy across a broad range of length scales991

through nonlinear interactions, resulting in a complex, highly inhomogeneous and unsteady992

state of motion (Rhines, 1979). Because of the latitudinal dependence of the Rossby radius993

of deformation, the mesoscale range varies over the Southern Ocean, from 1–10 km near the994

Antarctic continent to 100–1000 km in the Antarctic Circumpolar Current (Fig. 12).995

A generic feature of mesoscale turbulence is its tendency to form long-lasting, spatially996

localised features, such as jets (narrow, quasi-zonal currents), fronts (sharp gradients in997

temperature or salinity), and eddies (spatially and/or temporally coherent vortices). There998

is no uniquely accepted definition of eddies, jets or fronts (Chapman et al., 2020). For999

example, the dominant circulation feature of the Southern Ocean is the Antarctic Circum-1000

polar Current (§ 2.1), which is composed of numerous jets that interact with each other1001

(A. F. Thompson, 2008), coinciding with and flanked by sharp fronts, and co-located with1002

the most active eddy field in the global ocean (Fu et al., 2010). The view is further compli-1003

cated by the strong feedbacks that exist between these features. For example, jets become1004

baroclinically and/or barotropically unstable to generate eddies, while eddies can flux mo-1005

mentum to sharpen jets (Waterman & Hoskins, 2013). Thus, this review tends towards1006

aggregating these features into the broad category of mesoscale geostrophic turbulence.1007

In order to provide an overview of the dynamics of Southern Ocean mesoscale turbu-1008

lence, we examine the sources, interactions and sinks in the eddy kinetic energy budget.1009

The primary source of eddy kinetic energy in the Southern Ocean is the generation of insta-1010
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Figure 11. Schematic to illustrate surface, interior and bottom boundary layers in the Southern

Ocean, with a summary of turbulence processes acting in each layer. The ocean colours indicate

the density, from lighter (dark orange) to denser (dark blue) waters, and isopycnal contours are the

interfaces between the layers. Note that the three layers are offset in latitude and disconnected in the

vertical, with the surface layer 0–300m depths, interior layer is 1000–4000m and bottom layer 4500–

5000m. The water masses shown are Subantarctic Mode Water (SAMW), Antarctic Intermediate

Water (AAIW), Circumpolar Deep Water (CDW), and Antarctic Bottom Water (AABW). Also

shown on the top panel are the Antarctic Circumpolar Current (ACC), Polar Front (PF) and the

Subantarctic Front (SAF).
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Figure 12. Mesoscale (and submesoscale) turbulent structures are ubiquitous in the Southern

Ocean. The Rossby number, defined as the vertical component of relative vorticity (∂v/∂x−∂u/∂y)

divided by the planetary vorticity (f), highlights dynamical features. The four insets show: the

Antarctic Slope Current (top right), a large-scale meander near the Macquarie Ridge and the

associated energetic mesoscale eddy field (bottom right), the spatial variation in the dominant

dynamical scale in the Southern Ocean (bottom left), and the highly energetic turbulence in Drake

Passage (top left). The velocity fields are snapshots from a regional simulation around Antarctica

at a 1/20◦ lateral resolution, performed with the Modular Ocean Model, version 6 (Adcroft et al.,

2019) by the Consortium for Ocean and Sea Ice Modelling in Australia (Kiss et al., 2020).

bilities in the large-scale flow, ultimately powered by energy input from the wind (§ 4.1.1)1011

and buoyancy forcing (§ 4.1.2). The equilibrium value of eddy kinetic energy in any region is1012

governed by the energy source and redistribution of eddy kinetic energy by the background1013

flow and other interactions, and also by the rate at which eddies dissipate their energy1014

(§ 4.1.6). This view of the eddy kinetic energy reservoir as a source-sink problem makes it1015

clear that a full understanding of the eddy field requires knowledge of both eddy formation1016

processes and eddy dissipation dynamics.1017

The mesoscale turbulence field is influenced directly via exchanges of energy with in-1018

ternal waves (§ 4.1.3). Feedbacks between different features can redistribute and influence1019

energy via self-interaction of the mesoscale turbulence field (§ 4.1.4). Topography plays an1020

important role in modulating the mesoscale dynamics of the Southern Ocean and connecting1021
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the large-scale circulation to smaller-scale, faster processes (§ 4.1.5). The geostrophic turbu-1022

lence field is influenced indirectly by other components of the ocean–atmosphere–cryosphere1023

system via their modulation of energy input by wind and buoyancy forcing. Thus, mesoscale1024

turbulence acts as the bridge between the global-scale circulation and small-scale processes1025

in the Southern Ocean.1026

4.1.1 Wind forcing1027

The power input from the atmosphere into the ocean is determined by the surface1028

wind stress. The wind stress describes an exchange of momentum between the air and1029

the water, which is mediated through the sea surface and includes influences from surface1030

gravity waves (§ 5.1). Wind stress is often calculated via a bulk formula, which implies that1031

it is proportional to |Uair−u|(Uair−u), where u is the ocean surface velocity and Uair is the1032

wind velocity at a reference height (typically 10m) above the sea surface. Two features in1033

the wind stress bulk formula are noteworthy. First, the wind stress is quadratic in velocity,1034

which implies that even if the average wind speed is zero in a region, there can still be a net1035

wind stress felt by the ocean. Second, the wind stress depends on the relative flow between1036

the atmosphere and the ocean, Uair −u, and therefore the ocean flow affects how the ocean1037

feels the atmosphere.1038

For a long time it was thought that most of the wind energy input resulted from the1039

correlation between the mean wind stress and mean currents, and that the time-varying1040

wind and ocean flow variability contribution was negligible (Wunsch, 1998; Scott & Xu,1041

2009). However, more recent studies have highlighted the important role of the synoptically1042

varying winds (here, this refers to winds varying on “short” timescales of hours to days),1043

which can result in a 70% increase in power input into the ocean from the winds (Zhai1044

et al., 2012). Most of this energy enters the ocean in the winter time and in regions with1045

strong synoptic wind variability, such as the Southern Ocean (Torres et al., 2022). The wind1046

stress injects energy into both geostrophic and higher frequency motions (especially near1047

the inertial frequency) and from the latter, near-inertial waves are energised that propagate1048

down below the mixed layer into the deep ocean (§ 5.3).1049

Generally, ocean velocities are much smaller than wind velocities, and, therefore, one1050

might expect that the relative flow contribution to the wind stress power input would be1051

insignificant. However, ocean flow features appear in much smaller length scales and vary1052

at much longer time scales than the synoptic variability of the winds. If the relative wind1053

and ocean flows are opposing, then winds damp the ocean flow and remove energy from the1054

ocean, particularly in eddy-rich regions like the Southern Ocean (Zhai et al., 2012). The1055

relative wind effect has a particularly large impact on mesoscale turbulence through “eddy1056

killing”, which results in a 20–40% reduction in mesoscale eddy kinetic energy compared1057

to a formulation of the surface stress that does not take ocean currents into account (e.g.,1058

Renault et al., 2016; Jullien et al., 2020).1059

The presence of sea ice alters the relationship between atmospheric winds and momen-1060

tum transfer to the ocean surface. In regions with drift sea ice (§ 3.2.1), the momentum1061

transfer from atmosphere to ocean can be three times that for an ice free interface (T. Mar-1062

tin et al., 2014). However, at higher concentrations, the internal stresses in sea ice can1063

reduce the momentum transfer into the ocean, potentially even resulting in an ice-ocean1064

drag that decelerates ocean currents (Meneghello et al., 2018; A. L. Stewart et al., 2019).1065

Landfast sea ice and ice shelves are critical elements of the coastal cryosphere through their1066

complete removal of wind stress forcing (§ 3).1067

4.1.2 Buoyancy forcing1068

Buoyancy forcing is another driver of mesoscale geostrophic turbulence in the South-1069

ern Ocean. The presence of stratification allows baroclinic modes of instability to generate1070
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geostrophic turbulence, while also weakening the barotropic potential vorticity constraints1071

on geostrophic flow (Cushman-Roisin & Beckers, 2011). The large scale meridional slop-1072

ing of isopycnals across the Antarctic Circumpolar Current region is maintained by the1073

wind (Ferrari & Wunsch, 2009). Mesoscale turbulence is tightly coupled to stratification1074

by working to flatten these isopycnals. For example, increased heat storage north of the1075

Subantarctic Front has been linked to an acceleration of the zonal flow (Shi et al., 2021).1076

In addition, baroclinic instability is central to the dynamics of standing meanders of the1077

Antarctic Circumpolar Current (Watts et al., 2016; Foppert et al., 2017; Youngs et al., 2017;1078

Constantinou & Hogg, 2019). Interactions between Southern Ocean jets, topography, and1079

stratification can also lead to rapid changes in ocean ventilation (Klocker, 2018).1080

Southern Ocean stratification is influenced by many processes, which can also go on1081

to impact mesoscale turbulence. Some processes, such as sea ice melt and surface heating,1082

act to stratify the water column (Haumann et al., 2020). Others, such as convection and1083

mixing, decrease the vertical stratification. Meltwater from ice sheets and ice shelves leads to1084

fresh, cold surface water near Antarctica. For example, the meltwater plume from ice shelf1085

melting modifies the ocean stratification and uptake of surface buoyancy, which will go on1086

to influence the mesoscale turbulence field. Fast ice reduces ocean–atmosphere heat and salt1087

exchanges, replacing them with ice–ocean exchanges of melting and freezing. Vertical mixing1088

by mesoscale turbulence underneath sea ice dissipates eddy kinetic energy and reduces sea1089

ice thickness by up to 10% (Gupta et al., 2020). Strong horizontal density gradients from1090

vertical convective mixing can provide energy for geostrophic turbulence to restratify that1091

region (H. Jones & Marshall, 1997; Kurtakoti et al., 2018).1092

4.1.3 Internal wave interactions1093

The geostrophic turbulence field in the ocean continuously exchanges energy with the1094

internal wave field (E. D. Brown & Owens, 1981; Polzin, 2010; Polzin & Lvov, 2011).1095

Internal waves “see” eddies and jets as a slowly moving and usually larger-scale flow from1096

which they can both extract or input energy, depending on the relative direction of the1097

eddying flow and wave propagation. It has been argued that energy exchange with internal1098

waves is a significant net sink of eddy energy (Polzin, 2008, 2010), although other studies1099

in the Southern Ocean have found the opposite effect (Cusack et al., 2020; Shakespeare &1100

Hogg, 2019). As such, the overall effect of internal waves on eddies and jets remains a topic1101

of active research (§ 5.3).1102

4.1.4 Mesoscale turbulence self-interactions1103

Mesoscale turbulence in the Southern Ocean exhibits many of the nonlinear self-interactions1104

seen in two-dimensional and quasi-geostrophic turbulence under the constraints of rotation1105

and stratification (Hopfinger & Van Heijst, 1993). The level of eddy self-interaction can1106

be quantified using a nonlinearity parameter, which expresses the ratio of the rotational1107

velocity of the eddy to its translational velocity (Chelton et al., 2011; Klocker et al., 2016).1108

Southern Ocean eddies, particularly in the Antarctic Circumpolar Current, typically have1109

large values of this parameter (of order ten), implying that the eddies cannot be regarded1110

as linear perturbations to a quiescent background, but instead modify the surrounding flow1111

by trapping and transporting fluid (Chelton et al., 2011). These self-interactions include1112

eddy merging and splitting events (Cui et al., 2019), the formation of quasi-stable dipoles,1113

quadrupoles and larger eddy assemblages (e.g., Gallet & Ferrari, 2020), and the cascade of1114

energy from small to large scales (Salmon, 1998; Scott & Wang, 2005; Aluie et al., 2018;1115

Balwada et al., 2022). The inverse energy cascade is consistent with a pronounced sea-1116

sonal cycle in eddy kinetic energy and eddy diameter observed in a 25-year climatology1117

of satellite altimetry measurements (Mart́ınez-Moreno et al., 2021), where small-scale (di-1118

ameter < 120 km) coherent eddies peaked in amplitude in mid-summer, while large-scale1119

(> 120 km) eddies peaked in autumn. The findings suggest an inverse cascade from small1120
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scales, driven by baroclinic instability early in the summer, to large diameter eddies which1121

grow in amplitude later in the season.1122

Eddy-mean flow interactions are mediated by eddy fluxes of buoyancy and momentum1123

(Q. Li et al., 2016). For example, strong jets become baroclinically and/or barotropically un-1124

stable to generate eddies (Phillips & Rintoul, 2000; Chapman et al., 2015; Watts et al., 2016;1125

Youngs et al., 2017; Foppert, 2019; Constantinou & Hogg, 2019), while eddies can flux mo-1126

mentum upgradient to sharpen jets (Waterman & Hoskins, 2013). Eddy momentum fluxes1127

act to accelerate (for a converging momentum flux) or decelerate (for a diverging momentum1128

flux) the Antarctic Circumpolar Current near topographic features such as the Drake Pas-1129

sage and Campbell Plateau (Morrow et al., 1994; Ivchenko et al., 1997; R. G. Williams et al.,1130

2007). Eddy geometry (the eddy shape, size, and anisotropy) provides a useful framework1131

for characterising eddy-mean flow interactions (D. P. Marshall et al., 2012; Waterman &1132

Lilly, 2015). Eddy buoyancy fluxes are key in setting the slope of isopycnal surfaces, thereby1133

influencing the strength and stability of the Antarctic Circumpolar Current (Karsten et al.,1134

2002; J. Marshall & Radko, 2003; Olbers et al., 2004; Olbers & Visbeck, 2005).1135

4.1.5 Topographic effects1136

Bottom topography plays an important role in modulating the Southern Ocean mesoscale1137

turbulence field (Chelton et al., 1990; Gille & Kelly, 1996). Models and observations indicate1138

that enhanced eddy kinetic energy, cross-frontal transport, and eddy-induced upwelling can1139

be found downstream of major topographic features (Fig. 13; Foppert et al., 2017; Tamsitt1140

et al., 2018; Barthel et al., 2022; Yung et al., 2022). Topography also plays a pivotal role1141

in modulating jet evolution. Observations and idealised models show that the formation of1142

jets, their meridional spacing and variability, and associated transport depend on the length1143

scale and steepness of the topographic features (A. F. Thompson, 2010; Boland et al., 2012;1144

Chapman & Morrow, 2014; Freeman et al., 2016; Constantinou & Young, 2017).1145

Near the Antarctic margins, ice topography can also influence mesoscale geostrophic1146

turbulence. Rapid changes in water column thickness near ice shelf and glacier tongues1147

modify local angular momentum balances (van Heijst, 1987). Strong potential vorticity1148

gradients occur at ice-shelf fronts (Steiger et al., 2022), where the ice draft may be greater1149

than half the local seabed depth. The ice creates a barrier against which water may pool1150

and a strong along-front flow may develop (Malyarenko et al., 2019). There is evidence that1151

this front provides an impediment to barotropic processes but that baroclinic transport can1152

persist (Wåhlin et al., 2020; Steiger et al., 2022) enabling penetration of heat beneath ice1153

shelf frontal regions (C. L. Stewart et al., 2019; Davis et al., 2022).1154

4.1.6 Dissipation of eddy kinetic energy1155

The primary source of eddy energy is the generation of instabilities in the large-scale1156

flow, ultimately powered by wind and buoyancy forcing (§§ 4.1.1–4.1.2). In the Southern1157

Ocean, both barotropic and baroclinic instability contribute to the eddy field, although1158

baroclinic instability is expected to dominate at the mesoscale (Youngs et al., 2017). How-1159

ever, the mesoscale energy has a largely upscale cascade, meaning that energy is returned1160

to the large-scale flow field. This upscale cascade can be considered a consequence of the1161

conservation of potential vorticity and theoretically applies to balanced flows at low Rossby1162

number and in the interior of the ocean (Rhines, 1977). It follows that situations in which1163

balance is broken yield the possibility of a forward cascade of energy to the submesoscales,1164

internal waves and shear-driven turbulence. The main candidate mechanisms for loss of bal-1165

ance involve interactions at the ocean surface or bottom. At the surface, eddies can generate1166

filaments leading to “frontogenesis”, thereby breaking the constraint of low Rossby number1167

flow and creating an active submesoscale flow field (Barkan et al., 2015; McWilliams, 2021).1168

Additionally, the rotation of coherent vortices leads to a wind-stress torque that directly1169

damps eddies (Zhai et al., 2012). Submesoscale instabilities near sloping bottom boundaries1170
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Figure 13. Eddies, fronts and jets in the Kerguelen Plateau region. (a) Snapshot of sea surface

temperature (colours) and sea surface height (cyan contours) from the ACCESS-OM2-01 model.

(b) Eddy kinetic energy (colours), sea surface height and southward eddy thickness fluxes (from

results by Yung et al., 2022) averaged over a 10-year simulation. Gray contours in both panels show

bathymetry.

may drive loss of balance (Callies, 2018; Wenegrat et al., 2018; Wenegrat & Thomas, 2020).1171

Western boundary currents may act as an “eddy graveyard” (Zhai et al., 2010), likely in-1172

volving interactions between eddies and shoaling topography, such as frictional (Evans et1173

al., 2020; Wright et al., 2013) or dynamical (Dewar & Hogg, 2010) mechanisms.1174

One dynamical mechanism that removes energy from eddies is the generation of internal1175

waves from eddy-topography interaction (§ 5.3.1). The intense and deep reaching mesoscale1176

flow of the Southern Ocean results in bathymetric interactions that generate Doppler-shifted1177

internal waves, such as lee waves. The breaking of these waves (§ 5.1.1) exerts a drag on1178

the background mesoscale flow. Naveira Garabato et al. (2013) evaluated time-mean lee1179

wave drag globally and found that, while it is a minor contributor to the ocean dynamical1180

balance over much of the ocean, it is a significant player for Antarctic Circumpolar Current1181

dynamics. Extending this estimate to transient eddies in the Southern Ocean, Yang et al.1182

(2018, 2021) have shown that lee wave drag processes dominate over the turbulent bottom1183

boundary layer drag for eddy dissipation, a result consistent with previous results from1184

higher resolution idealised models (Nikurashin et al., 2013).1185

It has also been proposed that loss of balance can occur spontaneously in the ocean, in1186

the absence of surface forcing or bottom interactions (Molemaker et al., 2005; Shakespeare,1187

2019). Simulations show that spontaneous emissions of internal gravity waves occurs in1188

balanced flow, but while the energy transferred may be locally important, it is unlikely to1189

be a regionally or globally significant sink of eddy energy (Vanneste, 2013; Nagai et al., 2015;1190

Shakespeare & Hogg, 2017; Chouksey et al., 2018). Alternatively, the exchange of energy1191

between eddies and surface- or bottom-generated internal waves can, in some circumstances,1192

result in a net extraction of energy from the eddy field into internal waves (§ 5.3.2).1193
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Despite the range of available mechanisms for eddy dissipation, there is no clear view1194

of which mechanism dominates, nor a demonstration of the relative magnitude of these1195

mechanisms in the Southern Ocean.1196

4.2 Convection1197

Convection is a type of flow driven by a vertical buoyancy differential that, in the ocean,1198

is due to temperature and salinity differences. Unstable buoyancy differences, such as cold1199

and/or saline water overlying warm and/or fresh water, trigger small-scale three-dimensional1200

motions commonly known as “turbulent convection”. Convection is often characterised1201

by plumes that vertically flux buoyancy and mix with the ambient ocean. Buoyancy loss1202

through various surface drivers (net cooling, evaporation, and sea ice formation) is a primary1203

mechanism for triggering this turbulent convection and dense water formation. The domi-1204

nant convection processes influencing Southern Ocean dynamics are mixed layer convection1205

and polynya (coastal and open ocean) convection, as discussed in the following sections.1206

4.2.1 Upper mixed layer convection1207

Turbulent convection in the upper ocean occurs when surface cooling, evaporation1208

and/or brine rejection leads to a gravitationally unstable water column. Various surface1209

forcings (e.g., wind stress, evaporation and precipitation) drive small-scale eddies that trig-1210

ger convection. Turbulent convection is strongly linked to the mixed layer depth, which1211

is the uppermost part of the ocean characterised by a homogeneous density distribution.1212

Over the Southern Ocean, the mixed layer experiences a strong seasonal cycle and is deeper1213

during the Austral winter and shallower during the Austral summer (Fig. 14; Sallée et al.,1214

2006; Dong et al., 2008; Ren et al., 2011; Pellichero et al., 2017; Buongiorno Nardelli et al.,1215

2017). In broad terms, the deep winter mixed layer is mostly driven by convective processes,1216

either from temperature inversions during surface cooling or salinity inversions during brine1217

rejection, or from a combination of these two effects (Pellichero et al., 2017; Clément et al.,1218

2022). Convection becomes less pronounced during summer due to the increased stability1219

in the water column from surface heating and sea ice melting.1220

Most Southern Ocean regions experience moderate to strong seasonality resulting in1221

a large variation of heat and salt fluxes at the ocean surface. Mixed layer properties and1222

dynamics are very different between sea ice covered and free zones. The spatial variation of1223

the mixed layer depth is more pronounced in the latitudinal direction due to both variation1224

of air–sea and ice–ocean fluxes, leading to a meridional banded structure of the winter mixed1225

layer depth across the Southern Ocean. This band is deep near the Antarctic continent,1226

becoming shallower farther offshore, before deepening again along the northern flank of the1227

Antarctic Circumpolar Current (Fig. 14c,f; Pellichero et al., 2017; Wilson et al., 2019). The1228

winter deep mixed layer region to the north of the Subantarctic Front is where Subantarctic1229

Mode Water is formed (McCartney, 1977).1230

In the region free of sea ice, the seasonal cycle of air–sea interactions affects the heat1231

content in the mixed layer (Sallée et al., 2006; Dong et al., 2007, 2008; Pellichero et al., 2017)1232

with warming of the subsurface ocean during spring and summer and cooling during autumn1233

and winter. A large buoyancy loss from the ocean to the atmosphere during wintertime1234

causes an unstable temperature inversion leading to vertical convection and a deeper mixed1235

layer. A density inversion in the upper ocean is observed over a wide area spanning the1236

Antarctic Circumpolar Current and further north, including mode water formation regions.1237

The net vertical heat flux out of the ocean surface dominants the heat budget of the mixed1238

layer in autumn and winter (Pellichero et al., 2017), with secondary cooling effects from1239

vertical entrainment of cold ambient water at the bottom of the mixed layer (Dong et al.,1240

2007). Horizontal Ekman advection of cold water from the south due to strong winds across1241

the Southern Ocean also contributes to cooling the upper ocean throughout the year.1242
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Figure 14. Surface fluxes and mixed layer depth in the Southern Ocean for Austral (a–c) summer

and (d–f) winter. (a,d) The buoyancy flux due to the net surface heat flux, Bq. (b,e) The buoyancy

flux due to the net surface salt flux, Bp. (c,f) Mixed layer depth (MLD). Fine black lines represent

(a,b,d,e) sea ice extent, and (c,f) main fronts of the Antarctic Circumpolar Current, with the thick

black line corresponding to the maximum seasonal sea ice extent. Fluxes are calculated based on

the SOSE reanalysis product (Mazloff et al., 2010). (c,f) reproduced from Pellichero et al. (2017).

Sea ice covers a major part of the Southern Ocean in winter, insulating the ocean from1243

the cold atmospheric air and minimising the heat loss. The start of winter sees sea ice1244

formation resulting in brine rejection and cold surface waters, which leads to a top-heavy1245

water column susceptible to convective instabilities. The sea ice induced fluxes are the1246

dominant contributors to the heat and salinity budgets of the upper ocean, with negligible1247

contributions from lateral advection (by Ekman transport) and diffusion. The entrainment1248

of salt flux from the bottom of the mixed layer does play an important role in the salinity1249

budget of the mixed layer. From late autumn onward, the deepening of the mixed layer1250

entrains the underlying, relatively salty Circumpolar Deep Water into the mixed layer in1251

the Weddell Sea and Ross Ice Shelf regions, decreasing the overall buoyancy of the mixed1252

layer. The degree to which the Circumpolar DeepWater interacts with the mixed layer varies1253

around the Antarctic continent. For example, in the East Antarctic, the strong Antarctic1254

Slope Current and easterly winds tend to inhibit the entrainment of the Circumpolar Deep1255

Water into the surface mixed layer (A. F. Thompson et al., 2018). In addition to the above1256

processes, leads exist in many sea ice covered areas there (§3.2.2; Muchow et al., 2021), which1257

allow for the direct interaction between the cold atmosphere (frequently below −30◦C) and1258

the ocean, forming large localised convection driven by sensible heat loss and brine rejection1259

(S. D. Smith et al., 1990; Simmonds & Budd, 1991).1260

In early to mid-winter, the heat flux from the ocean, which warms the sea ice, is much1261

less than the heat loss to the atmosphere through the upper surface of the ice, resulting in1262

rapid sea ice growth and both temperature and salinity driven convection (Wilson et al.,1263

2019). As the under-ice mixed layer deepens, it cools to about freezing point while also1264
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becoming saltier. This entrainment provides an efficient mode for exchanging freshwater1265

along with heat and atmospheric gases (e.g., carbon dioxide, oxygen) between the deep ocean1266

and the atmosphere (Gordon, 1991). The entrainment of warm water continues to increase1267

the heat flux from ocean to ice. In late winter, when the ocean heat flux to the sea ice is more1268

than the heat loss to the atmosphere, the entrained heat melts the sea ice from below, and a1269

strong surface stratification establishes due to the release of freshwater from melting that can1270

rapidly slow down surface-driven convection and mixed layer growth. However, turbulence1271

can also be sustained by double-diffusive convection processes as cold and freshwater overlie1272

warm and salty water (§ 3.1.6). Evidence for double-diffusive convection has been reported1273

in observations of the subsurface water column both in the Weddell and Ross Seas during1274

late winter time (Shaw & Stanton, 2014; Bebieva & Speer, 2019).1275

4.2.2 Coastal polynya convection1276

The ocean around Antarctica is covered in sea ice during much of the year, particularly1277

in winter, except for pockets of open water known as polynyas (Morales Maqueda et al.,1278

2004). Polynyas generally lie close to the coast, with strong katabatic winds blowing any1279

newly-formed sea ice out to sea. Coastal polynyas are key regions for water mass transfor-1280

mation via atmosphere–sea ice–ocean interactions (Killworth, 1983; Tamura et al., 2008).1281

The process of coastal polynya convection begins at the surface, where there is buoyancy1282

loss due to a sudden cooling or an increase in sea ice production and brine rejection, or a1283

combination of both of these effects. In some circumstances, polynya convection is started1284

by brine rejection and then maintained by surface cooling, as convection continues to bring1285

warmer waters to the surface.1286

Buoyancy loss, from brine rejection or surface cooling, causes deepening of the upper1287

ocean mixed layer followed by convection that can reach the ocean floor (J. Marshall &1288

Schott, 1999). The ocean floor on the Antarctic continental shelf is typically a few hundred1289

metres deep, extending to 1 km near the shelf break (Amblas & Dowdeswell, 2018). The1290

convection region or “patch” is made up of plumes of around 1 km or less in width. Baro-1291

clinic eddies form at the edge of the convective patch, due to the strong horizontal gradient1292

in buoyancy between the dense convective region and surrounding waters. However, these1293

eddies may be dissipated by the neighbouring ice shelf or sea ice cover. The width of these1294

eddies will depend on the Rossby radius of deformation, which is roughly 5–10 km in coastal1295

polynya regions (e.g., ∼ 4 km near Ronne Ice Shelf; Årthun et al., 2013). Sustained coastal1296

convection is dependent on a number of driving factors coalescing under the right condi-1297

tions. In particular, coastal polynya convection needs continual access to the warm, salty1298

Circumpolar Deep Water heat reservoir that drives heat loss to the atmosphere and rapid1299

sea ice melt. Surface winds (katabatics and easterlies) are required to promote favourable1300

conditions for sea ice formation and the continued northward export of sea ice.1301

Surface water mass transformation in polynyas is often seasonal and localised. While1302

some polynyas are strong factories of convection and dense water formation throughout large1303

portions of the year, other polynyas do not produce significant dense water mass. Some of1304

the most productive regions of dense water formation are the Weddell Sea, Prydz Bay, Adélie1305

Land and Ross Sea (Morales Maqueda et al., 2004). Polynya convection can also undergo1306

changes if the surface conditions differ from year-to-year. Large grounded icebergs can act1307

as islands, leading to modified convection and ocean circulation. For example, a polynya1308

in Adélie Land was noted to decrease in dense water formation (leading into Adélie Land1309

Bottom Water) after newly-formed sea ice was blocked from exiting the polynya region by1310

a large grounded iceberg (Snow et al., 2018). Observations and modelling also demonstrate1311

that meltwater plumes from neighbouring ice shelves may freshen the surface waters in the1312

polynya region and result in a shut down of convection (Silvano et al., 2018; Moorman et1313

al., 2020). This can then have a feedback effect on the convection in polynyas downstream,1314

resulting in further reductions in convection (Silvano et al., 2018).1315
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Figure 15. Different stages of open-ocean convection shown in high-resolution direct numerical

simulations. Figure reproduced from Vreugdenhil and Gayen (2021) and based on the simulations

by Sohail et al. (2020).

4.2.3 Open ocean polynya convection1316

Open ocean convection is characterised by the rapid vertical heat exchange between the1317

surface and deep ocean, driven predominantly by sensible heat loss or brine rejection at the1318

surface of the ocean, and relatively unencumbered by local coastal processes (J. Marshall &1319

Schott, 1999). It occurs further offshore than coastal convection and is a more intermittent1320

phenomenon. In regions where open ocean convection is active, gaps in the sea ice cover1321

(polynyas) emerge and persist for weeks and up to several months (Comiso & Gordon, 1987).1322

Such polynyas have been observed in the Weddell Sea in 1974 (Gordon, 1978), and also to a1323

lesser extent in 2016 and 2017 (Jena et al., 2019; Campbell et al., 2019), and in the western1324

Cosmonaut Sea (persistent in Austral autumn and winter; Comiso & Gordon, 1987).1325

The life cycle of a typical open ocean convection event is relatively well-understood1326

(J. Marshall & Schott, 1999). In the first preconditioning phase, favourable local oceanic1327

conditions are set up that lower the thermodynamic barrier to rapid sensible heat exchange1328

with the atmosphere (Fig. 15a). In the second deep convection phase, deep, turbulent ocean1329

convection is triggered which spawns multi-scale convective chimneys and a geostrophic rim1330

current (Fig. 15b). Finally, given the right conditions, the rim current becomes baroclinically1331

unstable, pinching off high-buoyancy baroclinic eddies, which rapidly mix the convective1332

patch in the third lateral spreading phase (Fig. 15c). If favourable forcing conditions persist,1333

the convective event will reach a quasi-equilibrium state in the lateral spreading phase, with1334

minimal changes to the mixed layer or net vertical heat flux. The convection will only cease1335

when the subsurface heat reservoir has been depleted, or freshwater input at the surface1336

occurs, acting to restabilise the water column. Once such conditions cease, baroclinic eddies1337

rapidly break down the convecting patch via lateral mixing, restratifying the ocean and1338

encouraging reformation of sea ice (H. Jones & Marshall, 1997).1339

In the Southern Ocean, the Weddell Sea is a critical region for open ocean polynya1340

formation and convection. In the Weddell Sea, open ocean polynyas have been intermittently1341

observed around the Maud Rise seamount region, with the most recent notable example1342

being in 2016 and 2017. In the mid-1970s, such Maud Rise polynyas were a precursor1343

to the much larger and more consequential Weddell polynya, which emerged in 1974 and1344

persisted through to 1976. Over its life, the Weddell polynya reached a maximum extent of1345

250,000 km2, generated dense water at an average rate of 1.6–3.2 Sv, and reduced the heat1346

content of the underlying Weddell Deep Water by 12.6× 1020 J (§ 2.5; Gordon, 1982).1347
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Several candidate processes have emerged that, through complex interactions, likely1348

dictate the emergence and strength of the Maud Rise and Weddell polynyas. First, a period1349

of prolonged negative Southern Annular Mode conditions, aided by La Nina, can create1350

drier and cooler atmospheric conditions at the ocean surface, resulting in an increase in1351

sea ice production. The subsequent brine rejection acts to salinify the ocean surface and1352

reduce the stability of the water column (Gordon et al., 2007). Interactions of background1353

flow with Maud Rise, particularly in these weakly stratified conditions, may give rise to1354

a Taylor column (a stagnant region that can form over an obstacle in a rotating flow;1355

G. I. Taylor, 1923) that is isolated to the seamount, bringing warm, salty Weddell Deep1356

Water closer to the ocean mixed layer (Kurtakoti et al., 2018; Steur et al., 2007). Recent1357

work using observational datasets has also highlighted the influence of eddy transport in1358

warming the subsurface layer within the Taylor column in the lead up to the 2016–20171359

polynya opening (Gülk et al., 2023). Following all the various preconditioning effects, a1360

negative wind stress curl over the Weddell Sea would strengthen the Weddell Gyre, causing1361

the underlying Weddell Deep Water to upwell (Cheon et al., 2015) and melt sea ice in the1362

region. Cyclonic eddies may shed off Maud Rise, opening gaps in the sea ice and enabling1363

rapid heat loss to the atmosphere (D. M. Holland, 2001). Intermittent cyclones can also1364

provide a strong mechanical forcing, opening the sea ice pack and exposing the ocean surface1365

to the atmosphere (Francis et al., 2019; Z. Wei et al., 2022; Campbell et al., 2019).1366

Once a Maud Rise polynya is triggered, westward propagation of the polynya can yield a1367

larger Weddell polynya, especially if there is a large heat reservoir in the Weddell Deep Water1368

and the wind stress curl and Southern Annular Mode are strongly negative (Kurtakoti et al.,1369

2021). Note that Weddell polynya formation is not guaranteed once a Maud Rise polynya1370

is formed. For example, the relatively large Maud Rise polynya in 2017 did not transition1371

to a Weddell polynya, as a positive Southern Annular Mode index that year meant the1372

water column was more stable and inhibited Weddell polynya formation (Cheon & Gordon,1373

2019). A Maud Rise polynya, or Weddell polynya, will persist in quasi-equilibrium until1374

it is destroyed by the loss of sub-surface heat, the input of surface freshwater, or through1375

interactions with broader-scale gyre currents (D. M. Holland, 2001; Martinson et al., 1981).1376

4.3 Mixing1377

Three-dimensional turbulence and mixing in the Southern Ocean, whether in the in-1378

terior or in the surface and bottom boundary layers, plays an important role in shaping1379

air–sea and ice–ocean exchange (e.g., Holte et al., 2012; Rintoul, 2018), watermass transfor-1380

mation (e.g., Downes et al., 2011; Cerovecki & Mazloff, 2016; Evans et al., 2018) and tracer1381

transport (e.g., Mashayek, Ferrari, et al., 2017; Uchida et al., 2020). Three-dimensional1382

turbulence lies at the bottom of the spatial and temporal scale range, acting to absorb the1383

down-scale cascade of energy and scalar variance generated by motions at larger scales, and1384

ultimately remove it at molecular scales. The millimetre to centimetre scales of turbulence,1385

coupled with its highly intermittent nature, make it extraordinarily difficult to measure.1386

Thus, much of our knowledge on the distribution of mixing in the ocean is inferred from1387

observations of larger scales.1388

The term “mixing” refers to the process of blending waters of different properties. The1389

focus of § 4.3 is on the irreversible mixing of scalars. Diapycnal mixing or mixing across1390

density surfaces is quantified using a diapycnal diffusivity, which is typically seven orders of1391

magnitude smaller than the horizontal components set by along-isopycnal mesoscale stirring1392

(de Lavergne et al., 2022). Mixing along isopycnals can create fine-scale gradients, e.g.,1393

of temperature, which are more readily acted upon by turbulence and diapycnal mixing1394

(Abernathey et al., 2022; de Lavergne et al., 2022). In addition, isopycnal mixing can lead1395

to densification via cabbeling or thermobaricity, where mixing two water parcels of the same1396

density results in a denser parcel due to nonlinearities in the equation of state (§2.4; Urakawa1397

& Hasumi, 2012; L. N. Thomas & Shakespeare, 2015; Groeskamp et al., 2016).1398
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Direct measurements of mixing, resolving millimetre to centimetre scales, are limited1399

to specialised research campaigns involving microstructure instruments (Waterman et al.,1400

2013; Laurent et al., 2012; Ferris et al., 2022; Fer et al., 2016) and, for the ocean interior,1401

tracer release experiments (Ledwell et al., 2011). Microstructure instruments rely on rapid-1402

response velocity, temperature or salinity sensors that resolve variations with depth on the1403

scale of centimetres, and provide an estimate of the dissipation of turbulent kinetic energy ε1404

(or tracer variance). Diapycnal diffusivity is then estimated as Γε/N2 (Osborn, 1980), where1405

Γ is generally assumed equal to 0.2 (Gregg et al., 2018) and N is the buoyancy frequency,1406

defining the vertical stratification. Due to the limitations of direct observations throughout1407

the Southern Ocean, finescale parameterizations of turbulent dissipation are widely used.1408

Finescale methods applied to density and velocity measurements that resolve the vertical1409

length scales of internal waves can infer the mixing from internal wave breaking (§ 5.3.2),1410

either locally or after propagating some distance (Polzin, Naveira Garabato, Huussen, et1411

al., 2014). Finescale methods have two major assumptions: 1) all the observed shear and1412

strain in the ocean interior is due to internal waves, and 2) nonlinear interactions between1413

the waves result in a downscale energy cascade leading to wave breaking and turbulence1414

(Polzin, Naveira Garabato, Huussen, et al., 2014; Whalen et al., 2015). Fewer assumptions1415

are required when both velocity and density are measured simultaneously, again limiting1416

the observations to research vessels (Waterhouse et al., 2014) and autonomous instruments1417

that measure both velocity and density (Meyer, Sloyan, et al., 2015; Cyriac et al., 2022).1418

The most broadly available estimates of mixing come from the global Argo profiling float1419

array (Whalen et al., 2012, 2015) that measure profiles of temperature and salinity to 2000m.1420

The absence of ocean velocity profiles in these measurements requires an assumption of the1421

ratio of shear variance to strain variance, often chosen between three and seven (Kunze et al.,1422

2006; Cyriac et al., 2022; Waterhouse et al., 2018). Parameterised estimates of mixing have1423

been found to agree with direct measurements within a factor of two to three in the open-1424

ocean thermocline (Whalen et al., 2015, 2020). This range of mixing observations provides1425

some knowledge of the global-scale distribution of mixing and its seasonal variability, which1426

has been shown to be closely correlated with seasonal variations in wind strength. However,1427

in the Southern Ocean, apart from targeted field campaigns, there is little knowledge of1428

the amplitude and variability of mixing in the surface mixed layer, below 2000m depth,1429

in boundary currents, in ice-covered regions, and at spatial scales smaller than 100 km and1430

temporal scales less than a month.1431

We organise § 4.3 by separately considering mixing within the surface boundary layer1432

(§ 4.3.1), the interior (§ 4.3.2) and near the bottom (§ 4.3.3). Fig. 11 illustrates schematically1433

the three layers and summarises the processes affecting mixing that will be addressed in the1434

following sections.1435

4.3.1 Upper ocean mixing1436

Air–sea exchanges in the Southern Ocean are mediated through the surface mixed1437

layer and, thus, are shaped by boundary layer mixing. Surface boundary layer mixing is1438

fundamental to surface ventilation and hence water mass formation (§§ 2,4.2; Fox-Kemper1439

et al., 2022). The depth of the surface boundary layer is also important to the input of wind1440

power that drives near-inertial oscillations and internal waves that ultimately contribute to1441

deeper ocean mixing (§ 5.3). The Southern Ocean surface is characterized by strong time-1442

mean and time-variable wind stress, large lateral density gradients and strong seasonally-1443

varying heat and freshwater fluxes. The resulting transient near-surface mixing geography is1444

shaped by a myriad of processes including surface waves (Belcher et al., 2012; Fox-Kemper1445

et al., 2022), submesoscale and frontal dynamics (Du Plessis et al., 2019; Giddy et al.,1446

2021; Gula et al., 2022), wind-generated near-inertial waves (Whitt et al., 2019; Whalen1447

et al., 2020), which also penetrate into the interior to influence interior mixing (Alford et1448

al., 2012; Cyriac et al., 2022), and sea ice interactions (Pellichero et al., 2017; Evans et1449

al., 2018; S. Swart et al., 2020). Further, recent work highlights the interaction between1450
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mixing, air–sea heat fluxes and sea ice formation, leading to a two-stage transformation1451

of Circumpolar Deep Water, first into Winter Water and then into Antarctic Intermediate1452

Water (§ 2; Evans et al., 2018). While an understanding of these processes is developing,1453

observations are sparse and parameterization development has so far been based on Northern1454

Hemisphere data. In the Southern Ocean, the multiscale dynamics driving the mixing may1455

look different to other regions of the global ocean. Therefore, it is important to also test1456

these parameterizations with Southern Ocean data.1457

Surface gravity waves play a vital role in both air–sea exchange and deepening of the1458

surface mixed layer through entrainment (Fig. 17; § 5.1.1). The bubbles, spray and foam1459

resulting from breaking surface waves lead to a complex multiphase fluid that is a challenge1460

to both observe and model. This multiphase fluid is critical to both air–sea fluxes and1461

can also affect surface roughness and wave dynamics. Surface waves contribute to mixed1462

layer entrainment through the formation of deeply penetrating Langmuir turbulence and1463

non-breaking wave turbulence. Langmuir cells are driven by the interaction between the1464

wind-driven shear current and the Stokes drift current and result in pairs of parallel counter-1465

rotating vortices oriented in the downwind direction. Belcher et al. (2012) concluded surface1466

wave-forced Langmuir turbulence should be a major source of turbulent kinetic energy in1467

the Southern Ocean. Langmuir cells can contribute to entrainment even when the cells do1468

not reach the mixed layer base through enhancing the shear via pressure work (Q. Li & Fox-1469

Kemper, 2020). Non-breaking (irrotational) surface waves can enhance existing background1470

ocean turbulence when the orbital velocities of the irrotational waves interact with them1471

(Qiao et al., 2016). Observations showed that they have capacity to deepen the mixed layer1472

depth (Toffoli et al., 2012). Due to the extreme wave environment of the Southern Ocean,1473

it is likely that these processes play a key role. Simulations of the surface boundary layer at1474

the West Antarctic Peninsula that include parameterization of Langmuir cells demonstrate1475

more realistic deep mixed layers on the slope and shelf regions due to Langmuir entrainment1476

(Schultz et al., 2020). However, the first extensive microstructure turbulence observations1477

of the Southern Ocean surface boundary layer show that Langmuir circulations alone do1478

not explain the enhanced turbulence at the base of the mixed layer. Instead, storm forced1479

inertial currents provide additional shear (Ferris et al., 2022).1480

Large inertial oscillations can be resonantly excited in the mixed layer when strong1481

winds turn with the inertial rotation (Dohan & Davis, 2011). These inertial oscillations can1482

then leave the mixed layer as propagating near-inertial waves. The inertial waves induce1483

shear within the base of the mixed layer in the so called “mixing transition” layer, which1484

results in mixing and widening of the layer (Skyllingstad et al., 2000; Forryan et al., 2015).1485

High-resolution turbulence observations and drifter data show that the inertial oscillation-1486

induced turbulent dissipation rate across the layer is an order of magnitude larger than1487

that induced by most other mixed layer processes (with the exception of mixed layer frontal1488

instabilities), thereby further highlighting the importance of wind-driven inertial oscillations1489

for thermocline mixing (Peng et al., 2021). In a general sense, and noting that there are1490

large spatial variations, Southern Ocean density profiles appear to have much deeper surface1491

mixed-layers (hundreds of metres) than is typical in more temperate regions. However, this1492

layer is actually weakly but stably stratified, with the active mixing layer confined close to1493

the surface (Kilbourne & Girton, 2015). Therefore, a “slab model” (an analytical model1494

that treats the surface mixed layer as a slab to estimate the mixed layer response to wind1495

stress) can be applied to the actively mixing layer to estimate the near-inertial response to1496

wind input (Pollard & Millard Jr, 1970). Southern Ocean observations in the Indo-Pacific1497

sector demonstrate that near-inertial internal waves are responsible for transporting large1498

amounts of mean surface energy (up to 45% during one event) downward to the base of the1499

mixing layer where (indirect) estimates of vertical diffusivities are found to be enhanced by1500

up to two orders of magnitude (Ferreira Azevedo et al., 2022).1501

The upper ocean mixing is also impacted by complex, horizontal processes emanating1502

from fronts, eddies and jets occurring at small spatial scales that extend down to the sub-1503
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mesoscale (tens of centimetres to tens of kilometres, and hours to days). In the Southern1504

Ocean, the strong surface forcing, persistent lateral density gradients, weak vertical strat-1505

ification and deep mixed layers further enhance submesoscale mixing (Gille et al., 2022).1506

Submesoscale instabilities, induced by the large-scale adiabatic mesoscale stirring (§ 4.1),1507

can lead to strong subduction of water (K. A. Adams et al., 2017) and drive intense ver-1508

tical circulations (J. R. Taylor et al., 2018). Mixed layer eddies are likely to be prevalent1509

in regions where the mixed layer is deep and lateral gradients are sharp. They can ar-1510

rest shear-driven mixing leading to vertical entrainment and bring about spring mixed-layer1511

stratification conditions earlier than with surface buoyancy forcing alone (Du Plessis et al.,1512

2017). Further, the presence of submesoscale variability leads to the concentration of wind-1513

driven near-inertial energy, enhancing the inertial wave shear-driven mixing below the base1514

of the mixing layer (e.g., Klein et al., 2004; Meyer, Sloyan, et al., 2015; Jing et al., 2011).1515

Large-scale inertial oscillations and submesoscale fronts may also induce transient modifica-1516

tion of vertical stratification and thus turbulent mixing (L. N. Thomas et al., 2016). These1517

observations point to the importance of the interplay of multi-scale physical processes in the1518

Southern Ocean, a topic which is still largely unexplored.1519

There is increasing evidence that some submesoscale (∼ 1km) processes in the surface1520

mixed layer break the constraint of the large-scale quasi-geostrophic dynamics (i.e., the1521

dominance of planetary rotation and vertical stratification), and trigger a variety of flow1522

instabilities, such as inertial instabilities (Grisouard, 2018; Peng et al., 2020), symmetric1523

instabilities (D’Asaro et al., 2011; L. N. Thomas et al., 2013), and ageostrophic baroclinic1524

mixed layer instabilities (Boccaletti et al., 2007; Fox-Kemper & Ferrari, 2008). Unlike other1525

surface processes that draw energy from atmospheric forcing, these instabilities extract1526

either potential or kinetic energy from quasi-geostrophic flow (McWilliams, 2016), inject1527

it into the smaller-scales of the fastest growing modes, induce secondary Kelvin-Helmholtz1528

instabilities (J. R. Taylor & Ferrari, 2009), and finally mediate energy transfer from large-1529

scale circulation to smaller scales through the forward cascade of energy (J. R. Taylor &1530

Thompson, 2022). Several microstructure field studies have confirmed the enhanced energy1531

dissipation caused by this downscale transport of large-scale energy (D’Asaro et al., 2011;1532

L. N. Thomas et al., 2016; Peng et al., 2020, 2021). Submesoscale frontal instabilities1533

are especially relevant for the Southern Ocean because of the predominating atmospheric1534

conditions of down-front winds and surface cooling (L. N. Thomas, 2005). However, the1535

favourable atmospheric conditions for these instabilities may be easily affected by sea ice.1536

Sea ice covers a large enough area of the Southern Ocean to have a large impact on1537

air–sea interactions (§ 3.2.1). Fast ice provides a laterally rigid lid on the ocean that alters1538

the mixing processes (Robertson et al., 1995; Stevens et al., 2009), from direct wind-forcing1539

and surface wave breaking to ice-ocean frictional stresses associated with externally forced1540

flows and tides (Albrecht et al., 2006). Sea ice strongly inhibits surface gravity waves and1541

momentum fluxes from the wind, thereby altering upper ocean mixing (§ 5.1.3 Ardhuin et al.,1542

2020). However, the extent to which surface gravity waves and the associated dynamics, such1543

as Langmuir circulations, are inhibited is dependent on the extent of the ice cover. Limited1544

observations of air–sea–ice fluxes exist in the Southern Ocean. Observations from an air–sea1545

flux mooring at the Polar Front (Ferreira Azevedo et al., 2022) found that 45% of surface1546

energy penetrated the base of the mixed layer and suggest that even in the presence of sea1547

ice, strong wind events may enhance mixing. Submesoscale activity and associated mixing1548

can be enhanced under sea ice and in regions close to sea ice melt due to the existence of1549

strong lateral density gradients. Observations at the edge of the Antarctic sea ice cover have1550

revealed submesoscale eddies generated by the fresh water being stirred by the mesoscale1551

eddies (e.g., Giddy et al., 2021). Submesoscale activity has also been detected below sea ice1552

by observations from seal-based sensors (Biddle & Swart, 2020). Further, Gille et al. (2022)1553

speculate that lateral density gradients resulting from heterogeneity in air–sea fluxes due to1554

gaps between ice floes (Fons & Kurtz, 2019) could also lead to submesoscale-driven mixing.1555
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Mixing at the face of, and underneath, ice shelves can be strongly influenced by tides1556

(§ 5.2; Joughin & Padman, 2003; Padman et al., 2018). Tides generate increased turbulence1557

in the layer of ocean adjacent to the ice shelf front, which modifies the temperature, salinity1558

and density structure and leads to altered ocean circulation. The ice edge also induces sub-1559

stantial mixing, both in the wake but also in flow acceleration, depending on tidal conditions1560

(Fer et al., 2012; Stevens et al., 2014). Within the cavity, it has been suggested that the1561

interaction of tides and basal ice undulations might induce relatively high-frequency vari-1562

ability (Foster, 1983; Stevens et al., 2020), especially in the near-field of under-side basal1563

crevasses (Lawrence et al., 2023). Under rapidly melting ice shelves, the freshwater outflow1564

can generate currents that are much larger than the tidal currents. For example, the Pine1565

Island Glacier has freshwater plume flow of up to 0.5m s−1 (Payne et al., 2007) and tidal1566

currents of only a few centimetres per second (Robertson, 2013). Where cold ocean waters1567

surround the ice shelf and melt rates are low, plume flows are much weaker than tidal flows.1568

In these locations, the mixing will be dominated by the tidal currents.1569

Water mass transformation frameworks have revealed that wintertime mixing in the1570

surface boundary layer of the Southern Ocean plays a key role in the diapycnal upwelling1571

of Circumpolar Deep Water and the eventual formation of Antarctic Intermediate Water1572

(Evans et al., 2018). Here, wintertime cooling and brine rejection during sea ice formation1573

combine to weaken the stratification between the surface winter water and Circumpolar Deep1574

Water below. Mixing transforms the relatively warm and salty Circumpolar Deep Water1575

into colder and fresher near-surface Winter Water. Through summertime warming and sea1576

ice melt, this upwelled and transformed water mass eventually forms Antarctic Intermediate1577

Water, likely through nonlinear thermodynamic processes (Evans et al., 2018).1578

4.3.2 Interior diapycnal mixing1579

Interior diapycnal mixing is wide-spread in the Southern Ocean due to the energetic1580

internal wave environment (§ 5.3). The Southern Ocean has strong wind-energy input into1581

near-inertial motions (Alford, 2003). Surface-generated near-inertial internal waves and1582

bottom-generated internal tides and lee waves propagate into the interior, are shaped by1583

interaction with other physical processes and subsequently break and generate diapycnal1584

mixing. Interactions between the Southern Ocean’s energetic eddy field and internal waves1585

lead to elevated diffusivity in the upper 2000m of the ocean (Whalen et al., 2012, 2015, 2018).1586

It is conceptually difficult to separate “interior” mixing from surface- and bottom-intensified1587

mixing, both because of the surface/bottom boundary production of the waves that generate1588

mixing and because there are many mixing hotspots associated with topography that ex-1589

tends high into the water column. Nevertheless, interior mixing below 2000m depth, where1590

interior diapycnal diffusivities are generally less than 10−4 m2 s−1, drives interior watermass1591

transformation and thus has important modulating impacts on the overturning circulation1592

(§ 2.5; Munk & Wunsch, 1998).1593

Wave breaking is the process through which internal waves dissipate. While they prop-1594

agate, internal waves exchange energy with background mesoscale flows, such as currents,1595

jets, and fronts (wave–mean interactions; Grimshaw, 1984), mesoscale eddies (wave–eddy1596

interactions; Kunze, 1985; Cusack et al., 2020), or other internal waves (wave–wave interac-1597

tions; McComas & Bretherton, 1977) resulting in the internal gravity wave continuum. The1598

net energy flux can be from internal waves to their surroundings, or from their surround-1599

ings to the internal waves (§ 5.3.2). Ultimately though, when internal waves reach high1600

enough wavenumbers, they steepen and break through direct shear instability or convective1601

overturning, transferring their remaining energy into turbulence and diapycnal mixing (e.g.,1602

Eriksen, 1978; Fringer & Street, 2003; Nikurashin & Ferrari, 2010). This internal wave1603

driven mixing can happen both locally, where internal waves are generated, or remotely,1604

when internal waves propagate far from their source. Such remote breaking and dissipation1605

of internal waves is an important process for energy redistribution in the Southern Ocean,1606

where the strong Antarctic Circumpolar Current has been documented to advect internal1607
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waves through its fronts (Meyer, Polzin, et al., 2015), jets (Waterman et al., 2021), meanders1608

and mesoscale eddies (Cyriac et al., 2023). Such modulation of the internal wave driven1609

mixing landscape by the background mesoscale flow and associated wave-mean interactions1610

may explain the mismatch identified in recent studies between parameterised estimates and1611

direct microstructure measurements of diapycnal mixing (§ 5.3; § 7; Waterman et al., 2013;1612

Sheen et al., 2013; Nikurashin et al., 2014; Cusack et al., 2017; Takahashi & Hibiya, 2019).1613

Globally, of the 2TW of energy theorised to maintain the ocean stratification (Munk1614

& Wunsch, 1998; de Lavergne et al., 2022), about 1.2 TW of energy is provided by internal1615

waves generated from barotropic tides and geostrophic flows (Wunsch et al., 2004) with the1616

remaining energy thought to come from the work done by wind on near-inertial motions1617

(Alford et al., 2016). Uncertainty in these estimates is very large (§ 5.3), which leads to1618

poor representation of wave-driven mixing in climate models (Jochum et al., 2013). Various1619

estimates agree that much of the energy flux into lee waves occurs in the Southern Ocean1620

as expected given the uniquely deep-reaching nature of the Antarctic Circumpolar Current1621

and relatively weak tidal flows (§5.2). Lee waves apply wave drag (§ 5.1.1) to the deep flows1622

that generate them which are dominated by mesoscale eddies in the Southern Ocean (Yang1623

et al., 2018). The work done by the wave drag converts energy from the mesoscale eddy1624

field into smaller-scale lee waves (Yang et al., 2018), which then transfer the energy further1625

down to turbulence scales via direct wave breaking (e.g., Lefauve et al., 2015) or wave–wave1626

interactions (e.g., Polzin, 2009).1627

Up to this point, § 4.3.2 has focused on diapycnal mixing, which is the approximate ver-1628

tical component of three-dimensional turbulence. Separating this mixing from the horizontal1629

components set by (sub-)mesoscale stirring along isopycnals is a convenient and common1630

approach due to the different observations and methods used to estimate diapycnal and1631

isopycnal diffusivities. However, it does not reflect the integrated three-dimensional nature1632

of oceanic thermodynamical processes. A theoretical framework based on the temperature1633

variance budget (Ferrari & Polzin, 2005; Naveira Garabato et al., 2016) establishes a bal-1634

ance between dissipation of variance by molecular mixing and the production of variance1635

associated with mesoscale eddy-induced isopycnal stirring and with diapycnal mixing by1636

small-scale turbulence acting on the large-scale mean state. The framework allows diapy-1637

cnal and isopycnal diffusivities to be quantified from a small number of (temperature and1638

velocity) microstructure measurements to provide new insight into the coupling between the1639

zonal flow of the Antarctic Circumpolar Current and the meridional overturning circulation1640

transport along sloping isopycnals. In Drake Passage (Naveira Garabato et al., 2016), the1641

framework reveals that isopycnal stirring is strongly suppressed in the upper 1 km of Antarc-1642

tic Circumpolar Current jets, consistent with earlier circumpolar work (Naveira Garabato1643

et al., 2011). Intensified diapycnal mixing balances the meridional overturning in this upper1644

1 km, the lightest layer, and also in the densest layers of the Antarctic Circumpolar Current1645

(Naveira Garabato et al., 2016). Both layers are near the two primary sources of internal1646

waves: wind-driven near-inertial oscillations and flow interactions with topography. Isopy-1647

cnal stirring balances the overturning in the intermediate layers and upper Circumpolar1648

Deep Water (Naveira Garabato et al., 2016). Application of the framework to only 10 mi-1649

crostructure profiles in the Brazil-Malvinas confluence (Orúe-Echevarŕıa et al., 2021) reveals1650

regional variations in the roles of diapycnal and isopycnal mixing. Observational campaigns,1651

such as DIMES (Ledwell et al., 2011; Watson et al., 2013; Mackay et al., 2018), SOFINE1652

(Waterman et al., 2013; Meyer, Sloyan, et al., 2015) and DEFLECT (Cyriac et al., 2022)1653

emphasize the importance of interactions between mesoscale variability, circulation and mix-1654

ing for tracer transport (Mashayek, Ferrari, et al., 2017; Holmes et al., 2019). Greater use1655

of microstructure observations will help unravel the roles of mesoscale, submesocale and1656

small-scale turbulent flows in governing ocean circulation and water mass structure.1657
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4.3.3 Bottom-intensified diapycnal mixing1658

Bottom-intensified mixing shapes Antarctic BottomWater consumption, and underpins1659

a key dependence of the abyssal circulation on both topographic roughness and large-scale1660

topography (de Lavergne et al., 2017; Holmes et al., 2018; Polzin & McDougall, 2022).1661

Bottom-intensified mixing is primarily generated by the breaking of lee waves and internal1662

tides. Lee waves are generated via interactions between mesoscale flows and rough topogra-1663

phy and are particularly prominent in the Southern Ocean due to the energetic mesoscale1664

activity (Garabato et al., 2004; Nikurashin & Ferrari, 2010; Sheen et al., 2013; Gille et al.,1665

2022; Cyriac et al., 2022, 2023). Internal tides also play an important role in this region1666

(Johnston et al., 2015; Z. Zhao et al., 2018; Waterhouse et al., 2018; Vic et al., 2019).1667

Through nonlinear wave–wave interactions, internal waves drive a down-scale cascade1668

of turbulent energy leading to mixing (Nikurashin & Legg, 2011; Polzin, Naveira Garabato,1669

Huussen, et al., 2014; Whalen et al., 2020) and a bottom-intensified profile of diffusivity1670

and buoyancy flux (Toole et al., 1994; Polzin et al., 1997; Waterhouse et al., 2014). Conse-1671

quently, a diapycnal transport dipole is established where there is downward transport (from1672

light to dense water) in a stratified “bottom mixing layer” (often referred to as the stratified1673

mixing layer) above the topography, and upward transport only within a narrower “bot-1674

tom boundary layer” where the turbulent buoyancy flux converges next to the topography1675

(Fig. 11). The net diapycnal transport (or consumption of Antarctic Bottom Water) arises1676

as a small residual of these larger up- and down-welling transformations (de Lavergne et al.,1677

2016; McDougall & Ferrari, 2017; Ferrari et al., 2016; Polzin & McDougall, 2022). These1678

mixing processes are shaped by mesoscale and submesoscale variability. Temporal varia-1679

tions in mixing associated with mesoscale eddy kinetic energy variations link bottom water1680

overturning cell variability to wind forcing (Sheen et al., 2014; Broadbridge et al., 2016).1681

Recent work also highlights the important role that near-bottom submesoscale processes1682

play in maintaining the stratification, and, thus, the magnitude of the diapycnal transport1683

dipole, in these bottom mixing layers (Ruan et al., 2017; Wenegrat et al., 2018; Callies,1684

2018; Naveira Garabato, Frajka-Williams, et al., 2019). These processes pose a particular1685

challenge for Southern Ocean modelling and observations given their small spatial scales1686

and variability, our limited knowledge of seafloor bathymetry at small scales and the often1687

coarse vertical resolution of ocean general circulation models at the bottom boundary.1688

4.4 Closing the loops1689

Turbulence in the Southern Ocean involves dynamical structures on a range of scales,1690

from eddies, jets and fronts (§4.1) to convection (§4.2) and down to the smallest scales of1691

mixing (§4.3). The large-scale circulation is inherently linked with turbulence, for example1692

the Antarctic Circumpolar Current has rich dynamics of jets and eddies, whose complicated1693

interactions can act to modify the current (§2.1). The upper (§2.4) and abyssal overturning1694

(§2.5) circulations are also affected by upper mixed layer and polynya convection respec-1695

tively. The cryosphere connects to convection via the wintertime sea-ice formation (§3.2)1696

whose subsequent brine rejection drives polynya convection. Mixing between different wa-1697

ter masses can also influence key cryosphere processes involved with heat transport into ice1698

shelf cavities (§3.1.2). Waves connect to eddies, jets and fronts, such as through the lens of1699

mesoscale turbulence which can affect surface waves (§5.1.2). Mixing has complicated links1700

with waves, for example internal waves can enhance mixing (§5.3.3) and, in turn, mixing1701

can influence internal waves (§4.3). The next section will further detail the role of §5 Waves1702

in the Southern Ocean.1703

–46–



manuscript submitted to Reviews of Geophysics

Figure 16. Schematic of gravity wave processes in the Southern Ocean including surface waves,

internal waves and tides. At the surface, strong storm systems generate surface waves and (near-

inertial) internal waves. The gravitational force of the moon and sun generate bulk motions of the

water column (tides) that, in combination with other ocean flows, generate internal waves at the

seafloor. The waves interact with other components of the Southern Ocean system. For example,

surface waves are dissipated in the marginal ice zone, while internal waves may be trapped in eddies

and currents, and/or drive diapycnal mixing in the ocean interior. Colour contours show a typical

density field, ranging from lighter (dark orange) to denser (dark blue) waters.

5 Gravity waves1704

Gravity waves in the ocean are vertical perturbations of the fluid ocean against the1705

restoring force of gravity, including displacements of the ocean surface (surface waves; § 5.1),1706

perturbations to the interior ocean stratification (internal waves; § 5.3), and perturbations of1707

the entire water column (tides; § 5.2). These phenomena span from some of the smallest and1708

fastest motions in the ocean in the case of surface waves (wavelengths of tens to hundreds1709

of metres, periods of seconds), through intermediate length scales in the case of internal1710

waves (horizontal wavelengths of kilometres to hundreds of kilometres), to motions that1711

span ocean basins in the case of tides (thousands of kilometres). In all three cases, oceanic1712

gravity waves are influenced by the Earth’s rotation — in addition to gravity — and are,1713

therefore, more correctly termed “inertia-gravity waves”. These waves play a vital role in1714

transporting energy and momentum throughout the ocean, thus supporting ocean mixing1715

and circulation. Figure 16 provides a schematic overview of gravity waves in the Southern1716

Ocean and their interactions with other components of the system. In this section, we1717

present an overview of each class of gravity wave and its role in Southern Ocean dynamics.1718

For further details on gravity waves, readers may wish to peruse previous reviews in1719

addition to the content herein. While there is no previous Southern Ocean specific review1720

of surface waves, Young et al. (2020) collates over three decades of satellite altimeter and1721

in situ buoy observations, to conduct a statistical study of seasonal variations, including1722

extremes and spectral analysis, and highlights some of the unique aspects of Southern Ocean1723

waves. The fundmanetal governing equations of surface waves are given by, e.g., Barstow1724

et al. (2005). Further, a series of articles (Squire et al., 1995; Squire, 2007, 2020) review1725

the evolution in understanding of surface waves in the marginal ice zone (§ 3.2.2). For1726

ocean tides, Pugh (2004) provides a detailed review of tidal theory and Stammer et al.1727

–47–



manuscript submitted to Reviews of Geophysics

(2014) reviews global tide models, with their Section 5.2 focusing on model performance in1728

Antarctic seas. In addition, Padman et al. (2018) describes ocean tide influences on the mass1729

balances of the Antarctic and Greenland Ice Sheets. For internal waves, Polzin and Lvov1730

(2011) provides a detailed theoretical description, a summary of the observed global ocean1731

internal wave field and its explanation in terms of the nonlinear wave interactions (a subject1732

not covered here). In addition, recent reviews have focused separately on internal waves1733

generated at the ocean surface (L. N. Thomas & Zhai, 2022) and the seafloor (Musgrave et1734

al., 2022), but with a global outlook.1735

5.1 Surface waves1736

The Southern Ocean possesses a unique surface wave climate due to the absence of1737

large land masses, which allows circumpolar-scale fetches (the spatial extents of the regions1738

over which winds blow in a coherent direction; Donelan et al., 2006) and persistently strong1739

westerly winds (i.e., blowing from west to east), including the notorious ‘roaring forties’,1740

‘furious fifties’ and ‘screaming sixties’ (Lundy, 2010). These Southern Ocean westerlies give1741

rise to some of the consistently (over all seasons) largest amplitude surface waves on the1742

planet (Young & Donelan, 2018; Barbariol et al., 2019; Vichi et al., 2019; Young et al.,1743

2020; Derkani et al., 2021; Alberello et al., 2022). The wave height climate mirrors the1744

distribution of wind speeds, with a uniform distribution of waves across the region and the1745

seasons. The “significant wave height”, i.e., the average height of the highest one-third of1746

the waves experienced over time (Young, 1999), is in excess of 3.5m in summer and 5m in1747

winter, according to model hindcasts and satellite observations (Young et al., 2020; Schmale1748

et al., 2019; Derkani et al., 2021). Long term in-situ observations at several locations reveal1749

that extreme events, with significant wave heights greater than 10m, occur over winter1750

approximately once every 80 days (Rapizo et al., 2015; Young et al., 2020).1751

At short fetches, the wave spectrum is narrow banded (Young et al., 2020) and the wave1752

form is steep, facilitating occurrence of highly nonlinear dynamics (Janssen, 2003; Onorato1753

et al., 2009). Laboratory experiments in a circular wave flume that mimic the unlimited1754

fetch conditions in the Southern Ocean suggests that nonlinear dynamics have the potential1755

to fully develop, causing individual waves to destabilize and grow significantly taller than the1756

background sea state. In exceptional circumstances, this leads to so-called “rogue waves”,1757

which have heights greater than two times the significant wave height (Toffoli et al., 2017).1758

Exceptional maximum individual wave heights exceeding 19m have been reported (Barbariol1759

et al., 2019), although these are not necessarily rogue waves.1760

After long fetches, waves reach full development, becoming independent from local1761

winds. Further development of the wave field is associated with nonlinear interactions1762

(Young, 1999). As a consequence, the “wind sea” (i.e., a wave field being acted on by1763

winds) evolves into more regular wave fields that radiate along multiple directions from the1764

generation area. These so-called “swells” disperse across the Indian, Pacific, and South1765

Atlantic Oceans (Semedo et al., 2011).1766

Observations around the Southern Ocean indicate that very broad directional distribu-1767

tions are common in the region, with energy spreading across a range up to ±80◦ around1768

the mean wave direction (Young et al., 2020; Derkani et al., 2021). On occasions, this is the1769

signature of chaotic sea states, where multiple (independent) wave systems, such as wind1770

seas plus swells coexist (Aouf et al., 2020; Khan et al., 2021; Derkani et al., 2021; Alberello1771

et al., 2022). Theory, numerical simulations and experiments have demonstrated that these1772

multi-system seas accelerate development of nonlinear dynamics, further contributing to the1773

occurrence of large amplitude waves (Onorato et al., 2006; Toffoli et al., 2011).1774
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Figure 17. Schematic of a breaking surface gravity wave. The wave propagates in the direction

of the wind and grows with time until it becomes too steep and breaks. Wave breaking induces

near surface turbulence, which generates air bubbles and entrains them into the sub-surface ocean,

mediating air–sea fluxes of momentum, energy, moisture and biological constituents with the ambi-

ent atmosphere. Turbulent oscillatory motion (from both breaking and non-breaking waves) drives

vertical mixing (blue spirals) through the water column to a depth comparable to the wavelength,

contributing to the mixed ocean surface layer.

5.1.1 Surface wave breaking1775

Waves grow under the forcing of wind and highly nonlinear instabilities until they1776

ultimately break in the form of whitecaps (Babanin et al., 2007; Toffoli et al., 2010, 2017),1777

when the ratio of wave height to wavelength is ≈ 0.14 (Fig. 17; Toffoli et al., 2010). Wave1778

breaking and whitecapping are important surface processes that occur in all oceans when1779

winds generate large amplitude waves. Thus, they are a year-round phenomenon in the1780

Southern Ocean. The whitecaps can be explained as pressure pulses on the sea surface just1781

downwind of the wave crest that act against wave growth (Hasselmann, 1974), dissipating1782

excessive wind input and, subsequently, transferring it to the subsurface in the form of1783

turbulent mixing (§4.3.1; Terray et al., 1996). However, breaking-induced turbulence decays1784

rapidly in depth with distance from the surface and the contribution to ocean mixing is1785

confined to a sublayer with depths comparable with the wave height (Rapp &Melville, 1990).1786

Nevertheless, there is theoretical and experimental evidence that the wave oscillatory flow1787

can become turbulent even in the absence of breaking (Babanin, 2006; Alberello, Onorato,1788

Frascoli, & Toffoli, 2019). Hence, waves are capable of directly contributing to mixing1789

throughout the water column, up to depths comparable to half of the wavelength (i.e.,1790

down to about 100m; Toffoli et al., 2012).1791

Besides dissipation, whitecaps drive air–sea interaction processes through airborne1792

droplets (Monahan et al., 1986; Landwehr et al., 2021). Generated and entrained sub-1793

surface by whitecaps, bubbles rise to the surface and burst, forming film droplets or jets of1794

daughter droplets (Fig. 17). If the wind shear is sufficiently intense, larger droplets known1795

as “sea spray” are torn off the surface of (breaking) waves (Veron, 2015). Once ejected,1796

spray drops are transported and dispersed in the marine atmospheric boundary layer, in1797

which they interact and exchange momentum, heat, moisture and biological and chemical1798

constituents with the ambient atmosphere (Humphries et al., 2016; Schmale et al., 2019;1799

Thurnherr et al., 2020; Landwehr et al., 2021). There is evidence that marine aerosols1800

generated from whitecaps are an important source of cloud condensation nuclei and cloud1801
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formation in the Southern Ocean (Schmale et al., 2019; Landwehr et al., 2021). Large sea1802

spray particles do not dissolve entirely while in the atmosphere, but they return to the1803

ocean with lost or gained momentum, closing the loop of air–sea interaction (Veron, 2015;1804

Landwehr et al., 2021).1805

5.1.2 Influence of mesoscale turbulence in the Antarctic Circumpolar Cur-1806

rent1807

Mesoscale ocean turbulence (approximately ten to one hundred of kilometres) can in-1808

fluence the generation and propagation of surface waves. The main effect of such turbulence1809

within the Antarctic Circumpolar Current (in which jet speeds may exceed 0.75m s−1;1810

§§ 2.1,4.1; Derkani et al., 2021) is one of refraction, as the current flows predominantly1811

in the direction of the surface waves. Therefore, the Antarctic Circumpolar Current helps1812

maintain the broad directional distribution of waves observed in the region (Derkani et al.,1813

2021; Young et al., 2020). As waves propagate along the current, the wave height is attenu-1814

ated, although this effect is small (5–8% relative to the no-current condition; Derkani, 2021;1815

Rapizo et al., 2015). More substantial interactions are reported at the upper boundary of1816

the Indian Ocean sector, where large swells from Antarctica interact with the more intense1817

Agulhas current, forming large amplitude waves and, often, rogue waves (White & Fornberg,1818

1998).1819

5.1.3 Attenuation, dissipation and scattering by sea ice1820

Sea ice cover limits the distance surface waves can reach towards the Antarctic mar-1821

gin, thereby suppressing the processes described in §§ 5.1.1–5.1.2. A collection of in-situ1822

and remote sensing observations (originally from the Arctic but, more recently, also from1823

the Southern Ocean) provide evidence that ocean wave energy decays exponentially with1824

distance travelled though the marginal ice zone and that the rate of attenuation increases1825

with wave frequency (Squire & Moore, 1980; Wadhams et al., 1988; Kohout et al., 2014;1826

Meylan et al., 2014; Stopa et al., 2018; Montiel et al., 2018; Kohout et al., 2020; Montiel1827

et al., 2022; Alberello et al., 2022). The observations suggest that the rate of exponential1828

attenuation, which is known as the attenuation coefficient, has a power-law relationship1829

with wave frequency (Meylan et al., 2018). Understanding how the attenuation coefficient1830

emerges from the underlying dynamic processes has been the main focus of ocean waves–sea1831

ice interactions research over the past half century (Squire et al., 1995; Squire, 2007, 2020;1832

Golden et al., 2020).1833

In situations where the sea ice floe have sizes comparable to the wavelengths, the floes1834

scatter the waves over the directional spectrum (Fig. 6). Wave scattering is an energy-1835

conserving process but an accumulation of scattering events causes waves to attenuate over1836

distance (Squire, 2007, 2020). Much theoretical work has attempted to describe wave atten-1837

uation due to linear wave scattering in the marginal ice zone, using phase-resolving multiple-1838

scattering theory in one horizontal dimension (Kohout & Meylan, 2008; Bennetts & Squire,1839

2012b) or two dimensions (Bennetts & Squire, 2009; Peter & Meylan, 2010; Bennetts et1840

al., 2010; Montiel et al., 2016). There have also been theories proposed to include attenu-1841

ation due to scattering in phase-averaged wave transport models, using energy sink terms1842

(Dumont et al., 2011; T. D. Williams et al., 2013a, 2013b; Mosig et al., 2019), a Boltzmann-1843

interaction term (Meylan et al., 1997; Meylan & Masson, 2006; Meylan & Bennetts, 2018;1844

Meylan et al., 2020) or a diffusion term (X. Zhao & Shen, 2016). Wave scattering through1845

random fields of ice floes results in (i) exponential attenuation at a rate that increases with1846

frequency, qualitatively consistent with observations, and (ii) broadening of the directional1847

spread, so that deep into the marginal ice zone the directional wave spectrum becomes1848

isotropic (Wadhams et al., 1986; Meylan et al., 1997; Bennetts et al., 2010; Montiel et al.,1849

2016; Squire & Montiel, 2016). Scattering models show reasonable agreement with historical1850

measurements from the Arctic in the mid-frequency regime where linear scattering theory1851
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is valid (Kohout & Meylan, 2008; Bennetts et al., 2010; Bennetts & Squire, 2012a; Squire1852

& Montiel, 2016).1853

Measurements of surface waves in the Antarctic marginal ice zone have been made over1854

the past decade, predominantly using specially designed wave buoys deployed on the surface1855

of ice floes (Kohout et al., 2014; Meylan et al., 2014; Kohout et al., 2020; Montiel et al.,1856

2022), and recently by a stereo-camera system on an icebreaker (Alberello et al., 2022).1857

The floe sizes during the observations were typically much smaller than wavelengths, e.g.,1858

pancake ice (§ 3; Alberello, Onorato, Bennetts, et al., 2019), for which dissipative processes1859

are likely to be the main contributors to wave attenuation. Dissipative processes can broadly1860

be separated into turbulent ocean processes and viscous ice processes. Turbulence through1861

wave–sea ice interactions occurs as a result of the differential velocity between the solid1862

ice boundary and the water particle orbital velocity (Voermans et al., 2019). A turbulent1863

boundary layer is generated at the basal surface of the sea ice cover, which can be enhanced1864

by the ice surface roughness (skin friction) and the presence of vertical sea ice features, e.g.,1865

loe edges or pressure ridges, further enhancing flow separation (form drag; Kohout et al.,1866

2011). Turbulence also occurs in overwash on upper surfaces of floes, resulting in wave energy1867

dissipation (Bennetts et al., 2015; Bennetts & Williams, 2015; Toffoli et al., 2015; Nelli et1868

al., 2017, 2020). Sea ice covers have been modelled as viscoelastic materials, such that they1869

experience viscous dissipation when strained by ocean waves (Keller, 1998; R. Wang & Shen,1870

2010; Mosig et al., 2015). For instance, unconsolidated grease or brash ice (§ 3) dissipates1871

wave energy through non-recoverable, shear stress-induced viscous deformations (Weber,1872

1987; G. Sutherland et al., 2019). Quantifying these dissipative processes is challenging,1873

as they depend on temperature, brine volume fraction and ultimately the micro-structure1874

of the ice cover (§ 3.2.3; Timco & Weeks, 2010). In a more heterogeneous ice cover, e.g.,1875

pancake ice, wave energy dissipation is more likely to be governed by eddy-generating floe–1876

floe collisions (Shen & Squire, 1998; Bennetts & Williams, 2015; Yiew et al., 2017; Rabault1877

et al., 2019; Herman et al., 2019).1878

5.2 Tides1879

Tides are a ubiquitous feature of the global ocean. Gravitational dynamics of the Earth–1880

Moon–Sun system, combined with the Earth’s rotation, cause oscillations of ocean height1881

and currents at precise periods, dominated by diurnal (daily) and semidiurnal (twice daily)1882

tidal constituents. Here we use the term ‘tide’ to describe the barotropic or surface tide,1883

as opposed to “internal tides”, i.e., tidally generated internal waves, which are described in1884

§ 5.3. Tides provide a substantial fraction of the total kinetic energy in the Southern Ocean,1885

with known effects at all scales from turbulence (§ 4) to large-scale circulation (§ 2).1886

Throughout most of the global ocean, tides exist as propagating barotropic waves.1887

These waves have spatial scales comparable to ocean basins and their amplitude depends on1888

the global distribution of continents and bathymetry. These propagating waves are relatively1889

straightforward to constrain in inverse models using in situ and satellite data (e.g., Egbert1890

& Erofeeva, 2002; Lyard et al., 2006). However, the largest tidal currents around Antarctica1891

are associated with diurnal-band, topographically trapped vorticity waves along the shelf1892

break. These waves are a specific, tidally-forced case of coastal trapped waves (§ 5.3.3).1893

Observations and models of diurnal topographic vorticity waves (e.g., J. H. Middleton et1894

al., 1987; Semper & Darelius, 2017; Skardhamar et al., 2015) show that they can have short1895

spatial scales, are poorly constrained by sea surface height data, are extremely sensitive to1896

topographic variability, stratification and mean flows, and produce strongly depth-varying1897

currents. Predicting these currents is a difficult modelling problem, especially at the typical1898

coarse grid scales of global climate models. When present, these waves have a profound effect1899

on cross-slope transport of ocean heat, mean flows through tidal rectification (Makinson &1900

Nicholls, 1999; Flexas et al., 2015), and the volume flux and hydrographic characteristics of1901

Dense Shelf Water and Antarctic Bottom Water outflows (e.g., Padman et al., 2009).1902
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Figure 18. Schematic of the primary roles of tides in the Southern Ocean system. Under the

ice shelf, tidal currents generate friction that modifies hydrographic properties of the water column,

influencing the basal melting of the ice shelf. At the ice front and shelf break, rectified tidal currents

modify water mass transport along and across these topographic barriers. Over the continental shelf

and slope, tidal currents modify sea ice production and concentration. Stress at the base of landfast

sea ice affects melting, and mixing controls on surface mixed layer depth. Mixing and rectification

of tidal flows alters the production of Antarctic Bottom Water (AABW). Farther north, tidal flows

over steep and rough topography of mid-ocean ridges generates internal (baroclinic) tides that can

drive mixing in the ocean interior. Baroclinic tides may also be generated over the continental

slope.

The principal dynamical role of the tide is through the interactions of tidal currents1903

with other components of the Southern Ocean system, including as a source of mixing (§ 4.3),1904

crevasse formation and iceberg calving (§ 3.1.7), divergent stresses on sea ice (Padman &1905

Kottmeier, 2000; Heil et al., 2008), and basal melting of ice shelves (Fig. 18; Richter et al.,1906

2022). Tides link processes ranging from the smallest time and space scales of mixing to1907

the global scales of continents, ocean basins and ice shelves that set the spatial distribution1908

of tidal currents (e.g., Figs. 1b and 9b of Padman et al., 2018). The largest tidal currents1909

around Antarctica are found along the shelf breaks of the Ross and Weddell seas, and under1910

Ronne Ice Shelf. Along the Northwest Ross Sea shelf break, maximum spring tidal currents1911

can exceed 1m s−1 (Whitworth & Orsi, 2006). Tides in the Pacific sector are dominated by1912

diurnal variability, while semidiurnal tides dominate elsewhere (e.g., Fig.1c of Padman et1913

al., 2018).1914

There are relatively few in situ tide height measurements in the Southern Ocean1915

(M. A. King & Padman, 2005). High quality, long-duration tidal records have histori-1916

cally been limited to a few coastal tide gauges and bottom pressure recorders. However,1917

recent deployments of Global Navigation Satellite System (GNSS) receivers on ice shelves1918

have provided high quality tide records greater than one year long (e.g., Ray et al., 2021).1919

Additional data come from satellite altimetry (reviewed in Section 2.2.2 of Padman et al.,1920

2018), although this is challenging in the far Southern Ocean as the best satellites for tidal1921

studies (TOPEX/Poseidon and Jason) only sample to about 66◦S and, for these and other1922

satellites with higher-latitude orbits, the presence of sea ice and ice shelves complicates the1923

extraction of the tidal signal.1924

Given the paucity of high quality data, our modern knowledge of Southern Ocean tides1925

comes primarily from ocean tide models. Barotropic models solve the depth-integrated1926
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equations of motion and provide depth-averaged (‘barotropic’) currents; for example, the1927

global solutions reviewed by Stammer et al. (2014) or regional models such as CATS20081928

(S. L. Howard et al., 2019). These models may be based entirely on dynamics (with open1929

boundary conditions applied for regional models) or inverse models constrained by assimila-1930

tion of ocean height data including in situ measurements and satellite altimetry. However,1931

the accuracy of barotropic models in the Southern Ocean, especially in the Antarctic coastal1932

seas, is typically poorer than at lower latitudes due to the reduced amount of data available1933

to constrain the solutions.1934

5.2.1 Tidal rectification1935

Nonlinear interactions between tidal flows and a sloping seafloor (such as the continental1936

shelf), in the presence of planetary rotation and spatial variations in tidal amplitude, can1937

lead to the generation of a time-averaged mean flow, in a process known as ‘tidal rectification’1938

(Loder, 1980; I. Robinson, 1981). These time-averaged flows have speeds of approximately1939

10–15% of the tidal current. Observations and models suggest that rectified tidal flows across1940

the Northwest Ross Sea outer continental shelf play an important role in the Antarctic1941

Bottom Water export from this region (Fig. 10 of Padman et al., 2009). Makinson and1942

Nicholls (1999) implicated tidal rectification as playing a key role in the ventilation of the1943

ocean cavity under Filchner-Ronne Ice Shelf. Numerical modelling studies (Flexas et al.,1944

2015) have also shown that tidal rectification-induced volume flux convergence is essential1945

to simulate a realistic Antarctic Slope Front and Current (§ 2.2).1946

In locations where tidal currents are comparable to mean flows, they can also modify1947

those mean flows through changing the time-averaged stress at the seafloor. This tidal1948

rectification is distinct to that discussed above since it involves the modification of existing1949

mean flows, rather than the interaction of the tide with topographic gradients to generate1950

new mean flows (Loder, 1980). Robertson et al. (1985) postulated that strong tides around1951

the perimeter of the Weddell Sea could significantly reduce the transport of the Weddell1952

Gyre through tide-induced weakening of mean flows via this rectification mechanism. A1953

similar response is expected in other locations where benthic tidal currents are significant,1954

notably in the southern limb of the Ross Gyre.1955

5.2.2 Internal tide drag1956

Internal tide drag is the periodic force exerted on the surface tide when it interacts with1957

seafloor topography to generate internal waves. This effect is the dominant tide–topography1958

interaction in the deep, open ocean where tidal flows are weak (a few centimetres per second)1959

and turbulent drag, which dominates in regions of strong tidal flow on continental shelves, is1960

negligible. The key role of internal tide drag was directly identified with the advent of satel-1961

lite observations and associated inverse models indicating that approximately 30% of energy1962

loss from the surface tide occurred in the open ocean (Egbert & Ray, 2000), including a sig-1963

nificant amount over rough topographic features in the Southern Ocean. Internal tide drag1964

was subsequently implemented in forward-running tide and ocean models (Jayne & St. Lau-1965

rent, 2001). It is now recognised that internal tide drag is crucial in setting the amplitude1966

of the surface tide (Buijsman et al., 2015; Arbic et al., 2018), and, therefore, also feeds back1967

on the strength of internal tide generation (Ansong et al., 2015) (see §5.3.1). Recent work1968

has shown that this internal tide drag is not purely a drag force, but also exhibits an out-1969

of-phase force component, analogous to the spring in a harmonic oscillator, which can both1970

damp and, in certain resonant configurations, amplify the surface tide (Shakespeare et al.,1971

2020). This out-of-phase force component dominates when sub-inertial topography-trapped1972

internal tides are generated (i.e., poleward of the critical latitude; § 5.3.3) and, therefore,1973

may be particularly important in the Southern Ocean.1974
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5.3 Internal gravity waves1975

Internal waves play a key role in transferring energy from large scale motions to small1976

scale turbulence, making them a major source of interior ocean mixing. The mixing gen-1977

erated by internal waves is one of the drivers of large scale ocean circulation and plays an1978

important role in biological and physical interactions, including the transport of nutrients1979

and larvae. Internal waves also transport momentum into the ocean from the boundaries,1980

thereby directly forcing the eddying and larger-scale circulation. They are generated when1981

the ocean density field is perturbed and can be identified as oscillations of these different1982

layers of the stratified ocean interior. Internal waves have vertical length scales from a few1983

meters to 2 km, horizontal length scales from a few meters to hundreds of kilometers, hor-1984

izontal group velocities of 10–100mms−1, amplitudes from meters to hundreds of meters,1985

and periods from several minutes to a day (Thorpe, 2007; Kantha & Clayson, 2000).1986

Internal waves originate primarily at the ocean’s upper and lower boundaries. They are1987

forced at the surface by wind stress fluctuations, and at the seabed by tides and mesoscale1988

flows interacting with rough topography. Observations of near-inertial wave energy prop-1989

agation from the mixed layer into the ocean interior suggest that wind-generated internal1990

waves are an especially important part of the ocean mixing budget in the Southern Ocean1991

(Waterman et al., 2013). The Southern Ocean has a deep-reaching mesoscale flow, some-1992

times referred to as the “mean flow” or “background flow” in the internal wave literature,1993

which is a mix of strong currents such as the Antarctic Circumpolar Current and associ-1994

ated jets, meanders and mesoscale eddies (§§ 2.1,2.5). The interaction of this deep-reaching1995

mesoscale flow with the seafloor is a major source of topographic internal waves in the1996

Southern Ocean (Nikurashin & Ferrari, 2011, 2013). New maps of internal tide-induced1997

sea surface height perturbations derived from repeat-orbit satellite altimetry (Zaron, 2019)1998

have revealed energetic internal tides near the Kerguelen Plateau, Macquarie Ridge and1999

Drake Passage, consistent with previous modelling studies (Simmons et al., 2004). Vertical2000

displacement variance at 1000m depth measured with Argo profilers, has uncovered similar2001

hotspot regions, particularly in the Kerguelen Plateau and Drake Passage regions (Hennon2002

et al., 2014)2003

5.3.1 Internal wave generation in the Southern Ocean2004

The Southern Ocean storm track centred on 40◦S (the roaring 40s), is associated with2005

high wind work and is a key source of near inertial waves (Simmons & Alford, 2012). Wind2006

blowing at the local inertial frequency band can force inertial motions through resonance in2007

the ocean surface mixed layer (D’Asaro, 1985; Alford et al., 2016; L. N. Thomas & Zhai,2008

2022). Those inertial motions lead to convergence and divergence at the stratified base of2009

the mixed layer. This pumping generates internal waves close to the local inertial frequency2010

(or Coriolis frequency) everywhere in the ocean except at the equator, which are called2011

“near-inertial waves” (Fig. 19). The resonant frequency, or effective local Coriolis frequency2012

at which near-inertial waves are generated is modified by the relative vorticity of the back-2013

ground flow (e.g., Kunze, 1985; Schlosser, Jones, Bluteau, et al., 2019, for the Southern2014

Ocean). Near-inertial waves are mostly generated from wind (other mechanisms are dis-2015

cussed below), and propagate almost exclusively equatorward, since the inertial frequency2016

decreases with latitude (Garrett, 2001; Chiswell, 2003; Alford & Zhao, 2007). They are2017

blocked from propagating poleward, except in strongly sheared currents (Jeon et al., 2019),2018

since their frequency would become sub-inertial, typically within a single wavelength. Glob-2019

ally, most of the ocean’s kinetic energy (Leaman & Sanford, 1975; Garrett, 2001; Wunsch et2020

al., 2004) and vertical shear (Alford et al., 2016) is in the near-inertial band, standing apart2021

from the rest of the internal wave spectrum (L. N. Thomas & Zhai, 2022). Near-inertial2022

waves play a crucial role in mixing the upper and deep ocean (§4.3.2; Alford et al., 2012).2023

A number of global studies (Alford, 2003; Jiang et al., 2005; Chaigneau et al., 2008;2024

Alford, 2020) have variably estimated the wind-energy input into near-inertial motions in2025

–54–



manuscript submitted to Reviews of Geophysics

Figure 19. Schematic of near-inertial waves generation, propagation and dissipation. Storms

generate inertial oscillations in the ocean mixed layer which drive horizontal convergences and

divergences that lead to vertical velocities. These pump the base of the mixed layer generating

internal waves near the local inertial frequency (1–1.2f) that have counterclockwise polarization in

the Southern Ocean. High mode near-inertial waves propagate downward and equatorward and tend

to break locally due to high shear. Low mode internal waves propagate further equatorward. The

interactions between near-inertial internal waves with other internal waves and with the background

mesoscale flow are not represented here. Figure adapted from Alford et al. (2016).
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the mixed layer as being in the range 0.29 to 0.7TW. This large range is partly due to2026

the high sensitivity of the calculation to the wind forcing product used (Jiang et al., 2005).2027

In addition, all of the above-cited studies use a slab-ocean model that does not account2028

for the interaction with the background mesoscale flow, which model studies have shown2029

to impact the near-inertial energy flux and decay timescale (Zhai et al., 2005; Whitt &2030

Thomas, 2015). More recent studies that instead use high resolution numerical models to2031

estimate wind energy input give estimates at the lower end of this range (0.23 to 0.27TW;2032

von Storch & Lüschow, 2023).2033

The second major source of internal waves is via the interaction of ocean flows with the2034

rough seafloor (Musgrave et al., 2022) and the Southern Ocean is a hotspot for a certain type2035

of these topographically generated internal waves known as ‘lee waves’. When a fluid parcel2036

is lifted up and over a topographic obstacle at sufficient speed, the restoring buoyancy2037

force from the stratification initiates an oscillation (internal wave) which radiates energy2038

away from the seafloor (Fig. 20). The ocean flow doing the lifting is a combination of2039

eddies, jets and other currents (§ 4.1), which are essentially steady on the timescale of waves2040

(< 1 day) and the barotropic tide (§ 5.2), which varies on sub-daily timescales (frequency2041

ω). Assuming a background mesoscale flow speed of U and topographic wavenumber k,2042

generation of freely-propagating topographic internal waves can only occur in the regime2043

where the intrinsic frequency is between the inertial frequency, f , and buoyancy frequency2044

N ; i.e., |f | < |ω + kU | < |N |. Therefore, barotropic tides (through frequency ω) and2045

mesoscale flow (through speed U) conspire in the generation of internal waves at topography2046

(Bell, 1975; Shakespeare, 2020). The two end members of topographic internal waves are2047

steady lee waves (when there is no tidal flow) and pure internal tides (when there is no2048

quasi-steady flow). Steady lee waves are only generated at very small scale topography2049

(f/U < |k| < N/U), which for typical deep Southern Ocean conditions (U =0.1–0.2m s−1,2050

f = 1 × 10−4 rad s−1, N = 1 × 10−3 rad s−1) restricts 2π/k to topographic scales of2051

0.5–10 km. Consequently, the presence of small-scale topography critically determines the2052

geographical location of lee wave generation. By contrast, pure internal tides are only2053

generated where ω > f (equatorward of ∼ 74.5◦ for semi-diurnal, and ∼ 28◦ for diurnal)2054

at large scale (small k) topography where the influence of the background mesoscale flow2055

is negligible. In intermediate regimes, topographic internal waves exist as “Doppler shifted2056

internal tides” (Shakespeare, 2020) but most studies have focused only on the two limiting2057

cases.2058

The energy flux into topographic internal waves is determined primarily by the strat-2059

ification, N , at the ocean bottom, topographic spectrum and flow speeds: E ∼ ρ0Nk̄U
2h22060

where k̄ is the mean topographic wavenumber, h the root-mean-squared height of the to-2061

pography, and U the appropriate tidal or quasi-steady flow speed (e.g., Garrett & Kunze,2062

2007). This scaling only applies in the so-called “intermediate frequency limit”, where2063

|f | ≪ |ω + kU | ≪ |N |. Thus, the weak stratification typical of the Southern Ocean at the2064

depth of prominent bathymetric features tends to limit the production of internal waves,2065

but this is somewhat counteracted by the presence of unusually rough and large amplitude2066

topography, and deep-reaching, intense eddying flows. However, it is not a simple matter2067

of additional lee wave generation in the Southern Ocean compensating for reduced internal2068

tide generation, since the fates of these waves are likely to be very different. While lee waves2069

are confined within their generating flow (e.g., jet, eddy, meander), internal tides can freely2070

propagate into different flow regimes (Shakespeare, 2020). We first consider the magnitude2071

of pure internal tide generation at large scales, before discussing the small-scale limit where2072

both internal tides and lee waves are generated.2073

For the dominant M2-tidal constituent, total low-mode internal tide generation in the2074

Southern Ocean has been estimated from baroclinic tide models to be 0.15TW (compared2075

with 0.87TW globally) with almost all the energy flux occurring at three locations: Mac-2076

quarie Ridge, Kerguelen Plateau, and in the vicinity of Drake Passage (Table 3 of Simmons2077
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Figure 20. Schematic of internal lee wave generation and the associated vertical transfer of

horizontal momentum flux via lee wave induced form stress across isopycnal layers. The pressure

is increased on the upstream side of the hill (+∆P ) and decreased on the downstream side (−∆P ),

resulting in a force from the fluid on the hill. The breaking of the wave at a critical level drives

turbulent mixing and deposition of the wave momentum, resulting in a net force on the background

mesoscale flow. For lee waves, this force always acts to decelerate the flow. For lee waves, critical

levels only occur when the velocity reduces with height along the waves propagation path, as shown

here; this usually occurs when the wave reaches the horizontal boundary of an eddy/jet, but for

simplicity, the flow in this schematic is represented as horizontally uniform.
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et al., 2004). However, other modelling (Padman et al., 2006) suggests these values may be2078

significantly overestimated, and that the calculation may be highly resolution dependent.2079

At horizontal scales of ∼ 10 km or less, and especially in the Southern Ocean, the2080

seafloor is dominated by features known as “abyssal hills” (Goff, 1991), which are not2081

resolved in the bathymetric datasets or large scale models. However, spectral representation2082

of this topography (Goff, 2010; Goff & Arbic, 2010), together with numerical model estimates2083

of N and eddying flow U , may be used to estimate internal wave generation at abyssal2084

hills. Globally, an additional M2 internal tide energy flux of 0.03–0.1TW is thought to2085

generated, but only perhaps 10% of this flux occurs in the Southern Ocean (Melet et al.,2086

2013; Shakespeare, 2020). Many authors (Naveira Garabato et al., 2013; Scott et al., 2011;2087

Nikurashin & Ferrari, 2010; Wright et al., 2014; Yang et al., 2018; Shakespeare, 2020) have2088

also used linear theory (following Bell, 1975, but often with modifications to account for2089

nonlinear effects) to calculate rates of lee wave generation globally. Predictions vary from2090

0.05 to 0.85TW, with the majority of this energy flux usually concentrated in the Southern2091

Ocean. The huge range of estimated energy flux for small-scale internal tide and lee wave2092

generation is due to the extreme degree of uncertainty in numerical model estimates of2093

both bottom stratification and eddying flow speeds at the seafloor, as well as a paucity of2094

observations to constrain the models.2095

Other sources of internal waves in the Southern Ocean are the relative motion of sea ice2096

across the upper ocean through the shape of the under-sea ice surface (McPhee & Kantha,2097

1989), sea ice floe motions (Waters & Bruno, 1995), and ice tongues and ice shelf basal2098

variability. Internal wave generation under sea ice is controlled by sea ice roughness, sea ice2099

concentration and wind forcing (Cole et al., 2018). While such sea ice generated internal2100

waves have been reported in the Arctic (Cole et al., 2014), there are currently few direct2101

observations of internal waves under Antarctic sea ice and ice shelves, which are limited to2102

internal tides (e.g., see the mooring data of S. Howard et al., 2004). The magnitude of energy2103

fluxes from these generation mechanisms, which are harder to observe and model, and their2104

relative prevalence are unknown. Additional internal wave generation mechanisms that are2105

not specific to the Southern Ocean are adjustment processes (e.g., geostrophic adjustment)2106

at fronts and eddies (Gill, 1984; Alford et al., 2013; Nagai & Hibiya, 2015; Rijnsburger et2107

al., 2021) and spontaneous emission via mesoscale straining (Shakespeare, 2019).2108

5.3.2 Influence of geostrophic turbulence on internal waves2109

The interaction of the strong Southern Ocean mesoscale flow with the seafloor gives2110

rise to the emission of internal waves that possess a net momentum directed mostly against2111

the flow (Bell, 1975; Nikurashin & Ferrari, 2011; Naveira Garabato et al., 2013; Shakespeare2112

& Hogg, 2019; Shakespeare, 2020). This momentum is transported by the waves and de-2113

posited where they break and dissipate, leading to a net force on the fluid (Eliassen, 1961;2114

Bretherton, 1969; Andrews & McIntyre, 1978). In the case of lee waves, this force is often2115

termed the “lee wave drag”, which plays a significant role in Southern Ocean dynamics2116

(Fig. 20; Naveira Garabato et al., 2013). The wave dissipation may be triggered by vari-2117

ous mechanisms including shear instabilities, wave saturation, wave–wave and wave–mean2118

interactions.2119

Wave–mean interactions encompass all mechanisms of interactions that are the result2120

of wave propagation through gradients in velocity and density induced by eddies, jets or any2121

other currents. For example, lee waves propagating upward and against a vertically sheared2122

flow that decreases with height will lose energy to that flow, while lee waves propagating2123

against a shear flow that increases with height will take energy from that flow. The former2124

mechanism is an important energy sink for lee waves (Waterman et al., 2014, 2021; Kunze2125

& Lien, 2019). Similarly, horizontal straining of waves by the mesoscale eddy field can2126

lead to significant energy exchange, and eventual wave dissipation in certain cases (Buhler2127

& McIntyre, 2005). Because the Southern Ocean exhibits a vigorous and deep-reaching2128

–58–



manuscript submitted to Reviews of Geophysics

mesoscale eddy field, it may be a global hotspot for wave–mean interactions. However,2129

numerical modelling support for this hypothesis is limited and observational evidence is2130

almost non-existent for all but a few possible interaction mechanisms (Cusack et al., 2020).2131

One key wave–mean interaction in the Southern Ocean is the phenomenon known as2132

the “critical level” (or ‘inertial level’; e.g., Booker & Bretherton, 1967). A critical level2133

is a height at which the internal wave phase speed equals the horizontal mean flow speed2134

and will be encountered when flow-trapped (e.g., lee) waves propagate upwards through a2135

mean flow that decreases in magnitude with height along the wave propagation path, which2136

usually occurs when the wave reaches the horizontal boundary of an eddy or jet (Fig. 202137

shows a simplified schematic of this process), if the waves have not already dissipated via2138

other means nearer the seafloor (e.g., Nikurashin et al., 2013). During the propagation2139

towards critical levels, the waves’ vertical wavelength decreases while their shear increases2140

until, close to the critical level, instabilities lead to dissipation of the wave and the deposition2141

of the wave momentum. Critical levels have also been suggested as a mechanism for the2142

observed enhancement of dissipation around the edges of mesoscale eddies in Drake Passage2143

(Sheen et al., 2015), with the potential for the wave momentum associated with tidally-2144

generated internal waves to “spin up” the eddies due to concomitant preferential dissipation2145

of waves propagating in the direction of the mesoscale flow (Shakespeare & Hogg, 2019;2146

Shakespeare, 2023). Cusack et al. (2020) found significant energy transfers from internal2147

waves propagating through eddy shear at a Drake Passage mooring, suggestive of a critical2148

level type mechanism.2149

Many observational studies of wave–mean interactions in the Southern Ocean have2150

been focused in regions of standing meanders downstream of major topographic obstacles2151

(such as Kergualen Plateau) that generate a vigorous eddy field (Sheen et al., 2015; Meyer,2152

Polzin, et al., 2015; Waterman et al., 2021; Cyriac et al., 2023) because these are hotspots2153

for key physical processes central to Southern Ocean dynamics (cf. § 4.1). Flow–topography2154

interactions are elevated in these regions where the energetic jets of the Antarctic Circum-2155

polar Current merge and split (Rintoul, 2018). In addition, the wind-energy input into2156

near-inertial motions is high in these regions (§ 5.3). Thus, standing meanders are expected2157

to be Southern Ocean mixing hotspots owing to the rich internal wave field generated from2158

strong wind forcing and flow–topography interactions.2159

The elevated shear, strain and vorticity in the background flow in meanders are impor-2160

tant factors in the evolution of internal waves. A timescale characterization of the various2161

processes expected to drive wave evolution suggests that the timescales associated with back-2162

ground flow advection and wave-mean flow interactions dominate dissipation timescales in2163

the evolution of waves (Meyer, Polzin, et al., 2015; Waterman et al., 2021; Cyriac et al.,2164

2023). This timescale analysis implies that some internal waves contribute to local mixing2165

by dissipating locally, while most of the waves are advected away by the mesoscale flow and2166

lead to dissipation downstream of the meander, in agreement with modelling studies (e.g.,2167

Zheng & Nikurashin, 2019) and theoretical descriptions (Shakespeare et al., 2021; Baker2168

& Mashayek, 2021). The mixing driven by this far-field dissipation of internal waves has2169

significant implications for the Southern Ocean stratification and watermass transformation2170

(Meyer, Polzin, et al., 2015). Other potential mechanisms of wave–mean interactions in2171

meander regions are the wave-capture (Meyer, Polzin, et al., 2015; Waterman et al., 2021)2172

and near-inertial wave trapping (Meyer, Polzin, et al., 2015; Rama et al., 2022; Cyriac et al.,2173

2023). Whether internal waves are located inside or outside fronts, jets and eddies controls2174

which of these wave–mean interaction mechanism dominates.2175

5.3.3 High-latitude internal wave dynamics2176

In the Southern Ocean, the tidal frequency is everywhere less than the inertial frequency2177

for the diurnal tide, and in the Ross and Weddell Seas (poleward of 74.5◦S) for the most2178

energetic semidurnal tide, M2. In these regimes, internal tides are not freely propagating,2179
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but are instead generated as waves that are trapped near the bottom topography, either2180

in the open ocean (bottom trapped waves; Rhines, 1970; Falahat & Nycander, 2015), or2181

along the shelf (coastal trapped waves; Huthnance, 1978; Mysak, 1980). Coastal trapped2182

waves can also be initiated by wind stresses and dense water outflows that produce sub-2183

inertial oscillations (J. Adams & Buchwald, 1969; Marques et al., 2014; Liao & Wang,2184

2018). Unlike freely propagating waves that can travel across continental shelves and oceans,2185

coastal-trapped waves must dissipate their energy near the shelf and slope and are thus a2186

potential source of regionally important shelf mixing and mass transport (Musgrave et al.,2187

2017). Trapped waves may also play an important role in modifying the amplitude of the2188

surface tide in the Southern Ocean (§ 5.2.2) . Coastal trapped waves propagate with the2189

coast on their left in the Southern Hemisphere, with a form that is highly dependent on2190

the characteristics of the topography and stratification (Schlosser, Jones, Musgrave, et al.,2191

2019; C. W. Hughes et al., 2019).2192

Three general categories of coastal-trapped waves have been identified as important to2193

Southern Ocean dynamics. In some regions, notably the Ross and Weddell Sea shelf breaks,2194

the strongest currents are associated with coastal trapped waves forced by the diurnal tide2195

(§ 5.2; J. H. Middleton et al., 1987; Whitworth & Orsi, 2006; Padman et al., 2009; Semper &2196

Darelius, 2017). Coastal trapped waves of subtidal frequency have also been observed along2197

shelf breaks (e.g., J. H. Middleton et al., 1982). Models suggest that outflows of Dense Shelf2198

Water can excite these waves along the Antarctic continental slope (Marques et al., 2014).2199

A third source for coastal trapped waves is associated with the co-location of critical slope2200

(slope of the topography that matches the wave ray angle, and at which the generation of2201

internal waves is most efficient; e.g., Becker & Sandwell, 2008) and critical latitude for the2202

M2-semidiurnal internal tidal waves along the southern Weddell Sea shelf break (Robertson,2203

2001; Daae et al., 2009). Numerical modelling suggests that coastal trapped semidiurnal2204

waves are generated in that region, leading to enhanced near-bed velocities at the shelf edge2205

and thick bottom mixed layers (∼100m).2206

Coastal trapped waves are expected to affect mixing, cross-slope exchanges, ice shelf2207

cavities, melt rates and sea ice concentration. Eddy diapycnal diffusivities from both2208

finescale (Daae et al., 2009) and microstructure (Fer et al., 2016) observations show ele-2209

vated near bottom values at a southern Weddell Sea shelf-break location, attributed to the2210

semidiurnal coastal trapped waves. Based on modelling, Marques et al. (2014) proposed2211

that coastal trapped waves forced by dense-water outflows would affect benthic mixing2212

and cross-slope water mass exchanges in the vicinity of sources of dense water outflows in2213

the Weddell and Ross Seas. Each of these processes depends on stratification and mean2214

flow along the continental slope. Therefore, we expect seasonal modulation of the coastal2215

trapped waves, which has been observed for coastal trapped waves forced by the diurnal2216

tides (J. H. Middleton et al., 1987; Semper & Darelius, 2017). There is substantial potential2217

for feedbacks between coastal trapped waves and background stratification and mean flow2218

through associated mixing (§ 4.3) and tidal rectification (§ 5.2.1).2219

5.4 Closing the loops2220

This section has described the significant influence of the three major types of gravity2221

waves (surface waves, tides and internal waves) on the larger and/or slower components of2222

Southern Ocean dynamics. Surface waves exert a first-order control on the air-sea fluxes2223

of heat and mass in the Southern Ocean, which, in turn, drive ocean convection (§4.2)2224

and the large-scale circulation (§2). Similarly, rectified tidal currents contribute to the2225

Antarctic Slope Current (§2.2) and subpolar gyres (§2.3), modulating the transfer of heat2226

across the Antarctic margin. Internal waves, some of which are generated by the tides, are2227

responsible for significant interior diapycnal mixing (§4.3) and dissipating energy from the2228

ocean’s mesoscale (§4.1) at rough Southern Ocean topography.2229
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6 Climate trends and future projections2230

The Southern Ocean dynamic system is changing in response to global warming (§ 1)2231

and changes in its atmospheric drivers. In recent decades, surface wind speeds have in-2232

creased over the Southern Ocean (Young et al., 2011; Young & Ribal, 2019) and the maxi-2233

mum in the wind speed shifted southward—these changes are often described in terms of a2234

strengthening and poleward contraction of the Southern Annular Mode (the dominant mode2235

of atmospheric variability over the Southern Ocean; Arblaster & Meehl, 2006; Toggweiler,2236

2009; D. W. Thompson et al., 2011). Precipitation has decreased at lower latitudes and2237

increased at higher latitudes (Manton et al., 2020), and evaporation has decreased over the2238

Southern Ocean (Boisvert et al., 2020). This section reviews the key trends in the differ-2239

ent components of the Southern Ocean dynamical system and projections for future trends2240

where available. These trends in dynamical components are strongly influenced by ongoing2241

changes in the thermohaline structure of the Southern Ocean. For a more detailed review2242

of recent trends in the physical climate, the reader is referred to J. M. Jones et al. (2016).2243

6.1 Large-scale circulation2244

Argo and satellite observations have shown an acceleration of the zonal flow on the2245

northern edge of the Antarctic Circumpolar Current (§ 2.1) (Shi et al., 2021). This trend2246

is consistent with theory (Hogg, 2010) and modelling (Shi et al., 2020) which predict an2247

increased “thermal wind” in response to the enhanced meridional buoyancy gradients ob-2248

served in this region (Gille, 2008, 2014; Rintoul, 2018; Roemmich et al., 2015; J. M. Jones et2249

al., 2016). However, uncertainty remains about whether the increased zonal flow represents2250

a strengthening of the Antarctic Circumpolar Current itself or just a southward shift of the2251

adjoining subtropical gyres (A. L. Stewart, 2021). Notably, the position of the Antarctic2252

Circumpolar Current appears to be stable, despite shifting westerly winds (Chapman, 2017).2253

Recent inverse models based on tracer observations suggest that the upper overturning2254

circulation (§ 2.4) is currently weakening, following a period of strengthening in the 1990s2255

(DeVries et al., 2017; Rintoul, 2018). These changes are opposite to the enhancement of2256

the upper overturning predicted by theory and numerical models (Meredith et al., 2012;2257

Morrison & Hogg, 2013) in the presence of strengthening westerly winds. One possibility is2258

that the observed changes may be due to natural variability rather than atmospheric forcing2259

(H. Thomas et al., 2008).2260

While there is currently no clear trend in the abyssal branch of the overturning circu-2261

lation (§ 2.5), significant changes are already being observed in the dense water formation2262

processes at the Antarctic margin which feed this circulation. Enhanced heat and freshwater2263

fluxes from the warming atmosphere and accelerating glacial melt (rather than significantly2264

modifying the surface ocean) are being taken up by the deep ocean through modification of2265

the properties of the deep waters formed in this region. A warming and freshening of the2266

Antarctic Bottom Water has been observed (Purkey et al., 2019) along with an associated2267

reduction in abyssal stratification (H. J. Zhang et al., 2021). It is expected that this reduced2268

density of shelf waters will also lead a reduced formation rate of Antarctic Bottom Water2269

(Silvano et al., 2018; Lago & England, 2019; Q. Li et al., 2023). However, changes to the2270

northward volume flux of Antarctic Bottom Water (i.e., the abyssal overturning circulation)2271

are presently not able to be measured with sufficient precision to detect climate trends. In2272

addition, it is expected that changes in the abyssal overturning will be complicated by the2273

influence of winds (A. L. Stewart et al., 2021).2274

The impact of the increasing westerly winds on the abyssal overturning is uncertain as2275

it depends on the balance of two competing influences. On the one hand, the wind-driven2276

enhancement of eddies (§ 6.3) is expected to increase internal lee wave generation in the2277

Southern Ocean (§ 6.4) and, thus, the deep ocean mixing and concomitant upwelling of2278

Antarctic Bottom Water (D. P. Marshall & Naveira Garabato, 2008). On the other hand2279

(unless fully compensated by eddies) the enhanced westerly winds and associated wind stress2280
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curl are expected to drive increased northward fluxes of upwelling mid-depth water in the2281

Southern Ocean but diminishing the amount transported southward to feed Dense Shelf2282

Water and Antarctic Bottom Water formation (Ito & Marshall, 2008; Nikurashin & Vallis,2283

2011; Shakespeare & Hogg, 2012). The projected weakening of the polar easterly winds2284

(Neme et al., 2022) will also contribute to reducing Dense Shelf Water formation, due to2285

the reduced northward export of sea ice away from Antarctica and subsequent build up of2286

sea ice over the dense water formation sites (Timmermann et al., 2002; McKee et al., 2011;2287

Dinniman et al., 2018; Hazel & Stewart, 2020; Morrison et al., 2023). The relative influence2288

of these different effects is challenging to assess even with state-of-the-art high-resolution2289

global ocean models (and impossible with contemporary climate models) since they must2290

be able to represent accurately Antarctic Bottom Water formation, its northward isopycnal2291

volume flux, and the internal waves driving mixing on ∼ 1 km scales (§ 7; Trossman et al.,2292

2016; Kiss et al., 2020; Yang et al., 2021). However, in the longer term it is expected that2293

the impact of significantly increased Antarctic meltwater on the abyssal overturning (§ 6.3)2294

will dominate over any wind-driven changes (Q. Li et al., 2023).2295

Understanding of current and future changes in the sub-polar gyres (Q. Wang et2296

al., 2013; Armitage et al., 2018; Vernet et al., 2019; Hogg & Gayen, 2020; Neme et al.,2297

2021; Auger, Prandi, & Sallée, 2022) and Antarctic Slope Current (Moffat et al., 2008;2298

A. F. Thompson et al., 2018; Hazel & Stewart, 2019; A. L. Stewart et al., 2019; A. F. Thomp-2299

son et al., 2020; Si et al., 2021; Moorman et al., 2020; Beadling et al., 2022) is poor, due2300

to the lack of observations at the Antarctic margin (especially in the winter months) and2301

the complex interplay of changes in wind stress, sea ice cover, tides and freshwater input2302

expected to influence the dynamics. Therefore, conclusions cannot be drawn about trends2303

in these dynamical components.2304

6.2 Cryosphere2305

There are strong regional variations in ice shelf trends. The mass balance of small- to2306

medium-size, warm-water cavities fringing West Antarctica and certain parts of East Antarc-2307

tica, such as Getz, Totten and Pine Island, are dominated by basal mass loss (Depoorter2308

et al., 2013; Rignot et al., 2013), such that they produce a substantial proportion of net2309

ice-shelf basal meltwater despite only occupying a relatively small fraction of the total ice-2310

shelf area (Rignot et al., 2013; Adusumilli et al., 2020). In contrast, giant, cold-cavity2311

ice shelves, such as the Ross and Filchner-Ronne, are dominated by the cycle of ice-front2312

advance and calving, with high basal melt rates confined to the ice fronts and grounding2313

lines (Rignot et al., 2013). Overall, shelf-front processes are the strongest drivers of mass2314

balance for most ice shelves (Depoorter et al., 2013; Greene et al., 2022), although thinning2315

has had a greater impact on the buttressing effect (Greene et al., 2022). Based on current2316

trends, certain ice shelves will lose substantial proportions of their volumes by the end of the2317

twenty-first century (Paolo et al., 2015). Under high emissions pathways for future warming2318

(RCP8.5), greatly enhanced ice shelf surface melt is predicted, such that several ice shelves2319

will experience surface melt intensities comparable or greater than those experienced by2320

Antarctic Peninsula ice shelves prior to disintegration (Trusel et al., 2015; de Conto et al.,2321

2021). This may be exacerbated by loss or reduction of a sea ice barrier to the open ocean,2322

which is already a trend for West Antarctic ice shelves (Reid & Massom, 2022; Teder et al.,2323

2022). However, there are large uncertainties in model projections of ice shelf loss relating2324

to feedbacks initiated by warming temperatures, particularly dynamic instabilities (such as2325

sudden disintegration and the marine ice cliff instability), and, hence, low confidence in the2326

future ice shelf trends (Fox-Kemper et al., 2021).2327

Despite the warming atmosphere, the annual maximum Antarctic sea ice extent had2328

a positive, albeit weak, trend of 13,800 km2 yr−1 from the beginning of satellite records in2329

1979 until the mid 2010s (J. Liu et al., 2023). A record maximum of 20.11million km2 was2330

reached in September 2014 (NISDC, 2023). The phenomenon of increasing Antarctic winter2331

sea-ice extent during an epoch of global warming is known as the “Antarctic paradox”2332
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(J. King, 2014). Dramatic Antarctic sea ice losses during both winters and summers came2333

shortly after the 2014 record maximum sea ice extent (Turner et al., 2022). The losses2334

culminated in a record low of 18.4million km2 in annual maximum sea ice extent on 31st2335

August 2016 (NISDC, 2023), and several consecutive records of minimum ice extent in2336

following years, including the lowest ever recorded Antarctic sea ice extent of 1.8million km2
2337

on 21st February 2023 (NISDC, 2023). These recent extremes in Antarctic sea ice match2338

a significant increase in variability from about 2007 onwards, with evidence they are linked2339

to changes in the balance of sea ice trends across different Antarctic regions (Purich &2340

Doddridge, 2023; Hobbs et al., 2024). A number of studies are currently underway to assess2341

the attribution of atmospheric versus oceanic forcing in driving the record minima (summer2342

2016–2017, February 2022 and February 2023; Schroeter et al., 2023; L. Zhang et al., 2022).2343

Due to the extreme lows in Antarctic sea ice cover in recent years, there is currently no2344

statistically significant net long-term trend in Antarctic sea-ice extent (Fogt et al., 2022;2345

J. Liu et al., 2023).2346

6.3 Turbulence2347

Since the early 1990s there has been an increase in the mesoscale turbulence field2348

in the Southern Ocean (Hogg et al., 2015; Mart́ınez-Moreno et al., 2021). This has been2349

attributed, in part, to strengthening westerly winds (N. C. Swart et al., 2015). However, the2350

extent to which the mesoscale turbulence field can modulate the Southern Ocean response2351

to strengthening winds remains uncertain. Some studies find that the time-mean flow of the2352

Antarctic Circumpolar Current is at most weakly sensitive to the changes in wind stress,2353

with the wind instead acting to energise the mesoscale turbulence field (e.g., Munday et al.,2354

2013; Constantinou & Hogg, 2019). However, recent work using altimeter measurements2355

and a reanalysis product has found that increasing wind stress does not increasing eddy2356

kinetic energy across the Southern Ocean (excepting one specific region near the Campbell2357

Plateau; Y. Zhang et al., 2021). A more regional view of the mesoscale turbulence field shows2358

evidence for local variability, with hotspots of increased eddy kinetic energy in regions with2359

topographic features (A. F. Thompson & Naveira Garabato, 2014), for example downstream2360

of the Kerguelen Plateau (Rosso et al., 2015). Satellite altimetry has highlighted that these2361

eddy hotspot regions in the Southern Ocean are strengthening in eddy kinetic energy on2362

the order of 5% per decade (Mart́ınez-Moreno et al., 2021). These eddy hotspot regions are2363

often crucial for the uptake of heat and carbon (Langlais et al., 2017) and, hence, the trends2364

in these regions will influence future climate. Disentangling other processes driving trends in2365

eddy kinetic energy is challenging. There is a large-scale warming trend in the most strongly2366

eddying regions in the vicinity of the circumpolar current (§ 6.1). The local gradients in2367

sea surface temperature are increasing (on average), which is associated with intensifying2368

eddy activity. Changes in the stratification may also indirectly affect mesoscale turbulence2369

via other processes such as modulating internal wave drag (§ 6.4), or influencing sea ice2370

formation and the production of deep water masses. Cryospheric trends will also affect the2371

mesoscale turbulence field. For example, increasing ice shelf melt rates lead to increasing2372

stratification, a transient increase in sea ice area and subsurface warming (Bronselaer et al.,2373

2018; Haumann et al., 2020; Q. Li et al., 2023), which impacts the mesoscale turbulence.2374

Convection is strongly influenced by buoyancy forcing trends. The deepening of the2375

mixed layer and strengthening of the underlying stratification may already be an indication2376

of enhanced convective processes. Recent studies also suggest that the mixed layer is be-2377

coming fresher due to global warming, driven by changes in the precipitation-evaporation2378

balance, accelerated melting and calving of Antarctic glaciers, and a more positive phase2379

of the Southern Annular Mode (J. Zhang, 2007; de Lavergne et al., 2014). Freshening of2380

the surface ocean around Antarctica will stabilise the water column, reducing the ability of2381

the mixed layer to entrain underlying water, and making coastal and open ocean convection2382

events less frequent (de Lavergne et al., 2014; Moorman et al., 2020). There is growing2383

evidence that cyrospheric trends have a significant impact on both open ocean and coastal2384

convection. Observations show that the calving of a large iceberg reduced the rate of sea2385
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ice production in a coastal polynya by blocking the flow of sea ice (Snow et al., 2018). This2386

change in surface buoyancy conditions reduced convection and Dense Shelf Water produc-2387

tion, which subsequently reduced the density and volume of the local Antarctic Bottom2388

Water. Another cryospheric effect is the outflow of meltwater from neighbouring ice shelves2389

into coastal polynya regions. It has been observed that this can reduce nearby convection2390

and the rate of Antarctic Bottom Water formation (Silvano et al., 2018). If the trend of2391

ice shelves is towards more calving and melting, then we might expect less convection and2392

dense water formation on the Antarctic margins (Q. Li et al., 2023). However, other forcing2393

changes, such as the strengthening Southern Annular Mode, may be responsible for opening2394

up other polynyas and open ocean convection regions near Maud Rise (Jena et al., 2019;2395

Kurtakoti et al., 2018). Therefore, it is challenging to predict the response of convection to2396

climate trends.2397

The trends in mixing are difficult and, in many cases, near impossible to assess. Issues2398

with measuring mixing (§ 4.3) impede the direct tracking of mixing trends. However, some2399

work can be done with identifying trends in sources of mixing. In the upper ocean, changes2400

in wind stress and surface buoyancy forcing will likely induce modifications in the mixing.2401

Indeed, changes in the mixed layer depth and stratification are already being noted, which2402

indicate that mixing is already adjusting in these regions. Another example is that increasing2403

wind stress can produce stronger Langmuir circulation and hence more mixing in the upper2404

ocean. In the interior ocean, trends in internal waves and stratification are hypothesised to2405

modify the mixing rates. In the deep ocean, trends in the abyssal water mass properties2406

and stratification will influence the buoyancy transport in the bottom boundary layer and2407

associated mixing. It is extremely difficult to determine even the direction of these trends,2408

given the various competing influences.2409

6.4 Gravity waves2410

The trend of increasing wind speeds and storminess over the Southern Ocean is influ-2411

encing both the surface and internal wave climates. The enhanced winds are expected to2412

lead to an increase in generation of near-inertial internal waves along storm tracks, with2413

energy fluxes increasing proportional to wind stresses (∼1% per decade; Cuypers et al.,2414

2013; Rimac et al., 2013). However, given the paucity of internal wave observations and2415

the inability of current climate models to resolve internal waves, this predicted change has2416

neither been directly observed nor modelled. By contrast, satellite observations show that2417

surface wave amplitudes in the Southern Ocean are growing faster than in any other region2418

(Hemer, 2010; Young et al., 2011; Young & Ribal, 2019; Meucci, Young, Aarnes, & Breivik,2419

2020; Timmermans et al., 2020). Over the satellite era, the Southern Ocean has regions in2420

which the mean significant wave height has a positive trend of up to 10mm per year and in2421

most regions extreme waves (defined as waves with heights above the 90th percentile) are2422

also increasing at up to 10mm per year (over 1985–2018; Young & Ribal, 2019). Twentieth-2423

century climate model ensembles give century-long trends (1901–2010) of 10–20mm per2424

decade in mean significant wave height (Meucci, Young, Aarnes, & Breivik, 2020; Meucci et2425

al., 2023). Under the RCP8.5 high-emission scenario (Van Vuuren et al., 2011), the largest2426

ensembles to date predict that by the end of the century there will be up to 15% increases in2427

significant wave heights (Morim et al., 2019), 5-10% in low-frequency extreme wave events2428

(1 in 100-year significant wave height return period, i.e., waves with a 1% probability of oc-2429

curring in a given year; Meucci, Young, Hemer, et al., 2020) and 50–100% in high-frequency2430

events (return periods less than one year; Morim et al., 2021). These projected changes in2431

the Southern Ocean surface wave climate extremes are consistent across different datasets2432

and statistical approaches (Lobeto et al., 2021; O’Grady et al., 2021).2433

In addition to winds, changes to the ocean stratification will play a major role in mod-2434

ifying the future internal wave climate. Observations broadly show increasing stratification2435

in the upper Southern Ocean and reducing stratification in the abyss, although these trends2436

are highly variable (Armour et al., 2016; Yamaguchi & Suga, 2019; H. J. Zhang et al.,2437
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2021). Weakened abyssal (near-bottom) stratification will tend to suppress the production2438

of topographically-generated internal waves (i.e., internal tides and lee waves), for which2439

the energy flux scales with the buoyancy frequency above the topography (Bell, 1975). In2440

turn, reduced internal tide generation will tend to enhance the strength of the barotropic2441

tide, since it dampens a key energy sink (§ 5.2.2). The stratification changes will also cause2442

significant variation in coastal trapped waves, which are a key component of tides along the2443

Antarctic continental shelf (§ 5.3.3) and are known to be highly sensitive in both structure2444

and amplitude to stratification (Semper & Darelius, 2017). For example, Skardhamar et2445

al. (2015) model large changes in the energetics of diurnal coastal trapped waves due to2446

seasonal changes in stratification along continental slopes (albeit in the North Atlantic).2447

We expect similar responses at longer time scales in the Southern Ocean, as stratification2448

evolves due to anthropogenic forcing.2449

The future internal wave and tide climate in the Southern Ocean will also be modulated2450

by trends in the other components of the dynamical system: circulation, turbulence and2451

the cryosphere. For example, changes in the Antarctic Slope Current (§ 6.1) will modify2452

the strength and structure of coastal trapped waves (Skardhamar et al., 2015; Semper &2453

Darelius, 2017), while increases in bottom flow speeds due to mesoscale eddies (Mart́ınez-2454

Moreno et al., 2021) and are expected to enhance internal lee wave generation. In terms2455

of cryospheric impacts, since ocean tides are resonant phenomena closely tied to the ocean2456

basin geometry, tidal elevations and currents are sensitive to changes in ice shelf thickness2457

and extent (Rosier et al., 2014). Changes to tides are largest near the locations where the2458

ice shelves change but can also exhibit non-negligible far-field effects over time (Rosier et2459

al., 2014; Padman et al., 2018). However, due to the resonant nature of the tides, the exact2460

changes are challenging to predict. Lastly, we expect decreasing sea ice cover and increasing2461

open water conditions to lead to increased internal wave energy, but to date all studies2462

of this effect have been focused in the Arctic (Cole et al., 2014, 2018; Fine & Cole, 2022;2463

Martini et al., 2014; Dosser & Rainville, 2016).2464
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7 Research priorities to close the loops on Southern Ocean dynamics2465

Many key research questions remain regarding interactions between the different com-2466

ponents of the Southern Ocean dynamic system, and how their current trends (§ 6) will2467

affect the interactions. The knowledge gaps compromise our ability to represent the South-2468

ern Ocean in global models accurately and, hence, make well informed projections of future2469

climate change and sea level rise. Indeed, over half the uncertainty in projections of global2470

mean sea level is due to Antarctic Ice Sheet melting (Kopp et al., 2014). Reducing this2471

uncertainty requires advances on multiple fronts due to the range of processes that influ-2472

ence the melt rate (Cook et al., 2023). Necessary advances include predicting trends in2473

the large-scale circulation and temperature of the Southern Ocean beyond the continental2474

shelf, understanding the transport mechanisms that flux heat onto the shelf and into the2475

ice shelf cavities, and developing accurate parameterisations of the fine-scale convection and2476

turbulence that melts the ice shelves. Similarly, a key contributor to uncertainty in global2477

mean air temperatures on long timescales is the rate of heat storage in the abyssal ocean2478

(Abraham et al., 2013). While most anthropogenic heat is currently stored in the upper2479

ocean (Levitus et al., 2012), which overturns faster, the abyssal ocean is playing an increas-2480

ing role and will be crucial to the long-timescale evolution of climate change. But it remains2481

an open question whether this abyssal overturning will increase or decrease under climate2482

change (§ 6.1). The sign and magnitude of the trend is influenced by a host of processes2483

including the poorly understood dynamics of the Ross and Weddell gyres, changes in sea2484

ice cover and brine rejection, the small-scale convection that leads to dense shelf water, and2485

the unknown distribution and magnitude of mixing in the abyssal Southern Ocean.2486

The overarching research priority is improving our ability to model the Southern Ocean2487

system and its response to anthropogenic forcing. This requires a multi-disciplinary com-2488

munity effort, involving researchers across the different components of Southern Ocean dy-2489

namics, and spanning advances in theoretical understanding of individual processes, tech-2490

nological developments to improve observations, novel data analysis techniques, innovative2491

numerical methods, and, finally, putting these components together to develop the global2492

ocean–sea-ice models that are used in climate and sea level projections. We now describe2493

the specific priorities that feed into addressing the uncertainties identified above, which we2494

broadly divide in process-based models (§ 7.1), observations (§ 7.2), and regional and global2495

models (§ 7.3).2496

7.1 Process-based models2497

In recent years, process-based numerical models have proved key quantifying the role2498

of lee waves in Southern Ocean abyssal mixing (e.g., Nikurashin & Ferrari, 2011, 2013), the2499

dynamics of eddy hotspots and upwelling (Barthel et al., 2022), polynya convection (Sohail2500

et al., 2020), abyssal upwelling along topography (Drake et al., 2022), eddy saturation2501

(Constantinou, 2018; Constantinou & Hogg, 2019), Antarctic Slope Current dynamics (Ong2502

et al., 2023) and more. Future priorities include investigating convection in ice shelf cavities,2503

internal-wave–eddy interactions and mixing, and surface wave–sea ice interactions in the2504

marginal ice zone. All of these processes currently lack a sufficiently complete theoretical2505

description to permit their integration into large-scale models. Given the crucial role of these2506

processes in heat and carbon uptake (mixing), sea ice formation (surface waves), ice sheet2507

stability (cavity circulation), and ocean circulation (internal-wave eddy interactions), their2508

parameterisation in global models is expected to have a significant impact on the resolved2509

model state. In addition, while the inference of mixing made in the past from finescale2510

parameterisations (§4.3) applied to observations is immensely valuable, key questions remain2511

about the assumptions involved (Bluteau et al., 2013; Polzin, Naveira Garabato, Huussen,2512

et al., 2014; Mashayek, Salehipour, et al., 2017; Gregg et al., 2018; Ijichi et al., 2020). These2513

assumptions can be queried using idealised process-based models, and the resulting theory2514

applied to improve the interpretation of extant and future observations.2515
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Laboratory experiments have also played a major role in developing our understanding2516

of key Southern Ocean processes, such as convection (e.g., Vreugdenhil et al., 2017; Gayen2517

& Griffiths, 2022), wave breaking and air–sea exchange (e.g., Melville, 1996; Mayer et al.,2518

2020), jet dynamics (e.g., Von Larcher & Williams, 2014; C. A. Smith et al., 2014), gravity2519

currents (e.g., Griffiths, 1986), mixing and internal waves (e.g., Dossmann et al., 2016; Tan2520

et al., 2022), and ice–ocean interactions (e.g., Aussillous et al., 2006; McCutchan & John-2521

son, 2022). Laboratory modelling has become less common in recent years, largely due to2522

the relative cheapness and adaptability of numerical modelling. However, laboratory exper-2523

iments remain a crucial tool in understanding many (especially multi-phase) systems where2524

the governing dynamical or thermodynamical equations and/or boundary conditions are not2525

necessarily known (e.g., sea ice, complex glacial topologies, sediment-laden plumes, air–sea2526

gas exchange). In particular, experiments of melting ice faces (reviewed by McCutchan &2527

Johnson, 2022) form the basis for our current glacial melt-rate parameterisations which are2528

used to predict future sea level, but recent comparisons (Malyarenko et al., 2020; Rosevear,2529

Galton-Fenzi, & Stevens, 2022) show that more studies are needed to examine different2530

regimes (such as melting under the influence of tides; Richter et al., 2022). Other key2531

next steps are the identification of thresholds between melting regimes and the develop-2532

ment of parameterisations based on properties resolved in global models. Similarly, it is2533

becoming vital that we better understand how the thermal and optical properties of sea2534

ice (e.g., albedo, thermal conductivity, brine content; § 3.2.3; Perovich, 1996; Light et al.,2535

2003; Pringle et al., 2007) may change in the future as the climate warms, so that these2536

effects can be included in global ocean–sea-ice models. As such, new facilities are being set2537

up to study the thermodynamics of sea ice (e.g., M. Thomas et al., 2021; Hall et al., 2023)2538

under carefully controlled laboratory conditions. Such investigations are likely to be critical2539

in improving the accuracy of ocean-sea ice model projections of future climate scenarios by2540

ensuring such models are not incorrectly tuned to only describe present climate conditions.2541

7.2 Observations2542

Satellites provide continuous observations in time with near complete spatial coverage2543

of the Southern Ocean surface, allowing measurement of, e.g., sea ice extent, ice sheet mass2544

loss, surface wave fields, geostrophic eddies and currents, and ocean tides. New satellite2545

missions now underway, e.g., Surface Water and Ocean Topography (SWOT; Morrow et al.,2546

2019) and, Surface Wave Investigation Measurements (SWIM; Aouf et al., 2020)), promise2547

unprecedented spatial resolution. This should improve our understanding of the small eddies2548

on the Antarctic continental shelf that are key to heat transport, and short-wave components2549

of the surface wave field that are characteristic of the long-fetch conditions of the Southern2550

Ocean. Such observations will be used directly in data assimilating models, and in the2551

testing of theories and parameterisations for these small-scale processes.2552

In situ observations are vital for groundtruthing satellite observations and to under-2553

stand processes occurring below the sea surface, which are invisible to satellites. Ship-2554

based observations in the Southern Ocean are expensive and strongly biased towards more2555

amenable summertime conditions, and easier to access regions (Newman et al., 2019). As2556

such, we lack sufficient observations in many environments, such as beneath sea ice cover2557

and in ice shelf cavities, and during rough weather conditions, which are crucial for de-2558

termining ocean mixing, ice sheet melt rates and dense water formation. However, new2559

platforms are coming online that are starting to fill some of these gaps. For example, deep2560

Argo and other floats are now available that profile year-round and under sea ice, which2561

should greatly expand data coverage in the far Southern Ocean (Johnson et al., 2022; van2562

Wijk et al., 2022). In addition, creative solutions such as animal-borne data acquisition2563

are becoming more widespread (Roquet et al., 2014; Foppert et al., 2019). Through-ice2564

moorings are also providing valuable insights into hydrography, currents and turbulence2565

(e.g., Arzeno et al., 2014; Davis & Nicholls, 2019; Stevens et al., 2020; Hattermann et al.,2566

2021; Herraiz-Borreguero et al., 2013), and some measurements are now being obtained2567

by autonomous underwater vehicles including submarines and gliders (e.g., Nicholls et al.,2568
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2006; Gwyther et al., 2020; Schmidt et al., 2023b). In addition, advances in surface radar2569

enable highly resolved (in space and time) measurements of the ice shelf base (Vaňková et2570

al., 2021) that are sufficiently accurate to identify tidal modulation of melt rates (Sun et al.,2571

2019). In terms of ocean mixing, the development of microstructure profiling Argo floats2572

(Roemmich et al., 2019) and gliders (Wolk et al., 2009) is a particularly enticing possibility.2573

Current and future trends in mixing intensity, potentially associated with trends in winds2574

and eddy kinetic energy (e.g. Sheen et al., 2014; Whalen et al., 2018; Mart́ınez-Moreno et2575

al., 2021), remain open questions, which more observations with such platforms can help to2576

constrain. There remains an urgent need to prioritise longer term continuous and sustained2577

in situ measurements to permit the detection and analysis of long-term trends and seasonal2578

variability. For example, a Southern Ocean analogue of the North Atlantic RAPID array2579

(Cunningham et al., 2007) to monitor directly the large-scale circulation. Conceptually, the2580

simplest such array would be across Drake Passage to directly monitor the strength of the2581

Antarctic Circumpolar Current. It would arguably be more valuable to have a small number2582

of permanent arrays in the regions where Dense Shelf Water cascades off the continental2583

shelf to form Antarctic Bottom Water. Sustained direct measurements of this volume flux2584

(and the water mass properties) would greatly assist in our understanding of changes in the2585

abyssal ocean and provide early warning of future climate impacts.2586

It is also a priority to make better use of the observations we already have, both2587

in terms of science (e.g., developing novel analysis methodologies) and data management.2588

On the science side, efforts are underway to develop novel methods of extracting Southern2589

Ocean bottom pressures and abyssal circulation from gravimetric satellite observations (e.g.,2590

GRACE; Wouters et al., 2014), an approach which has proven successful in the North2591

Atlantic Ocean (Landerer et al., 2015). Significant work is also being done to measure the2592

Southern Ocean internal tide field and associated mixing from existing satellite altimeter2593

data (Z. Zhao et al., 2018), including addressing the challenge of wave dephasing due to the2594

strong Southern Ocean eddy field using machine learning methods (H. Wang et al., 2022;2595

Egbert & Erofeeva, 2002).2596

In terms of data curation, it is essential that all data generated by the Southern Ocean2597

community is managed in accordance with the FAIR data principle; that is, data should2598

be findable, accessible, interoperable and reusable (Wilkinson et al., 2016). Genuine ac-2599

cordance with this principle is essential for the community to gain maximum benefit from2600

new and existing Southern Ocean data, and ensure cost-effectiveness for funding agencies.2601

Community data collation efforts such as the Southern Ocean Observing System (SOOS;2602

Newman et al., 2019) and related projects play a key role in this effort, and should be further2603

expanded.2604

7.3 Regional and global models2605

Numerical ocean and climate models are our primary tool for future climate projection2606

and operational ocean forecasting. These models are inevitably limited by their finite spatial2607

resolution, with typical grid sizes of 1◦ in current generation global climate models (e.g.,2608

CMIP6; Roberts et al., 2020) and up to 1/12◦ in current global ocean-only models (e.g.,2609

Kiss et al., 2020) and ocean state estimates (e.g., Lellouche et al., 2018). Processes smaller2610

than the grid scale must be parameterised in such models, i.e., a mathematical model for the2611

process must be formulated, calibrated (e.g., with observations and process-based models)2612

and implemented (H. T. Hewitt et al., 2020). As outlined in this article, many of these2613

unresolved processes are crucial to the climate state (e.g., diapycnal mixing, deep convection,2614

eddies) and yet many are still not sufficiently well understood. To some extent, these2615

challenges are resolved by running ever-higher resolution models as computational power2616

increases, avoiding the need for parameterisation. For example, ocean model grids finer2617

than 1 km are needed to resolve eddies and their associated heat transport on the Antarctic2618

continental shelf (Hallberg, 2013; A. L. Stewart & Thompson, 2015) and such resolutions2619

are now feasible for very short global ocean simulations (Rocha et al., 2016; A. L. Stewart et2620
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al., 2018). Even if model speedups due to using graphical processing units (GPUs) render2621

1 km-resolution simulations close to routine (e.g., Oceananigans.jl model; Ramadhan et al.,2622

2020), processes such as diapycnal mixing will still not be resolved and there remains a need2623

to parameterise other larger-scale processes for longer duration simulations.2624

As such, there is an urgent need for improved parameterisations of a number of key2625

processes in large-scale ocean and climate models, including mixing (Melet et al., 2015),2626

eddies (H. T. Hewitt et al., 2020), convection (Sohail et al., 2020), ice shelf melt rates2627

(discussed above), internal wave–eddy interactions and momentum transfer (Shakespeare &2628

Hogg, 2019), surface wave–sea ice interactions (Bennetts, Bitz, et al., 2022a), and surface2629

and bottom submesoscales (Gula et al., 2022). Of these priorities, the representation of2630

diapycnal mixing is recognised as particularly vital as it controls the strength and variability2631

of the overturning circulation realised in such models (Melet et al., 2015). While static maps2632

of mixing have been developed (de Lavergne et al., 2020), and parameterisations of some2633

specific mixing processes have been implemented in global models (e.g., lee waves; Stanley2634

& Saenko, 2014), development of a dynamically evolving representation of diapycnal mixing2635

is a key priority. In developing such parameterisations, care should be taken to account2636

for the unique dynamics of the Southern Ocean (e.g., high-latitude wave dynamics § 5.3.3)2637

that lead to different mixing properties. Due to the changing climate, it is also essential2638

that any parameterisation is physically based, and includes all relevant coupling with other2639

processes. For example, empirical parameterisations based on present-day observations may2640

fail in future ocean states, which will exhibit different stratification, mean currents and basin2641

geometry (due to ice shelf and sea level changes).2642

It is vital that all parameterisations are “scale-aware” (Zanna et al., 2017; H. T. Hewitt2643

et al., 2020), i.e., they adapt to the model resolution, so as to avoid both parameterising and2644

resolving the same process, and also to avoid the parameterisation negatively impacting the2645

resolved phenomena. The lack of scale-awareness is a well-known problem with the widely2646

used Gent and Mcwilliams (1990) mesoscale eddy parameterisation at intermediate “eddy-2647

permitting” resolutions (Hallberg, 2013; Jansen et al., 2019). While largely abandoned at2648

the highest model resolutions, mesoscale eddy parameterisation remains important for lower2649

resolution ocean and climate models, and the Gent and Mcwilliams (1990) parameterisation2650

is arguably insufficient (H. T. Hewitt et al., 2020). To address such challenges, there is a2651

recent move towards machine learning approaches to parameterise eddies (Bolton & Zanna,2652

2019; Zanna & Bolton, 2020, 2021; C. Zhang et al., 2023) as an alternative to simple2653

mathematical models. The concept of these approaches is for the algorithm to learn the2654

governing physics of mesoscale eddies from eddy-resolving ocean models, with the resulting2655

formulae then applied in lower resolution ocean and climate models. Such novel methods2656

(although not without computational challenges; e.g., C. Zhang et al., 2023) present exciting2657

possibilities and may be generalisable to other physical phenomena.2658

As noted above, the ocean state in large-scale models is highly sensitive to mixing. As2659

a result, elimination of unintended and spurious “numerical mixing” is of equal importance2660

to the accurate representation of physical mixing. Numerical mixing occurs due to the dis-2661

crete representation of smoothly varying tracers, such as temperature and salinity, which are2662

mapped onto gridpoints at each model timestep. Discrete mapping causes an unintended re-2663

distribution of tracer between adjoining grid cells (mixing), e.g., as the water column sloshes2664

up and down due to the passage of an eddy or wave (Petersen et al., 2015; A. H. Gibson et2665

al., 2017; Megann et al., 2022). Numerical mixing is difficult to quantify in complex models,2666

but assessments that do exist suggest it can be significant, including in the eddying regions2667

of the Southern Ocean (Holmes et al., 2021). This problem is important for the correct2668

representation of Antarctic Bottom Water and the abyssal overturning circulation in the2669

Southern Ocean. The amount of numerical mixing is closely tied to the vertical coordinates2670

used in large-scale models and significant resources at major modelling centres are being2671

devoted to determining an optimal vertical coordinate (e.g., A. Gibson, 2019; Klingbeil et2672
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al., 2019; Griffies et al., 2020; Wise et al., 2022). It is anticipated that these efforts will lead2673

to increased model accuracy without the significantly increased computational expense.2674

A further priority in large-scale modelling is the incorporation of additional missing2675

components of the Earth system. This includes the incorporation of ice shelf cavities and2676

iceberg melt into ocean models, and the coupling of ice-sheet models with their ocean–sea2677

ice counterparts (e.g., Favier et al., 2019; Gladstone et al., 2021; Kreuzer et al., 2021).2678

Both of these efforts are likely to prove crucial to the accurate projection of future melt2679

rates, but come with substantial computational challenges (Mathiot et al., 2017). Another2680

missing feature in most ocean and climate models is an explicit representation of the ocean2681

tides (Richter et al., 2022). Explicit inclusion of tidal currents in models, including baro-2682

clinic tides, would improve representation of benthic, mid-water and ice-base mixing, and2683

the generation of rectified flows that help ventilate cavities (Makinson & Nicholls, 1999).2684

However, inclusion of tides in a global model is not as simple as turning on the gravitational2685

forcing, since the amplitude of tides are set by a balance between the forcing and the drag2686

at the seafloor, some of which occurs at unresolved scales (Arbic et al., 2018). Therefore,2687

the inclusion of tides requires the further development and co-implementation of additional2688

parameterisations, supported by observations and process-based models.2689
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8 Closing remarks2690

In many respects, the Southern Ocean is the final frontier of ocean science. It is a vast,2691

poorly observed, inhospitable and almost untouched region that has fascinated humankind2692

since the discovery of Antarctica in the 1820s. Scientific interest in the Southern Ocean2693

has grown rapidly in recent times, along with understanding of the control Southern Ocean2694

dynamics exert on global climate and climate change. However, progress has sometimes2695

been stymied by a lack of effective communication between scientists in different disci-2696

plines and using different methodologies. This holistic review of Southern Ocean dynamics2697

has sought to provide a common language and knowledge-base across the Southern Ocean2698

physical science community to facilitate future knowledge-sharing and collaboration. Such2699

collaboration is critical to address the key scientific priorities identified above that span the2700

disciplines of mathematics, fluid mechanics, software engineering, glaciology and oceanogra-2701

phy, and methodologies as diverse as laboratory experiments of individual processes through2702

to numerical modelling of the entire Southern Ocean system. All of these disciplines and2703

methodologies — and many more — have a crucial role to play in accelerating our under-2704

standing of Southern Ocean dynamics in the years ahead, and thereby improving our ability2705

to predict ocean and climate change. This outcome is critical for the global community, and2706

indeed forms one of the goals of the United Nations Decade of Ocean Science 2021–2030.2707

Facilitated by this review, we encourage the entire Southern Ocean community to come2708

together to support this objective.2709
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