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Abstract

Sampling strategies used in paleomagnetic studies play a crucial role in dictating the accuracy of our estimates of properties

of the ancient geomagnetic field. However, there has been little quantitative analysis of optimal paleomagnetic sampling

strategies and the community has instead defaulted to traditional practices that vary between laboratories. In this paper,

we quantitatively evaluate the accuracy of alternative paleomagnetic sampling strategies through numerical experiment and

an associated analytical framework. Our findings demonstrate a strong correspondence between the accuracy of an estimated

paleopole position and the number of sites or independent readings of the time-varying paleomagnetic field, whereas larger

numbers of in-site samples have a dwindling effect. This remains true even when a large proportion of the sample directions are

spurious. This approach can be readily achieved in sedimentary sequences by distributing samples stratigraphically, considering

each sample as an individual reading. However, where the number of potential independent sites is inherently limited the

collection of additional in-site samples can improve the accuracy of the paleopole estimate (although with diminishing returns

with increasing samples per site). Where an estimate of the magnitude of paleosecular variation is sought, multiple in-site

samples should be taken, but the optimal number is dependent on the expected fraction of outliers. We provide both analytical

formulas and a series of interactive Jupyter notebooks allowing optimal sampling strategies to be derived from user-informed

expectations.
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Abstract17

Sampling strategies used in paleomagnetic studies play a crucial role in dictating the ac-18

curacy of our estimates of properties of the ancient geomagnetic field. However, there19

has been little quantitative analysis of optimal paleomagnetic sampling strategies and20

the community has instead defaulted to traditional practices that vary between labora-21

tories. In this paper, we quantitatively evaluate the accuracy of alternative paleomag-22

netic sampling strategies through numerical experiment and an associated analytical frame-23

work. Our findings demonstrate a strong correspondence between the accuracy of an es-24

timated paleopole position and the number of sites or independent readings of the time-25

varying paleomagnetic field, whereas larger numbers of in-site samples have a dwindling26

effect. This remains true even when a large proportion of the sample directions are spu-27

rious. This approach can be readily achieved in sedimentary sequences by distributing28

samples stratigraphically, considering each sample as an individual reading. However,29

where the number of potential independent sites is inherently limited the collection of30

additional in-site samples can improve the accuracy of the paleopole estimate (although31

with diminishing returns with increasing samples per site). Where an estimate of the mag-32

nitude of paleosecular variation is sought, multiple in-site samples should be taken, but33

the optimal number is dependent on the expected fraction of outliers. We provide both34

analytical formulas and a series of interactive Jupyter notebooks allowing optimal sam-35

pling strategies to be derived from user-informed expectations.36

Plain Language Summary37

Earth’s magnetic field can be preserved in rocks when they form. Through study-38

ing these magnetic records using the tools of paleomagnetism, scientists can learn about39

how Earth’s magnetic field has changed through time and how tectonic plates have moved40

relative to the field. This study is about the best ways to design sampling approaches41

to gain these insights using statistical quantification. Traditional protocols emphasize42

the collection of numerous samples from units that record the field at a given instant in43

time. Such units are referred to as sites. Through simulating data, we develop tools for44

evaluating trade offs between collecting more sites and more samples per site. Our re-45

sults show that strategies that maximize collecting more sites, even if fewer samples are46

taken at each site, leads to more accurate estimates even in the presence of spurious ob-47

servation. While there is a benefit to more samples per site, particularly for studies seek-48

ing to estimate the variability of the ancient field, such sampling has diminishing returns49

relative to maximizing the number of sites. We provide formulas and interactive com-50

putational resources to help the community to make informed decisions about the best51

way to gather data.52

1 Introduction53

Paleomagnetism is concerned with attempting to estimate properties of the ancient54

geomagnetic field from magnetic records preserved in rocks. This involves laboratory mea-55

surements of paleomagnetic directions recorded by igneous and/or sedimentary rocks and56

statistical analyses of those directions. Two geomagnetic properties of particular inter-57

est that can be estimated from these paleomagnetic directional data are:58

• The position of the time-averaged (≳ 104−105 a) ancient geomagnetic pole (also59

known as a paleopole) that corresponds to the Earth’s spin axis according to the60

geocentric axial dipole hypothesis (Creer et al., 1954).61

• The paleosecular variation of the field, which is associated with the shorter-term62

(≲ 104 − 105 a) time-varying position of the geomagnetic pole.63
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Despite the importance of these two quantities, there has been little exploration of the64

best sampling practices with which to derive estimates of them. This has resulted in prac-65

tices that vary according to the traditions of different laboratories; that is, the commu-66

nity largely relies on conventional wisdom.67

In this hierarchical framework, a site should correspond to a unit of rock with a68

common age and direction of magnetization (McElhinny & McFadden, 2000; Tauxe et69

al., 2016). Note that in some contributions a site is defined more loosely as a small area70

from which samples are collected which is not the definition that we use here. In our pre-71

ferred definition, each site is interpreted to be a spot recording of the time-varying ge-72

omagnetic field. In the case of an igneous rock, a site could be an individual lava flow73

or intrusion, whereas for a sedimentary rock, a site should ideally comprise a single de-74

positional event. In practice, a sedimentary site typically corresponds to single strati-75

graphic horizon that is the height of a standard paleomagnetic sample, usually about 2.576

cm. To move up the hierarchy, a collection of paleomagnetic samples from a given site77

are averaged and the site-mean is transformed from a direction with an associated dec-78

lination and inclination to pole space with an associated latitude and longitude, where79

the mean is referred to as a virtual geomagnetic pole (VGP). Following the definition of80

a site, each VGP ideally represents an independent estimate of the position of the an-81

cient geomagnetic pole at an instant in time. Estimates of paleosecular variation of the82

ancient geomagnetic field prior to 10 Ma can be made from populations of VGPs by de-83

termining their angular dispersion – most typically applied to collections of igneous sites84

of a similar age (e.g. Model G; McFadden et al., 1988). To determine a mean paleomag-85

netic pole position, a group of similarly aged VGPs are averaged to a Fisher mean pa-86

leopole that is taken as the best estimate of the true position of the ancient geographic87

pole, relative to the observation point.88

Regardless of whether we seek to discern the statistical properties of the time-averaged89

pole position or geomagnetic secular variation, our estimates will include error. Paleo-90

magnetic errors come from a variety of sources which can include orientation errors both91

in the field and the laboratory; measurement errors; and the imperfect isolation of the92

magnetization of interest from secondary magnetic overprints. The frequent occurrence93

of imperfect magnetization acquisition or the inability to isolate primary components of-94

ten results in a sample collection being contaminated by outliers. Orientation and mea-95

surement errors are generally assumed to be randomly unbiased (non-systematic) and96

so can be mitigated through the collection, measurement and directional averaging of97

multiple samples within a site. However, given finite resources, the collection of addi-98

tional samples per site will come at the cost of a lower number of sites. A relevant ques-99

tion is thus: how should we distribute our sampling to minimize uncertainty on the prop-100

erty we seek to estimate? Is it better to take a few sites with many samples? Or many101

sites with fewer samples? How might the recommended strategy change depending on102

the objective (in estimating the location of the paleopole vs. the dispersion of VGPs)103

or the fidelity of the magnetic record?104

Some notions concerning sampling have become entrenched in the paleomagnetic105

literature. For example, many workers seek to collect six to eight samples per site (Butler,106

1992), although the rationale for this range is not entirely clear. Opdyke and Channell107

(1996) suggest that at least three samples per site be collected where determinations of108

polarity are important, whereas to reliably estimate the dispersion of sample directions109

within a site, a minimum of four (Cromwell et al., 2018) or five (Tauxe et al., 2003) sam-110

ples per site has been deemed necessary. Having a more significant number of samples111

within the site provides the benefit of being able to apply data filters based on within-112

site scatter. However, Gerritsen et al. (2022) have found empirically that collecting and113

averaging multiple samples per site only results in a modest enhancement of the over-114

all accuracy of the paleopole. Thus, where the objective is to estimate the position of115

a paleopole, Gerritsen et al. (2022) suggested that it is most beneficial to maximize the116
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number of sites, and so the collection of additional single-sample sites should be preferred117

over the collection of multiple samples from fewer sites. Nevertheless, a statistical and118

quantitative evaluation of alternative strategies has not yet been conducted.119

Here we explore how the distribution of samples across sites affects the performance120

in the estimation of the paleopole position and the dispersion of VGPs, and how the vary-121

ing influence of outliers dictates the optimal strategy to best estimate these parameters.122

We also derive a set of equations that can enable quantitative sampling strategy recom-123

mendations based on specified parameters informed by user expectations.124

2 Mathematical Setup125

Consider the problem of estimating a paleomagnetic pole µ0 for some given inter-126

val of time, where µ0 is a three-dimension vector contained in the unit sphere. Obser-127

vations consist of a collection of a total of n samples distributed among N sites. Because128

the geomagnetic field is constantly varying around a mean configuration, each one of the129

virtual geomagnetic poles (VGP) per site, denoted by µi with i = 1, 2, . . . , N , is going130

to differ from the time-averaged paleomagnetic pole µ0. A fundamental assumption in131

paleomagnetic research is that this secular variation of the geomagnetic field can be ef-132

fectively estimated through averaging of a sufficiently high number of independent and133

temporally distributed VGPs. We now seek to evaluate how our choices of n and N will134

affect our estimation of µ0, as well as how we distribute the n samples among the N sites.135

2.1 Data Generating Process136

We define the following data generating model. First, we consider a set with a to-
tal of N VGPs sampled from a statistical model of secular variation. Examples of these
models include the Gaussian process type model (Tauxe & Kent, 2004; Constable & Parker,
1988) and model G (McFadden et al., 1988). In this contribution, we use Model G which
captures latitudinal variation in VGP scatter, and considers a mean geocentric axial and
dipolar (GAD) field. Then, given a GAD mean direction µ0, we sample a series of VGPs
µ1, µ2, . . . , µN according to

µi ∼ SV(µ0, κb) i = 1, 2, . . . , N. (1)

The sampling procedure depends on the mean direction µ0 and the precision parame-
ter κb that will depend on the secular variation model used. In this study, we adopt the
mild assumption that VGP distributions are circularly symmetric (Tauxe & Kent, 2004)
and can be sampled from a Fisher distribution (Fisher, 1953; Deenen et al., 2011), whose
dispersion Sb, according to model G (McFadden et al., 1988), depends on the sampling
latitude λ through the following formula

Sb(λ)2 = a2 + b2λ2, (2)

with a and b two empirical coefficients, recently calculated as a = 11.3◦+1.3◦

−1.1◦ and b =137

0.27+0.04
−0.08 by (Doubrovine et al., 2019). At population level, there is a one-to-one rela-138

tionship between Sb and the value of κb we use to sample from the Fisher distribution.139

This relationship can be found numerically with an arbitrary level of precision. Then,140

VGPs can be sampled according to a Fisher distribution with mean direction µ0 and dis-141

persion parameter κb(λ).142

In the following, we use the supraindex ∗ to denote variables in directional space143

(inclination-declination). Thus, µi refers to any given VGP (geographic coordinates) and144

µ∗
i refers to its corresponding direction in inclination and declination space according to145

the dipole formula. Note that this transformation between pole and directional space de-146

pends on the latitude and longitude of the site.147
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Table 1: Parameters used for the sampling of poles

Parameter Range Description

N ≥ 1 Total number of sites.
n0 ≥ 1 Number of samples per site. We will assume n0 = n1 = . . . = nN

and denote n = Nn0 the total number of samples.
κw [0,∞) Precision parameter of the Fisher distribution for a given site,

where kw = 0 results in a uniform distribution on a sphere and
kw → ∞ is a singular point.

κb [0,∞) Precision parameter of the Fisher distribution between sites. For
the model G, this is directly determined by λ.

λ [0◦, 90◦] Paleolatitude.
poutlier [0, 1] Outlier rate where 0 is no outliers and 1 is all samples are out-

liers drawn from a uniform distribution.

Now, we assume that the ith-site has ni individual directions that follow a Fisher
distribution

x∗
ij ∼ Fisher(µ∗

i , κi) with probability 1 − poutlier and (3)

x∗
ij ∼ Unif otherwise, for j = 1, 2, . . . , ni,

with xij the jth-direction of the ith-site; κi the dispersion parameters per site; and Unif148

represents the uniform distribution in the sphere. The parameter poutlier has been added149

to quantify the effect of outliers in the sampling process. With probability 1− poutlier150

we are going to observe a true sample, while with probability poutlier our sample will be151

corrupted and instead we will observe an spurious direction, modelled by a uniform dis-152

tribution on the sphere where no information is provided about the true orientation of153

the field. For cases where we do not want to consider the effect of outliers in the sam-154

pling process, we set poutlier = 0. Also, for cases where the number of samples and dis-155

persion parameter are the same for all the sites, we will use n0 and κw to refer to any156

of the ni and κi, respectively. The parameters used during the model are summarized157

in Table 1.158

2.2 Estimation of the Paleopole Direction159

We can estimate the true pole location µ0 by computing the Fisher mean of the
VGPs estimated from each site, that is,

µ̂0 =
1

R0

N∑
i=1

µ̂i R0 =

∥∥∥∥∥
N∑
i=1

µ̂i

∥∥∥∥∥ , (4)

where ∥·∥ denotes the Euclidean norm; and µ̂i is the sample mean per site, which re-
sults from transforming to pole space the estimate of the pole in directional space,

µ̂∗
i =

1

Ri

ni∑
j=1

x∗
ij Ri =

∥∥∥∥∥∥
ni∑
j=1

x∗
ij

∥∥∥∥∥∥ . (5)

The overall goal of this estimation procedure is to get a value for µ̂0 as close as possi-160

ble to the ground truth µ0.161
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We assess the accuracy of the pole estimate across simulations by computing the
root-mean-square error (RMSE) as

Errµ̂0 =

√√√√ 1

M

M∑
m=1

angle
(
µ̂
(m)
0 , µ0

)2
, (6)

where angle(µ̂
(m)
0 , µ0) = (180◦/π) cos−1(µ̂T

0 µ̂
(m)
0 ) is the angular distance in degrees be-162

tween the true pole µ0 and each one of the simulated estimations µ̂
(m)
0 , where M is the163

total number of simulations.164

2.3 Estimation of the VGP Scatter165

Long-term assessment of the paleomagnetic secular variation of the geomagnetic
field relies on the VGPs dispersion Sb instead of their mean. The observed global dis-
persion S is estimated as (Cox, 1970)

Ŝ2 =
1

N − 1

N∑
i=1

angle(µ̂i, µ̂0)2. (7)

The global dispersion S2 is a combination of the dispersion between VGPs Sb and that
arising from the dispersion among the samples within the site Sw (McFadden et al., 1991).
We assume that the latter arises purely from random errors associated with orientation,
measurement and analytical errors, whereas the former is an unknown, latitude-dependent
parameter of the time-averaged geomagnetic field. In order to estimate Sb, we first need
to extract the within-site dispersion from the global dispersion of the VGPs, that is

Ŝ2
b = Ŝ2 − Ŝ2

w, (8)

where the estimated within-site dispersion Ŝw is computed in directional space follow-
ing McFadden et al. (1991) and Doubrovine et al. (2019)

Ŝ2
w =

1

N

N∑
i=1

Ŝ2
wi

ni
(9)

Ŝ2
wi = 2

(
180◦

π

)2
T (λ)

k̂wi

(10)

k̂wi =
ni − 1

ni −Ri
, (11)

with T (λ) = 1
8 (5+18 sin2 λ+9 sin4 λ) the latitude correction introduced in Cox (1970);166

and Ri the resultant vector length defined in Equation 5. Notice that the within-site dis-167

persion will lead to unrealistic estimates of the between-site dispersion in cases where168

ni is small, ni = 1 being the extreme case where the within-site dispersion cannot be169

estimated; that is, we cannot disentangle the contribution of the within-site and between-170

site dispersion. For cases where ni = 1, we set Ŝw = 0, that is, the within site disper-171

sion is zero since it cannot be estimated from these series of equations.172

3 Numerical Results173

In this section we present the results of numerical simulations that explore how dif-174

ferent sampling strategies affect the estimation of paleopole position µ0 and VGP scat-175

ter Sb. These simulations implement the data generation process described in the Sec-176

tion 2.1 to draw samples of site directions and associated directions within a given site.177

For the different numerical experiments, we apply varied choices for the model param-178

eters (Table 1) and we respectively compute the mean pole position µ̂0 and VGP scat-179

ter Ŝb. These simulations enable us to assess what differences in sampling strategy yield180
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estimates of the parameters of interest that are closer to the true value. We compare the181

results of these estimates for different choices of filters and compare them to determine182

which sampling strategy and method yields the highest accuracy.183

3.1 Trade-off between Number of Sites and Number of Samples per Site184

The top panel in Figure 1 shows the accuracy of µ̂0 (Equation (6)) as a function185

of the number of sites N and the number of samples per site n0 in the absence of out-186

liers (poutlier = 0). As the number of sites increases (moving up the y-axis), the total187

error reduces. The mean error is also reduced if we increase the number of samples per188

site while keeping the total number of sites fixed. However, in the latter case we see that189

the improvement afforded by increasing the number of samples per site is small relative190

to increasing the number of sites and saturates for small values of n0 (see black contour191

lines).192

In a scenario with unlimited resources to collect and analyze paleomagnetic sam-193

ples, one could seek to maximize both the number of sites (N) and the number of sam-194

ples per site (n0). However, in the context of finite resources, it is interesting to consider195

what happens when we keep fixed the total number of samples n = n0N but change196

how these samples are partitioned between number of sites (N) and number of samples197

per site (n0). As visualized with the white dotted curves in Figure 1 that follow a fixed198

total number of samples, we see that smaller errors are associated with sampling strate-199

gies that prioritize the acquisition of additional sites over the collection of additional sam-200

ples per site. The same behaviour is exposed when we plot the error as a function of the201

total number of samples n and for different values of n0 (Figures 2a and 2b). For all choices202

of samples per site n0, the net error decreases at rate 1/
√
n, with the absolute value of203

the error being additionally affected by n0. We quantify the improvement in accuracy204

due to an increase in the number of samples for different number of samples per site (Fig-205

ures 2c and 2d). Even by keeping fixed the number of sites and increasing n0 (and, con-206

sequently, increasing the total number of samples), the improvement in accuracy is min-207

imal once n0 ≥ 3.208

The effect of varied numbers for N and n0 on the accuracy of estimates of VGP209

scatter (between-site dispersion Sb) is shown in Figure 1. As with estimating pole po-210

sition, we observe similar behavior for estimating VGP scatter where, given a fixed to-211

tal number of samples, there is smaller error when the number of sites is higher. How-212

ever, the benefit of increasing the number of samples per site on reducing the the root213

mean square error between Ŝb and the true VGP scatter Sb is more pronounced. Notice214

that for n0 = 1, this error is large due to the inability to estimate the within-site dis-215

persion. However, for n0 ≥ 3 the error stabilizes and we observe the same behaviour216

as before: the acquisition of more sites over more samples per site leads to better esti-217

mation of the VGP scatter assuming n0 ≥ 3.218

3.2 Sampling Strategy in the Presence of Outliers219

From the previous section we concluded that the number of sites N is mostly what220

determines the accuracy of the estimated position of the paleopole. However, an argu-221

ment for collecting more samples per site is the ability to detect outliers and filter spu-222

rious sample directions. A more fair comparison then is to compare two different strate-223

gies for estimating the paleopole while taking the possible occurrence of spurious data224

into account. When using a small number of samples per site n0, outlier detection at the225

site level may be difficult, or directly impossible where n0 = 1. However, it is possible226

to implement methods to filter VGPs that are statistically significantly apart from the227

mean (e.g. the paleopole) using an iterative cut-off (Vandamme, 1994). Using this fil-228

ter provides a upper bound to the error that can be actually been archived by a better229

strategy to estimate the paleopole in the case n0 = 1. We compare this first strategy230
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Figure 1: Root mean square error in degrees between site mean poles and the true GAD
pole (top panel) and between-site VGP dispersion (bottom panel) as a function of differ-
ent combinations of the total number of sites N and the number of samples per site n0.
For this diagram, we use a paleolatitude of 30◦ (κb ≈ 35), poutlier = 0, and κw = 50.
The white dashed lines represent isolines where the total number of samples n is constant,
and the black lines represent isolines with constant net mean error angle. Each point-wise
estimate of the mean error (i.e. each box) is based on the results of 10, 000 simulations.
While these simulations represent secular variation using Model G, similar results emerge
from using the TK03 model (Tauxe & Kent, 2004).

–8–



manuscript submitted to JGR: Solid Earth

0 50 100 150 200 250 300
Total number of samples (n)

0

1

2

3

4

5

6

7

8

RM
SE

 (d
eg

re
es

)

Samples per site
1
2
3
4
5
6
7

(a)

100 101 102

Total number of samples (n)

100

101

RM
SE

 (d
eg

re
es

)

Samples per site
1
2
3
4
5
6
7

(b)

0 20 40 60 80 100
Total number of sites (N)

0

1

2

3

4

5

6

7

8

RM
SE

 (d
eg

re
es

)

Samples per site
1
2
3
4
5
6
7

(c)

100 101 102

Total number of sites (N)

101

RM
SE

 (d
eg

re
es

)

Samples per site
1
2
3
4
5
6
7

(d)

Figure 2: (a) Root mean square error (RMSE) angle of the computed mean pole as a
function of the total number of samples n for different values of samples per site n0 where
an increase in samples per site results in a decrease in the number of sites. (b) Displays
the same figure but in logarithmic scale, making explicit the 1/

√
n decay of the error,

independent of the value of n0. (c) RMSE as a function of the total number of sites N for
different values of n0, also in (d) logarithmic scale. For all the figures, we set λ = 30◦,
κw = 50, and poutlier = 0. The dot-dashed line represents the theoretical approximation
(see Section 4).
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Figure 3: Comparison between sampling strategies for two different sampling strategies in
the presence of outliers for a fixed number of total samples (n = 100). The red histograms
and curve are strategy 1 where we have one sample per site (n0 = 1), on hundred site
(N = 100) and we use the Vandamme filter. The blue histograms and curve are strategy
2 where n0 = 5, (N = 20) and we filter all the outliers (perfect detection algorithm) for
(a) poutlier = 0.10; (b) poutlier = 0.4; and (c) poutlier = 0.6. Here κw = 66 is such that the
angular dispersion within site is 10◦, and λ = 30◦. The gray line denotes the case in which
we sample for n0 = 1 but we do not use any outlier detection method. (d) As we increase
the number of outliers poutlier, the error increases differently depending on whether we
can detect and filter outliers or not. The intersection of the two errors corresponds to the
value of poutlier whereupon there is a crossover in the efficacy of the two methods. The
shaded envelopes around the solid lines correspond to the (0.25, 0.75) percentile bands. (e)
Value of the intersection between the mean errors for strategies 1 and 2 (panel d) for dif-
ferent values of latitude λ and dispersion within-site kw. (f) Same as in (e) but comparing
n0 = 5 with the worse case scenario with no outlier detection.

(n0 = 1 with Vandamme’s iterative cut-off applied on the estimated population of VGPs)231

with the optimistic case where we collect more samples per site and are able to identify232

and filter all the outliers directly at the site level. The latter case provides a lower bound233

on the most optimistic error when using any outlier detection criteria at site level. For234

this second strategy, no outliers are included in the calculation of the final estimated pole235

µ̂0. This means that the effective number of samples used to estimate µ0 will be less than236

n, but since the samples removed are spurious directions, we expect the estimate of the237

paleopole will be more accurate than if we included all the samples in the calculation.238

We also show the results of the first method without using any outlier filter whatsoever.239

Histograms in Figures 3a, 3b and 3c show the distribution of the angles between240

µ0 (true GAD pole) and µ̂0 (estimated pole) for the two sampling strategies and with241

10%, 40% and 60% outlier rate, respectively. Even in the presence of outliers, using n0 =242

1 gives lower angular errors than when using n0 = 5 until the proportion of outliers poutlier243
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increases by a significant amount. We illustrate this by showing in Figure 3d the mean244

of these two errors as a function of the outlier rate poutlier. Until the proportion of out-245

liers reaches a critical point of approximately 55%, having n0 = 1 but being able to sam-246

ple more sites N still out-performs the case where n0 = 5 and all outliers are removed.247

Figure 3e shows this critical value of poutlier for different site latitudes and within-site248

dispersion, showing that we need to have more than 40% outliers before the second strat-249

egy out-performs the n0 = 1 strategy. Panel 3f further shows this critical value in the250

case where no filter is used for n0 = 1. It is noteworthy that despite the small variance,251

this critical value of poutlier grows as a function of site latitude (increasing Sb) and re-252

mains almost the same as a function of within-site dispersion.253

A wider comparison of these methods for a range of samples per site n0 is provided254

in Figure 4. Here again we can observe that for a fixed number of total samples the sce-255

nario with n0 = 1 leads to better estimation of the true pole until the proportion of out-256

liers becomes very high. On the right side of the panel we can also observe the improve-257

ment in accuracy when we fix the number of sites N and we increase the number of sam-258

ples per site and thus the total number of samples. In agreement with Figure 2, we ob-259

serve that the improvement due to an increase in the number of samples per site n0 by260

keeping N fixed is small compared to a change in the overall sampling strategy.261

We conducted the same analysis for estimating the VGP scatter Sb and its asso-262

ciated error. Figure 5 shows the signed percentage error 100%·(Ŝb−Sb)/Sb for differ-263

ent choices of n0. When n0 = 1, all methods overestimate the real VGP scatter due264

to the lack of estimates of the within site dispersion S2
w (Equation (9)). On the other265

hand, Sb tends to be underestimated when we use the Vandamme (1994) filter, since the266

cut-off of outliers reduces the total dispersion of the VGPs (Equation (7)). As we increase267

the number of outliers, we observe a significant deterioration of the VGP scatter esti-268

mation due to the inability to filter outliers. This behaviour is rather different to what269

we observed for paleopole estimation, where the estimation is more robust to outliers.270

However, after reaching a minimum required value of samples per site (around n0 = 3),271

the accuracy only minimally improves by adding more samples per site. In the case where272

no outliers are present, we are back to the case in Figure 1 where we observed that, for273

the same budget of total samples n, a larger value of sites N leads to more accurate es-274

timates as long as n0 ≥ 3.275

4 Theoretical Results276

We can quantify the trade-offs between the different model parameters introduced
in the previous section by theoretically deriving approximations for the dispersion pa-
rameter of the distribution of the estimated pole µ̂0. This procedure works by finding
the effective precision parameter κeff of a Fisher distribution that minimizes the Kullback-
Leibler divergence with respect to the actual dispersion of µ̂0 (Kurz et al., 2016; Hes-
lop & Roberts, 2020). As is it derived in Kurz et al. (2016), this is equivalent to find-
ing the mean direction and dispersion parameter that matches the resultant vector length
of the target distribution. In Appendix A, we have provided the essential definitions and
theoretical derivations used in our analysis. Using this method, we can derive the fol-
lowing approximation for the dispersion of the estimated µ̂0:

µ̂0 ≈ Fisher(µ0, κeff), κeff =
Nκb

1 + κb

n0 (1−poutlier)κw T (λ)

. (12)

The effective dispersion parameter κeff is a function of all the parameters in the model.277

Under the assumptions of model G (McFadden et al., 1988), we have κb = κb(λ) is a278

function of the paleolatitude according to Equation (2). However, this results holds for279

other choices of κb where the Fisher approximation of the VGP scatter is appropriate.280
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(c) n ≈ 100, 40% Outliers
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(e) n ≈ 100, 60% Outliers
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Figure 4: Boxplot of the angular error between estimated and true GAD pole for dif-
ferent sampling strategies (number of samples per site, and total number of sites in
parenthesis) for (a,b) poutlier = 0.10, (c,d) poutlier = 0.40 and (e,f) poutlier = 0.60. The
left column corresponds to the case where the total number of samples is fixed around
n ≈ 100, while the right column is the case with fixed N = 100. Following the convention
in Figure 3, the red diagrams correspond to n0 = 1 using the Vandamme filter; the blue to
n0 = 5 with perfect outlier detection algorithm; and the grey boxes correspond to n0 = 1
with no outlier detection been applied. Here kw = 50 and λ = 30◦.
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(c) n ≈ 100, 20% Outliers
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(e) n ≈ 100, 40% Outliers
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Figure 5: Boxplot of the relative error when estimating the between-site dispersion Sb,
that is, 100%(Ŝb − Sb)/Sb, where Ŝb is estimated as it was explained in Section 2.3, and
Sb is the true VGP scatter. Parameters, color references and panel arrangements are the
same than in Figure 4, while here the choice of outliers rates is (a,b) poutlier = 0, (c,d)
poutlier = 0.20 and (e,f) poutlier = 0.40.
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In the case where no outliers are included (poutlier = 0), based on the approximated
relationship between angular dispersion S and κ we can approximate the angular error
Errµ̂0 introduced in Equation (6) as

Errµ̂0
≈ 81◦√

N

√
1

κb
+

1

n0κ1T (λ)
. (13)

This equation allow us to quantify the amount of error associated with different choices281

of n0. Comparing this theoretical approximation with the simulations (Figure 1 and 2)282

reveals relative error of around 1% between simulation and theory.283

From the theoretical expression for Errµ̂0
we can see that as n0 increases, the im-284

provement in accuracy to the final error becomes rather minimal since the coefficient 1/n0κ1T (λ)285

is dominated by 1/κb. Surprisingly, this limit is reached for very small values of n0, which286

shows the small amount of improvement that increasing n0 adds to the final error, es-287

pecially when we compare this with the decay of the error given by the factor 1/
√
N .288

No matter the choice of n0, the error goes to zero as N increases. On the other hand,289

no matter how large n0 becomes, the overall error will never be lower than 81◦/
√
Nκb,290

N being the quantity that controls the overall error most.291

The approximation with outliers is accurate for values of which n0(1−poutlier) is
strictly larger than one. For the case of n0 = 1, a more accurate approximation is given
by

ρ−1

(
(1 − poutlier)

Nκb

1 + κb

n0 κw T (λ)

)
, (14)

where ρ(κ) = 1/ tanh(κ)−1/κ is the expected length of a Fisher distribution with pre-292

cision parameter κ and ρ−1 its inverse. When using a perfect outlier algorithm with (1−293

poutlier)n0 ≥ 2, the approximation in Equation (13) is still appropriate. Further inves-294

tigation is needed to estimate the final error when using the iterative cut-off method (Vandamme,295

1994).296

Notice that the theoretical expression for the final dispersion can be used to de-297

fine confidence intervals around the true pole for a specific study case. Effectively, given298

a sampling procedure with prescribed N and n0, we can estimate the dispersion param-299

eters κw and κb and then, by plugging these into Equations (12) and (13), we obtain a300

confidence region around the sample estimated pole. This procedure will take into ac-301

count the hierarchical nature of paleomagnetic samples at the moment of quantifying un-302

certainty.303

5 Recommendations304

When the goal is to estimate the position of a paleopole, our results show that the305

total number of sites N has a far larger impact on accuracy than the number of sam-306

ples per site n0. We therefore recommend the following rule of thumb for sample collec-307

tion where the objective is paleopole estimation: the more samples the better, but ef-308

forts to maximize the number of independent sites will have a greater effect on improv-309

ing accuracy than more samples per site. In particular, the benefit of collecting more sam-310

ples per site is small for n0 ≥ 3 and diminishes at n0 ≥ 5. Analyzing more samples311

than this per site is inadvisable if it will result in fewer overall sites in a given study. As312

it was concluded in Gerritsen et al. (2022), for the purpose of computing a paleopole and313

for a fixed total number of samples, it is always better to collect these samples from dif-314

ferent sites than to collect more samples per sites. For paleopole estimates, filters based315

on populations of VGPs can aid in the detection of outliers (e.g. Vandamme, 1994). If316

there is an appreciable outlier rate, such filtering schemes are necessary when n0 = 1317

given that outliers cannot be detected through within site consistency. We recommend318
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the use of Equation (13) to get an estimate of the net error as a function of the expected319

parameters present in the sampling.320

An important caveat concerning the use of directional filters is that while the mean321

may be relatively insensitive to their effects, they can significantly distort the shape of322

the true directional distribution and should therefore be avoided where the latter is a323

parameter of interest (e.g. paleosecular variation studies). Indeed, the presence of out-324

liers has a major impact on the estimation of the dispersion, and thus the VGP scatter325

Sb. Increasing the number of samples per site n0 is beneficial as long as this helps us to326

detect outliers more accurately. However, this is not always straightforward using con-327

ventional data filters and cutoffs, which leads to a reliance on the expert’s subjective in-328

terpretation (Gerritsen et al., 2022). There is a greater improvement in the accuracy of329

estimates of VGP scatter through increasing the number of samples per site, even in the330

absence of outliers, than there is for estimating the mean pole position. However, the331

improvement in the estimate of the VGP scatter progressively diminishes for increasing332

samples per site. When outliers can be detected efficiently, and for a minimum of three333

or four samples per site, the same trade-offs as noted above for paleopole estimation again334

apply: the preferential collection of more sites over more samples per site leads to more335

accurate estimates of the VGP scatter. And again, the most optimal sampling scheme336

given any suite of expected parameters can be determined from the results presented herein.337

For general calculations of pole and VGP scatter accuracy, we recommend the in-338

terested reader to run their own experiments directly from the source code, which can339

be executed directly from the cloud using the provided Binder link in the Code Avail-340

ability section (Project Jupyter et al., 2018).341

6 Conclusions and Future Directions342

The hierarchical nature of sampling in paleomagnetic investigations is a long-standing343

practice, but the community’s specific default sampling strategies have largely relied upon344

conventional wisdom. Here we quantitatively explored, both numerically and analyti-345

cally, the impact of different sampling strategies on the accuracy of estimates of pale-346

opole position and VGP scatter. Our results demonstrate that when the objective is to347

estimate the position of the time-averaged magnetic pole, a strategy that maximizes the348

number of sites is always the most favorable. Thus, given an infinite number of possi-349

ble sites, it would be advantageous to collect as many single-sample sites as possible.350

Where an estimate of VGP scatter is sought, the situation changes and the collec-351

tion of single-sample sites hinders the estimation and exclusion of within-site directional352

scatter. Here the optimal sampling strategy is more nuanced and the ideal number of353

samples per site depends on the expected proportion of outliers. However, the same gen-354

eral rule of thumb still applies: beyond some minimum number of samples per site the355

collection of additional sites should be prioritized over the collection of additional within-356

site samples.357

We also emphasize that beyond these general rules of thumb, we herein provided358

tools enabling quantitative sampling recommendations to be generated from user-provided359

expectations. We hope that these may free the community from the adoption of default360

sampling practices, and rather move towards statistically-informed strategies.361

In this work we asserted the accuracy of poleopole estimation and VGP scatter fol-362

lowing the estimates introduced in Section 2.2 and 2.3, either under the influence of fil-363

ters or not. However, the hierarchical nature of the data and the way this estimates are364

calculated open the floor to other methods that can lead to more accurate and robust365

estimations.366
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7 Open Research367

All the code used for this work can be found in the GitHub repository https://368

github.com/PolarWandering/PaleoSampling under release v0.0.1. The repository in-369

cludes a series of Jupyter notebooks and a Python package that allows to run all the data370

simulations and analysis included in this paper. We also provided reproducible support371

by including a Binder (Project Jupyter et al., 2018) link to execute all the code in the372

cloud here https://mybinder.org/v2/gh/PolarWandering/PaleoSampling/HEAD and373

a JupyterBook (Community, 2020) link here https://polarwandering.github.io/PaleoSampling/.374

We benefit from the use of PmagPy (Tauxe et al., 2016) for calculations and Dask for375

parallel computing (Dask Development Team, 2016).376

Appendix A Mathematical derivation of approximated dispersion for377

Fisher distribution378

In this section we consider a series of theoretical derivation of the expected disper-379

sion for the estimate of the true pole µ̂0. These calculations will allow us to approximate380

the final distribution of the estimated µ̂0 as a Fisher distribution with precision param-381

eter that will depend of the parameters listed in Table 1. The building blocks that lead382

to that final results in Equations (12) and (13) consist in finding approximate Fisher dis-383

tributions for the following procedures:384

1. Mean of Fisher distributions (Section A1)385

2. Hierarchical sample of two nested Fisher distributions (Section A2)386

3. Superposition of Fisher and uniform distributions (Section A3).387

Just as we assumed before, we randomly sample a total of N VGPs µi in latitude-
longitude space from a Fisher distribution with mean µ0 and concentration parameter
κb. Then, we sample site measurements x∗

ij in directional space from a Fisher distribu-
tion with mean µ∗

i and concentration parameter κw, where j = 1, 2, . . . , ni (see Section
2.1). We are going to use ρ(·) to refer to the function

ρ(κ) =
1

tanh(κ)
− 1

κ
, (A1)

where κ will refer to the precision parameter of Fisher distributions. It is easy to see that388

ρ(κ) is the expected length of a Fisher distribution with concentration parameter κ (Mardia389

et al., 2000).390

The method for approximating Fisher distributions follows the moment matching
procedure also used in Heslop and Roberts (2020). If p(x) represents the probability den-
sity function of some random estimate with support in the unit-sphere given by S2 =
{x ∈ R3 : ∥x∥ = 1}), then we aim to find the parameters µ ∈ R3 (∥µ∥ = 1) and κ of
the Fisher probability density function q(x;µ, κ),

q(x;µ, κ) =
κ

4π sinh(κ)
eκµ

T x, (A2)

such that they minimized the Kullback–Leibler divergence DKL(p|q) given by

min
µ,κ

DKL(p|q) =

∫
S2

p(x) log
p(x)

q(x;µ, κ)
dx. (A3)

As it was found in Kurz et al. (2016), this is equivalent to finding a Fisher distribution
q(x;µ, κ) with same mean direction and mean vector length, where the mean vector (both
direction and length) is computed as ∫

S2

x p(x) dx. (A4)
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The technique then consists in estimating the mean resultant length of the estimated pa-391

leopole µ̂0 and match it with the corresponding Fisher distribution q(x;µ, κ) with same392

mean resultant length.393

A1 Mean of Fisher Distributions394

Let us begin with a result about the distribution of the mean of a total of n Fisher395

distributions with same dispersion parameter κ. The case n = 1 is excluded since it leads396

to a trivial result.397

Proposition 1 (Mean of Fisher Distributions). Consider a sample of n ≥ 2 indepen-
dent Fisher distributions xi, i = 1, 2, . . . , n, with mean µ0 and precision parameter κ.
Then the Fisher mean

µ̂ =
1

nR

n∑
i=1

xi R =

∥∥∥∥∥ 1

nR

n∑
i=1

xi

∥∥∥∥∥ (A5)

is approximately Fisher distributed with mean direction µ0 and precision parameter κnρ(κ).398

399

Proof. Following Fisher (1953), the estimated mean Fisher distribution µ̂ can be approx-
imated with a Fisher distribution with mean µ and concentration parameter κnR. This
can be derived by the fact that the conditional probability of µ̂|R = r has distribution
Fisher(µ0, nκr) (Mardia, 1975). Taking then expectation over R we obtain an approx-
imate value of the effective concentration parameter of µ̂. Now, we need to find the ex-
pected value of the vector length of the mean estimate R. For n > 1, it is easy to see
that this last quantity coincides in expectation with the expected length of the Fisher
distribution with parameter κ, that is E [R] = ρ(κ) (Mardia et al., 2000; Heslop & Roberts,
2020). On the other side, for n = 1 we simply have R = 1. Even when this may be
seem clear, let us derive a secondary proof that will be useful in the later section. For
distributions in the sphere, the following relationship holds ((Mardia et al., 2000), equa-
tion 9.2.13)

E
[
R2
]

= E [R]
2

+
1

n
(1 − E [R]

2
), (A6)

or equivalently

E [R]
2

=
nE

[
R2
]
− 1

n− 1
. (A7)

This last equation is useful because it allow us to compute the expected value of R as
a function of the expected value of R2, which is mathematically easier to manipulate.
Now,

R2 =
1

n2

n∑
i,j=1

xT
i xj =

1

n2

n∑
i=1

∥xi∥2 +
1

n2

∑
i ̸=j

xT
i xj . (A8)

Now, taking expectation and using ∥xi∥ = 1 and the independence of the xi we have

E
[
R2
]

=
1

n
+

n− 1

n
E
[
xT
1 x2

]
. (A9)

The only thing that remains to be calculated is the expectation of the cosine of the an-
gle between independent Fisher distributed vectors xT

1 x2. However, notice

E
[
xT
1 x2

]
= ρ(κ)E

[
µT
0 x2

]
= ρ(κ)2 (A10)

which then leads to

E
[
R2
]

=
1

n
+

n− 1

n
ρ(κ)2 (A11)

and E [R] = ρ(κ). Finally, we have that µ̂ is approximately Fisher distributed with mean400

µ and expected concentration parameter equal to κnρ(κ).401
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A2 Hierarchical Sampling of Fisher Distributions402

Now, let us consider the case where we hierarchically sample Fisher distribution403

with random mean directions. This emulates the hierarchical computation of mean di-404

rections used to estimate paleopole directions.405

Proposition 2 (Hierarchical Sampling on Fisher Distributions). Consider the follow-
ing hierarchical sampling of Fisher distributed random variables.

µ1 ∼ Fisher(µ0, κ0)

x ∼ Fisher(µ1, κ1) (A12)

Then the full distribution of x can be approximated by a Fisher distribution with mean
µ0 and precision parameter κ∗ equal to

κ∗ =
κ0κ1

κ0 + κ1
. (A13)

406

Proof. We can write the full probability density function of x by integrating the prod-
uct of conditional densities over all the possible values of µ1 in the sphere, that is

p(x) =

∫
S2

p(x|µ1)p(µ1|µ0)dµ1

=
κ0κ1

(4π)2 sinh(κ0) sinh(κ1)

∫
exp

{
κ0µ

T
0 µ1 + κ1x

Tµ1

}
dµ1

=
κ0κ1

4π sinh(κ0) sinh(κ1)

sinh(∥κ0µ0 + κ1x∥)

∥κ0µ0 + κ1x∥
. (A14)

Without lost of generality, we can assign µ0 = (0, 0, 1) and then

∥κ0µ0 + κ1x∥ =
√
κ2
1x

2 + κ1y2 + (κ1z + κ0)2 =
√

κ2
1 + κ2

0 + 2κ0κ1z. (A15)

Now, we need to find the first moment of the previous distribution in order to compute
the mean length, which implies solving the integral∫

S2

sinh(
√
κ2
1 + κ2

0 + 2κ0κ1z)√
κ2
1 + κ2

0 + 2κ0κ1z
zdΩ = 2π

∫ 1

−1

sinh(
√
κ2
1 + κ2

0 + 2κ0κ1z)√
κ2
1 + κ2

0 + 2κ0κ1z
zdz. (A16)

Now, this last integral can be solved analytically as

2π

∫ 1

−1

sinh(
√
κ2
1 + κ2

0 + 2κ0κ1z)√
κ2
1 + κ2

0 + 2κ0κ1z
zdz

=
2π

κ2
0κ

2
1

[
(κ0κ1z + 1) cosh(

√
κ0 + κ2

1 + 2κ0κ1z)

−
√
κ0 + κ2

1 + 2κ0κ1z sinh(
√

κ0 + κ2
1 + 2κ0κ1z)

]z=1

z=−1

=
2π

κ2
0κ

2
1

(
(κ0κ1 + 1) cosh(κ0 + κ1) − (κ0 + κ1) sinh(κ0 + κ1)

− (κ0κ1 − 1) cosh(|κ1 − κ0|) + |κ1 − κ0| sinh(|κ1 − κ0|)
)
, (A17)

which lead to the fact that the expected length of the vector x is

κ0κ1

2κ0κ1 sinh(κ0) sinh(κ1)

(
(κ0κ1 + 1) cosh(κ0 + κ1) − (κ0 + κ1) sinh(κ0 + κ1)

−(κ0κ1 − 1) cosh(|κ1 − κ0|) + |κ1 − κ0| sinh(|κ1 − κ0|)
)

≍ 1 − κ0 + κ1

κ0κ1
, (A18)
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where we use sinh(κ) ≍ cosh(κ) ≍ eκ/2 for κ large enough. Comparing with the equiv-
alent vector length ρ(·), we obtain that the equivalent dispersion parameter κ∗ for the
superposition of two Fisher distribution is given by

κ∗ =
κ0κ1

κ0 + κ1
, (A19)

as we wanted to prove.407

Notice that under the approximation that the dispersion coefficient S can be ap-
proximated as

S2 ≈ 2

(
180

π

)2
1

κ
, (A20)

we can then derive that the dispersion S2
∗ associated to κ∗ can be approximated as

S2
∗ ≈ 2

(
180

π

)2
1

κ
= 2

(
180

π

)2
κ1 + κ2

κ1κ2
≈ S2

1 + S2
2 , (A21)

where S1 and S2 are the dispersion associated to Fisher distribution with precision pa-408

rameters κ1 and κ2, respectively.409

A3 Ensemble of Fisher and Uniform Distributions410

We will now consider how to approximate a superposition of Fisher and uniform411

distribution. This approximation is going to be much more limited than the other ones,412

due to the fact than a superposition of Fisher and uniform does not have a shape sim-413

ilar to a Fisher distribution. However, when many samples are consider and we are com-414

puting the mean of samples coming form this ensemble, this approximation is quite ac-415

curate.416

Proposition 3 (Superposition of Fisher with Uniform distributions). Consider the model
where we sample a total of n samples xi, i = 1, 2, . . . , n, from a Fisher distribution with
some probability 1 − poutlier and with uniform distribution with probability poutlier:

xi ∼ Fisher(µ, κ) with probability 1 − poutlier and (A22)

xi ∼ Unif otherwise, for i = 1, 2, . . . , n,

Then the Fisher mean µ̂ of the n samples can be approximated with a Fisher distribu-417

tion with mean µ and precision parameter equal to n(1 − poutlier)κρ(κ).418

Proof. In order to compute the dispersion parameter, we need to compute the approx-
imated vector length resulting from adding. Given a total number of n0 ≤ n points that
are not outliers, a similar calculation as in the derivation of Equation (A8) leads to

E
[
R2|n0

]
=

1

n2

(
n + n0(n0 − 1)ρ(κ)2

)
. (A23)

Now, using that n0 has Binomial distribution with success probability 1−poutlier and
a total of N samples, taking expectation over n0 and noticing that E [n0] = n(1−poutlier)
and E

[
n2
0

]
= npoutlier(1 − poutlier) + n2(1 − poutlier)

2, we obtain

E
[
R2
]

=
1

n
+

n− 1

n
(1 − poutlier)

2ρ(κ)2. (A24)

This leads to E [R] = (1 − poutlier)ρ(κ) for n ≥ 2.419
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A4 General Fisherian approximation of the pole mean420

These last three results allow us to approximate a hierarchical sample of Fisher dis-
tributions with a very good level of accuracy. In order to compute the final dispersion
of the pole, notice that each estimated VPG µ̂∗

i in directional space can be approximated
as a sample from a Fisher distribution with dispersion parameter

niκi(1 − poutlier)ρni
(κi), (A25)

where ρn(κ) = ρ(κ) for n ≥ 2 and ρ1(κ) = 1 (Propositions 1 and 3). We have intro-
duced this extra notation in order to include both the ni = 1 and ni ≥ 2 cases in the
same expression. Now, since the Fisher mean of the VGPs is computed in directional space,
we need to include the latitude correction factor T (λ) when we convert these to VGP
space (Cox, 1970). This then implies that we can approximate

µ̂i ∼ Fisher

(
µi, niκw(1 − poutlier)ρni(κw)T (λ)

)
. (A26)

Finally, since µi (the mean direction for µ̂i) is also Fisher distributed with mean µ0 and
precision parameter κb, using Proposition 2 we have that the final pole µ̂0 will have dis-
persion parameter equal to

κb

1 + κw

κb(1−poutlier)niρni
(κw)T (λ)

(A27)

Now, if ni = n0 are all the same, we can average all the µ̂i to came up with the final
pole dispersion parameter

µ̂0 ∼ Fisher

(
µ0,

NκbρN (κb)

1 + κb

κwni(1−poutlier)ρn0
(κw)T (λ)

)
. (A28)

Assuming ρ(κi) ≈ 1, we then obtain that the final estimate µ̂0 has a concentration pa-
rameter κ∗ approximately equal to

Nκb

1 + κb

κw(1−poutlier)n0T (λ)

,

which is the same expression as in Equation 12. In order to derive Equation (13), we rely421

again in the approximation of the dispersion given in Equation (A20).422

As we mentioned before, Proposition 3 will fail when the number of samples per423

site n0 is small and the number of outliers poutlier is large. For those cases, a better ap-424

proximation is given by Equation (14). This arises from computing the expected vec-425

tor length without outliers and then multiply the expected vector length by the factor426

(1−poutlier), which gives an approximated vector length for this case. We then find the427

corresponding κ for such resultant length by computationally inverting the function ρ(κ).428
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