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Abstract

Global Navigation Satellite Systems (GNSS) have become a valuable tool for remote sensing, as signals can be used for

monitoring soil and snow properties as well as water vapor in the atmosphere. By using L-band carrier frequencies, GNSS acts

as an all-weather-operation system. Nevertheless, severe weather can still have an impact on the strength of signals received

at a ground station, as we show in this study. We investigate Signal-to-Noise Ratio (SNR) from the Global Positioning System

(GPS) during two thunderstorm events, which produced excessive amounts of rain and hail. We make use of a GPS-SNR-

based algorithm, developed for the detection of hail particles from volcanic eruptions. Results indicate that the investigated

thunderstorm events are visible in SNR observations. Affected satellites show a significant SNR drop during event periods,

which are determined by weather radar observations. Thus, results suggest the possibility of detecting severe weather systems

using GNSS-SNR observations.
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Abstract14

Global Navigation Satellite Systems (GNSS) are not only a state-of-the-art sensor for15

positioning and navigation applications but also a valuable tool for remote sensing of the16

environment. GNSS signals can be used for monitoring soil and snow properties as well17

as water vapor contained in the atmosphere at high temporal resolution. Through the18

usage of L-band carrier frequencies, GNSS acts as an all-weather-operation system, which19

offers substantial benefits compared to, e.g., optical remote sensing systems. Neverthe-20

less, severe weather events can still have a significant impact on the strength of signals21

received at a ground station, as we show in this study. We investigate Signal-to-Noise22

Ratio (SNR) observations from the Global Positioning System (GPS) during two severe23

thunderstorm events, which produced excessive amounts of rain and hail over the city24

of Zurich, Switzerland. Therefore, we make use of a GPS-SNR-based algorithm originally25

developed for the detection of hail particles from volcanic eruption events. Results in-26

dicate that, although GNSS observations are considered to be fairly insensitive to the27

presence of hydrometeors, the investigated thunderstorm events are visible in SNR ob-28

servations. SNR levels of affected satellites show a significant drop during event periods,29

which are determined by weather radar observations. Thus, these results suggest the pos-30

sibility of detecting severe weather systems by utilization of GNSS-SNR observations.31

Plain Language Summary32

Over the last two decades, observations from Global Navigation Satellite Systems33

(GNSS) have proven to be a useful data source for meteorology. Typically, signal delays34

introduced by the presence of water vapor along the signal path are utilized for analysing35

and predicting the atmospheric moisture field, and subsequently, precipitation. However,36

other GNSS observations types can also be influenced by severe thunder- and hailstorms,37

which are high-impact weather events. In this study, we show that is the case for the Signal-38

to-Noise Ratio (SNR) of GNSS signals. We investigate two large thunderstorm events39

which took place over the city of Zurich. These events are visible as significant degra-40

dation in SNR data of GNSS satellites. By analysing radar images we are able to show41

that the time period of SNR degradation closely corresponds to the period of strongest42

precipitation intensity observed by radar. Although more detailed investigations have43

to be carried out in the future, these initial findings indicate the potential of GNSS-SNR44

data for observation of severe weather events and strengthen the status of GNSS as a45

valuable tool for meteorological applications.46

1 Introduction47

Extreme weather events, such as severe thunderstorms and associated natural haz-48

ards, represent a significant risk to human life and property through lightning, heavy pre-49

cipitation, hail and strong winds. These phenomena are very localized in space and can50

develop within timescales ranging from tens of minutes to a few hours, making them dif-51

ficult to forecast precisely using numerical weather prediction (NWP) models. As most52

climate projections indicate an increasing frequency of such events in most regions (Rädler53

et al., 2019; Ridder et al., 2022), accurate forecasts and observational methods as well54

as the development of early-warning and resilience systems become increasingly impor-55

tant.56

Over the last two decades, Global Navigation Satellite Systems (GNSS) have been57

established as a state-of-the-art observation system for navigation and monitoring pur-58

poses. In atmospheric sciences, troposphere products from GNSS are recognized as valu-59

able data sources for NWP and climate monitoring. The presence of atmospheric wa-60

ter vapor affects signal propagation by causing a delay in GNSS signals, which can be61

determined alongside the receiver coordinates and clock error. This technique, commonly62

referred to as GNSS Meteorology (Bevis et al., 1992), has been used extensively for data63
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assimilation systems at almost all major NWP centers worldwide and its benefits have64

been shown by a large number of studies (see Guerova et al. (2016) or Jones et al. (2020)65

for a good overview). Over the last years, an increasing number of authors have focused66

on signatures of severe weather events, such as extreme precipitation (e.g. Wilgan et al.67

(2023), Arief and Heki (2020)).68

In contrast to GNSS Meteorology, which requires a comprehensive GNSS process-69

ing approach to determine tropospheric signal delays, other techniques have been estab-70

lished that make use of raw GNSS observations. One example is GNSS Reflectometry71

(GNSS-R), a technique that aims to infer information about the surface from which a72

reflected signal travels to the receiver. This way, quantities such as soil moisture (K. Lar-73

son et al. (2008)) or snow depth (K. Larson et al. (2009)) can be retrieved. Furthermore,74

space-borne GNSS-R retrievals are able to sense precipitation over the ocean by quan-75

tifying the rain attenuation impact on GNSS-R wind speed products (Asgarimehr et al.,76

2018, 2019). For ground-based GNSS-R, the basic observation type is the Signal-to-Noise77

Ratio (SNR) of GNSS signals (GNSS-SNR). In GNSS processing, SNR often only rep-78

resents an indication of data quality and the level of multipath interference. Besides this,79

it is still rarely used in GNSS data analysis. In addition to the impact of surface prop-80

erties on GNSS-SNR, there are also processes which can affect the SNR of direct signals.81

One example is volcanic eruptions, which have been studied using GNSS observations82

by a number of authors over the last decades (e.g. Shimada et al. (1990); Lee et al. (2015);83

Grapenthin et al. (2022)). Most of these studies used GNSS observations to monitor ground84

deformation near erupting volcanoes, but not to detect effects of the eruption above ground,85

e.g., the evolution of the plume. Modelling of volcanic plumes was first shown by Houlié86

et al. (2005a) for the eruption of Miyakejima volcano (Japan) and Mount St.Helens (Houlié87

et al., 2005b) and this approach was developed further by Grapenthin et al. (2013). Most88

recently, Cegla et al. (2022) investigated the 2014 Sakurajima Eruption, by a compar-89

ison of Zenith Total Delays (ZTDs) from GNSS and ray-tracing methods.90

All of those studies treated the effects of the plume on signal propagation as an un-91

modeled atmospheric error, originating from the presence of a large amount of sand and92

ash particles. This idea is reasonable, since sand and ash particles affect signal propa-93

gation in a similar way as gaseous atmospheric constituents, although the magnitude of94

this effect is smaller. This was shown by Solheim et al. (1999) in a theoretical investi-95

gation carried out over two decades ago. They also found that under standard atmospheric96

conditions, GNSS measurements experience no significant impact from hydrometeors (small97

amounts of water or ice particles) present along the signal path. However, they also note98

that this might change for severe weather events, where both the amount and size of hy-99

drometeors are much more substantial. As for volcanic particles, the effect of hydrom-100

eteors on GNSS products during severe weather conditions was primarily studied using101

troposphere products, such as ZTD or Slant Total Delays (STDs). Studies such as Brenot102

et al. (2006), Douša et al. (2016) or Hordyniec et al. (2018) found significant effects un-103

der extreme weather conditions, accounting for a mismodeling of, e.g., ZTD of up to cm-104

level. However, one major disadvantage of investigating hydrometeors as a tropospheric105

mismodeling is the fact that comprehensive GNSS processing is necessary to derive all106

products to be analysed. In order to avoid this, K. M. Larson (2013) introduced a new107

method for plume detection that is solely based on SNR observations. The study showed108

the strengths and limitations of the method by presenting results from the 2008 and 2009109

eruptions of the Okmok and Mt. Redoubt volcanoes. Plume detections based on GNSS-110

SNR observations were found to be consistent with independently collected seismic and111

radar data of the eruptions. In a later study on the 2011 eruption of Gŕımsvötn Volcano112

in Iceland, Grapenthin et al. (2018) applied a method that combined SNR and phase resid-113

uals to detect volcanic hail.114

Our study applies a similar SNR-based detection algorithm as shown in K. M. Lar-115

son (2013) on data collected during two severe weather events, which affected the city116

of Zurich in Switzerland in early summer 2021. Using observations from a nearby GNSS117

station, we show how hydrometeors affect GNSS-SNR and thus allow for the detection118
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of severe weather events. To our knowledge, this study represents the first investigation119

on the detection of severe weather events using GNSS-SNR data.120

2 Data and methods121

2.1 GNSS-SNR122

SNR is a raw observation type which is typically recorded by all GNSS receivers123

and serves as a measure of received signal strength. GNSS-SNR levels depend on both124

satellite elevation and the actual carrier frequency on which observations are recorded.125

They increase with satellite elevation, peaking at levels between 50-60 dB-Hz for satel-126

lites observed near the zenith direction (90◦). Due to the repeatability of GNSS satel-127

lite tracks (e.g., with a revolution time of 11 hours and 58 minutes for GPS satellites),128

satellites cover the same elevation ranges (and therefore comparable SNR levels) for ap-129

proximately the same time periods on consecutive days. We will make use of this fact130

in our analysis and the formulation of the detection algorithm introduced in Section 2.4.131

Following K. M. Larson (2013), we use solely GPS L2C SNR data (in the following termed132

S2) in this study because of its smaller amount of high-frequency noise at higher eleva-133

tions compared to L1.134

For this study, we utilize GPS-SNR observations from the ETHZ GNSS station col-135

lected at a data rate of 30 seconds, available in Receiver Independent Exchange Format136

(RINEX) 2.11 (Gurtner & Estey, 2007). The station is located in the city of Zurich at137

the ETH Campus Hoenggerberg and belongs to the Automated GNSS Network of Switzer-138

land (AGNES), operated by the Federal Office of Topography (swisstopo).139

2.2 Radar140

As a state-of-the-art observing technique for precipitation, weather radar images141

are the first choice to accurately determine the thunderstorm event time at the respec-142

tive GNSS sites. Therefore, we make use of operational radar products, stemming from143

the Swiss weather radar network (Rad4Alp). The network consists of five polarimetric144

C-band radars at altitudes ranging from 928 m to 2937 m above sea level, operated by145

MeteoSwiss (Germann et al., 2022). The radars are arranged in a configuration which146

provides overlapping coverage, ensuring good visibility in the Alps. Here, we use a two-147

dimensional Cartesian maximum reflectivity composite with a spatial resolution of 1 km148

x 1 km which is produced every 5 minutes and spans an area of 640 x 710 km2. For the149

composite, the polar horizontal reflectivity data from each of the five radars is interpo-150

lated into a three-dimensional Cartesian grid on which a column maximum is applied151

to reduce it to a two-dimensional dataset. High values of reflectivity can be used as an152

indicator for the presence of intense precipitation and hail (Waldvogel et al., 1979; Ger-153

mann et al., 2009). To identify individual convective cells and their movements, the reflectivity-154

based Thunderstorm Radar Tracking (TRT) algorithm is used (Hering et al., 2004).155

2.3 Hail crowdsourced reports156

Alongside heavy precipitation, severe storms also produce hail. While radar-based157

hail algorithms exist to estimate the probability of hail on the ground (POH, Waldvogel158

et al. (1979)) and the maximum expected severe hailstone size (MESHS, Foote et al. (2005)),159

they are proxy-based and not surface observations. Therefore, we use the crowdsourc-160

ing function of the MeteoSwiss app to assess the presence of hail on the ground. The func-161

tion allows users to report the hail size category, time and location using their smart-162

phone. The reports are previously submitted to plausibility filters to reduce the num-163

ber of false alarms (Barras et al., 2019).164
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2.4 Detection algorithm165

As mentioned in the introduction, this study makes use of a largely similar plume-166

detection algorithm as proposed in K. M. Larson (2013). The exact algorithm applied167

in this study consists of the following steps:168

1. Extract GPS-S2 time series from RINEX observation files using the rnx2snr mod-169

ule of the GNSS-IR software gnssrefl (Roesler & Larson, 2018).170

2. Filter out all data with elevation angles < 20◦, which is more likely to be affected171

by multipath effects172

3. Select satellites that are continuously observed during event time as well as 15-173

30 min before and after.174

4. For each satellite:175

(a) Shift the obtained SNR time series by 4 min/day (with respect to the event day)176

to account for the repetition time of GPS satellite geometry (23h 56min)177

(b) Average time series for ten prior non-event days to build up the background model178

(i.e., average SNR evolution for the respective elevation range)179

(c) Obtain SNR residuals for the event day by subtracting the background model180

from the actual SNR observations181

(d) Calculate the mean and standard deviation of SNR residuals (σres) from all ten182

non-event days.183

(e) Set the residual mean ±2.5·σres as the nominal level to be used for event de-184

tection.185

3 Thunderstorm case studies186

The month of July 2021 was characterized by a persistent flow bringing moist and187

unstable air over Switzerland. Thunderstorms occurred regularly with heavy rainfall, hail188

and strong wind gusts that caused a fair amount of damage (MeteoSwiss (2021a), Kopp189

et al. (2022)). In the following, we give a short description of two case studies (CS) car-190

ried out for thunderstorm events which affected the city of Zurich in early summer 2021,191

and present results for the application of the detection algorithm outlined in Section 2.4.192

3.1 CS1: 28.06.2021193

On 28.06.2021, several supercell storms originated in Western Switzerland around194

14:00 UTC and then moved along the northern flank of the Swiss Alps following south-195

west to northeast tracks. Some of these supercells merged and evolved in an intense mesoscale196

convective system which produced the second largest hail event in Switzerland since 2002197

(MeteoSwiss, 2021b), and hailstones of up to 9 cm diameter in central Switzerland, south-198

west of Zurich (Kopp et al., 2022). This mesoscale convective system approached the city199

of Zurich and the ETHZ GNSS station from the southwest around 16:40 UTC (Figure200

1). Extended areas with maximum radar reflectivity (MAXRE) values of up to 60 dBZ201

were registered (Figure 1a) as well as the largest daily number of hail crowdsourced re-202

ports (Figure 1b).203

For CS1, the detection algorithm was applied on observations of satellites G4, G17204

and G19. The only selection criteria for these satellites was their continuous tracking over205

the period of interest (16:15 - 17:15 UTC). Results are presented in Figure 2. The left206

panel of the figure shows the respective time series of GPS-SNR observations from the207

event day as well as two days prior and after the event day. The right panel shows the208

results of the detection algorithm with colored points representing SNR residuals for the209

same days as shown on the left side. During this period, all three satellites show degraded210

SNR levels compared to the background model, with the largest degradation correspond-211

ing to the largest reflectivity values over the station. The same pattern is also captured212
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(a)
(b)

Figure 1: Radar and crowdsourced hail observations for CS1, 28.06.2021: (a): Images of
MAXRE (dBZ) for the region surrounding the ETH Zurich station. Shown are images in
five minute intervals. (b): Hail observations for the region surrounding the ETH Zurich
station: location of crowdsourced reports (purple dots, largest sizes are darker), location
of the ETHZ GNSS station (red star).

by the SNR residuals. Although the number of impacted observations is limited (1-3)213

for each satellite, their degradation level is significant (2-3 db-Hz), capturing a clear im-214

pact of the thunderstorm for the event day. In terms of detection performance, the al-215

gorithm does reasonably well, although some detections on non-event days are visible216

for G17 and G19. There are also a few event detections ahead of the actual event time217

for satellites G4 and G19. Nevertheless, the largest degradations occur exactly during218

the period of most intense precipitation, giving a strong indication of the thunderstorm’s219

impact on SNR levels.220
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Figure 2: Left panel: SNR observations of satellites G4, G17 and G19 at ETHZ for CS1.
Shown are observations from the event day (red, DOY 179), two days prior (blue colors,
DOY 177/178) and two days after (green colors, DOY 180/181). In addition, a one-week
average over the last ten days prior to the event is shown as the black solid line. Right
panel: SNR residuals with respect to the ten-day average for the respective satellite. The
nominal detection level is shown as the horizontal gray area. The exact event period de-
termined by radar is color-coded in orange.
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3.2 CS2: 12.-13.07.2021221

The second storm case investigated in this study took place during the night of 12-222

13.07.2021, when a supercell thunderstorm crossed Switzerland from France, ahead of223

an active cold front coming from the west. The storm was particularly intense when it224

approached the city of Zurich and the ETHZ station from the southwest on 12.07.2021,225

around 23:40 UTC, with MAXRE values of up to 50 dBZ (Figure 3a). The southwest226

to northeast movement is clearly visible on the successive MAXRE scans of Figure 3a,227

with peak reflectivity values lasting for about 20 minutes over the ETHZ station, un-228

til approximately 00:00 UTC. The storm also brought hail as shown by the multiple crowd-229

sourced reports sent by the population (Figure 3b). Similar to CS1, the left panel of Fig-

(a)
(b)

Figure 3: Radar and crowdsourced hail observations for CS2, 12-13.07.2021: (a): Images
of MAXRE (dBZ) for the region surrounding the ETH Zurich stations. Shown are images
in five minute intervals. (b): Hail observations for the region surrounding the ETH Zurich
stations on 12-13.07.2021: location of crowdsourced reports (purple dots, largest sizes are
darker), location of the ETHZ GNSS station (red star).

230

ure 4 shows the observed SNR time series of CS2 for satellites G05, G13 and G14, con-231

tinuously observed during the period of interest (23:00-00:00 UTC). Results show a sim-232

ilar pattern as observed for CS1, i.e. a clear degradation in SNR level for all satellites233

during the period of most intense precipitation (23:40-00:00 UTC) over the ETHZ sta-234

tion. Apart from event time, the observed values agree well with the background model235

and the noise level is similar throughout the five days shown. This further strengthens236

the evidence of a distinctive thunderstorm impact on the SNR level, with similar char-237

acteristics to CS1. The SNR residuals, shown on the right panel of Figure 4, indicate an238

even stronger impact of this thunderstorm event on SNR at ETHZ. Some false detec-239

tions prior and after the event, as well as on other days are again visible, but to a much240

lesser extent than in CS1. In comparison to CS1, the residual levels are slightly lower241

(mostly 1-2 db-Hz) but the number of observations affected by the thunderstorm is much242

higher. For instance, satellites G13 and G14 show a much larger amount of detected events243

for the event period than any satellite analyzed for CS1. While only one event was de-244

tected for G5, several residuals are close to the detection level, still indicating sustained245

degradation compared to average SNR levels.246
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Figure 4: Left panel: SNR observations of satellites G05, G13 and G14 from ETHZ sta-
tion for time period 12.07.2021 23:00-00:00 UTC. Shown are observations from the event
day (red, DOY 193), two days prior (blue colors, DOY 191/192) and two days after (green
colors, DOY 194/195). In addition, a one-week average over the last seven days prior to
the event is shown as the black solid line. Right panel: SNR residuals with respect to
the 10-day average for the respective satellite. The nominal detection level is shown as
the horizontal gray area. The exact event period determined by radar is color-coded in
orange.
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4 Discussion and conclusions247

We presented a first investigation on the use of GPS-SNR data for detecting se-248

vere thunderstorms by discussing two case studies affecting the ETHZ GNSS station on249

28.06.2021 and 12.-13.07 2021. Both cases were accompanied by heavy precipitation and250

hail, as reported by radar images and crowdsourced hail observations. Our results show251

a clear SNR degradation during the exact event time at ETHZ, which has been deter-252

mined from the radar images. Although the number of affected observations is quite small,253

most of these observations show a significant degradation (∼ 2 dB-Hz) compared to av-254

erage values. These results confirmed both the impact of a severe thunderstorm event255

on GPS-SNR observations and the capability of the proposed algorithm for detecting such256

events.257

For CS1, only 1-3 SNR observations per satellite were impacted, but these obser-258

vations showed a significant degradation of 2-3 dB-Hz. This degradation was observed259

at the exact time of maximum storm intensity over the ETHZ station, which gives a clear260

indication of the thunderstorm’s impact on the observed SNR levels. In comparison to261

CS1, the SNR degradation observed for CS2 is of a slightly weaker magnitude but more262

persistent over time, resulting in a much larger number of observations (about 10-20)263

being affected. This might indicate that the storm system was more stationary for CS2,264

but radar images suggest that the duration of maximum storm intensity was about 20265

minutes for both cases. For both cases, some false detections ahead of the actual event266

time also suggested a possible earlier impact of the approaching storm systems on spe-267

cific satellites. However, most of the used satellite tracks crossed the storm track only268

right around event time, which makes an earlier impact of the thunderstorm unlikely.269

The utilized detection algorithm is a very simple statistical approach, which allows270

for an easy implementation and interpretation of the results. The original algorithm of271

K. M. Larson (2013), initially developed for the detection of volcanic plumes, was only272

slightly modified for this study. Our version uses a ten-day average of SNR observations273

as a background model to calculate SNR residuals and a 2.5 · σres detection interval.274

Nevertheless, the approach also has some limitations such as:275

• The sensitivity of GNSS-SNR data is limited (L-band), implying that only severe276

thunder- and hailstorms could be detected277

• GNSS-SNR represents an integral value along the ray path. Therefore, the hor-278

izontal resolution is restricted to the satellite tracks.279

• Precise (sub-integer level) SNR observations are required, which is limiting the choice280

of GNSS receivers.281

• At this stage, we can neither quantify the contribution of each hydrometeor type282

(rain vs. hail), nor the influence of the size of the hydrometeors on the magnitude283

of the degradation284

• Other factors potentially contributing to the SNR degradation (such as lightning285

activity) should be investigated286

Future improvements could come from the usage of multi-GNSS and higher-rate287

observations (e.g. 1 Hz). In this study, we solely used GPS observations, but in recent288

years, the evolution of multi-GNSS (with the new GNSS systems Galileo and Beidou)289

has broadened the GNSS signal spectrum significantly. Nowadays a variety of signals on290

different carrier frequencies are available, which could also be used for approaches like291

the one presented in this study. An extension to other GNSS is relatively straightfor-292

ward and planned to be implemented for future investigations. This extension will in-293

crease the number of available observations by a factor of two to three and therefore strengthen294

confidence in the presented approach. Moreover, using 1-Hz observations would increase295

the amount of data used in this study by a factor of 30. Although already existing GNSS296

stations might not all record multi-GNSS data at these high frequencies, such consid-297

erations should be kept in mind when designing new infrastructure. Furthermore, more298
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sophisticated data mining and machine-learning algorithms might be explored, as their299

capability to reveal weather phenomena in GNSS products, to which observations should300

not be directly sensitive, has for example been demonstrated for e.g. downslope wind301

storms (Aichinger-Rosenberger et al., 2022). Thus, such algorithms might also be capa-302

ble of separating the signatures of different hydrometeor types (rain and hail) in GNSS303

data. However, this separation denotes a highly complex task, which most likely will not304

be possible to achieve using SNR data solely. Therefore, the combination of SNR obser-305

vations with additional GNSS products also impacted by atmospheric conditions, such306

as tropospheric signal delays and phase residuals, could be explored. Such approaches307

will hopefully lead to an improved understanding and identification of all factors account-308

ing for the observed SNR degradation. These factors might include the total amount of309

water along the ray path (substantial for supercell storms), the ratio of gaseous/liquid/solid310

particles found in clouds or even lightning events. Measuring the properties of hailstorms311

is a difficult task due to their rarity and small spatial extent. Hence, being able to use312

existing and future networks of GNSS stations to detect hailstorms could be very use-313

ful. Further investigations comparing storms that produced hail with others that did not314

could help discriminate a hail signature on GNSS signals.315

5 Open Research316

The GPS-SNR data sets used in this study are provided at https://polybox.ethz317

.ch/index.php/s/mUoWJtyKPZsKs2L.318
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