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Abstract

Rainfall frequency analyses are presented for the Baltimore Metropolitan region based on a 22-year, high-resolution radar
rainfall data set.

Analyses focus on spatial heterogeneities and time trends in sub-daily rainfall extremes.

The rainfall data set covers a domain of 4900 $kmˆ2$, has a spatial resolution of approximately 1 km and a time resolution of
15 minutes.

The data set combines reflectivity-based rainfall fields during the period from 2000 - 2015 and operational polarimetric rainfall
fields for the period from 2012 - 2021.

Analyses of rainfall fields during the 2012 - 2015 overlap period provide grounding for assessing time trends in rainfall frequency.

There are pronounced spatial gradients in short-duration rainfall extremes over the study region, with peak values of rainfall
between Baltimore City and Chesapeake Bay.

Rainfall frequency analyses using both peaks-over-threshold and annual peak methods point to increasing trends in short-
duration rainfall extremes over the period from 2000 to 2021.

Intercomparisons of sub-daily rainfall extremes with daily extremes show significant differences.

Less than 50$\% $ of annual maximum hourly values occur on the same day as the daily maximum and there is relatively
weak correlation between magnitudes when the hourly and daily maximum overlap. Changing measurement properties are a
key challenge for application of radar rainfall data sets to detection of time trends.

Mean field bias correction of radar rainfall fields using rain gauge observations is both an important component of the 22-year

rainfall data set and a useful tool for addressing problems associated with changing radar measurement properties.
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Key Points:11
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Abstract18

Rainfall frequency analyses are presented for the Baltimore Metropolitan region based19

on a 22-year, high-resolution radar rainfall data set. Analyses focus on spatial hetero-20

geneities and time trends in sub-daily rainfall extremes. The rainfall data set covers a21

domain of 4900 km2, has a spatial resolution of approximately 1 km and a time reso-22

lution of 15 minutes. The data set combines reflectivity-based rainfall fields during the23

period from 2000 - 2015 and operational polarimetric rainfall fields for the period from24

2012 - 2021. Analyses of rainfall fields during the 2012 - 2015 overlap period provide ground-25

ing for assessing time trends in rainfall frequency. There are pronounced spatial gradi-26

ents in short-duration rainfall extremes over the study region, with peak values of rain-27

fall between Baltimore City and Chesapeake Bay. Rainfall frequency analyses using both28

peaks-over-threshold and annual peak methods point to increasing trends in short-duration29

rainfall extremes over the period from 2000 to 2021. Intercomparisons of sub-daily rain-30

fall extremes with daily extremes show significant differences. Less than 50% of annual31

maximum hourly values occur on the same day as the daily maximum and there is rel-32

atively weak correlation between magnitudes when the hourly and daily maximum over-33

lap. Changing measurement properties are a key challenge for application of radar rain-34

fall data sets to detection of time trends. Mean field bias correction of radar rainfall fields35

using rain gauge observations is both an important component of the 22-year rainfall data36

set and a useful tool for addressing problems associated with changing radar measure-37

ment properties.38

1 Introduction39

A cloudburst thunderstorm on 27 May 2018 produced envelope curve flood peaks40

in Tiber Run and devastated Ellicott City, Maryland, with rainfall accumulations that41

exceeded 1000 year return interval values at 3-hour time scale (Bonin et al. (2016)). The42

May 2018 storm was the second 1000-year rainfall event in less than two years; the 30-43

31 July 2016 storm produced comparable rainfall accumulations in Ellicott City at 1 -44

3 hour time scale and flood peaks in Tiber Run that approached envelope curve mag-45

nitudes. These and other recent “cloudbursts” in the Mid-Atlantic have sharpened ques-46

tions concerning rainfall extremes. Are short-duration rainfall extremes increasing in fre-47

quency? How do we compute rainfall frequency in a changing environment? Do rainfall48

extremes in Ellicott City - south and west of Baltimore - differ from rainfall extremes49

north and east of the urban region?50

In this study, we build on a high-resolution radar rainfall data set developed for51

the Baltimore metropolitan region using the Hydro-NEXRAD algorithms (J. A. Smith52

et al. (2012); see also Krajewski et al. (2010)) with volume scan reflectivity data from53

the Sterling, Virginia WSR-88D (Weather Surveillance Radar - 1988 Doppler) radar cov-54

ering the period 2000 - 2011. We expanded the rainfall data set by constructing rain-55

fall fields on the same domain and grid using the operational Digital Precipitation Rate56

(DPR) product, which is based on polarimetric rainfall algorithms (Giangrande and Ryzhkov57

(2008), A. V. Ryzhkov and Zrnic (2019) and A. Ryzhkov et al. (2022)), following the po-58

larimetric upgrade of the WSR-88D network in 2012. The DPR-based data set extends59

from 2012 to 2021. We also extended the Hydro-NEXRAD data set from 2012 - 2015,60

providing four years of overlap between the Hydro-NEXRAD and DPR data sets. The61

overlap period provides the observational base for comparing the two rainfall products.62

Rainfall frequency analyses for short time periods have been severely limited by63

the sparsity of rain gauges with sub-daily measurements. High-resolution rainfall mea-64

surements from radar sample the time and space scales that rain gauge networks can not65

represent. They provide an important resource for rainfall frequency analyses that ad-66

dress sub-daily time scales, spatial heterogeneity of rainfall and changing rainfall extremes67

in a warming climate.68
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Application of radar for climatological analyses has increased over the past decade69

(see Saltikoff et al. (2019) for a recent review). Development of long-term data sets is70

a first step in creating the machinery for rainfall frequency analysis based on radar rain-71

fall fields. Rainfall fields developed for operational weather forecasting (Nelson et al. (2016),72

Goudenhoofdt and Delobbe (2016), Kreklow et al. (2020), Panziera et al. (2018), and Yu73

et al. (2020)) provide a natural path for data-driven analyses. The “Stage IV” rainfall74

data set maintained by the National Weather Service has an hourly time scale and a spa-75

tial resolution of approximately 4 km over the continental US, with a record length that76

exceeds 20 years (2002 - 2022; Nelson et al. (2016)). Reanalysis data sets have been de-77

veloped from archived radar fields and algorithms that can be tailored to climatologi-78

cal applications (Overeem, Holleman, and Buishand (2009), Nelson et al. (2010), Krajewski79

et al. (2013), J. A. Smith et al. (2012), Wright et al. (2014), Kirstetter et al. (2015), Boudevillain80

et al. (2016), J. Zhang et al. (2016), and Lengfeld et al. (2020)). Record lengths remain81

short, however, for many applications concerning rainfall and flood extremes - a central82

theme of methodological development for radar hydroclimatology remains “trading space83

for time” (e.g., Wright et al. (2020) and Andersen et al. (2022)).84

Changing measurement techniques over time are an unavoidable feature of long radar85

rainfall data sets, especially those based on operational weather forecasting products,86

like the Stage IV and DPR rainfall fields. The polarimetric upgrade of the US radar net-87

work in 2012 provides an important example. In addition to changes in the basic radar88

measurements, operational algorithms for rainfall estimation have changed over time, as89

has the implementation through specification of algorithm parameters (A. Ryzhkov et90

al. (2022)). Addressing changes over time in hardware and algorithms used for radar rain-91

fall estimation is an important challenge for climatological application of radar rainfall92

data sets, as discussed below in Section 3.93

Over the past decade evidence for increasing short-duration rainfall extremes in a94

warming climate has mounted (Westra et al. (2014), Prein et al. (2016), and Fowler et95

al. (2021)). The availability of radar rainfall data sets covering the past two decades has96

expanded the potential for assessing climate change impacts on rainfall extremes (Saltikoff97

et al. (2019)). Direct assessments of changing rainfall extremes based on radar rainfall98

data sets provide important tools for hydroclimatological analyses.99

The most direct approach to rainfall frequency analysis using gridded radar data100

sets is to treat observations from each grid as though they were point observations from101

a rain gauge. The approach underlies studies using annual maximum and peaks-over-102

threshold analyses for “long” radar rainfall records (Allen and DeGaetano (2005), Overeem,103

Buishand, and Holleman (2009), Eldardiry et al. (2015), Ghebreyesus and Sharif (2021),104

Marra et al. (2017), McGraw et al. (2019), Molter et al. (2021) and de Valk and Overeem105

(2022)). A compelling rationale for these studies is that sub-daily rain gauge networks106

with long records are sparse in most settings. In regions with large spatial gradients in107

rainfall extremes, radar provides the potential for resolving spatial heterogeneities that108

are difficult to address solely through gauge-based analyses (e.g. Barton et al. (2020)).109

There are striking contrasts between radar and rain gauge networks in the ability110

to detect major rainfall events (e.g., Molter et al. (2021), Lengfeld et al. (2020) and J. A. Smith111

et al. (2023)). In many settings and for many storms, rain gauge networks simply do not112

sample extremes, especially for convective rainfall. The ability to accurately estimate ex-113

treme rainfall from radar fields, however, continues to present challenges (Schleiss et al.114

(2020), Peleg et al. (2018), Bárdossy and Pegram (2017), and Eldardiry et al. (2017)).115

Polarimetric measurements have the potential for marked improvements in rainfall es-116

timates for climatological applications (A. Ryzhkov et al. (2022), B.-C. Seo et al. (2020),117

Chaney et al. (2022) and J. A. Smith et al. (2023)).118

Procedures that combine radar and rain gauge observations are central to devel-119

opment of climatological analyses based on radar observations. They fall into two broad120
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categories - mean field bias adjustment (J. A. Smith and Krajewski (1991), D. J. Seo et121

al. (1999) and Borga et al. (2002); for recent developments, see Armon et al. (2020), B.-122

C. Seo et al. (2013) and Imhoff et al. (2020)) and procedures that provide spatially dis-123

tributed adjustments of radar rainfall fields based on rain gauge observations (Krajewski124

(1987) and Creutin et al. (1988); for recent developments, see Goudenhoofdt and Delobbe125

(2009), Delrieu et al. (2014), Sideris et al. (2014), Ochoa-Rodriguez et al. (2019), Barton126

et al. (2020) and G. Zhang et al. (2021)). Mean field bias corrections are grounded in127

ratios of gauge observations to radar observations at rain gauge locations. Methods that128

provide local corrections exploit correlation structure of rainfall fields and error struc-129

ture of radar rainfall fields. We use mean field bias correction as a tool for addressing130

changing measurement properties over the 22 year rainfall record (J. A. Smith et al. (2012)).131

Gauge-based mean field bias is applied as a step towards mitigating changes in measure-132

ments and algorithms.133

In Section 2, we introduce data and methods, focusing on development of the 2012134

- 2021 radar rainfall data set and the extreme value theory framework for rainfall fre-135

quency analysis. Climatological analyses based on the 2000 - 2021 radar rainfall data set136

are presented in Section 3. In Section 4, we discuss methodological issues that arise in137

assessing temporal nonstationarities and spatial heterogeneities of rainfall extremes us-138

ing long radar rainfall data sets. We summarize the principal conclusions of our anal-139

yses in Section 5.140

2 Data and Methods141

Extreme, short-duration rainfall on 14 July 2015 produced record flooding in north142

Baltimore and Baltimore County (Figure 1). Peak storm total accumulations approach-143

ing 100 mm occurred over little more than an hour. Bias-corrected rainfall fields based144

on the Hydro-NEXRAD algorithms produced rainfall totals that closely match rainfall145

from the bias-corrected DPR product (Figure 1).146

Rainfall fields for our study region, which is illustrated in Figure 1, cover an area147

of approximately 4900 km2, with a 70 by 70 grid. Grids are 0.01 degree by 0.01 degree148

in size, with an area of approximately 1 km2. For the period from 2000 - 2011, we use149

the bias-corrected radar rainfall fields described in J. A. Smith et al. (2012) (see also Krajewski150

et al. (2007)). For the period from 2012 to 2021, we utilize the operational Digital Pre-151

cipitation Rate product developed by the National Weather Service based on polarimet-152

ric algorithms (Giangrande and Ryzhkov (2008) and A. Ryzhkov et al. (2022)). Like the153

original Hydro-NEXRAD data set for the period from 2000 - 2011, we restrict rainfall154

fields for the 2012 - 2021 to the months of April through September, which covers the155

period of peak convective rainfall. For the period from 2012 - 2015, we constructed Hydro-156

NEXRAD rainfall fields, using methods presented in J. A. Smith et al. (2012).157

Bias correction for the DPR rainfall fields, and for the 2012 - 2015 Hydro-NEXRAD158

fields also follow procedures described in J. A. Smith et al. (2012). A multiplicative, mean-159

field bias is computed as the ratio of daily rain gauge observations to daily radar rain-160

fall observations at gauge locations. We define a day as the 24 hour period ending at 12161

UTC (7AM Eastern Standard Time), based on the climatology of convective rainfall, which162

exhibits a late afternoon - nighttime maximum (Ntelekos et al. (2007)).163

Rain gauge observations are from networks maintained by Baltimore County and164

Baltimore City. Locations of rain gauges are illustrated in Figure 1. Rain gauge qual-165

ity control follows procedures used for the earlier data set (J. A. Smith et al. (2012)),166

including outlier checks and correlation analyses among gauges.167

Bias correction is an important component of rainfall estimation for the DPR rain-168

fall fields, as was the case for the Hydro-NEXRAD rainfall fields (J. A. Smith et al. (2012)).169

In Figure 2, we illustrate multiplicative bias for a significant rainfall and flood event on170
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27 September 2018. The linear relationship between gauge and radar rainfall totals, il-171

lustrated in Figure 2, is a basic assumption underlying mean field bias correction. The172

bias computed for this case is 1.6.173

For significant rain events, bias values are positively skewed with values larger than174

1.5 occurring each year. We take significant rain events to occur on days with at least175

30 positive gauges and a mean gauge rainfall greater than 20 mm for the positive gauges.176

Systematic monthly variation is found in bias values for significant rain events, with me-177

dian values peaking around 1.5 in April and September (Table 1). During July and Au-178

gust, median values of bias are close to 1 and the variability of bias values, as represented179

by the interquartile range, is smaller than in other months. Bias values in May exhibit180

the largest variability over the 6 months.181

The distribution of hourly rainfall rates for bias-corrected DPR and Hydro-NEXRAD182

for the overlap period from 2012 - 2015 are similar, especially in the upper tail (Figure183

3). There are slightly larger median and .75 quantile values for DPR, 36.6 mm h−1 ver-184

sus 34.2 mm h−1 and 46.1 mm h−1 versus 44.7 mm h−1. The .25 quantile values are185

slightly larger for Hydro-NEXRAD, 28.6 mm h−1 versus 26.8 mm h−1. The 0.9 quan-186

tiles are virtually identical, 56.7 mm h−1 for DPR versus 56.2 mm h−1 for Hydro-NEXRAD;187

for 0.99 quantiles the order switches slightly with DPR at 97 mm h−1 and Hydro-NEXRAD188

at 98 mm h−1.189

Range effects are an important element of the error structure of radar rainfall es-190

timates, especially when employing observations over the full extent of the radar obser-191

vations. For regional analyses, range effects are diminished, but can still contribute to192

rainfall estimation. We assess range effects using a simple range correction algorithm,193

which is based on the range-dependent frequency of 15-minute rainfall rates exceeding194

25 mm h−1. Additional discussion of range effects and spatial gradients of rainfall ex-195

tremes is presented in Section 3.196

Lightning observations from the National Lightning Detection Network (Cummins197

and Murphy (2009) and Orville and Huffines (2001)) are used to examine the climatol-198

ogy of thunderstorms in the Baltimore study region. Previous analyses of lightning cli-199

matology over the mid-Atlantic region, focusing on flash flooding in Baltimore, are pre-200

sented in Ntelekos et al. (2007).201

Rainfall frequency analyses are based on peaks-over-threshold and annual maxi-202

mum time series at each of the 4900 girds. The modeling frameworks are introduced be-203

low.204

For the peaks-over-threshold analyses, we adopt a frequency, 4 events per year on205

average, and determine the threshold, y0 (mm h−1), for each grid which yields the largest206

88 values of rainfall for a specified duration (4 events, on average, over a 22 year period).207

For each grid, Mi denotes the number of events during year i exceeding threshold y0 and208

the magnitudes are denoted Yij , j = 1, ... , Mi, if Mi is greater than 0. We assume Mi209

has a Poisson distribution with parameter λ, which by construction is 4 events per year:210

P{Mi = k} =
exp(−λ) λk

k!
(1)

The distribution of exceedances of y0 is assumed to have an exponential distribu-211

tion:212

G(y) = 1 − exp(−{ y
σ
}) (2)

The mean and standard deviation are both σ.213
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The annual maximum exceedance for year i is214

X̃i = max {Y1, ..., YMi} (3)

if there are one or more events and 0 otherwise. The cumulative distribution function,215

P{X̃i ≤ x} is 1 minus the probability that no events exceed x, i.e., P{
∑Mi

j=1 1(Yij >216

x) = 0} where 1(Yij > x) is 1 if Yij > x and 0 otherwise. The count of events greater217

than x has a Poisson distribution with rate of occurrence that is the base rate of occur-218

rence, 4 events per year, times the probability that Yij is greater than x, which is 1 −219

G(x). It follows that, for exceeedances of y0, the quantile function is given by:220

Q(p) = y0 + σ ln(λ) − σ ln(−ln(p)) (4)

the quantile function of a Gumbel distribution with location µ = y0 + σ ln(λ) and221

scale parameter σ. For the T-year rainfall accumulation, p = 1 − 1
T222

The quantile function for the time-varying form of the POT model takes the form:223

Qi(p) = µi + σi(− ln(−ln(p))) (5)

where the time-varying location parameter is:224

µi = y0 + σi ln(λi) (6)

Qi(p) is the quantile function for year i and µi is the location parameter for year i.225

The annual maximum series for each grid will be denoted X1, ..., X22; it differs from226

the POT series only for years in which the annual maximum is less than the threshold227

y0 used to extract peaks over threshold. We carry out extreme value analyses of the an-228

nual maximum series based on the Generalized Extreme Value (GEV) distribution; its229

quantile function is given by:230

Q(p ; µ, σ, ξ) = µ − σ { (1 − [−ln(p)]−ξ )

ξ
} , ξ ̸= 0 (7)

= µ − σ ln{−ln(p)} , ξ = 0 (8)

In this formulation, there are three parameters, the location parameter µ, the scale pa-231

rameter σ and the shape parameter ξ. The Gumbel distribution is the special case for232

ξ = 0. The shape parameter distinguishes fundamentally different types of frequency233

distributions. For positive values of the shape parameter, the distribution is unbounded234

and “thick-tailed”. Negative values of the shape parameter are associated with bounded235

distributions; the upper bound is given by µ − σ
ξ236

For time-varying models based on annual maximum analyses, we assume that the237

location parameter is a linear function of time :238

µi = µ0 + µs × Zi (9)

where the covariates Z1, ..., Z22 are time in years; in this formulation µs specifies the an-239

nual rate of change of the location parameter. For time-varying analyses, we focus on240

Gumbel models with the assumption that the shape parameter is 0.241

In assessing time trends, peaks-over-threshold analyses provide a different view of242

nonstationarities than annual maximum analyses. Changing frequency of events, λ, and243

changing magnitudes of events σ are directly assessed with peaks-over-threshold anal-244

yses. For the annual maximum analyses, GEV methods focus on time changes in the lo-245

cation parameter.246
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3 Climatological Analyses247

How do rainfall extremes vary spatially over the Baltimore study region? The mean248

number of days per year with hourly rainfall accumulations greater than 25 mm has a249

pronounced maximum along the eastern margin of the study region, extending in an arc250

southeast of Baltimore to the northeast of the City along the Chesapeake Bay (Figure251

4). The largest frequency is located between Baltimore City and Chesapeake Bay.252

The spatial heterogeneities of hourly rainfall extremes, as illustrated in Figure 4253

closely match the climatology of thunderstorm occurrence, as represented by the mean254

annual lightning flash density (Figure 5). Physical mechanisms for elevated thunderstorm255

frequency in the region are linked to interactions of the “Bay Breeze” and “ Urban Heat256

Island” circulations. These interactions create preferential zones of surface convergence,257

supporting the initiation and maintenance of convective precipitation (Ryu et al. (2016)).258

Spatial heterogeneities of thunderstorm occurrence exhibit a pronounced seasonal259

cycle (Figure 6). July and August not only have the highest frequency of thunderstorms,260

but also the largest spatial gradients in thunderstorm frequency. Sharp gradients in thun-261

derstorm occurrence during July and August point to the role of land-atmosphere in-262

teractions in determining rainfall climatology. Spatial gradients in rainfall extremes over263

the Baltimore region (Figure 4) are closely tied to the seasonally varying climatology of264

thunderstorms.265

The distribution of extreme rainfall rates varies markedly over the seasonal cycle266

from April through September. In Figure 7, we show monthly boxplots of annual max-267

imum rainfall, given that the annual maximum is greater than 25 mm. For each month,268

the boxplot summarizes the distribution of annual maxima that occur in that month,269

based on observations from all 4900 grids. The conditional distributions increase system-270

atically from April through August and then decrease slightly in September. August does271

not dominate the total number of annual maximum observations, but if an annual max-272

imum observation occurs in August it has a more extreme upper tail than for other months.273

Range correction of radar rainfall estimates (Section 2) does not qualitatively change274

the conclusions concerning spatial heterogeneities of extreme rainfall (Figure 4 bottom).275

Maximum rainfall remains concentrated along the western margin of the Chesapeake Bay,276

extending from southeast to northeast of the Baltimore metropolitan region.277

How much information on rainfall extremes is contained in the 4900 annual max-278

imum rainfall time series over the domain? Or, in a different formulation, how does cor-279

relation in rainfall extremes decrease with distance between grids? The spatial correla-280

tion function for annual maximum, 1 hour rainfall, was computed based on the inner 30281

by 30 domain of grids. From these grids we computed the correlation from grid to grid282

in an east-west and in a north-south direction (Figure 8). For both, the decorrelation283

distance is less than 15 km. There is somewhat higher correlation in east-west direction284

than north-south. Both storm motion and east-west organization of convection may con-285

tribute to this feature (Ntelekos et al. (2008) and B. K. Smith et al. (2016)).286

3.1 Short-Duration Rainfall Extremes - “Point” Analyses287

In this section we examine rainfall frequency for “points” in the study region. By288

point, we mean a single spatial grid cell. Analyses emulate rain gauge analyses, with each289

of the 4900 grid cells treated as a separate rain gauge. We begin with peaks-over-threshold290

analyses under the assumption of time stationarity.291

The Gumbel distribution for annual maximum values is determined by the thresh-292

old z0, the mean rate of occurrence λ, which is 4 per year for the stationary model, and293

the mean exceedance σ. For hourly time scale, these parameters exhibit striking spatial294

heterogeneity (Figure 9). Peak values of the threshold parameter extend from southwest295
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to northeast along the western margin of Chesapeake Bay through the Baltimore metropoli-296

tan region. The mean exceedance σ has a core of maximum values between Baltimore297

City and Chesapeake Bay. These spatial features mesh with rainfall analyses (Figure 4)298

and analyses of spatial heterogeneities in thunderstorm frequency (Figure 5). The 100-299

year rainfall at hourly time scale, based on the stationary peaks-over-threshold analy-300

ses, reflects the spatial variability of threshold and mean exceedance (Figure 9).301

The east-west gradient in 100 year, hourly rainfall through Baltimore at 39.25 de-302

grees latitude exceeds 12 mm (from more than 82 mm to less than 70 mm) over a 20 km303

distance (Figure 9). The NOAA precipitation frequency atlas values range from 78 mm304

to 77 mm over a 50 km distance through the Baltimore region at 39.25 degrees. The ab-305

sence of gradients in the NOAA precipitation frequency results is not surprising; there306

are very few rain gauges with sub-daily accumulations. The presence of large gradients307

in radar analyses, which is consistent with the climatology of thunderstorms, points to308

the need for greater attention to spatial structure of rainfall extremes.309

Time trends in rainfall extremes over the 22 year period are examined through peaks-310

over-threshold analyses in which the mean annual count and mean exceedance are treated311

as time-varying quantities. We estimate each using the Sen’s slope. The distribution of312

slope for the rate of occurrence is strongly weighted toward increasing trends (Figure 10);313

75% of the grids have positive slopes. For the mean exceedance, 50% of grids have pos-314

itive slopes. The distribution of slopes, however, is skewed to large positive values con-315

centrated around Baltimore City and Chesapeake Bay (Figure 10).316

Using the Sen slope for the rate of occurrence and mean exceedance, we constructed317

Gumbel model parameters (Equations 5 and 6) for the year 2000 and for the year 2021.318

From these parameters we computed quantiles of hourly rainfall at the beginning and319

end of the 22 year time period. In Figure 11, we show the 2021 distribution of 100-year,320

1 hour rainfall rates for the 4900 grids (top) and the ratio of the 2021 100-year return321

interval value to the 2000 value. The median value of 100-year ratio is 1.09 and 88 % of322

grids have values larger than 1 (Figure 12).323

Over Baltimore City, the 100-year hourly rain increases from 62 mm to 74 mm over324

the 22-year period. The change in 100-year rainfall over a 22-year time period is com-325

parable to the “spatial” change in 100-year rainfall over a 20 km east-west transect, as326

detailed above.327

Analyses of short-duration rainfall extremes based on the annual maximum formu-328

lation (Equations 7 - 10) provide similar conclusions and additional insights concerning329

time trends over the 22-year period. Parameters of a Gumbel distribution in which the330

location is a linear function of year were estimated for each of the 4900 grids. In Fig-331

ure 13, we show the distribution of 100-year, 1 hour rainfall rates for the 4900 grids (top)332

and the ratio of the 2021 100-year return interval value to the 2000 value, based on the333

Gumbel model with linear time trends in the location parameter. The median value of334

the ratio between 2021 and 2000 rainfall magnitudes is 1.09 and 87 % of grids have val-335

ues larger than 1. Extreme value analyses based on annual maximum observations point336

to increasing short-duration rainfall extremes.337

For the annual maximum series, we also examined rainfall frequency based on a338

GEV model in which the shape parameter is not constrained to be 0, as is the case for339

the Gumbel distribution. For the stationary model, GEV analyses provide non-physical340

values of the shape parameter for some grids. More than 250 grids have estimated shape341

values larger than 0.5, implying a distribution with infinite variance. For 25% of the grids,342

the shape parameter is larger than 0.25. Large values of the shape parameter are prin-343

cipally due to annual maximum series in which the record rainfall is much larger than344

the other 21 values. Several storm events are responsible for large record rainfall values345

and non-physical shape parameters. Record length for radar rainfall data sets, includ-346
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ing the Baltimore data set, does not support application of GEV models in which the347

shape parameter is estimated.348

3.2 Daily versus Short-Duration Rainfall Extremes349

Are the key features of sub-daily rainfall extremes represented through analyses350

of daily annual maxima? In most settings, long sub-daily records are sparse. Consequently,351

there is considerable attention given to daily analyses, with inferences that results de-352

veloped from daily analyses apply to sub-daily extremes. If, for example, the 100-year353

daily rainfall increases by 10%, can we assume that hourly rainfall increases by the same354

amount?355

For each of the 4900 grids, we examined the relationships between daily and sub-356

daily rainfall extremes based on annual maximum records. A basic question is whether357

the annual maximum hourly rainfall values are embedded in the annual maximum daily358

rainfall. Does the annual maximum hourly rainfall occur on the day of the annual max-359

imum daily rainfall? At the hourly time scale, fewer than 50 per cent of annual maxi-360

mum hourly observations occur on the same day as the daily maximum.361

There is spatial structure to the relationship between the joint occurrence of daily362

and hourly annual maxima (Figure 14). The highest frequency is along Chesapeake Bay,363

a region in which hourly extremes are prominent in August (Figures 6 and 7). Hourly364

and daily extremes are more closely linked in the region in which convective rainfall is365

most prominent.366

The joint distributions of hourly and daily annual maxima for years in which they367

occur on the same day are flat for a broad range of daily rainfall accumulation (Figure368

15). Even for years in which the maximum hourly rainfall occurs on the same day as the369

daily max, the two are not strongly related.370

3.3 Short-Duration Rainfall Extremes - Spatial Analyses371

An advantage of radar for rainfall frequency analyses is the ability to directly ex-372

amine spatially-averaged rainfall extremes. In this section, we present Gumbel analy-373

ses of annual maximum rainfall time series constructed from spatial averaging of radar374

rainfall fields. In particular, we examine rainfall averaged over 3 by 3 grids - approxi-375

mately 9 km2 - 5 by 5 grids approximately 25 km2 and 10 by 10 grids - approximately376

100 km2.377

Analyses of time trends largely follow the “point” results (1 km2) from the previ-378

ous section. In Figure 16, we show 100-year, 1 hour rainfall over 100 km2 area for 2021379

(top) and the ratio of 2021 values to 2000 values (bottom). The distribution of 100-year380

rainfall values in 2021 is asymmetric, with longer tails on the low end of the distribu-381

tion.382

The median values of 100 year, 1 hour rainfall in 2021 decreases from 78 mm at383

1 km2 scale to 58 mm at 100 km2 scale (Table 2). For all spatial scales, the percentage384

of grids with increasing time trends exceeds 87%. The evidence for nonstationarity in-385

creases with averaging area; at 100 km2 scale, 91% of grids have slopes greater than 1.386

4 Summary and Conclusions387

We present rainfall frequency analyses from a 22-year radar rainfall data set cov-388

ering a 4900 km2 domain around the Baltimore metropolitan region. Analyses focus on389

spatial gradients and time trends in short-duration rainfall extremes. The principal con-390

clusions are summarized below.391
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• There are pronounced spatial gradients in short-duration rainfall extremes over392

the study region, with peak values of rainfall between Baltimore City and Chesa-393

peake Bay. Spatial gradients in short-duration extremes based on radar rainfall394

analyses closely match the climatology of thunderstorms, as reflected in climato-395

logical analyses of lightning flash density based on NLDN observations. Spatial396

gradients in rainfall extremes and lighting climatology are consistent with phys-397

ical mechanisms tied to interactions between the Urban Heat Island circulation398

and Bay Breeze circulation, as detailed in Ryu et al. (2016). Spatial gradients in399

short-duration rainfall extremes are not reflected in NOAA Atlas 14 products.400

• Analyses of short-duration rainfall extremes through both peaks-over-threshold401

and annual analyses using the 22-year rainfall data set point to increasing trends.402

Peaks-over-threshold analyses point to spatial contrasts in changes in rate of oc-403

currence and magnitudes of threshold exceedance. Analyses of time trends based404

on radar rainfall data sets are fundamentally limited by record length. Changes405

in magnitudes of threshold exceedance are particularly important for changing ex-406

tremes. Distinguishing climate variability at decadal time scales from climate change407

(e.g., Kunkel et al. (2013) and Martel et al. (2018)) is an important challenge for408

analyses based on long radar rainfall data sets.409

• Analyses of time trends for spatially-averaged rainfall show results that are sim-410

ilar to the “point” analyses based on 1 km grids. An important advantage of radar411

rainfall fields for rainfall frequency analysis is the ability to directly examine fre-412

quency for spatially-averaged rainfall.413

• Intercomparisons of sub-daily rainfall extremes with daily extremes show signif-414

icant differences. Less than 50 % of annual maximum hourly values occur on the415

same day as the daily max. In years when the hourly maximum occurs on the same416

day as the daily maximum, there is relatively weak correlation between the mag-417

nitudes. The assumption that sub-daily rainfall extremes are closely linked to daily418

extremes warrants additional consideration, especially for development of new rain-419

fall frequency approaches that account for the impacts of climate change.420

• Rainfall frequency analyses based on the GEV distribution suffer from “non-physical”421

values of the shape parameter. The limited sample size of radar rainfall data sets422

does not support application of the GEV with shape as a free parameter.423

• Changing measurement environments are a key challenge for application of radar424

rainfall data sets to detection of time trends. A significant change in the Balti-425

more data set is the transition to polarimetric estimates in 2012. Intercomparisons426

of rainfall fields based on reflectivity algorithms (Hydro-NEXRAD) and polari-427

metric algorithms (DPR) during the overlap period from 2012 - 2015 point to a428

generally good match.429

• Mean field bias correction of radar rainfall fields using rain gauge observations is430

both an important component of the 22-year rainfall data set and a tool for mit-431

igating the effects of changing radar measurement properties. For the polarimet-432

ric era, there is pronounced variation in mean field bias for major rainfall events,433

with values larger than 1.5 occurring multiple times every year. There is pronounced434

seasonal variation in bias values, with the largest values during April and Septem-435

ber; values during July and August are more closely clustered around 1.0. Mean436

field bias correction provides a useful tool for dealing with changing measurement437

technologies and algorithms.438

• Range correction is an important component of climatological analyses of radar439

rainfall fields, especially for assessing spatial gradients over the full domain cov-440

ered by the radar. Regional analyses, like those presented in this study for the Bal-441

timore study area, diminish but do not eliminate the problem. Range correction442

for the Baltimore region does not qualitatively alter conclusions concerning spa-443

tial gradients in short-duration rainfall extremes. Addition analyses of range cor-444

rection algorithms are needed for assessing spatial gradients of short-duration rain-445

fall extremes using radar rainfall data sets.446
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Table 1. Quantiles of bias values by month; top row is .25 quantile, second row is .50 quantile

(median) and third row is the .75 quantile. Results are for days with more than 30 positive pairs

and mean gauge rainfall for positive gauges exceeding 20 mm. Final row gives number of days by

month satisfying the 30 pair / 20 mm criterion.

April May June July August September

.25 1.26 0.92 0.93 0.92 1.01 1.04

.50 1.51 1.27 1.13 1.01 1.07 1.29

.75 1.76 1.82 1.25 1.20 1.19 1.61

Count 12 17 17 19 13 13

Table 2. Median value of the 100-year rainfall and per cent of grids with slopes greater than 1

for specified durations and averaging area.

Median (mm) Per Cent

1 hour - 1 km2 78 87
1 hour - 9 km2 72 88
1 hour - 25 km2 68 89
1 hour - 100 km2 58 91
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Figure 1. Storm total rainfall (mm) for 14 July 2015 from Hydro-NEXRAD (top) and DPR

(bottom) with locations of Baltimore County and Baltimore City rain gauges (red stars). Ellicott

City rain gauge is marked by a blue star.
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Figure 2. Scatterplot of storm total rainfall accumulations (mm) for 27 September 2018 from

rain gauge and DPR (blue circles). Bias-corrected DPR accumulations are shown in red. The 1

to 1 line is shown in red.
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Figure 3. Histograms of annual maximum rainfall values from bias-corrected DPR and

Hydro-NEXRAD (HNbc) analyses for the period 2012 - 2015.
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Figure 4. Mean number of days per year with hourly rain greater than 25 mm based on DPR

rainfall fields. Top figure is with range correction; the bottom figure is without range correction.
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Figure 5. Mean annual lightning flash density (strikes km−2 per year) based on NLDN light-

ning data.
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Figure 6. Mean monthly lightning flash density (strikes km−2 per month)for May (upper

left), June (upper right), July (lower left) and August (lower right.
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Figure 7. Monthly boxplots of annual maximum hourly rainfall, conditioned on the annual

maximum exceeding 25 mm. Annual maximum values for all grids are assigned to the month in

which they occur.

–22–



manuscript submitted to Water Resources Research

Figure 8. Spatial correlation of annual maximum 1 hour rainfall; blue stars for east-west

correlation; red stars for north-south correlation.

–23–



manuscript submitted to Water Resources Research

Figure 9. Threshold (mm; top) and mean exceedance (mm; middle) for Peaks-over-Threshold

model. Bottom panel shows the 100-year hourly rainfall (mm).
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Figure 10. Sen slope for mean exceedance (top) and annual counts (bottom).
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Figure 11. 100-year hourly rainfall in 2021 based on POT analyses (top); ratio of 100-year

hourly rainfall in 2021 to 2000 (bottom)
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Figure 12. Distribution of 100 year, 1 hour rainfall for 2021 (mm; top) and ratio of 2021 100-

year hourly rainfall to 2000 100-year hourly rainfall (bottom), based on POT analyses (see Figure

11).
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Figure 13. Distribution of 100 year, 1 hour rainfall (mm) for the year 2021 (top) and ratio of

100 year rainfall in 2021 to 100 year rainfall in 2000 (bottom), based on annual maximum time

series and Gumbel distribution, with location parameter a linear function of year.
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Figure 14. Fraction of annual maximum hourly values (from the 22 year record) which occur

on the same day as the daily maximum value.
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Figure 15. Boxplots of annual maximum hourly rainfall for years when the maximum hourly

rainfall occurs on the same day as the daily max, conditioned on values of the daily max.
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Figure 16. Distribution of 100 year, 1 hour rainfall (mm) for the year 2021 at 100 km2 (top)

and ratio of 100 year rainfall in 2021 to 100 year rainfall in 2000 at 100 km2 (bottom).
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Abstract18

Rainfall frequency analyses are presented for the Baltimore Metropolitan region based19

on a 22-year, high-resolution radar rainfall data set. Analyses focus on spatial hetero-20

geneities and time trends in sub-daily rainfall extremes. The rainfall data set covers a21

domain of 4900 km2, has a spatial resolution of approximately 1 km and a time reso-22

lution of 15 minutes. The data set combines reflectivity-based rainfall fields during the23

period from 2000 - 2015 and operational polarimetric rainfall fields for the period from24

2012 - 2021. Analyses of rainfall fields during the 2012 - 2015 overlap period provide ground-25

ing for assessing time trends in rainfall frequency. There are pronounced spatial gradi-26

ents in short-duration rainfall extremes over the study region, with peak values of rain-27

fall between Baltimore City and Chesapeake Bay. Rainfall frequency analyses using both28

peaks-over-threshold and annual peak methods point to increasing trends in short-duration29

rainfall extremes over the period from 2000 to 2021. Intercomparisons of sub-daily rain-30

fall extremes with daily extremes show significant differences. Less than 50% of annual31

maximum hourly values occur on the same day as the daily maximum and there is rel-32

atively weak correlation between magnitudes when the hourly and daily maximum over-33

lap. Changing measurement properties are a key challenge for application of radar rain-34

fall data sets to detection of time trends. Mean field bias correction of radar rainfall fields35

using rain gauge observations is both an important component of the 22-year rainfall data36

set and a useful tool for addressing problems associated with changing radar measure-37

ment properties.38

1 Introduction39

A cloudburst thunderstorm on 27 May 2018 produced envelope curve flood peaks40

in Tiber Run and devastated Ellicott City, Maryland, with rainfall accumulations that41

exceeded 1000 year return interval values at 3-hour time scale (Bonin et al. (2016)). The42

May 2018 storm was the second 1000-year rainfall event in less than two years; the 30-43

31 July 2016 storm produced comparable rainfall accumulations in Ellicott City at 1 -44

3 hour time scale and flood peaks in Tiber Run that approached envelope curve mag-45

nitudes. These and other recent “cloudbursts” in the Mid-Atlantic have sharpened ques-46

tions concerning rainfall extremes. Are short-duration rainfall extremes increasing in fre-47

quency? How do we compute rainfall frequency in a changing environment? Do rainfall48

extremes in Ellicott City - south and west of Baltimore - differ from rainfall extremes49

north and east of the urban region?50

In this study, we build on a high-resolution radar rainfall data set developed for51

the Baltimore metropolitan region using the Hydro-NEXRAD algorithms (J. A. Smith52

et al. (2012); see also Krajewski et al. (2010)) with volume scan reflectivity data from53

the Sterling, Virginia WSR-88D (Weather Surveillance Radar - 1988 Doppler) radar cov-54

ering the period 2000 - 2011. We expanded the rainfall data set by constructing rain-55

fall fields on the same domain and grid using the operational Digital Precipitation Rate56

(DPR) product, which is based on polarimetric rainfall algorithms (Giangrande and Ryzhkov57

(2008), A. V. Ryzhkov and Zrnic (2019) and A. Ryzhkov et al. (2022)), following the po-58

larimetric upgrade of the WSR-88D network in 2012. The DPR-based data set extends59

from 2012 to 2021. We also extended the Hydro-NEXRAD data set from 2012 - 2015,60

providing four years of overlap between the Hydro-NEXRAD and DPR data sets. The61

overlap period provides the observational base for comparing the two rainfall products.62

Rainfall frequency analyses for short time periods have been severely limited by63

the sparsity of rain gauges with sub-daily measurements. High-resolution rainfall mea-64

surements from radar sample the time and space scales that rain gauge networks can not65

represent. They provide an important resource for rainfall frequency analyses that ad-66

dress sub-daily time scales, spatial heterogeneity of rainfall and changing rainfall extremes67

in a warming climate.68

–2–



manuscript submitted to Water Resources Research

Application of radar for climatological analyses has increased over the past decade69

(see Saltikoff et al. (2019) for a recent review). Development of long-term data sets is70

a first step in creating the machinery for rainfall frequency analysis based on radar rain-71

fall fields. Rainfall fields developed for operational weather forecasting (Nelson et al. (2016),72

Goudenhoofdt and Delobbe (2016), Kreklow et al. (2020), Panziera et al. (2018), and Yu73

et al. (2020)) provide a natural path for data-driven analyses. The “Stage IV” rainfall74

data set maintained by the National Weather Service has an hourly time scale and a spa-75

tial resolution of approximately 4 km over the continental US, with a record length that76

exceeds 20 years (2002 - 2022; Nelson et al. (2016)). Reanalysis data sets have been de-77

veloped from archived radar fields and algorithms that can be tailored to climatologi-78

cal applications (Overeem, Holleman, and Buishand (2009), Nelson et al. (2010), Krajewski79

et al. (2013), J. A. Smith et al. (2012), Wright et al. (2014), Kirstetter et al. (2015), Boudevillain80

et al. (2016), J. Zhang et al. (2016), and Lengfeld et al. (2020)). Record lengths remain81

short, however, for many applications concerning rainfall and flood extremes - a central82

theme of methodological development for radar hydroclimatology remains “trading space83

for time” (e.g., Wright et al. (2020) and Andersen et al. (2022)).84

Changing measurement techniques over time are an unavoidable feature of long radar85

rainfall data sets, especially those based on operational weather forecasting products,86

like the Stage IV and DPR rainfall fields. The polarimetric upgrade of the US radar net-87

work in 2012 provides an important example. In addition to changes in the basic radar88

measurements, operational algorithms for rainfall estimation have changed over time, as89

has the implementation through specification of algorithm parameters (A. Ryzhkov et90

al. (2022)). Addressing changes over time in hardware and algorithms used for radar rain-91

fall estimation is an important challenge for climatological application of radar rainfall92

data sets, as discussed below in Section 3.93

Over the past decade evidence for increasing short-duration rainfall extremes in a94

warming climate has mounted (Westra et al. (2014), Prein et al. (2016), and Fowler et95

al. (2021)). The availability of radar rainfall data sets covering the past two decades has96

expanded the potential for assessing climate change impacts on rainfall extremes (Saltikoff97

et al. (2019)). Direct assessments of changing rainfall extremes based on radar rainfall98

data sets provide important tools for hydroclimatological analyses.99

The most direct approach to rainfall frequency analysis using gridded radar data100

sets is to treat observations from each grid as though they were point observations from101

a rain gauge. The approach underlies studies using annual maximum and peaks-over-102

threshold analyses for “long” radar rainfall records (Allen and DeGaetano (2005), Overeem,103

Buishand, and Holleman (2009), Eldardiry et al. (2015), Ghebreyesus and Sharif (2021),104

Marra et al. (2017), McGraw et al. (2019), Molter et al. (2021) and de Valk and Overeem105

(2022)). A compelling rationale for these studies is that sub-daily rain gauge networks106

with long records are sparse in most settings. In regions with large spatial gradients in107

rainfall extremes, radar provides the potential for resolving spatial heterogeneities that108

are difficult to address solely through gauge-based analyses (e.g. Barton et al. (2020)).109

There are striking contrasts between radar and rain gauge networks in the ability110

to detect major rainfall events (e.g., Molter et al. (2021), Lengfeld et al. (2020) and J. A. Smith111

et al. (2023)). In many settings and for many storms, rain gauge networks simply do not112

sample extremes, especially for convective rainfall. The ability to accurately estimate ex-113

treme rainfall from radar fields, however, continues to present challenges (Schleiss et al.114

(2020), Peleg et al. (2018), Bárdossy and Pegram (2017), and Eldardiry et al. (2017)).115

Polarimetric measurements have the potential for marked improvements in rainfall es-116

timates for climatological applications (A. Ryzhkov et al. (2022), B.-C. Seo et al. (2020),117

Chaney et al. (2022) and J. A. Smith et al. (2023)).118

Procedures that combine radar and rain gauge observations are central to devel-119

opment of climatological analyses based on radar observations. They fall into two broad120
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categories - mean field bias adjustment (J. A. Smith and Krajewski (1991), D. J. Seo et121

al. (1999) and Borga et al. (2002); for recent developments, see Armon et al. (2020), B.-122

C. Seo et al. (2013) and Imhoff et al. (2020)) and procedures that provide spatially dis-123

tributed adjustments of radar rainfall fields based on rain gauge observations (Krajewski124

(1987) and Creutin et al. (1988); for recent developments, see Goudenhoofdt and Delobbe125

(2009), Delrieu et al. (2014), Sideris et al. (2014), Ochoa-Rodriguez et al. (2019), Barton126

et al. (2020) and G. Zhang et al. (2021)). Mean field bias corrections are grounded in127

ratios of gauge observations to radar observations at rain gauge locations. Methods that128

provide local corrections exploit correlation structure of rainfall fields and error struc-129

ture of radar rainfall fields. We use mean field bias correction as a tool for addressing130

changing measurement properties over the 22 year rainfall record (J. A. Smith et al. (2012)).131

Gauge-based mean field bias is applied as a step towards mitigating changes in measure-132

ments and algorithms.133

In Section 2, we introduce data and methods, focusing on development of the 2012134

- 2021 radar rainfall data set and the extreme value theory framework for rainfall fre-135

quency analysis. Climatological analyses based on the 2000 - 2021 radar rainfall data set136

are presented in Section 3. In Section 4, we discuss methodological issues that arise in137

assessing temporal nonstationarities and spatial heterogeneities of rainfall extremes us-138

ing long radar rainfall data sets. We summarize the principal conclusions of our anal-139

yses in Section 5.140

2 Data and Methods141

Extreme, short-duration rainfall on 14 July 2015 produced record flooding in north142

Baltimore and Baltimore County (Figure 1). Peak storm total accumulations approach-143

ing 100 mm occurred over little more than an hour. Bias-corrected rainfall fields based144

on the Hydro-NEXRAD algorithms produced rainfall totals that closely match rainfall145

from the bias-corrected DPR product (Figure 1).146

Rainfall fields for our study region, which is illustrated in Figure 1, cover an area147

of approximately 4900 km2, with a 70 by 70 grid. Grids are 0.01 degree by 0.01 degree148

in size, with an area of approximately 1 km2. For the period from 2000 - 2011, we use149

the bias-corrected radar rainfall fields described in J. A. Smith et al. (2012) (see also Krajewski150

et al. (2007)). For the period from 2012 to 2021, we utilize the operational Digital Pre-151

cipitation Rate product developed by the National Weather Service based on polarimet-152

ric algorithms (Giangrande and Ryzhkov (2008) and A. Ryzhkov et al. (2022)). Like the153

original Hydro-NEXRAD data set for the period from 2000 - 2011, we restrict rainfall154

fields for the 2012 - 2021 to the months of April through September, which covers the155

period of peak convective rainfall. For the period from 2012 - 2015, we constructed Hydro-156

NEXRAD rainfall fields, using methods presented in J. A. Smith et al. (2012).157

Bias correction for the DPR rainfall fields, and for the 2012 - 2015 Hydro-NEXRAD158

fields also follow procedures described in J. A. Smith et al. (2012). A multiplicative, mean-159

field bias is computed as the ratio of daily rain gauge observations to daily radar rain-160

fall observations at gauge locations. We define a day as the 24 hour period ending at 12161

UTC (7AM Eastern Standard Time), based on the climatology of convective rainfall, which162

exhibits a late afternoon - nighttime maximum (Ntelekos et al. (2007)).163

Rain gauge observations are from networks maintained by Baltimore County and164

Baltimore City. Locations of rain gauges are illustrated in Figure 1. Rain gauge qual-165

ity control follows procedures used for the earlier data set (J. A. Smith et al. (2012)),166

including outlier checks and correlation analyses among gauges.167

Bias correction is an important component of rainfall estimation for the DPR rain-168

fall fields, as was the case for the Hydro-NEXRAD rainfall fields (J. A. Smith et al. (2012)).169

In Figure 2, we illustrate multiplicative bias for a significant rainfall and flood event on170
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27 September 2018. The linear relationship between gauge and radar rainfall totals, il-171

lustrated in Figure 2, is a basic assumption underlying mean field bias correction. The172

bias computed for this case is 1.6.173

For significant rain events, bias values are positively skewed with values larger than174

1.5 occurring each year. We take significant rain events to occur on days with at least175

30 positive gauges and a mean gauge rainfall greater than 20 mm for the positive gauges.176

Systematic monthly variation is found in bias values for significant rain events, with me-177

dian values peaking around 1.5 in April and September (Table 1). During July and Au-178

gust, median values of bias are close to 1 and the variability of bias values, as represented179

by the interquartile range, is smaller than in other months. Bias values in May exhibit180

the largest variability over the 6 months.181

The distribution of hourly rainfall rates for bias-corrected DPR and Hydro-NEXRAD182

for the overlap period from 2012 - 2015 are similar, especially in the upper tail (Figure183

3). There are slightly larger median and .75 quantile values for DPR, 36.6 mm h−1 ver-184

sus 34.2 mm h−1 and 46.1 mm h−1 versus 44.7 mm h−1. The .25 quantile values are185

slightly larger for Hydro-NEXRAD, 28.6 mm h−1 versus 26.8 mm h−1. The 0.9 quan-186

tiles are virtually identical, 56.7 mm h−1 for DPR versus 56.2 mm h−1 for Hydro-NEXRAD;187

for 0.99 quantiles the order switches slightly with DPR at 97 mm h−1 and Hydro-NEXRAD188

at 98 mm h−1.189

Range effects are an important element of the error structure of radar rainfall es-190

timates, especially when employing observations over the full extent of the radar obser-191

vations. For regional analyses, range effects are diminished, but can still contribute to192

rainfall estimation. We assess range effects using a simple range correction algorithm,193

which is based on the range-dependent frequency of 15-minute rainfall rates exceeding194

25 mm h−1. Additional discussion of range effects and spatial gradients of rainfall ex-195

tremes is presented in Section 3.196

Lightning observations from the National Lightning Detection Network (Cummins197

and Murphy (2009) and Orville and Huffines (2001)) are used to examine the climatol-198

ogy of thunderstorms in the Baltimore study region. Previous analyses of lightning cli-199

matology over the mid-Atlantic region, focusing on flash flooding in Baltimore, are pre-200

sented in Ntelekos et al. (2007).201

Rainfall frequency analyses are based on peaks-over-threshold and annual maxi-202

mum time series at each of the 4900 girds. The modeling frameworks are introduced be-203

low.204

For the peaks-over-threshold analyses, we adopt a frequency, 4 events per year on205

average, and determine the threshold, y0 (mm h−1), for each grid which yields the largest206

88 values of rainfall for a specified duration (4 events, on average, over a 22 year period).207

For each grid, Mi denotes the number of events during year i exceeding threshold y0 and208

the magnitudes are denoted Yij , j = 1, ... , Mi, if Mi is greater than 0. We assume Mi209

has a Poisson distribution with parameter λ, which by construction is 4 events per year:210

P{Mi = k} =
exp(−λ) λk

k!
(1)

The distribution of exceedances of y0 is assumed to have an exponential distribu-211

tion:212

G(y) = 1 − exp(−{ y
σ
}) (2)

The mean and standard deviation are both σ.213
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The annual maximum exceedance for year i is214

X̃i = max {Y1, ..., YMi} (3)

if there are one or more events and 0 otherwise. The cumulative distribution function,215

P{X̃i ≤ x} is 1 minus the probability that no events exceed x, i.e., P{
∑Mi

j=1 1(Yij >216

x) = 0} where 1(Yij > x) is 1 if Yij > x and 0 otherwise. The count of events greater217

than x has a Poisson distribution with rate of occurrence that is the base rate of occur-218

rence, 4 events per year, times the probability that Yij is greater than x, which is 1 −219

G(x). It follows that, for exceeedances of y0, the quantile function is given by:220

Q(p) = y0 + σ ln(λ) − σ ln(−ln(p)) (4)

the quantile function of a Gumbel distribution with location µ = y0 + σ ln(λ) and221

scale parameter σ. For the T-year rainfall accumulation, p = 1 − 1
T222

The quantile function for the time-varying form of the POT model takes the form:223

Qi(p) = µi + σi(− ln(−ln(p))) (5)

where the time-varying location parameter is:224

µi = y0 + σi ln(λi) (6)

Qi(p) is the quantile function for year i and µi is the location parameter for year i.225

The annual maximum series for each grid will be denoted X1, ..., X22; it differs from226

the POT series only for years in which the annual maximum is less than the threshold227

y0 used to extract peaks over threshold. We carry out extreme value analyses of the an-228

nual maximum series based on the Generalized Extreme Value (GEV) distribution; its229

quantile function is given by:230

Q(p ; µ, σ, ξ) = µ − σ { (1 − [−ln(p)]−ξ )

ξ
} , ξ ̸= 0 (7)

= µ − σ ln{−ln(p)} , ξ = 0 (8)

In this formulation, there are three parameters, the location parameter µ, the scale pa-231

rameter σ and the shape parameter ξ. The Gumbel distribution is the special case for232

ξ = 0. The shape parameter distinguishes fundamentally different types of frequency233

distributions. For positive values of the shape parameter, the distribution is unbounded234

and “thick-tailed”. Negative values of the shape parameter are associated with bounded235

distributions; the upper bound is given by µ − σ
ξ236

For time-varying models based on annual maximum analyses, we assume that the237

location parameter is a linear function of time :238

µi = µ0 + µs × Zi (9)

where the covariates Z1, ..., Z22 are time in years; in this formulation µs specifies the an-239

nual rate of change of the location parameter. For time-varying analyses, we focus on240

Gumbel models with the assumption that the shape parameter is 0.241

In assessing time trends, peaks-over-threshold analyses provide a different view of242

nonstationarities than annual maximum analyses. Changing frequency of events, λ, and243

changing magnitudes of events σ are directly assessed with peaks-over-threshold anal-244

yses. For the annual maximum analyses, GEV methods focus on time changes in the lo-245

cation parameter.246
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3 Climatological Analyses247

How do rainfall extremes vary spatially over the Baltimore study region? The mean248

number of days per year with hourly rainfall accumulations greater than 25 mm has a249

pronounced maximum along the eastern margin of the study region, extending in an arc250

southeast of Baltimore to the northeast of the City along the Chesapeake Bay (Figure251

4). The largest frequency is located between Baltimore City and Chesapeake Bay.252

The spatial heterogeneities of hourly rainfall extremes, as illustrated in Figure 4253

closely match the climatology of thunderstorm occurrence, as represented by the mean254

annual lightning flash density (Figure 5). Physical mechanisms for elevated thunderstorm255

frequency in the region are linked to interactions of the “Bay Breeze” and “ Urban Heat256

Island” circulations. These interactions create preferential zones of surface convergence,257

supporting the initiation and maintenance of convective precipitation (Ryu et al. (2016)).258

Spatial heterogeneities of thunderstorm occurrence exhibit a pronounced seasonal259

cycle (Figure 6). July and August not only have the highest frequency of thunderstorms,260

but also the largest spatial gradients in thunderstorm frequency. Sharp gradients in thun-261

derstorm occurrence during July and August point to the role of land-atmosphere in-262

teractions in determining rainfall climatology. Spatial gradients in rainfall extremes over263

the Baltimore region (Figure 4) are closely tied to the seasonally varying climatology of264

thunderstorms.265

The distribution of extreme rainfall rates varies markedly over the seasonal cycle266

from April through September. In Figure 7, we show monthly boxplots of annual max-267

imum rainfall, given that the annual maximum is greater than 25 mm. For each month,268

the boxplot summarizes the distribution of annual maxima that occur in that month,269

based on observations from all 4900 grids. The conditional distributions increase system-270

atically from April through August and then decrease slightly in September. August does271

not dominate the total number of annual maximum observations, but if an annual max-272

imum observation occurs in August it has a more extreme upper tail than for other months.273

Range correction of radar rainfall estimates (Section 2) does not qualitatively change274

the conclusions concerning spatial heterogeneities of extreme rainfall (Figure 4 bottom).275

Maximum rainfall remains concentrated along the western margin of the Chesapeake Bay,276

extending from southeast to northeast of the Baltimore metropolitan region.277

How much information on rainfall extremes is contained in the 4900 annual max-278

imum rainfall time series over the domain? Or, in a different formulation, how does cor-279

relation in rainfall extremes decrease with distance between grids? The spatial correla-280

tion function for annual maximum, 1 hour rainfall, was computed based on the inner 30281

by 30 domain of grids. From these grids we computed the correlation from grid to grid282

in an east-west and in a north-south direction (Figure 8). For both, the decorrelation283

distance is less than 15 km. There is somewhat higher correlation in east-west direction284

than north-south. Both storm motion and east-west organization of convection may con-285

tribute to this feature (Ntelekos et al. (2008) and B. K. Smith et al. (2016)).286

3.1 Short-Duration Rainfall Extremes - “Point” Analyses287

In this section we examine rainfall frequency for “points” in the study region. By288

point, we mean a single spatial grid cell. Analyses emulate rain gauge analyses, with each289

of the 4900 grid cells treated as a separate rain gauge. We begin with peaks-over-threshold290

analyses under the assumption of time stationarity.291

The Gumbel distribution for annual maximum values is determined by the thresh-292

old z0, the mean rate of occurrence λ, which is 4 per year for the stationary model, and293

the mean exceedance σ. For hourly time scale, these parameters exhibit striking spatial294

heterogeneity (Figure 9). Peak values of the threshold parameter extend from southwest295
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to northeast along the western margin of Chesapeake Bay through the Baltimore metropoli-296

tan region. The mean exceedance σ has a core of maximum values between Baltimore297

City and Chesapeake Bay. These spatial features mesh with rainfall analyses (Figure 4)298

and analyses of spatial heterogeneities in thunderstorm frequency (Figure 5). The 100-299

year rainfall at hourly time scale, based on the stationary peaks-over-threshold analy-300

ses, reflects the spatial variability of threshold and mean exceedance (Figure 9).301

The east-west gradient in 100 year, hourly rainfall through Baltimore at 39.25 de-302

grees latitude exceeds 12 mm (from more than 82 mm to less than 70 mm) over a 20 km303

distance (Figure 9). The NOAA precipitation frequency atlas values range from 78 mm304

to 77 mm over a 50 km distance through the Baltimore region at 39.25 degrees. The ab-305

sence of gradients in the NOAA precipitation frequency results is not surprising; there306

are very few rain gauges with sub-daily accumulations. The presence of large gradients307

in radar analyses, which is consistent with the climatology of thunderstorms, points to308

the need for greater attention to spatial structure of rainfall extremes.309

Time trends in rainfall extremes over the 22 year period are examined through peaks-310

over-threshold analyses in which the mean annual count and mean exceedance are treated311

as time-varying quantities. We estimate each using the Sen’s slope. The distribution of312

slope for the rate of occurrence is strongly weighted toward increasing trends (Figure 10);313

75% of the grids have positive slopes. For the mean exceedance, 50% of grids have pos-314

itive slopes. The distribution of slopes, however, is skewed to large positive values con-315

centrated around Baltimore City and Chesapeake Bay (Figure 10).316

Using the Sen slope for the rate of occurrence and mean exceedance, we constructed317

Gumbel model parameters (Equations 5 and 6) for the year 2000 and for the year 2021.318

From these parameters we computed quantiles of hourly rainfall at the beginning and319

end of the 22 year time period. In Figure 11, we show the 2021 distribution of 100-year,320

1 hour rainfall rates for the 4900 grids (top) and the ratio of the 2021 100-year return321

interval value to the 2000 value. The median value of 100-year ratio is 1.09 and 88 % of322

grids have values larger than 1 (Figure 12).323

Over Baltimore City, the 100-year hourly rain increases from 62 mm to 74 mm over324

the 22-year period. The change in 100-year rainfall over a 22-year time period is com-325

parable to the “spatial” change in 100-year rainfall over a 20 km east-west transect, as326

detailed above.327

Analyses of short-duration rainfall extremes based on the annual maximum formu-328

lation (Equations 7 - 10) provide similar conclusions and additional insights concerning329

time trends over the 22-year period. Parameters of a Gumbel distribution in which the330

location is a linear function of year were estimated for each of the 4900 grids. In Fig-331

ure 13, we show the distribution of 100-year, 1 hour rainfall rates for the 4900 grids (top)332

and the ratio of the 2021 100-year return interval value to the 2000 value, based on the333

Gumbel model with linear time trends in the location parameter. The median value of334

the ratio between 2021 and 2000 rainfall magnitudes is 1.09 and 87 % of grids have val-335

ues larger than 1. Extreme value analyses based on annual maximum observations point336

to increasing short-duration rainfall extremes.337

For the annual maximum series, we also examined rainfall frequency based on a338

GEV model in which the shape parameter is not constrained to be 0, as is the case for339

the Gumbel distribution. For the stationary model, GEV analyses provide non-physical340

values of the shape parameter for some grids. More than 250 grids have estimated shape341

values larger than 0.5, implying a distribution with infinite variance. For 25% of the grids,342

the shape parameter is larger than 0.25. Large values of the shape parameter are prin-343

cipally due to annual maximum series in which the record rainfall is much larger than344

the other 21 values. Several storm events are responsible for large record rainfall values345

and non-physical shape parameters. Record length for radar rainfall data sets, includ-346

–8–



manuscript submitted to Water Resources Research

ing the Baltimore data set, does not support application of GEV models in which the347

shape parameter is estimated.348

3.2 Daily versus Short-Duration Rainfall Extremes349

Are the key features of sub-daily rainfall extremes represented through analyses350

of daily annual maxima? In most settings, long sub-daily records are sparse. Consequently,351

there is considerable attention given to daily analyses, with inferences that results de-352

veloped from daily analyses apply to sub-daily extremes. If, for example, the 100-year353

daily rainfall increases by 10%, can we assume that hourly rainfall increases by the same354

amount?355

For each of the 4900 grids, we examined the relationships between daily and sub-356

daily rainfall extremes based on annual maximum records. A basic question is whether357

the annual maximum hourly rainfall values are embedded in the annual maximum daily358

rainfall. Does the annual maximum hourly rainfall occur on the day of the annual max-359

imum daily rainfall? At the hourly time scale, fewer than 50 per cent of annual maxi-360

mum hourly observations occur on the same day as the daily maximum.361

There is spatial structure to the relationship between the joint occurrence of daily362

and hourly annual maxima (Figure 14). The highest frequency is along Chesapeake Bay,363

a region in which hourly extremes are prominent in August (Figures 6 and 7). Hourly364

and daily extremes are more closely linked in the region in which convective rainfall is365

most prominent.366

The joint distributions of hourly and daily annual maxima for years in which they367

occur on the same day are flat for a broad range of daily rainfall accumulation (Figure368

15). Even for years in which the maximum hourly rainfall occurs on the same day as the369

daily max, the two are not strongly related.370

3.3 Short-Duration Rainfall Extremes - Spatial Analyses371

An advantage of radar for rainfall frequency analyses is the ability to directly ex-372

amine spatially-averaged rainfall extremes. In this section, we present Gumbel analy-373

ses of annual maximum rainfall time series constructed from spatial averaging of radar374

rainfall fields. In particular, we examine rainfall averaged over 3 by 3 grids - approxi-375

mately 9 km2 - 5 by 5 grids approximately 25 km2 and 10 by 10 grids - approximately376

100 km2.377

Analyses of time trends largely follow the “point” results (1 km2) from the previ-378

ous section. In Figure 16, we show 100-year, 1 hour rainfall over 100 km2 area for 2021379

(top) and the ratio of 2021 values to 2000 values (bottom). The distribution of 100-year380

rainfall values in 2021 is asymmetric, with longer tails on the low end of the distribu-381

tion.382

The median values of 100 year, 1 hour rainfall in 2021 decreases from 78 mm at383

1 km2 scale to 58 mm at 100 km2 scale (Table 2). For all spatial scales, the percentage384

of grids with increasing time trends exceeds 87%. The evidence for nonstationarity in-385

creases with averaging area; at 100 km2 scale, 91% of grids have slopes greater than 1.386

4 Summary and Conclusions387

We present rainfall frequency analyses from a 22-year radar rainfall data set cov-388

ering a 4900 km2 domain around the Baltimore metropolitan region. Analyses focus on389

spatial gradients and time trends in short-duration rainfall extremes. The principal con-390

clusions are summarized below.391
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• There are pronounced spatial gradients in short-duration rainfall extremes over392

the study region, with peak values of rainfall between Baltimore City and Chesa-393

peake Bay. Spatial gradients in short-duration extremes based on radar rainfall394

analyses closely match the climatology of thunderstorms, as reflected in climato-395

logical analyses of lightning flash density based on NLDN observations. Spatial396

gradients in rainfall extremes and lighting climatology are consistent with phys-397

ical mechanisms tied to interactions between the Urban Heat Island circulation398

and Bay Breeze circulation, as detailed in Ryu et al. (2016). Spatial gradients in399

short-duration rainfall extremes are not reflected in NOAA Atlas 14 products.400

• Analyses of short-duration rainfall extremes through both peaks-over-threshold401

and annual analyses using the 22-year rainfall data set point to increasing trends.402

Peaks-over-threshold analyses point to spatial contrasts in changes in rate of oc-403

currence and magnitudes of threshold exceedance. Analyses of time trends based404

on radar rainfall data sets are fundamentally limited by record length. Changes405

in magnitudes of threshold exceedance are particularly important for changing ex-406

tremes. Distinguishing climate variability at decadal time scales from climate change407

(e.g., Kunkel et al. (2013) and Martel et al. (2018)) is an important challenge for408

analyses based on long radar rainfall data sets.409

• Analyses of time trends for spatially-averaged rainfall show results that are sim-410

ilar to the “point” analyses based on 1 km grids. An important advantage of radar411

rainfall fields for rainfall frequency analysis is the ability to directly examine fre-412

quency for spatially-averaged rainfall.413

• Intercomparisons of sub-daily rainfall extremes with daily extremes show signif-414

icant differences. Less than 50 % of annual maximum hourly values occur on the415

same day as the daily max. In years when the hourly maximum occurs on the same416

day as the daily maximum, there is relatively weak correlation between the mag-417

nitudes. The assumption that sub-daily rainfall extremes are closely linked to daily418

extremes warrants additional consideration, especially for development of new rain-419

fall frequency approaches that account for the impacts of climate change.420

• Rainfall frequency analyses based on the GEV distribution suffer from “non-physical”421

values of the shape parameter. The limited sample size of radar rainfall data sets422

does not support application of the GEV with shape as a free parameter.423

• Changing measurement environments are a key challenge for application of radar424

rainfall data sets to detection of time trends. A significant change in the Balti-425

more data set is the transition to polarimetric estimates in 2012. Intercomparisons426

of rainfall fields based on reflectivity algorithms (Hydro-NEXRAD) and polari-427

metric algorithms (DPR) during the overlap period from 2012 - 2015 point to a428

generally good match.429

• Mean field bias correction of radar rainfall fields using rain gauge observations is430

both an important component of the 22-year rainfall data set and a tool for mit-431

igating the effects of changing radar measurement properties. For the polarimet-432

ric era, there is pronounced variation in mean field bias for major rainfall events,433

with values larger than 1.5 occurring multiple times every year. There is pronounced434

seasonal variation in bias values, with the largest values during April and Septem-435

ber; values during July and August are more closely clustered around 1.0. Mean436

field bias correction provides a useful tool for dealing with changing measurement437

technologies and algorithms.438

• Range correction is an important component of climatological analyses of radar439

rainfall fields, especially for assessing spatial gradients over the full domain cov-440

ered by the radar. Regional analyses, like those presented in this study for the Bal-441

timore study area, diminish but do not eliminate the problem. Range correction442

for the Baltimore region does not qualitatively alter conclusions concerning spa-443

tial gradients in short-duration rainfall extremes. Addition analyses of range cor-444

rection algorithms are needed for assessing spatial gradients of short-duration rain-445

fall extremes using radar rainfall data sets.446
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Table 1. Quantiles of bias values by month; top row is .25 quantile, second row is .50 quantile

(median) and third row is the .75 quantile. Results are for days with more than 30 positive pairs

and mean gauge rainfall for positive gauges exceeding 20 mm. Final row gives number of days by

month satisfying the 30 pair / 20 mm criterion.

April May June July August September

.25 1.26 0.92 0.93 0.92 1.01 1.04

.50 1.51 1.27 1.13 1.01 1.07 1.29

.75 1.76 1.82 1.25 1.20 1.19 1.61

Count 12 17 17 19 13 13

Table 2. Median value of the 100-year rainfall and per cent of grids with slopes greater than 1

for specified durations and averaging area.

Median (mm) Per Cent

1 hour - 1 km2 78 87
1 hour - 9 km2 72 88
1 hour - 25 km2 68 89
1 hour - 100 km2 58 91
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Figure 1. Storm total rainfall (mm) for 14 July 2015 from Hydro-NEXRAD (top) and DPR

(bottom) with locations of Baltimore County and Baltimore City rain gauges (red stars). Ellicott

City rain gauge is marked by a blue star.
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Figure 2. Scatterplot of storm total rainfall accumulations (mm) for 27 September 2018 from

rain gauge and DPR (blue circles). Bias-corrected DPR accumulations are shown in red. The 1

to 1 line is shown in red.
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Figure 3. Histograms of annual maximum rainfall values from bias-corrected DPR and

Hydro-NEXRAD (HNbc) analyses for the period 2012 - 2015.
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Figure 4. Mean number of days per year with hourly rain greater than 25 mm based on DPR

rainfall fields. Top figure is with range correction; the bottom figure is without range correction.
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Figure 5. Mean annual lightning flash density (strikes km−2 per year) based on NLDN light-

ning data.
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Figure 6. Mean monthly lightning flash density (strikes km−2 per month)for May (upper

left), June (upper right), July (lower left) and August (lower right.
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Figure 7. Monthly boxplots of annual maximum hourly rainfall, conditioned on the annual

maximum exceeding 25 mm. Annual maximum values for all grids are assigned to the month in

which they occur.
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Figure 8. Spatial correlation of annual maximum 1 hour rainfall; blue stars for east-west

correlation; red stars for north-south correlation.
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Figure 9. Threshold (mm; top) and mean exceedance (mm; middle) for Peaks-over-Threshold

model. Bottom panel shows the 100-year hourly rainfall (mm).
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Figure 10. Sen slope for mean exceedance (top) and annual counts (bottom).
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Figure 11. 100-year hourly rainfall in 2021 based on POT analyses (top); ratio of 100-year

hourly rainfall in 2021 to 2000 (bottom)
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Figure 12. Distribution of 100 year, 1 hour rainfall for 2021 (mm; top) and ratio of 2021 100-

year hourly rainfall to 2000 100-year hourly rainfall (bottom), based on POT analyses (see Figure

11).
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Figure 13. Distribution of 100 year, 1 hour rainfall (mm) for the year 2021 (top) and ratio of

100 year rainfall in 2021 to 100 year rainfall in 2000 (bottom), based on annual maximum time

series and Gumbel distribution, with location parameter a linear function of year.
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Figure 14. Fraction of annual maximum hourly values (from the 22 year record) which occur

on the same day as the daily maximum value.
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Figure 15. Boxplots of annual maximum hourly rainfall for years when the maximum hourly

rainfall occurs on the same day as the daily max, conditioned on values of the daily max.
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Figure 16. Distribution of 100 year, 1 hour rainfall (mm) for the year 2021 at 100 km2 (top)

and ratio of 100 year rainfall in 2021 to 100 year rainfall in 2000 at 100 km2 (bottom).
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