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Abstract

Accurate precipitation simulations for various climate scenarios are critical for understanding and predicting the impacts of

climate change. This study employs a Cycle-generative adversarial network (CycleGAN) to improve global 3-hour-average

precipitation fields predicted by a coarse grid (200˜km) atmospheric model across a range of climates, morphing them to match

their statistical properties with reference fine-grid (25˜km) simulations. We evaluate its performance on both the target climates

and an independent ramped-SST simulation. The translated precipitation fields remove most of the biases simulated by the

coarse-grid model in the mean precipitation climatology, the cumulative distribution function of 3-hourly precipitation, and the

diurnal cycle of precipitation over land. These results highlight the potential of CycleGAN as a powerful tool for bias correction

in climate change simulations, paving the way for more reliable predictions of precipitation patterns across a wide range of

climates.
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Abstract14

Accurate precipitation simulations for various climate scenarios are critical for under-15

standing and predicting the impacts of climate change. This study employs a Cycle-generative16

adversarial network (CycleGAN) to improve global 3-hour-average precipitation fields17

predicted by a coarse grid (200 km) atmospheric model across a range of climates, mor-18

phing them to match their statistical properties with reference fine-grid (25 km) simu-19

lations. We evaluate its performance on both the target climates and an independent20

ramped-SST simulation. The translated precipitation fields remove most of the biases21

simulated by the coarse-grid model in the mean precipitation climatology, the cumula-22

tive distribution function of 3-hourly precipitation, and the diurnal cycle of precipita-23

tion over land. These results highlight the potential of CycleGAN as a powerful tool for24

bias correction in climate change simulations, paving the way for more reliable predic-25

tions of precipitation patterns across a wide range of climates.26

Plain Language Summary27

Using CycleGAN, a machine learning technique, we can remove key biases in pre-28

cipitation simulated by a fast, coarse-grid atmospheric model. This method morphs maps29

of the output precipitation to match typical characteristics of a slower but more accu-30

rate fine-grid configuration, correcting systematic errors in both long-term average spa-31

tial precipitation patterns and 3-hourly precipitation variations. It retains skill in inter-32

mediate climate states unseen in training, making it a useful tool for climate change sim-33

ulations.34

1 Introduction35

Throughout the history of atmospheric model development, results from fine-grid36

models that resolve important physical processes like cloud and precipitation formation37

or flow over mountain ranges have been used to improve biased climates in coarse-grid38

models that do not. For instance, scientists have used large-eddy simulations as a test-39

bed for calibrating analytic turbulence and cloud parameterizations, e.g. Bogenschutz40

et al. (2010). This process relies heavily on expert knowledge to develop appropriate mod-41

els of sub-grid behaviors, often heavily influenced by analysis of a few archetypical cases.42

More recently, machine learning (ML) has been used to correct coarse-resolution43

models’ behavior across the full range of conditions over historical periods where obser-44

vational analysis is available. For example, Watt-Meyer et al. (2021) trained a correc-45

tive tendency for a 200 km grid atmospheric general circulation model (AGCM) using46

ML based on nudging tendencies towards observational analysis. The ML correction re-47

duced annual-mean precipitation biases by 20%. An ML approach based on reservoir com-48

puting (Arcomano et al., 2023) and ERA5 reanalysis (Hersbach et al., 2020) halved the49

global root mean square bias of annual-mean precipitation in an even coarser (400 km50

grid) AGCM.51

We require a different strategy when training a model to generalize across future52

climate forcings, as when training with observational analyses one can only learn the cli-53

mate represented by this data. One method is to use finer-grid AGCM simulations as54

training targets. Such simulations are computationally expensive, but they more accu-55

rately simulate societally-important aspects of present-day climate such as means and56

extremes of land surface precipitation and temperature than do coarse-grid AGCMs (Flato57

et al., 2013; Wehner et al., 2010). Because they resolve much more detail of deep con-58

vective storm systems, orography and land surface characteristics, they are less sensi-59

tive to uncertain parameterizations of deep convection and orographic drag, making them60

potentially a more robust simulation tool for generalizing to future climates. S. K. Clark61

et al. (2022) used the same nudging approach as Watt-Meyer et al. (2021) to ML-correct62
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a 200 km model to behave like its 25 km analogue across four climates forced by adding63

specified uniform sea-surface temperature (SST) increments to observed SST patterns.64

They were able to correct spatial patterns of precipitation over land by 10-30% in multi-65

year simulations across all four climates.66

This bias reduction is encouraging, but to get full advantage from high-fidelity ref-67

erence data, corrective ML should enable both the weather and climate to have much68

reduced bias (much less than 50% of a no-ML baseline simulation) vs. this reference, both69

for means and extremes of salient quantities such as precipitation. Yet fundamental chal-70

lenges persist. This type of hybrid ML, which couples a bias correction model trained71

offline with a pre-existing AGCM, can induce online simulation biases due to feedbacks72

between these two components (Brenowitz et al., 2020). The machine learning goal of73

minimizing prediction error for each sample can lead to difficulties in accurately repre-74

senting small-scale stochastic behaviors such as deep convection, leading e.g. to an in-75

accurate representation of the frequency of extreme precipitation (Kwa et al., 2023).76

To further reduce bias in the simulated space-time distribution of precipitation vs.77

a reference climatology, we turn to a different form of ML, the Cycle-generative adver-78

sarial network or CycleGAN (Zhu et al., 2017), which is a promising tool for translation79

of image data between two unpaired domains. Unlike the above hybrid ML approaches,80

this is a post-processing approach which cannot easily be analyzed in terms of physical81

process errors in the coarse-grid model, and only corrects selected model fields (precip-82

itation, in our case). In the past, cycle-generative networks have been effectively used83

for offline bias correction, but it has been necessary to augment the cycle-generative net-84

work with quantile mapping to achieve accurate probability distributions of precipita-85

tion (François et al., 2021; Pan et al., 2021; Fulton et al., 2023). These works focused86

on translating one or more model output variables towards an observational analysis over87

a historical period for a subset of the globe, the annual cycle, or both, and each corrected88

daily-mean precipitation.89

Our work expands on these efforts. We use the original CycleGAN architecture of90

Zhu et al. (2017) to correct the output of the FV3GFS atmospheric model with a C4891

cubed-sphere grid (with approximately 200 km horizontal spacing) to behave like the coars-92

ened output of the same model run on a C384 cubed-sphere grid (25 km spacing). We93

demonstrate the ability to improve both the spatial distribution of annual-mean precip-94

itation and the cumulative distribution function (CDF) of 3-hourly precipitation up to95

the 99.999th percentile across a range of climate forcings, without the need for quantile96

mapping. This method is capable of correcting data at intermediate climate forcings not97

used during model training, enabling its application to climate change simulations.98

2 Dataset99

We generate all training data using the FV3GFS atmospheric model (Putman &100

Lin, 2007; Harris & Lin, 2013; Zhou et al., 2019) as described in McGibbon et al. (2021),101

run on a cubed-sphere grid with 63 vertical levels. Annually-repeating cycles of sea sur-102

face temperature (SST) and sea ice are defined based on the observational monthly means103

time-averaged from 1982 to 2012 from the 1/12◦ Real Time Global Sea Surface Temper-104

ature (Thiébaux et al., 2003) and 0.5◦ Climate Forecast System Reanalysis (Saha et al.,105

2014) datasets, respectively. We perturb the SSTs by adding globally-constant offsets106

of -2 K, 0 K, +2 K, and +4 K to produce four different sets of forcings while maintain-107

ing the present-day annual cycle of sea ice and carbon dioxide concentration, analogous108

to S. K. Clark et al. (2022). We train using simulations with spacing between SST off-109

sets of 2 K out of concern that precipitation may be too different between forcings at110

the larger 4 K spacing used in S. K. Clark et al. (2022) for the trained model to accu-111

rately generalize to intermediate forcings, though this has not been tested.112
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For each of these SST forcings, a simulation was performed at C48 resolution for113

9 years, 1 month. Eight 1 year, 1 month simulations are performed at C384 resolution114

beginning with the C48 model snapshot state 1 year into the C48 run as well as the state115

every year thereafter; the C48 snapshots were converted to C384 initial conditions us-116

ing the chgres cube tool of UFS UTILS (Gayno et al., 2020). For each of these C384 sim-117

ulations, the first month of simulation time is discarded as a model spin-up period. This118

yields 8 years of useful simulation data from each climate, from which we take the first119

5 years as training and the last 3 years as validation data.120

During these simulations we accumulate and store the 3-hourly mean precipitation121

rate. We use 3-hourly precipitation instead of daily mean to test the ability of the model122

to correct biases in the diurnal cycle. At each output time, the C384 precipitation fields123

are coarsened to the C48 grid by horizontal averaging so that they can be directly com-124

pared with coarse-grid precipitation fields.125

We also perform “ramping” simulations at both C48 and C384 resolution, which126

begin with a present-day initial condition and three month spin-up period with 0K forc-127

ing, and then enter a period where the forcing is linearly increased from 0K to +2K over128

the course of 4 years. This data is withheld during training and hyperparameter tun-129

ing, and is used for model evaluation only. It tests whether the CycleGAN can skillfully130

interpolate mean and extreme precipitation patterns between climates on which it was131

trained.132

3 Model formulation and training133

The model architecture in Zhu et al. (2017) is used with minimal modifications to134

allow processing of cubed-sphere data. Specifically, convolution is performed using halo135

updates on the cubed sphere, where missing corners are filled with zero values. This is136

numerically identical to the convolution approach used in Weyn et al. (2020), except that137

data in the corner of each tile domain is set to zero rather than copying and rotating data138

from the polar tile face. We do not find evidence of corner imprinting despite this choice.139

The performance of this model is improved by concatenating spatiotemporal ge-140

ometric features to the input of the generator and discriminator models. These features141

are the x, y, and z positions of each grid cell on a stationary unit sphere in 3-dimensional142

Euclidean space (spatial features), as well as the x and y positions of each grid cell on143

a unit sphere in Euclidean space as it rotates with a period of one rotation per day (time144

features). These time features can also be thought of as the x and y positions of an hour145

hand on a 24-hour clock indicating the local time, multiplied by cos(latitude) to avoid146

discontinuity at the poles. These are used only as inputs of these models, and are not147

output by the generators. The discriminator is given identical geometric features to the148

generator which produced the image being evaluated.149

The training dataset includes 58400 3-hourly global snapshots, split evenly across150

the four climate forcings. Each epoch, we randomly sample 40000 snapshots with replace-151

ment, training with a batch size of 1. This data only contains two-dimensional cubed-152

sphere surface precipitation rate along with a UTC time, which is used to generate the153

spatiotemporal geometric features.154

Notably, the climate forcing itself is absent from the training data, as we were able155

to achieve excellent bias correction without it. When we included the SST perturbation156

as input context, as was done for diurnal features, several performance metrics worsened157

without any clear improvements (compare red vs. steel-blue colors in Figures S2 and S3).158

The model was trained with an exponential learning rate decay. Starting with a159

high learning rate and eventually reducing it further in training is a widely used tech-160

nique in machine learning (Li et al., 2019). The best results shown here were achieved161
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with an initial learning rate of 10−4 and a decay factor of 0.63 (a tenfold decrease ev-162

ery 5 epochs). Training converged (in terms of our precipitation bias metrics) by epoch163

14 and was run for 16 epochs (Figure S1).164

Otherwise, the hyperparameters are the same as in the 6-layer network of Zhu et165

al. (2017), but with twice as many filters in the generator and discriminator. We did not166

attempt to tune the number of layers, activation functions, or choice of optimizer, and167

we found that increasing the number of filters beyond the value used used did not im-168

prove the model.169

4 Results170

Figure 1 shows the behavior of the generative model on a single sample, taken from171

the ramping simulation in a climate state distinct from any in the CycleGAN training172

dataset. We are most concerned with the translation of C48 data into C384 (ML) data173

(upper left vs. upper right panels), but it is also illuminating to see the inverse gener-174

ation from C384 to C48 (ML) (lower left vs. upper right panels). The model introduces175

finer scale features when translating into the C384 domain, especially in lightly precip-176

itating marine boundary layer cloud regimes. It strengthens precipitation over land, in-177

troducing precipitation into areas which have none in the C48 input, for example over178

the South American continent.179

The translation substantially improves the mean precipitation climatology vs. C48180

simulations for all four SST offsets, as shown in Figure 2, with metrics reported in Fig-181

ure 3. Here and throughout this analysis, time-mean statistics for fixed-SST simulations182

such as for the 0K climate are computed on the 3 years of validation data. Statistics for183

the ramping climate are computed on years 2 and 3 of the 4-year simulation linearly ramp-184

ing from 0K to plus-2K forcings, to highlight the range of SST offsets that are further185

from the fixed-SST training data and hence provide a more rigorous out-of-sample test.186

The bias reductions seen in the ramping simulation are comparable to those in the tar-187

get climates; the bias of mean precipitation averaged over all land is reduced over 85%,188

and the standard deviation of the geographic pattern of time-mean bias is reduced over189

75% to values around 0.5 mm/d. A significant portion of the biases in each target cli-190

mate is explained by differences in precipitation between the validation and training datasets,191

as shown by the “train” bars. Thus, we anticipate further bias reduction with larger train-192

ing and validation datasets.193

Both the 0 K and ramping simulations have smaller precipitation pattern biases194

than reported for a current-climate case by Arcomano et al. (2023). They reported that195

their hybrid reservoir computing ML reduced the standard deviation of precipitation pat-196

tern bias nearly 50% from 1.2 mm/d in their no-ML baseline model to a value of 0.63 mm/d.197

Our mean precipitation biases also much smaller than the bias shown in Figure 1 of Fulton198

et al. (2023) for the South Asian monsoon region. A direct comparison with François et199

al. (2021) and Pan et al. (2021) is difficult because they considered France and the con-200

tinental United States, respectively, both of which have much smaller biases than the rest201

of the globe in our model.202

Figure 4 shows that the translated data has a 3-hourly probability distribution and203

a diurnal cycle of land precipitation that much more closely match the C384 reference204

data across all climates, including the ramping simulation. We might expect the Cycle-205

GAN to struggle to represent extreme precipitation events and their sensitivity to cli-206

mate forcing because they appear infrequently in the training data. Nevertheless, the207

58400 precipitation fields, each containing 13824 atmospheric column, comprise almost208

109 atmospheric columns, perhaps enough to learn how to translate even highly unusual209

precipitation events. Indeed, the CycleGAN improves the accuracy of the CDF of pre-210

cipitation up to the 99.999th percentile. Only at the 99.9999th percentile and only for211
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Figure 1. Inputs and outputs of the CycleGAN for one timestep during the ramping simula-

tion. Precipitation data on the left was used as input to generate precipitation data on the right.

Snapshot was selected to illustrate a common feature, significantly stronger precipitation over

South America in C384 (replicated by the GAN) than in C48. All snapshots for this simulation

can be viewed in the supplementary data (Movie S1).

Figure 2. Annual-mean precipitation from C384 reference run (left column) and precipitation

biases from the C48 simulation (right column) and from the GAN applied to this C48 simulation

(C384 ML). Bias values are differences from the C384 reference.
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Figure 3. Metrics of time-average precipitation bias against validation and testing data.

Mean bias refers to the area-weighted horizontal mean bias across all samples, or over land sam-

ples only. Bias standard deviation refers to the square root of the area-weighted mean square

bias, averaged over the horizontal either globally or over land samples only. These statistics are

derived from bias maps as shown in Figure 2. “Train” indicates the comparison of the training

data itself against the validation data. Training data is not available for the ramping simulation.

the -2 K forcing, the CycleGAN slightly increases the error over the input C48 reference212

data. Surprisingly, the distribution of ML outputs is, if anything, over-dispersive in the213

tails. The shape of the diurnal cycle of precipitation over land is also improved across214

all climate forcings, with a stronger trough and sharper increase in precipitation from215

6:00 to 15:00 local solar time, and more sustained precipitation through the 21:00-24:00216

bin.217

Here, the diurnal cycle over land was computed by determining the local solar time218

in each land-based grid cell for each sample based on its longitude, and then binning the219

data across local time before taking an area-weighted mean.220

5 Sensitivity Studies221

This section describes sensitivity studies that help motivate some of our model de-222

sign choices. We initially trained the CycleGAN model with less data, but found the global223

maps of time-averaged precipitation vary significantly from year to year, resulting in sig-224

nificant biases in the trained model as a result of under-sampling the long-term climate.225

When we train the model using only the first year of data from each climate and eval-226

uate on the same 3 years of validation data, the model has significantly worse time-mean227

biases (Figure S2, compare light purple bar to darker blue bar), and does a significantly228

worse job predicting the output CDFs, over-predicting the extremes of each climate’s pre-229

cipitation distribution (Figure S3).230

Adding spatiotemporal features defining the diurnal cycle as context to the input231

of the generator and discriminator was crucial for correcting the shape of the mean di-232
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Figure 4. CDF metrics and diurnal cycle of precipitation over land for the reference C384

run, the C48 simulation, and the CycleGAN applied to the C48 output (C384 ML). The left

column shows the CDF of precipitation for each climate. The center column shows the relative

magnitude of errors of the values of the C48 and CycleGAN CDFs in the first column across a

range of percentiles, computed as a percentage of the C384 (real) value. The right column shows

the diurnal cycle of precipitation over land, with the x-axis indicating the starting local time of

the 3-hour bin.
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urnal cycle of precipitation over land. Without these features, the land diurnal cycle of233

the C384 (ML) output data is significantly improved because we have corrected the cor-234

rect mean and variance, though the shape of the cycle (light green and light blue) is more235

similar to the C48 values (orange). Surprisingly, the inclusion of these features has lit-236

tle impact on the standard deviation of the geographically-resolved time-mean bias (Fig-237

ure S2).238

In Zhu et al. (2017), an identity loss was included for certain translation tasks to239

avoid unnecessary modification of the color scheme during translation. We find remov-240

ing this identity loss generally degrades model performance. It leads to increased pat-241

tern bias and land-mean bias in precipitation (Figure S2) and has a neutral effect on the242

CDF and land diurnal cycle (Figure S3).243

6 Discussion244

Unlike previous works using cycle-generative architectures to bias-correct precip-245

itation (François et al., 2021; Pan et al., 2021; Fulton et al., 2023), we could match the246

PDF of 3-hourly precipitation without quantile mapping. Pan et al. (2021) claimed that247

quantile mapping is needed because “GANs are trained to produce individual trust-worthy248

samples, not accurate probability distribution estimations”, due e.g. to mode collapse249

(Bau et al., 2019), despite the claim in Goodfellow et al. (2014) that their training Al-250

gorithm 1 is designed to “converge to a good estimator of [the probability distribution251

of the data], if given enough capacity and training time”.252

Many methodological differences might explain why we were able to better sim-253

ulate the probability of extreme precipitation events without quantile mapping. We cor-254

rect only precipitation, without using other model output fields as dynamical constraints255

(Pan et al., 2021) or additional fields to be corrected (François et al., 2021; Fulton et al.,256

2023). Fully sampling the variability and covariability within more fields requires sig-257

nificantly more data, owing to the curse of dimensionality. In addition, our model is trained258

on more data than the previous studies. We used 58,400 timesteps each with 13,824 grid-259

cells, resulting in 807M precipitation samples, while François et al. (2021); Pan et al. (2021)260

and Fulton et al. (2023) used 7.42M, 247M, and 40.6M samples respectively. The char-261

acter of the corrections is different, in particular because of the use of 3-hourly versus262

daily data and the use of global data instead of limited regions. Our training method-263

ology also differs in the introduction of a learning rate schedule, which could play a role,264

and Fulton et al. (2023) used the UNIT architecture (Liu et al., 2017) as opposed to Cy-265

cleGAN.266

While this CycleGAN significantly improves the climate of individual samples from267

a spun-up C48 model state, it should not be used to correct weather simulations run at268

C48 which are initialized from a coarsened C384 state. We trained the CycleGAN only269

on samples which are far into a C48 simulation, whose climate contains more significant270

biases than a hypothetical dataset containing samples from the first week of a C48 sim-271

ulation initialized from coarsened C384 data. One could remove this input bias effect by272

training a CycleGAN model to correct model biases at one particular forecast lead time,273

and using coarse and fine-grid examples at that particular lead time. One could also train274

a conditional CycleGAN with forecast lead time as a model input capable of correcting275

a variety of lead times, similar to what was done in this work for time-of-day.276

7 Conclusions277

We found that CycleGAN with little modification can accurately translate 3-hourly278

precipitation simulated by a 200 km grid global atmospheric model across a range of cli-279

mate forcing to have similar statistics as output from a reference fine-grid 25 km model,280

as measured by its time-mean geographically-resolved pattern, its CDF and its mean di-281
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urnal cycle over land. These biases are much reduced compared to previous online cor-282

rection approaches, but because CycleGAN is a post-processing approach, this comes at283

the expense of interpretability. The CycleGAN generalizes well to a ramped-SST sim-284

ulation with intermediate forcings not present in the training dataset. With a small set285

of expensive fine-grid simulations, the CycleGAN can thus quickly debias precipitation286

fields predicted by a fast coarse-grid model across a broad range of climates.287

8 Open Research288

The code used to train and evaluate the machine learning models and produce the289

figures in this study is available on Zenodo via https://doi.org/10.5281/zenodo.8070950290

with MIT and BSD licenses (Brenowitz et al., 2023). The coarse-resolution and coars-291

ened high-resolution model output used for training, validation, and testing are avail-292

able on Zenodo via https://doi.org/10.5281/zenodo.8070973 with a Creative Commons293

Attribution 4.0 International License (S. Clark et al., 2023). Figures were made with Mat-294

plotlib version 3.7.1 (Caswell et al., 2023), available under the matplotlib license at https://matplotlib.org/.295

Our machine learning code uses Pytorch version 1.12.1 (Paszke et al., 2019), available296

under a BSD-3 license at https://pytorch.org/.297
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Abstract14

Accurate precipitation simulations for various climate scenarios are critical for under-15

standing and predicting the impacts of climate change. This study employs a Cycle-generative16

adversarial network (CycleGAN) to improve global 3-hour-average precipitation fields17

predicted by a coarse grid (200 km) atmospheric model across a range of climates, mor-18

phing them to match their statistical properties with reference fine-grid (25 km) simu-19

lations. We evaluate its performance on both the target climates and an independent20

ramped-SST simulation. The translated precipitation fields remove most of the biases21

simulated by the coarse-grid model in the mean precipitation climatology, the cumula-22

tive distribution function of 3-hourly precipitation, and the diurnal cycle of precipita-23

tion over land. These results highlight the potential of CycleGAN as a powerful tool for24

bias correction in climate change simulations, paving the way for more reliable predic-25

tions of precipitation patterns across a wide range of climates.26

Plain Language Summary27

Using CycleGAN, a machine learning technique, we can remove key biases in pre-28

cipitation simulated by a fast, coarse-grid atmospheric model. This method morphs maps29

of the output precipitation to match typical characteristics of a slower but more accu-30

rate fine-grid configuration, correcting systematic errors in both long-term average spa-31

tial precipitation patterns and 3-hourly precipitation variations. It retains skill in inter-32

mediate climate states unseen in training, making it a useful tool for climate change sim-33

ulations.34

1 Introduction35

Throughout the history of atmospheric model development, results from fine-grid36

models that resolve important physical processes like cloud and precipitation formation37

or flow over mountain ranges have been used to improve biased climates in coarse-grid38

models that do not. For instance, scientists have used large-eddy simulations as a test-39

bed for calibrating analytic turbulence and cloud parameterizations, e.g. Bogenschutz40

et al. (2010). This process relies heavily on expert knowledge to develop appropriate mod-41

els of sub-grid behaviors, often heavily influenced by analysis of a few archetypical cases.42

More recently, machine learning (ML) has been used to correct coarse-resolution43

models’ behavior across the full range of conditions over historical periods where obser-44

vational analysis is available. For example, Watt-Meyer et al. (2021) trained a correc-45

tive tendency for a 200 km grid atmospheric general circulation model (AGCM) using46

ML based on nudging tendencies towards observational analysis. The ML correction re-47

duced annual-mean precipitation biases by 20%. An ML approach based on reservoir com-48

puting (Arcomano et al., 2023) and ERA5 reanalysis (Hersbach et al., 2020) halved the49

global root mean square bias of annual-mean precipitation in an even coarser (400 km50

grid) AGCM.51

We require a different strategy when training a model to generalize across future52

climate forcings, as when training with observational analyses one can only learn the cli-53

mate represented by this data. One method is to use finer-grid AGCM simulations as54

training targets. Such simulations are computationally expensive, but they more accu-55

rately simulate societally-important aspects of present-day climate such as means and56

extremes of land surface precipitation and temperature than do coarse-grid AGCMs (Flato57

et al., 2013; Wehner et al., 2010). Because they resolve much more detail of deep con-58

vective storm systems, orography and land surface characteristics, they are less sensi-59

tive to uncertain parameterizations of deep convection and orographic drag, making them60

potentially a more robust simulation tool for generalizing to future climates. S. K. Clark61

et al. (2022) used the same nudging approach as Watt-Meyer et al. (2021) to ML-correct62
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a 200 km model to behave like its 25 km analogue across four climates forced by adding63

specified uniform sea-surface temperature (SST) increments to observed SST patterns.64

They were able to correct spatial patterns of precipitation over land by 10-30% in multi-65

year simulations across all four climates.66

This bias reduction is encouraging, but to get full advantage from high-fidelity ref-67

erence data, corrective ML should enable both the weather and climate to have much68

reduced bias (much less than 50% of a no-ML baseline simulation) vs. this reference, both69

for means and extremes of salient quantities such as precipitation. Yet fundamental chal-70

lenges persist. This type of hybrid ML, which couples a bias correction model trained71

offline with a pre-existing AGCM, can induce online simulation biases due to feedbacks72

between these two components (Brenowitz et al., 2020). The machine learning goal of73

minimizing prediction error for each sample can lead to difficulties in accurately repre-74

senting small-scale stochastic behaviors such as deep convection, leading e.g. to an in-75

accurate representation of the frequency of extreme precipitation (Kwa et al., 2023).76

To further reduce bias in the simulated space-time distribution of precipitation vs.77

a reference climatology, we turn to a different form of ML, the Cycle-generative adver-78

sarial network or CycleGAN (Zhu et al., 2017), which is a promising tool for translation79

of image data between two unpaired domains. Unlike the above hybrid ML approaches,80

this is a post-processing approach which cannot easily be analyzed in terms of physical81

process errors in the coarse-grid model, and only corrects selected model fields (precip-82

itation, in our case). In the past, cycle-generative networks have been effectively used83

for offline bias correction, but it has been necessary to augment the cycle-generative net-84

work with quantile mapping to achieve accurate probability distributions of precipita-85

tion (François et al., 2021; Pan et al., 2021; Fulton et al., 2023). These works focused86

on translating one or more model output variables towards an observational analysis over87

a historical period for a subset of the globe, the annual cycle, or both, and each corrected88

daily-mean precipitation.89

Our work expands on these efforts. We use the original CycleGAN architecture of90

Zhu et al. (2017) to correct the output of the FV3GFS atmospheric model with a C4891

cubed-sphere grid (with approximately 200 km horizontal spacing) to behave like the coars-92

ened output of the same model run on a C384 cubed-sphere grid (25 km spacing). We93

demonstrate the ability to improve both the spatial distribution of annual-mean precip-94

itation and the cumulative distribution function (CDF) of 3-hourly precipitation up to95

the 99.999th percentile across a range of climate forcings, without the need for quantile96

mapping. This method is capable of correcting data at intermediate climate forcings not97

used during model training, enabling its application to climate change simulations.98

2 Dataset99

We generate all training data using the FV3GFS atmospheric model (Putman &100

Lin, 2007; Harris & Lin, 2013; Zhou et al., 2019) as described in McGibbon et al. (2021),101

run on a cubed-sphere grid with 63 vertical levels. Annually-repeating cycles of sea sur-102

face temperature (SST) and sea ice are defined based on the observational monthly means103

time-averaged from 1982 to 2012 from the 1/12◦ Real Time Global Sea Surface Temper-104

ature (Thiébaux et al., 2003) and 0.5◦ Climate Forecast System Reanalysis (Saha et al.,105

2014) datasets, respectively. We perturb the SSTs by adding globally-constant offsets106

of -2 K, 0 K, +2 K, and +4 K to produce four different sets of forcings while maintain-107

ing the present-day annual cycle of sea ice and carbon dioxide concentration, analogous108

to S. K. Clark et al. (2022). We train using simulations with spacing between SST off-109

sets of 2 K out of concern that precipitation may be too different between forcings at110

the larger 4 K spacing used in S. K. Clark et al. (2022) for the trained model to accu-111

rately generalize to intermediate forcings, though this has not been tested.112
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For each of these SST forcings, a simulation was performed at C48 resolution for113

9 years, 1 month. Eight 1 year, 1 month simulations are performed at C384 resolution114

beginning with the C48 model snapshot state 1 year into the C48 run as well as the state115

every year thereafter; the C48 snapshots were converted to C384 initial conditions us-116

ing the chgres cube tool of UFS UTILS (Gayno et al., 2020). For each of these C384 sim-117

ulations, the first month of simulation time is discarded as a model spin-up period. This118

yields 8 years of useful simulation data from each climate, from which we take the first119

5 years as training and the last 3 years as validation data.120

During these simulations we accumulate and store the 3-hourly mean precipitation121

rate. We use 3-hourly precipitation instead of daily mean to test the ability of the model122

to correct biases in the diurnal cycle. At each output time, the C384 precipitation fields123

are coarsened to the C48 grid by horizontal averaging so that they can be directly com-124

pared with coarse-grid precipitation fields.125

We also perform “ramping” simulations at both C48 and C384 resolution, which126

begin with a present-day initial condition and three month spin-up period with 0K forc-127

ing, and then enter a period where the forcing is linearly increased from 0K to +2K over128

the course of 4 years. This data is withheld during training and hyperparameter tun-129

ing, and is used for model evaluation only. It tests whether the CycleGAN can skillfully130

interpolate mean and extreme precipitation patterns between climates on which it was131

trained.132

3 Model formulation and training133

The model architecture in Zhu et al. (2017) is used with minimal modifications to134

allow processing of cubed-sphere data. Specifically, convolution is performed using halo135

updates on the cubed sphere, where missing corners are filled with zero values. This is136

numerically identical to the convolution approach used in Weyn et al. (2020), except that137

data in the corner of each tile domain is set to zero rather than copying and rotating data138

from the polar tile face. We do not find evidence of corner imprinting despite this choice.139

The performance of this model is improved by concatenating spatiotemporal ge-140

ometric features to the input of the generator and discriminator models. These features141

are the x, y, and z positions of each grid cell on a stationary unit sphere in 3-dimensional142

Euclidean space (spatial features), as well as the x and y positions of each grid cell on143

a unit sphere in Euclidean space as it rotates with a period of one rotation per day (time144

features). These time features can also be thought of as the x and y positions of an hour145

hand on a 24-hour clock indicating the local time, multiplied by cos(latitude) to avoid146

discontinuity at the poles. These are used only as inputs of these models, and are not147

output by the generators. The discriminator is given identical geometric features to the148

generator which produced the image being evaluated.149

The training dataset includes 58400 3-hourly global snapshots, split evenly across150

the four climate forcings. Each epoch, we randomly sample 40000 snapshots with replace-151

ment, training with a batch size of 1. This data only contains two-dimensional cubed-152

sphere surface precipitation rate along with a UTC time, which is used to generate the153

spatiotemporal geometric features.154

Notably, the climate forcing itself is absent from the training data, as we were able155

to achieve excellent bias correction without it. When we included the SST perturbation156

as input context, as was done for diurnal features, several performance metrics worsened157

without any clear improvements (compare red vs. steel-blue colors in Figures S2 and S3).158

The model was trained with an exponential learning rate decay. Starting with a159

high learning rate and eventually reducing it further in training is a widely used tech-160

nique in machine learning (Li et al., 2019). The best results shown here were achieved161
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with an initial learning rate of 10−4 and a decay factor of 0.63 (a tenfold decrease ev-162

ery 5 epochs). Training converged (in terms of our precipitation bias metrics) by epoch163

14 and was run for 16 epochs (Figure S1).164

Otherwise, the hyperparameters are the same as in the 6-layer network of Zhu et165

al. (2017), but with twice as many filters in the generator and discriminator. We did not166

attempt to tune the number of layers, activation functions, or choice of optimizer, and167

we found that increasing the number of filters beyond the value used used did not im-168

prove the model.169

4 Results170

Figure 1 shows the behavior of the generative model on a single sample, taken from171

the ramping simulation in a climate state distinct from any in the CycleGAN training172

dataset. We are most concerned with the translation of C48 data into C384 (ML) data173

(upper left vs. upper right panels), but it is also illuminating to see the inverse gener-174

ation from C384 to C48 (ML) (lower left vs. upper right panels). The model introduces175

finer scale features when translating into the C384 domain, especially in lightly precip-176

itating marine boundary layer cloud regimes. It strengthens precipitation over land, in-177

troducing precipitation into areas which have none in the C48 input, for example over178

the South American continent.179

The translation substantially improves the mean precipitation climatology vs. C48180

simulations for all four SST offsets, as shown in Figure 2, with metrics reported in Fig-181

ure 3. Here and throughout this analysis, time-mean statistics for fixed-SST simulations182

such as for the 0K climate are computed on the 3 years of validation data. Statistics for183

the ramping climate are computed on years 2 and 3 of the 4-year simulation linearly ramp-184

ing from 0K to plus-2K forcings, to highlight the range of SST offsets that are further185

from the fixed-SST training data and hence provide a more rigorous out-of-sample test.186

The bias reductions seen in the ramping simulation are comparable to those in the tar-187

get climates; the bias of mean precipitation averaged over all land is reduced over 85%,188

and the standard deviation of the geographic pattern of time-mean bias is reduced over189

75% to values around 0.5 mm/d. A significant portion of the biases in each target cli-190

mate is explained by differences in precipitation between the validation and training datasets,191

as shown by the “train” bars. Thus, we anticipate further bias reduction with larger train-192

ing and validation datasets.193

Both the 0 K and ramping simulations have smaller precipitation pattern biases194

than reported for a current-climate case by Arcomano et al. (2023). They reported that195

their hybrid reservoir computing ML reduced the standard deviation of precipitation pat-196

tern bias nearly 50% from 1.2 mm/d in their no-ML baseline model to a value of 0.63 mm/d.197

Our mean precipitation biases also much smaller than the bias shown in Figure 1 of Fulton198

et al. (2023) for the South Asian monsoon region. A direct comparison with François et199

al. (2021) and Pan et al. (2021) is difficult because they considered France and the con-200

tinental United States, respectively, both of which have much smaller biases than the rest201

of the globe in our model.202

Figure 4 shows that the translated data has a 3-hourly probability distribution and203

a diurnal cycle of land precipitation that much more closely match the C384 reference204

data across all climates, including the ramping simulation. We might expect the Cycle-205

GAN to struggle to represent extreme precipitation events and their sensitivity to cli-206

mate forcing because they appear infrequently in the training data. Nevertheless, the207

58400 precipitation fields, each containing 13824 atmospheric column, comprise almost208

109 atmospheric columns, perhaps enough to learn how to translate even highly unusual209

precipitation events. Indeed, the CycleGAN improves the accuracy of the CDF of pre-210

cipitation up to the 99.999th percentile. Only at the 99.9999th percentile and only for211
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Figure 1. Inputs and outputs of the CycleGAN for one timestep during the ramping simula-

tion. Precipitation data on the left was used as input to generate precipitation data on the right.

Snapshot was selected to illustrate a common feature, significantly stronger precipitation over

South America in C384 (replicated by the GAN) than in C48. All snapshots for this simulation

can be viewed in the supplementary data (Movie S1).

Figure 2. Annual-mean precipitation from C384 reference run (left column) and precipitation

biases from the C48 simulation (right column) and from the GAN applied to this C48 simulation

(C384 ML). Bias values are differences from the C384 reference.

–6–



manuscript submitted to Geophysical Research Letters

Figure 3. Metrics of time-average precipitation bias against validation and testing data.

Mean bias refers to the area-weighted horizontal mean bias across all samples, or over land sam-

ples only. Bias standard deviation refers to the square root of the area-weighted mean square

bias, averaged over the horizontal either globally or over land samples only. These statistics are

derived from bias maps as shown in Figure 2. “Train” indicates the comparison of the training

data itself against the validation data. Training data is not available for the ramping simulation.

the -2 K forcing, the CycleGAN slightly increases the error over the input C48 reference212

data. Surprisingly, the distribution of ML outputs is, if anything, over-dispersive in the213

tails. The shape of the diurnal cycle of precipitation over land is also improved across214

all climate forcings, with a stronger trough and sharper increase in precipitation from215

6:00 to 15:00 local solar time, and more sustained precipitation through the 21:00-24:00216

bin.217

Here, the diurnal cycle over land was computed by determining the local solar time218

in each land-based grid cell for each sample based on its longitude, and then binning the219

data across local time before taking an area-weighted mean.220

5 Sensitivity Studies221

This section describes sensitivity studies that help motivate some of our model de-222

sign choices. We initially trained the CycleGAN model with less data, but found the global223

maps of time-averaged precipitation vary significantly from year to year, resulting in sig-224

nificant biases in the trained model as a result of under-sampling the long-term climate.225

When we train the model using only the first year of data from each climate and eval-226

uate on the same 3 years of validation data, the model has significantly worse time-mean227

biases (Figure S2, compare light purple bar to darker blue bar), and does a significantly228

worse job predicting the output CDFs, over-predicting the extremes of each climate’s pre-229

cipitation distribution (Figure S3).230

Adding spatiotemporal features defining the diurnal cycle as context to the input231

of the generator and discriminator was crucial for correcting the shape of the mean di-232
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Figure 4. CDF metrics and diurnal cycle of precipitation over land for the reference C384

run, the C48 simulation, and the CycleGAN applied to the C48 output (C384 ML). The left

column shows the CDF of precipitation for each climate. The center column shows the relative

magnitude of errors of the values of the C48 and CycleGAN CDFs in the first column across a

range of percentiles, computed as a percentage of the C384 (real) value. The right column shows

the diurnal cycle of precipitation over land, with the x-axis indicating the starting local time of

the 3-hour bin.
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urnal cycle of precipitation over land. Without these features, the land diurnal cycle of233

the C384 (ML) output data is significantly improved because we have corrected the cor-234

rect mean and variance, though the shape of the cycle (light green and light blue) is more235

similar to the C48 values (orange). Surprisingly, the inclusion of these features has lit-236

tle impact on the standard deviation of the geographically-resolved time-mean bias (Fig-237

ure S2).238

In Zhu et al. (2017), an identity loss was included for certain translation tasks to239

avoid unnecessary modification of the color scheme during translation. We find remov-240

ing this identity loss generally degrades model performance. It leads to increased pat-241

tern bias and land-mean bias in precipitation (Figure S2) and has a neutral effect on the242

CDF and land diurnal cycle (Figure S3).243

6 Discussion244

Unlike previous works using cycle-generative architectures to bias-correct precip-245

itation (François et al., 2021; Pan et al., 2021; Fulton et al., 2023), we could match the246

PDF of 3-hourly precipitation without quantile mapping. Pan et al. (2021) claimed that247

quantile mapping is needed because “GANs are trained to produce individual trust-worthy248

samples, not accurate probability distribution estimations”, due e.g. to mode collapse249

(Bau et al., 2019), despite the claim in Goodfellow et al. (2014) that their training Al-250

gorithm 1 is designed to “converge to a good estimator of [the probability distribution251

of the data], if given enough capacity and training time”.252

Many methodological differences might explain why we were able to better sim-253

ulate the probability of extreme precipitation events without quantile mapping. We cor-254

rect only precipitation, without using other model output fields as dynamical constraints255

(Pan et al., 2021) or additional fields to be corrected (François et al., 2021; Fulton et al.,256

2023). Fully sampling the variability and covariability within more fields requires sig-257

nificantly more data, owing to the curse of dimensionality. In addition, our model is trained258

on more data than the previous studies. We used 58,400 timesteps each with 13,824 grid-259

cells, resulting in 807M precipitation samples, while François et al. (2021); Pan et al. (2021)260

and Fulton et al. (2023) used 7.42M, 247M, and 40.6M samples respectively. The char-261

acter of the corrections is different, in particular because of the use of 3-hourly versus262

daily data and the use of global data instead of limited regions. Our training method-263

ology also differs in the introduction of a learning rate schedule, which could play a role,264

and Fulton et al. (2023) used the UNIT architecture (Liu et al., 2017) as opposed to Cy-265

cleGAN.266

While this CycleGAN significantly improves the climate of individual samples from267

a spun-up C48 model state, it should not be used to correct weather simulations run at268

C48 which are initialized from a coarsened C384 state. We trained the CycleGAN only269

on samples which are far into a C48 simulation, whose climate contains more significant270

biases than a hypothetical dataset containing samples from the first week of a C48 sim-271

ulation initialized from coarsened C384 data. One could remove this input bias effect by272

training a CycleGAN model to correct model biases at one particular forecast lead time,273

and using coarse and fine-grid examples at that particular lead time. One could also train274

a conditional CycleGAN with forecast lead time as a model input capable of correcting275

a variety of lead times, similar to what was done in this work for time-of-day.276

7 Conclusions277

We found that CycleGAN with little modification can accurately translate 3-hourly278

precipitation simulated by a 200 km grid global atmospheric model across a range of cli-279

mate forcing to have similar statistics as output from a reference fine-grid 25 km model,280

as measured by its time-mean geographically-resolved pattern, its CDF and its mean di-281
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urnal cycle over land. These biases are much reduced compared to previous online cor-282

rection approaches, but because CycleGAN is a post-processing approach, this comes at283

the expense of interpretability. The CycleGAN generalizes well to a ramped-SST sim-284

ulation with intermediate forcings not present in the training dataset. With a small set285

of expensive fine-grid simulations, the CycleGAN can thus quickly debias precipitation286

fields predicted by a fast coarse-grid model across a broad range of climates.287

8 Open Research288

The code used to train and evaluate the machine learning models and produce the289

figures in this study is available on Zenodo via https://doi.org/10.5281/zenodo.8070950290

with MIT and BSD licenses (Brenowitz et al., 2023). The coarse-resolution and coars-291

ened high-resolution model output used for training, validation, and testing are avail-292

able on Zenodo via https://doi.org/10.5281/zenodo.8070973 with a Creative Commons293

Attribution 4.0 International License (S. Clark et al., 2023). Figures were made with Mat-294

plotlib version 3.7.1 (Caswell et al., 2023), available under the matplotlib license at https://matplotlib.org/.295

Our machine learning code uses Pytorch version 1.12.1 (Paszke et al., 2019), available296

under a BSD-3 license at https://pytorch.org/.297
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Movie S1. Four-year ramping simulations, depicting the real input C48 and C384 precip-

itation, and the generated C384 (ML) and C48 (ML) precipitation based on these inputs

for each 3-hourly sample.
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Figure S1. Metrics recorded while training the best-case CycleGAN model which were used

to determine convergence. Note that when training GANs the model can improve as the loss

increases, due to compensating increases in skill of the generator and discriminator models.

Pattern bias for training is computed by first aggregating the time-mean of predicted outputs for

each training batch. Loss indicates total loss optimized during training. The dataset considered

in these losses includes data from all four training climates.
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Figure S2. Area-weighted root mean-squared error of time-mean precipitation for ablation

studies in the “0K” climate, both globally and over land only. C384 (ML) refers to the “best”

model presented in the main text. no-geo-features and no-time-features are the models where we

excluded all five geographic features and the two diurnally-varying geographic features, respec-

tively. no-identity-loss is the model where the identity loss was excluded from training. 1-year

is a model trained on only the first year of training data. sst-input is the model where the SST

perturbation is provided as input context to the generator and discriminator networks. train is

the result when using the coarsened C384 training data instead of model output.
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Figure S3. CDF and land-only diurnal cycle metrics for ablation study models which don’t

involve modifying the geographic features. Labels are as in Figure S2.
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Figure S4. CDF and land-only diurnal cycle metrics for ablation study models which involve

modifying the geographic features. Labels are as in Figure S2.

June 22, 2023, 4:09pm


