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Abstract

The Peace-Athabasca Delta in Alberta, Canada has numerous perched basins that are primarily recharged after large ice jams

cause floods (an ecological benefit). Previous studies have estimated that such large floods are likely to decrease in frequency

under various climate projections. However, there is a sizeable uncertainty range in these predicted flood probabilities, in

part due to the short 60-year systematic record that contained few large ice jam floods. An additional 50 years of historical

data are available from various sources, with expert-interpreted flood categories; however, these categorizations are uncertain

in magnitude and occurrence. We developed a Bayesian framework that considers magnitude and occurrence uncertainties

within a logistic regression model that predicts the annual probability of a large flood. The Bayesian regression estimates the

joint distribution of parameters describing the effects of climatic factors and parameters that describe the probability that

historical flood magnitudes were recorded as large (or not) when a truly large (or not) flood occurred. We compare four models

for hindcasting and projecting large ice jam flood probabilities in future climates. The models consider: 1) historical data

uncertainty, 2) no historical data uncertainty, 3) only the systematic record, and 4) the systematic record with a different model

structure. Neglecting historical data uncertainty provides inaccurate estimates, while using only the systematic record provides

wider prediction intervals than considering the full record with uncertain historical data. Thus, we demonstrate that including

uncertain historical information can effectively extend the record length and improve flood frequency analyses.
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Abstract15

The Peace-Athabasca Delta in Alberta, Canada has numerous perched basins that are16

primarily recharged after large ice jams cause floods (an ecological benefit). Previous stud-17

ies have estimated that such large floods are likely to decrease in frequency under var-18

ious climate projections. However, there is a sizeable uncertainty range in these predicted19

flood probabilities, in part due to the short 60-year systematic record that contained few20

large ice jam floods. An additional 50 years of historical data are available from various21

sources, with expert-interpreted flood categories; however, these categorizations are un-22

certain in magnitude and occurrence. We developed a Bayesian framework that consid-23

ers magnitude and occurrence uncertainties within a logistic regression model that pre-24

dicts the annual probability of a large flood. The Bayesian regression estimates the joint25

distribution of parameters describing the effects of climatic factors and parameters that26

describe the probability that historical flood magnitudes were recorded as large (or not)27

when a truly large (or not) flood occurred. We compare four models for hindcasting and28

projecting large ice jam flood probabilities in future climates. The models consider: 1)29

historical data uncertainty, 2) no historical data uncertainty, 3) only the systematic record,30

and 4) the systematic record with a different model structure. Neglecting historical data31

uncertainty provides inaccurate estimates, while using only the systematic record pro-32

vides wider prediction intervals than considering the full record with uncertain histor-33

ical data. Thus, we demonstrate that including uncertain historical information can ef-34

fectively extend the record length and improve flood frequency analyses.35

1 Introduction36

The Peace-Athabasca Delta (PAD) in Alberta, Canada has numerous perched basins37

(small lakes) that are primarily recharged with water and nutrients after large ice jam38

floods cause long duration flooding of the vast delta area (Timoney, 2013). Periodic flood-39

ing of the PAD has ecological benefits (Timoney, 2013) and allows for better navigation40

for the First Nations communities to access resources and utilize the land. Previous stud-41

ies of the PAD region have estimated that large floods are likely to decrease in frequency42

under various climate projections (Lamontagne et al., 2021; Jasek et al., 2021; Das et43

al., 2020; Beltaos et al., 2008). The predicted future flood probabilities have a wide un-44

certainty range, partly due to a short 60-year systematic record with only seven large45

ice jam floods. An additional 50 years of historical information are available as expert-46

interpreted flood magnitudes based on traditional knowledge, historical written records,47

and proxy data, as summarized by Timoney (2009), but these categorizations are un-48

certain with respect to flood magnitude and occurrence. For example, a flood labeled49

as moderate could have been large, and a year labeled as having no flood could have ac-50

tually contained a flood that was not recorded.51

Wolfe et al. (2020) provide an excellent discussion of the uncertainties that could52

arise when assigning flood magnitudes based on available historical information. In brief,53

the uncertainties may be characterized by observer bias and spatial variability. Observer54

bias includes gaps in years with recorded information, and differences in descriptions of55

flood events from one location to another. Spatial variability includes inter-annual dif-56

ferences in the locations that were flooded, and intra-annual differences in proximity of57

the locations to that year’s ice jam (Prowse & Conly, 2002). Timoney (2009) and Peterson58

(1995) used aggregate information of flooding events across the PAD to inform their as-59

signed annual flood magnitudes, so gaps in records and varying spatial information leads60

to uncertainty in how much inundation of the PAD occurred. As a result, Prowse and61

Conly (2002) and Wolfe et al. (2020) note that the recorded flood magnitudes and oc-62

currences could be incorrect. This is not the fault of the experts who interpreted the his-63

torical flood record, and is rather a feature of the available data. However, it is likely64

that the historical record contains some useful information, even though it is uncertain.65

–2–
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In this paper, we provide a method to use uncertain historical information with certain66

systematic records in an ice jam flood frequency analysis.67

We present a Bayesian logistic regression methodology to account for the uncer-68

tainty in historical flood magnitude and occurrence data, and analyze the value of in-69

cluding uncertain historical information into predictions of future large ice jam flood prob-70

abilities. Our key research questions is: Compared to using only the systematic record,71

how does considering magnitude and occurrence uncertainty in historical flood data im-72

pact the estimated hindcasted and projected probabilities of a large ice jam flood?73

There is a long history of using flood frequency analysis with historical records and74

paleo-flood information to obtain more precise estimates of flood magnitudes and their75

probability than can be gathered from relatively short systematic records (Kjeldsen et76

al., 2014; Payrastre et al., 2011; Benito et al., 2004; Stedinger & Cohn, 1986; Hosking77

& Wallis, 1986; Condie & Lee, 1982). The focus of the literature has primarily been on78

estimating flood magnitude quantiles, typically via estimation of the parameters of an79

extreme value probability distribution. Including historical information is generally done80

by augmenting the likelihood function to consider the historical flood magnitudes are81

censored information, or the occurrence of historical floods above a perception thresh-82

old follows a binomial distribution (e.g., Stedinger & Cohn, 1986). An additional crit-83

ical need is the interpretation of historical information by local experts, but even those84

interpretations can be uncertain in the magnitude of historical floods (e.g., perception85

threshold values in Parkes & Demeritt, 2016). Recent studies have considered that the86

historical information may be uncertain, and use Bayesian frameworks to cleanly han-87

dle the data uncertainty (Reis & Stedinger, 2005; Salinas et al., 2016; Parkes & Demeritt,88

2016). For example, Salinas et al. (2016) use a fuzzy membership approach to integrate89

imprecise descriptions of historical flood events within a Bayesian estimation of flood mag-90

nitude quantiles. Fuzzy membership allows for each historical data point to have non-91

zero probability of actually having been any of several flood magnitudes. In this study,92

our Bayesian framework also allows for historical data to have a different categorical flood93

magnitude than recorded, or to not have occurred. However, we seek to estimate the an-94

nual probability of a large flood, instead of estimating long-term quantile flood magni-95

tudes. We are not aware of literature that addresses this application, nor the applica-96

tion to ice jam flood frequency analysis with uncertain historical data.97

1.1 Background on Flood Generation Processes in the PAD98

The PAD lies at the confluence of the Peace and Athabasca Rivers in northern Al-99

berta, Canada (see Fig. 1). A series of typically northward-flowing channels connect the100

PAD to the Peace River, though the direction of flow can reverse during high water events101

on the Peace River. Open water floods on the Peace River are typically not capable of102

generating water levels that can recharge many of the PAD’s highest elevation perched103

basins, called restricted basins. Restricted basins are instead recharged when temporary104

ice jams on the Peace, Athabasca, or the Slave Rivers form during the spring freshet and105

result in resistance to flow and resulting higher water levels that can be tens of kilome-106

ters long. These ice jams cause flow reversals (southward flow) within the channels that107

connect the Peace River to the PAD and can generate widespread flooding. Flooding of108

a restricted basin indicates that a large flood likely occurred in a given year, but there109

is still uncertainty in how widespread the flooding was in each year. Jasek (2019c) de-110

tails a taxonomy that describes the conditions under which large, moderate and small111

floods are likely to occur in the PAD from Peace River ice jams (further discussed in La-112

montagne et al., 2021). The large floods of interest tend to occur when winter snowpack113

is high in upstream tributary basins (high discharge potential) including the Smoky River,114

followed by a spring with rapid and sustained warming. These conditions along with high115

ice resistance in the PAD increase the likelihood of a dynamic, mechanical breakup of116

river ice that can form an ice jam along the Peace River whose impounded water could117
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eventually flood the PAD. Lamontagne et al. (2021) explored the predictive power of a118

variety of climatic and riverine proxy data that relate to these physical flooding processes.119

In particular, winter snowpack at Beverlodge and Grande Prairie in the Smoky Basin120

are used as proxies of discharge potential, and winter degree day freezing and thawing121

at Forts Vermilion, Chipewyan, and Smith are used as proxies for ice resistance and speed122

of the warming respectively. We also rely on these proxy data and explore their use in123

prediction with the historical and systematic records, as explained in Section 2.124

Since 1972, the Peace River has been partially regulated by the Bennett and Peace125

Canyon Dams that are located about 1200 km upstream (Fig. 1). While flow regulation126

does affect streamflow and hence stage at the time the Peace River freezes up in the fall127

and winter, Lamontagne et al. (2021) found that these freeze-up elevations have little128

to no predictive power for large ice jam flood occurrence in the systematic record after129

accounting for the effects of climatic factors.130

2 Exploratory Data Analysis131

We gathered candidate explanatory variables from several meteorological stations132

that are located across the Peace River Basin (Fig. 1). The two primary variables that133

were available for 1915-2020 were temperature and precipitation, from which we derived134

cumulative degree-days freezing (DDF), degree-days thaw (DDT) and snowpack vari-135

ables, as in Lamontagne et al. (2021) and Jasek et al. (2021). We focus on climatic con-136

ditions because Lamontagne et al. (2021) found that they have the best predictive skill137

for large ice jam floods in the systematic record (1962-2020), and historical (1915-1962)138

Peace River streamflow and freeze-up elevation data were not consistently available be-139

fore the 1960s.140

The locations of the derived variables aim to capture processes that lead to large141

ice jam flood generation in the PAD (Jasek, 2019a, 2019b; Jasek et al., 2021). Grande142

Prairie, Beaverlodge, and Fort Vermillion represent conditions upstream of the PAD, Fort143

Chipewyan represents conditions within the PAD, and Fort Smith represents conditions144

downstream of the PAD. We computed winter DDF at Fort Vermillion, Fort Chipewyan,145

and Fort Smith stations, and accumulated winter snowpack at Grande Prairie and Beaver-146

lodge stations during sustained DDF (i.e, snowpack was reset to 0 if DDF at Grande Prairie147

or Beaverlodge became negative, which would indicate melting conditions). As in Lamontagne148

et al. (2021), we created a complete precipitation record by using Beaverlodge data to149

fill in gaps in Grande Prairie data. One additional explanatory variable used in Lamontagne150

et al. (2021), called “melt test,” could be computed back to 1915 and describes how rapidly151

thaw occurs in the medium elevations of the watershed in spring. Lamontagne et al. (2021)152

computed the melt test as the number of days to go from 40 DDT to 150 DDT at Grande153

Prairie, where smaller values indicate more rapid warming. 40 DDT is sufficient to ini-154

tiate a dynamic break-up of ice on the Smoky River, and the remaining DDT sustains155

the high freshet flows on the Peace River to ultimately flood the PAD (Jasek, 2019c; La-156

montagne et al., 2021).157

Because these climate data are correlated, we applied a principal component anal-158

ysis (PCA) to arrive at a reduced set of uncorrelated PCs for exploratory visualization159

and for possible use in regression models. Before using PCA, all variables were normal-160

ized to have a mean of 0 and standard deviation of 1. The first 2 PCs explain about 96%161

of the variance from the DDF and snowpack variables (melt test was not included in the162

best model). The first PC explains about 81% of the variance and it represents mostly163

winter DDF (positive values are smaller DDF and more snowpack). The second PC ex-164

plains about 15% of the variance and it represents mostly snowpack (positive values are165

more snowpack and larger DDF).166
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Figure 1. The Peace River watershed with locations of the Peace Athabasca Delta (PAD) and

meteorological stations used for this analysis. The Williston Basin is the regulated portion of the

basin. Modified from (Lamontagne et al., 2021).
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Figure 2. Flood magnitudes shown on each of the principal component (PC) axes that were

used as predictor variables in the logistic regression. Only years from 1962-2020 have known mag-

nitude and occurrence. The directions of positive snowpack and degree-days freezing are shown

for reference.

Figure 2 plots the annual ice jam flood data for 1915-2020 on these PC1 and PC2167

axes. Large ice jam floods in the systematic record tend to occur in colder winters with168

more snowpack. For the historical record, there is overlap of recorded small, moderate,169

and unknown magnitude floods in the space occupied by the large floods in the system-170

atic record. There are also some years of the historical record with no recorded floods171

that occur in more extreme climatic conditions than large floods in the systematic record.172

These findings motivate testing a regression model that allows for historical data to have173

uncertain flood magnitudes and occurrences. A summary of the data used in this anal-174

ysis is provided in Table 1.175

3 Methods176

Considering uncertainty in a predicted variable (e.g., large ice jam flood occurrence)177

is commonly used in the epidemiology literature when medical diagnostic tests are ap-178
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Table 1. Summary of available flood data and climatic factors. GP: Grande Prairie, BL:

Beaverlodge, FC: Fort Chipewyan, FS: Fort Smith, FV: Fort Vermillion. Fort Smith does not

have data for three years, and four dam filling years are not used for modelling.

Raw Variables Interpreted or Derived Variables Coverage

Historical Floods 6 Large, 5 Moderate, 5 Small, 4 Unknown, 23 No Flood 1915 - 1962
Systematic Floods 7 Large, 45 Not Large 1962 - 2020
GP, BL Precipitation Snowpack 1915 - 2020
FC, FS, FV Temperature Degree-days freezing, melt test 1915 - 2020

plied in small sample sizes and inferences must be made about the reliability of the test179

outcomes (e.g., McInturff et al., 2004). To consider uncertainty in the historical flood180

record, we adapted a Bayesian framework presented in (McInturff et al., 2004) that al-181

lows us to consider flood magnitude and occurrence uncertainties within a logistic re-182

gression model that predicts the annual probability of a large ice jam flood as a func-183

tion of climatic variables and model parameters. Section 3.1 presents the standard lo-184

gistic regression model and our adapted format that allows for considering flood mag-185

nitude and occurrence uncertainties, and Section 3.2 presents the Bayesian framework186

that we used to estimate the joint posterior distribution of model parameters and the187

distribution of each annual large ice jam flood probability. These estimated parameters188

are used to estimate annual probabilities in projected climate scenarios to year 2100, as189

described in Section 3.3.190

3.1 Logistic Regression Model191

The standard logistic regression model describes the probability of a Bernoulli ran-192

dom variable, Z193

Zi ∼ Bernoulli(pi = Pr[Zi = 1|X = xi]) (1)

where pi is the probability that a large ice jam flood occurred, Zi = 1, given con-194

ditions, X, in the ith year. In other words, we allow the annual probability of a large ice195

jam flood to change from year to year based on climatic conditions (for more details on196

logistic regression applied to ice jam flood frequency analysis, see Lamontagne et al., 2021).197

To compute values of the annual probability on [0, 1], we employ the logistic function198

in equation 2199

pi = f(xi,β) =
exiβ

1 + exiβ
(2)

where β are the true model coefficients to be estimated from the data. This equa-200

tion may be linearized as shown in equation 3201

log (
pi

1− pi
) = xiβ = β0 + xi,1β1 + xi,2β2...xi,nβn (3)

where the left hand side is the logistic function, β0 is a constant, and xi,a and βa202

are the ath variables and model coefficients, respectively. The model coefficients and their203

statistical significance may be estimated using standard maximum likelihood approaches.204

As in Lamontagne et al. (2021), we maximize a penalized likelihood proposed by Firth205

–7–
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(1993) that reduces bias in the estimated β values when sample sizes are small, and pe-206

nalizes less with increasing sample size. The correction is equivalent to Jeffrey’s unin-207

formative prior (Gelman, 2009), so maximum likelihood estimation with this likelihood208

function provides a Bayesian posterior mode, and the estimator is known as the max-209

imum a posteriori (MAP) estimator. We used the R package logistf for Firth’s maximum210

likelihood estimation (Heinze et al., 2020).211

When the outcomes (e.g., large ice jam floods) are uncertain, we can adapt this re-212

gression framework with an additional random variable for the recorded outcome, Y213

Yi ∼ Bernoulli(qi = Pr[Yi = 1|X = xi]) (4)

where qi is the probability that a large ice jam flood was recorded given conditions,214

X, in the ith year. With this modification, additional model parameters are needed to215

estimate probability qi to account for the possibility that a recorded large flood may not216

have actually been large (a false positive), and that a year without a recorded large flood217

actually may have had a large flood (a false negative). The parameters used to do this218

are called sensitivity, η, and specificity, θ, as presented in equations 5 and 6, respectively219

η = Pr[Yi = 1|Zi = 1] (5)

θ = Pr[Yi = 0|Zi = 0]. (6)

Each of these conditional probabilities describe the probability that the historical220

record is correctly reporting when a large ice jam flood did or did not occur. From the221

law of total probability, the probability qi for the case of two flood categories (large and222

not large) is presented in equation 7223

qi = Pr[Yi = 1|X = xi]

= Pr[Yi = 1|Zi = 1]Pr[Zi = 1|xi] + Pr[Yi = 1|Zi = 0]Pr[Zi = 0|xi]

= η ∗ pi + (1− θ) ∗ (1− pi) (7)

where qi reduces to a function of the true (unknown) probability pi of a large ice224

jam flood that we are interested in estimating. When there is full confidence in the recorded225

data, η = 1 (always record a large flood when one occurs) and θ = 1 (always record226

that no large flood occurred when one does not occur), and qi = pi. Therefore, esti-227

mating the values of η and θ equates to estimating the fidelity of the historical record.228

We could stop here and estimate regression coefficients, sensitivity, and specificity229

while assuming that all years recorded as not having a flood in the historical record had230

the same data generating process (i.e., are represented by one value of θ). However, our231

historical record includes other flood magnitudes that are not large. So, our implemen-232

tation recognizes that the experts who labeled the flood data had additional informa-233

tion that provided those flood categories.234

To account for four “not large” categories, C, we decomposed θ into components235

labeled as θM , θS , θU , and θN for moderate, small, unknown, and no flood, respectively.236

The decomposition is provided in equation 8237

–8–
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θi = Pr[Yi = 0|Zi = 0]

= Pr[Yi = 0|Zi = 0, Ci = M ]Pr[Ci = M ]

+ Pr[Yi = 0|Zi = 0, Ci = S]Pr[Ci = S]

+ Pr[Yi = 0|Zi = 0, Ci = U ]Pr[Ci = U ]

+ Pr[Yi = 0|Zi = 0, Ci = N ]Pr[Ci = N ]

= θMPr[Ci = M ] + θSPr[Ci = S] + θUPr[Ci = U ] + θNPr[Ci = N ] (8)

where θi would be used in place of θ in equation 7 because each observation could238

have a different specificity according to its recorded flood category. Each of the θc val-239

ues can be read as the probability that a large flood was not recorded given that a large240

flood really did not occur and the recorded flood category was the value of Ci (moder-241

ate, small, unknown, or no flood). While we could have used a multinomial model that242

estimates the probability of each of these flood categories, Pr[Ci = c], we decided to243

estimate their values based on the recorded data. In doing so, we assume that the ex-244

perts who assigned the flood categories had full confidence that the assigned categories245

were not actually large floods, given the available historical information. When the recorded246

Yi = 0, then the probability Pr[Ci = c] is 1 for the recorded category and 0 for all other247

categories. When the recorded Yi = 1, then each Pr[Ci = c] is estimated as the pro-248

portion of each flood category when Yi = 0 (i.e., θ is estimated as a weighted average249

of θM , θS , θU , and θN ).250

With the formulation described above, we can estimate the true probabilities that251

we are interested in, pi, via estimating the probability of recording a large flood, qi. The252

likelihood equation to maximize is the standard likelihood for a Bernoulli distributed ran-253

dom variable shown in equation 9254

L (β, η,θC |X,Y ,C) =

N∏
i=1

[ηipi + (1− θi)(1− pi)]
yi [(1− ηi)pi + θi(1− pi)]

1−yi (9)

where the first bracketed term on the right applies when a large flood was recorded,255

and the second bracketed term applies when a large flood was not recorded. For our study,256

ηi = 1 and θi = 1 for the systematic record, ηi is a single parameter to be estimated257

for the historical record, and we use equation 8 to compute θi for each observation based258

on the vector of estimated parameters for each flood category, θC .259

In summary, the parameters to be estimated in the Bayesian logistic regression are260

the β coefficients for the regression model variables, the four θC specificity parameters261

for non-large flood categories in the historical record, and the η specificity parameter for262

recorded large floods in the historical record.263

3.2 Bayesian Framework264

Constructing a Bayesian framework involves defining the prior for each of the lo-265

gistic regression model coefficients and data uncertainty parameters in equation 9, and266

selecting a numerical integration solver to estimate the joint posterior distribution of model267

parameters. Defining Ω as the set of model parameters to be estimated, the posterior268

distribution of parameters may be written as shown in equation 10269

Pr[Ω|X,Y ,C] ∝ L (Ω|X,Y ,C)Pr[Ω] (10)

–9–
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where the likelihood can also be written as f(x|Ω) for fixed values of x and vari-270

able values of Ω.271

We tested several prior distribution shapes for the logistic regression model coef-272

ficients, β: 1) using a normal distribution with a mean of 0 and standard deviation of273

10, 2) using a normal distribution with mean equal to the estimated MAP values from274

the Firth logistic regression (Tab. 3), and 3) using a uniform distribution with a range275

of [-30, 30]. These priors provided similar results, so we decided to present results for276

normal distribution centered at 0.277

Assigning prior distribution shapes to the sensitivity and specificity parameters amounts278

to making assumptions about how likely it is that a recorded flood magnitude or occur-279

rence is accurate. Almost surely, each expert would come up with different distribution280

shapes to use for each of the flood categories, and could even use a different distribution281

for each year if support for a large flood varied from year to year. For demonstration pur-282

poses, in this paper we decided to use naive uniform priors for each of the flood categories283

to avoid unduly influencing the parameter values.284

For Markov Chain Monte Carlo (MCMC) estimation of the posterior distribution,285

we employed the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm with286

archive (z) and snooker update (s) adaptations (DREAMzs) (Laloy & Vrugt, 2012). We287

used seven independent chains and a sufficient number of steps in the chain to ensure288

convergence of the estimated posterior distribution, as evaluated by the Gelman-Rubin289

potential scale reduction factor (Gelman & Rubin, 1992). We evaluated autocorrelation290

of samples in each chain and selected a thinning rate that ensured essentially uncorre-291

lated samples. About 10% of the total iterations were used to adapt the transition prob-292

abilities used within the DREAM algorithm, and all of those iterations were not saved293

as part of the chains. Other DREAMzs hyperparameter settings used the recommended294

default settings in the BayesianTools R package (Hartig et al., 2017). A table of hyper-295

parameter values and MCMC diagnostic figures are provided in the supplement for each296

model.297

To estimate a distribution of possible annual large ice jam flood probabilities, we298

used the final 1001/7 samples from each chain to construct the posterior distribution of299

parameters. We used estimated β values to estimate the true probability of a large ice300

jam flood, pi, and used the η and θC values to estimate the probability of recording a301

large flood, qi. Samples of large floods, Zi, and recorded large floods, Yi, were then gen-302

erated using a Bernoulli distribution with those estimated probabilities.303

3.3 Projecting Large Ice Jam Flood Probability in Future Climates304

We employed the results from forcing 6 Global Climate Models (GCMs) (HadGEM2,305

ACCESS, CanESM, CCSM4, CNRM-CM5, and MPI-ESM-LR) with two Representa-306

tive Concentration Pathways (RCPs) (van Vuuren et al., 2011) to simulate future DDF307

and snowpack for our selected weather stations from 2020 - 2100. We used RCP4.5 and308

RCP8.5 to be consistent with the scenarios used in (Lamontagne et al., 2021). The pro-309

jected explanatory variables were computed from downscaled estimates of temperature310

and precipitation at each of our stations (Cannon et al., 2015; Werner & Cannon, 2016).311

The DDF and snowpack variables were then transformed into the PC axes and used with312

each of the posterior samples of β to estimate a distribution of annual probabilities of313

a large ice jam flood. For this study, we present 20-year averages in the predicted mean,314

25th, and 75th percentile of the projected annual large ice jam flood probability from 2020-315

2100. For brevity, we present results for 1 GCM and both RCPs, and the remaining GCM316

results are provided in the supplement.317
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3.4 Regression Model Selection318

We aim to demonstrate the impact of neglecting uncertainty in the historical data319

when estimating annual large ice jam flood probabilities. To accomplish this, we con-320

sider a baseline model for which the parameters are estimated using all available data321

while assuming that the historical record is correct. While we could solve for the full pos-322

terior distribution for each model, as described in Section 3.2, we are simply interested323

in which combination of climatic factors result in the most preferable baseline model.324

So, we instead compute the MAP estimates of the regression model coefficients in equa-325

tion 3 using maximum likelihood estimation. We compute the statistical significance of326

each coefficient, and compare model performance using the second-order corrected Akaike327

Information Criterion (AICc). The AICc is preferred over AIC for small sample sizes.328

We consider the model with the smallest AICc and most significant coefficients to be the329

baseline model structure. We refer to this model in tables and figures as“Historical Un-330

certainty Not Considered, Trained 1915-2020.”331

We compare the baseline model to three additional models. The first is a model332

that uses the same climatic variables but considers historical flood magnitude and oc-333

currence uncertainty. We refer to this model as“Historical Uncertainty Considered, Trained334

1915-2020.” The second also uses the same climatic variables but is trained using only335

the systematic record. We refer to this model as“Best Model with Ft. Smith, Trained336

1962-2020.” This label is used because Fort Smith had 3 fewer years of record than the337

other stations, so model training and performance metrics for all models were compared338

for only the years that all stations have in common. For PCA models with the 1962-2020339

data, we used the same normalization means and standard deviations as were used for340

the 1915-2020 data so that the resulting coefficients, β, assigned to the PCs are compa-341

rable to each other. The final model is the best model from Lamontagne et al. (2021),342

which is also trained on the systematic record and uses Fort Vermillion DDF and Grande343

Prairie / Beaverlodge snowpack as predictors. We refer to this model as“Lamontagne344

et al. Best Model, Trained 1962-2020.” Each of these models are solved using the Bayesian345

framework described in Section 3.2. Results for each of these models are compared for346

the full record from 1915 - 2020.347

4 Results348

Table 2 contains logistic regression model coefficients and the AICc for 2 and 3 ex-349

planatory variable models that were trained on 1915-2020 data while assuming no un-350

certainty in the historical flood record. As in Lamontagne et al. (2021), we find that the351

most significant single predictor is snowpack. Without using PCA, none of the DDF vari-352

ables are statistically significant at the 5% level in 2 or 3 parameter models, but they353

provide a competitive model according to the AICc. For the models that use PCs, the354

best model provides the lowest AICc and the most significant coefficients among the mod-355

els tested. This model uses the first 2 PCs from a PCA with GP/BL snowpack, and DDF356

from FC, FV, and FS stations.357

With the baseline model established, we estimated the parameters for each of the358

four models described in Section 3.4. The estimated MAP and 95% credible intervals359

(CIs) are provided for each regression model coefficient in Table 3. For the three PC mod-360

els, each of them show statistical significance from 0 at the 5% level, but the most cred-361

ible range is different for each model. There is a striking difference in CI width for the362

model that neglects uncertainty in the historical data and the other models’ CIs. This363

model thinks the historical data are certain, and so it has higher confidence in the es-364

timated parameter values. It is also biased towards lower coefficient values for PC1 and365

PC2 compared to the other PC models. The CIs for the model with uncertainty con-366

sidered are wider than the CIs for the best model with Ft. Smith, and they are also more367

extreme in absolute value. This indicates that considering uncertainty in the historical368
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Table 2. Logistic regression models for 1915-2020, assuming no uncertainty in the flood record.

Bold indicates statistical significance at the 5% level. GP/BL: Grande Prairie / Beaverlodge

Snowpack, FC: Fort Chipewyan DDF, FS: Fort Smith DDF, FV: Fort Vermillion DDF, MT: melt

test, PC: principal component, AICc: second-order corrected Akaike Information Criterion. The

first 2 or 3 PCs are used for models with PCs.

# Variables Models β̂0 β̂1 β̂2 β̂3 AICc

GP/BL + FV -2.43 1.34 -0.31 55
GP/BL + FC -2.49 1.27 -0.46 54.5

2 GP/BL + FS -2.40 1.42 -0.12 55.6
PCs from GP/BL, FC, FS, FV -2.45 0.70 1.15 54
PCs from GP/BL, FC, FS, FV, MT -2.24 0.68 0.11 60.7

GP/BL + FC + Interaction -2.40 1.26 -0.47 0.1 55.2
3 GP/BL + FC + MT -2.44 1.26 -0.39 -0.17 54.5

PCs from GP/BL, FC, FS, FV -2.43 0.70 1.11 -0.35 55.8
PCs from GP/BL, FC, FS, FV, MT -2.40 0.68 0.16 1.15 53.8

Table 3. Maximum a posteriori (MAP) model coefficients and 95% credible intervals (CI).

Model Coefficient MAP 95% CI

Historical Uncertainty Considered Intercept -3.18 [-8.27, -2.04]
Trained 1915-2020 PC1 1.98 [1.16, 5.46]

PC2 1.57 [0.47, 5.07]
Historical Uncertainty Not Considered Intercept -2.44 [-3.74, -1.79]

Trained 1915-2020 PC1 0.70 [0.31, 1.31]
PC2 1.12 [0.34, 2.32]

Best Model with Ft. Smith Intercept -3.11 [-7.19, -1.86]
Trained 1962-2020 PC1 1.74 [0.91, 4.15]

PC2 1.71 [0.36, 4.53]

Lamontagne et al. Best Model Intercept -4.7 [-10.95, -2.68]
Trained 1962-2020 DDFa -1.65 [-4.03, -0.49]

Snowpackb 2.31 [0.94, 5.69]

aFt. Vermillion degree-days freezing (DDF)
bGrande Prairie / Beaverlodge snowpack

record provided even more evidence in support of these parameters being predictive of369

large ice jam flood occurrence.370

4.1 Understanding the Model with Historical Uncertainty Considered371

The estimated marginal posterior distributions of the parameters for the model that372

considers historical data uncertainty are plotted in Figure 3. The distribution of the sen-373

sitivity parameter indicates a relatively small 25% probability that the recorded flood374

magnitude is large when a large flood actually occurred. The distributions of the speci-375

ficity parameter categories all indicate a relatively high probability that the recorded flood376

magnitude is not large when a large flood did not occur. The most certain of these is377

the years with no flood recorded, which should be expected. This is followed by years378

categorized as having a moderate flood, then years with recorded small floods, and fi-379

nally years with unknown magnitude floods. Years with a categorized moderate flood380

could have a lower probability of being large than years with a categorized small flood381
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Figure 3. Marginal posterior distributions for each of the parameters in the logistic regression

model that considered historical data uncertainty. The distributions from each of seven inde-

pendent MCMC chains are overlain, showing good convergence. This figure was made using the

bayesplot R package (Gabry & Mahr, 2018).

because the critical locations in the PAD that are used to assess moderate flood mag-382

nitudes are also the locations used to assess large floods (Timoney, 2009). In other words,383

the moderate labels could be expected to more certainly be moderate than the small la-384

bels, for which other unobserved factors could have resulted in the flood actually being385

large.386

To explain the sensitivity and specificity results, it can help to consider the con-387

fusion matrix. The confusion matrix consists of true positives (a large flood is recorded388

when a large flood occurred), true negatives (no flood is recorded when a large flood did389

not occur) as well as the false positives and negatives. A low sensitivity can occur due390

to few true positives or many false negatives (recorded non-large floods that were likely391

large) or a combination of both. Similarly, a low specificity can occur due to few true392

negatives or many false positives. In our case, we do not know if a large ice jam flood393
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Recorded Magnitude
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      Unknown

      No Flood

       Observed Data

        Inferred Mean

Figure 4. Annual average probability of an ice jam flood (IJF) provided as 50% (dark gray)

and 90% (light gray) prediction intervals. The observed known data are connected by a dark

blue line. The recorded uncertain historical data are plotted at the inferred mean value from the

model that considered historical data uncertainty and they are connected by a light blue line.

Point colors indicate the recorded flood magnitude.

truly did or did not occur, but for illustrative purposes we can estimate the sensitivity394

and specificity based on the estimated probability of a large ice jam flood.395

Figure 4 provides a visual assessment of the recorded flood categories and predicted396

true probabilities of a large ice jam flood. From this plot, we see that three of the recorded397

large ice jam floods were in years with very high probability of a large ice jam flood, one398

was in a year with a roughly 50-50 chance, and the other two were in years with low prob-399

ability. The expected number of true positives for these data would be about 3.5. For400

the false negatives, we see high estimated probability of a large ice jam flood for five years401

with no flood recorded, about three years with unknown magnitude floods recorded, and402

three years with small magnitude floods recorded. There is also one year with a recorded403

moderate flood with about a 50-50 chance of being large. The expected false negatives404

would be about 11.5. Therefore, the expected sensitivity would be 3.5/15 = 23%, which405

is very close to the mode of the estimated sensitivity parameter value in Figure 3.406

The sensitivity and specificity results so far suggest that more large ice jam floods407

are likely to have happened than were recorded in the historical record, based on the fit-408

ted model and historical climate. One way to further visualize this is to plot the differ-409

ence between the predicted probability of a large ice jam flood truly occurring, p̂i, and410

the the predicted probability of recording a large ice jam flood, q̂i. In Figure 5, we see411

that most of the differences are positive, which again supports that the record contains412

fewer large floods than our model estimates actually occurred.413

4.2 Hindcasting and Projecting Results414

Figure 6 shows the prediction intervals for each of the four models. For the histor-415

ical record, each model’s estimated large ice jam flood probability contains the inferred416

mean from the model that considers historical data uncertainty. Even though the inferred417

mean is not necessarily what truly occurred, it is a useful point of reference to compare418

models. Over the whole record, the model that ignores historical data uncertainty is con-419

sistently biased towards lower probability. Biased performance of this model in the sys-420

tematic time period is an indicator that the historical record likely had some misclas-421

sified flood magnitudes or occurrences. The Best Model with Ft. Smith trained from 1962-422
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Figure 5. Annual average probability of an ice jam flood (IJF) and recording an IJF, pro-

vided as 50% (dark green/blue) and 90% (light green/blue) prediction intervals.

2020 was consistently biased higher. The best model from Lamontagne et al. (2021) pro-423

vides similar estimates as the model that considers historical data uncertainty, even though424

it was trained with only the systematic record. Visually, each model has a similar pre-425

dicted trend in large ice jam flood probability over time.426

Figure 7 compares the prediction intervals for each of the GCM-RCP scenarios for427

each model. This figure plots probability in log space, so we also provide Table 4 with428

the interquartile ranges (IQRs) of the predictions at selected years to compare model re-429

sults. Except for the model that ignores historical data uncertainty, we see an overall430

decreasing trend in the probability of a large ice jam flood from 2020-2100, consistent431

with Lamontagne et al. (2021). The model that considers historical data uncertainty has432

the most precise IQRs among the models considered. It also estimates the smallest prob-433

ability of a large ice jam flood, which is in part due to the larger coefficient values es-434

timated for PC1 (mostly temperature) as compared to the other models. To further sup-435

port that point, Figure 8 provides the projected data on each of the PC axes. We see436

that projected climatic conditions explore a larger space in the PC domain than did the437

1915-2020 record, and that the primary change is an increase in the temperature. As PC1438

becomes more negative quicker than PC2 becomes more positive, the probability of a439

large ice jam flood decreases.440

For the model that neglects historical data uncertainty, the projected probability441

of a large ice jam flood is similar to the probability from 1915-2020. This results from442

estimating a smaller coefficient for PC1 and PC2 due to historical recorded large floods443

being located in warmer winter conditions (Fig. 2, Fig. 8). These years were less likely444

to have a large ice jam flood occur according to the model that considers historical data445

uncertainty.446

5 Discussion447

The recent past is a small sample of the climatic conditions that a region may ex-448

perience. For the PAD, the historical record contains nearly the same number of years449

as the systematic record, but the historical data are uncertain. We demonstrated that450

uncertain flood magnitudes and occurrences could be used to estimate annual probabil-451
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Figure 6. Centered 10-year average probability of an ice jam flood (IJF) provided as 50%

(dark gray) and 90% (light gray) prediction intervals. The observed 10-year average is in blue

and the 10-year average of the inferred mean from the model with historical uncertainty consid-

ered is in light blue.

Figure 7. Centered 20-year average probability of a large ice jam flood (IJF) using the

HadGEM2-ES GCM forced with RCP4.5 (blue) and RCP8.5 (green). Predictions are provided

as the 50% prediction intervals. Projections begin in 2020. The y-axis shows probability in

log-space, so a reduction by 1 tick mark corresponds to an order of magnitude reduction in prob-

ability.

–16–



manuscript submitted to Water Resources Research

Table 4. Interquartile ranges of large ice jam flood probability for projections in Figure 7

Model Projection 2020 2040 2060 2080

Historical Uncertainty Considered RCP4.5 3.4×10−2 6.3×10−3 1.0×10−2 3.0×10−3

Trained 1915-2020 RCP8.5 3.7×10−2 9.0×10−4 7.3×10−4 7.7×10−4

Historical Uncertainty Not Considered RCP4.5 5.1×10−2 6.5×10−2 1.1×10−1 9.5×10−2

Trained 1915-2020 RCP8.5 4.8×10−2 5.0×10−2 9.1×10−2 1.3×10−1

Best Model with Ft. Smith RCP4.5 3.7×10−2 1.4×10−2 1.9×10−2 8.1×10−3

Trained 1962-2020 RCP8.5 3.8×10−2 3.0×10−3 3.4×10−3 4.7×10−3

Lamontagne et al. Best Model RCP4.5 4.0×10−2 1.1×10−2 1.9×10−2 6.1×10−3

Trained 1962-2020 RCP8.5 4.2×10−2 2.6×10−3 2.3×10−3 3.6×10−3
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axes.
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ities of large ice jam floods in the PAD. An interesting question is whether such histor-452

ical information improved estimates of flood frequency. To answer that question, we can453

look to the bias and uncertainty variance of the estimated predictions. The climatic con-454

ditions in the historical time period overlap with the systematic time period and also in-455

clude years with more extreme DDF and snowpack, as well as several additional years456

with recorded large ice jam floods. Our model that considers uncertainty in the histor-457

ical record estimates that some of those large floods were likely truly large, and also es-458

timates that some of the non-large-flood years may have had a large flood. As a result,459

we see model coefficients increase in absolute value relative to models that were trained460

on only the systematic record. This result suggests that using only the systematic record461

may bias coefficients to be smaller as a result of not sampling a full set of representa-462

tive climatic conditions that lead to large ice jam flood generation in the PAD. As a re-463

sult of this bias in the coefficients, the projected annual probabilities of large ice jam floods464

are larger for models trained only with the systematic record. For example, the 25th quan-465

tile estimate in Figure 7 is a substantial one order of magnitude smaller for the model466

that considers historical data uncertainty. This result motivates using all available data467

in prediction models while appropriately handling uncertainty to better inform projec-468

tions under climatic conditions that could differ from recent history.469

Turning our discussion to assuming all available data are certain, we found that470

this results in a model that does worse in the systematic time period than the other three471

models (biased to lower annual probability of a large ice jam flood than was observed).472

While it is possible for any model to provide different predictions after new data are added,473

it is unlikely to see a drastic change in the model predictions like we observed when train-474

ing the same model structure on the systematic record. So, the modeling assumptions475

(uncertainties) must be examined to understand why the predictions may differ and if476

there is a problem with our models. For our study, uncertainties can arise from struc-477

tural assumptions (e.g., the linear combination of climatic factors being used as explana-478

tory variables), parametric uncertainty in the values of the estimated coefficients for each479

of the factors, and nonstationarity in the system’s response to the climatic factors (i.e.,480

a different effect of snowpack and DDF on large ice jam flood generation over time, as481

modeled by the logistic regression). In this study, we accounted for parametric uncer-482

tainty by sampling from the Bayesian-estimated posterior distribution of parameters to483

estimate a distribution of ice jam flood probability in each year. This is the Bayesian484

analog to the bootstrapping approach presented in Lamontagne et al. (2021). We accounted485

for structural uncertainty by comparing two different combinations of climatic factors486

for the systematic record, and both models provided similar probability estimates. We487

also compared the influence of prior for the regression model coefficients and found sim-488

ilar results (in supplementary information). Our logistic regression model does assume489

stationarity in the system’s response to the climatic factors; however, previous studies490

have argued that stationarity is an appropriate assumption for the PAD on the timescales491

that are being modeled (Beltaos, 2014; Lamontagne et al., 2021).492

Ruling out these key modeling assumptions as causes for different results when data493

uncertainty is ignored, we can turn to the climatic explanatory variables as possible sources494

of error. These variables are derived based on temperature and precipitation records. All495

meteorological stations have measurement errors, but these are typically small and are496

not likely to change much over the period of record, although more error for older data497

would be expected as technology has improved over time. So, data uncertainty in the498

historical record is left as the best possible explanation for the drastic difference between499

our models that do and do not consider data uncertainty. This result highlights the dan-500

ger of assuming all data are certain when it is known that data uncertainty exists.501

Our evaluation of structural uncertainty revealed that the best model structure can502

change after adding more data. This result suggests that the climatic factors that we con-503

sidered could vary in importance from year to year based on the processes that they af-504
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fect for the PAD (Jasek, 2019a, 2019b). Thus, the small 1962-2020 sample may not be505

representative of how these factors influence the generation of large ice jam floods over506

the long run. When structural uncertainty is a concern, several competing model struc-507

tures may be considered within a Bayesian framework using multi-model ensemble meth-508

ods, like Bayesian model averaging (e.g., Duan et al., 2007). For this particular study,509

the differences in predicted probabilities are small and have similar trends for the struc-510

tural models considered. Considering structural uncertainty in a formal way may not be511

necessary unless more precision is required (e.g., for risk estimation).512

When allowing for data uncertainty, a critical question is the validity of the result-513

ing predictions. For our model, we see that the predictions in the systematic record re-514

semble those of the models that were trained using only the systematic time period. As515

reported in Lamontagne et al. (2021), our models predict a climatic-driven decline in large516

ice jam flood probability in the 1970s, which continues to present day. We also see that517

models that were trained with only the systematic record show predicted trends in the518

historical period that are similar to those predicted by the model that considered his-519

torical data uncertainty. In tandem, these results provide confidence for each of the mod-520

els that we used, but how do the predicted trends in probability compare to paleolim-521

nological evidence that has been collected across the PAD?522

There are several instances in the historical time period for which our model es-523

timates a higher probability of a large ice jam flood than was recorded. Sediment core524

data from oxbow lakes in the PAD that are summarized by Wolfe et al. (2020, 2006) re-525

veal similar trends in likely flood events, particularly for lake PAD 15 magnetic suscep-526

tibilities before 1920, in the mid-1930s, and in the 1950s. Another lake that flooded more527

frequently, PAD 54, also reveals similar timing of flood events within the 5-yr uncertainty528

range suggested by (Wolfe et al., 2020). Although these are examples from just two lakes529

and additional lakes should be evaluated to support the concept of widespread flooding530

that is necessary for a large ice jam flood, this sediment core evidence provides support531

for our model results. Even so, it is important to note that these results are still prob-532

abilistic, and what is likely to have occurred based on our models and paleo evidence does533

not mean that it did occur. The comparison of statistical model results to in-situ data534

collected in the PAD should be further examined while considering the uncertainties present535

in both flood and paleo records (Wolfe et al., 2020). If warranted, paleo data can be in-536

tegrated into the flood frequency analysis as well (e.g., Harden et al., 2021).537

5.1 Limitations538

For model building, we rely on expert-interpreted flood magnitude and occurrence539

information. We group years with the same flood category together and, in doing so, we540

assume that the same information was available for each year in that category. It is in-541

stead possible that each year had different information available based on written records542

and proxy evidence (Timoney, 2009), which could mean that one year in a category could543

be more certain than others. The framework that we presented is general and can be mod-544

ified to have each individual year as their own category, at the expense of more param-545

eters in the model that describe the uncertainty attributed to each year. For such mod-546

els, a good rule of thumb is that the total number of parameters should be smaller than547

the total number of data points to avoid overfitting and to arrive at an explainable model.548

In supplementary material, we present model diagnostic results of a model that consid-549

ers a sensitivity and a specificity parameter for each year of the historical record. We550

find that the years with the most extreme climatic conditions have marginal distribu-551

tions that converge away from the uniform prior distribution, but other years still re-552

semble a uniform shape. This is likely a result of too many parameters to estimate a re-553

liable value for all individual years. However, it also suggests that if prior information554

were available for individual years, it could have high influence on the resulting model555
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(i.e., the posterior distribution for sensitivity or specificity in each year may not devi-556

ate much from the prior distribution when too many parameters are used).557

We do not explore the impact of the choice of prior distribution (uniform) for the558

sensitivity and specificity parameters in this study. Based on the converged values of sen-559

sitivity and specificity in Figure 3, our model was able to converge to a shape that is dif-560

ferent from uniform for each of the flood categories, and therefore the choice of using a561

uniform prior likely does not have much influence on the resulting posterior model co-562

efficients for the climatic factors. The choice of prior for sensitivity and specificity could563

be explored further in future work for which the uniform distribution could serve as a564

baseline model to which alternative beliefs about flood magnitude and occurrence un-565

certainty could be compared.566

6 Conclusions567

We presented a Bayesian logistic regression framework to account for uncertain-568

ties in historical flood magnitude and occurrence. We find that considering uncertainty569

in the historical record both reduces the minimum predicted probability of a large ice570

jam flood and narrows the uncertainty range in projected future climate conditions com-571

pared to neglecting the uncertainty or using only the systematic record. Therefore, our572

Bayesian framework allows for the use of a longer and less reliable record to obtain more573

precise estimates of ice jam flood probability.574

7 Open Research575

Version number v3.0.0 of the PAD IceJamFloods GitHub repository that was used576

for statistical modeling and figure generation is preserved at https://doi.org/10.5281/zenodo.7484504,577

and is available via the MIT License and developed openly at https://github.com/jds485/PAD IceJamFloods578

in the bayesian regression folder. This repository also contains the flood and climate data579

used in this study.580
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Introduction

Table S1 provides the hyperparameter values we used in the DREAMzs algorithm. Table

S2 provides interquartile ranges for all of the GCM and RCP scenarios for each of the

regression models.

Figures S1 to S19 provide MCMC diagnostics for each of the 4 models tested. Figure

S20 provides marginal distributions for a model that contains a sensitivity or specificity

parameter for each of the historical years of record, and Figures S21 to S25 provide ex-

ploratory data analysis plots with historical large, moderate, small, and no flood years

labeled to match the sensitivity and specificity numbers in Figure S20. Figure S26 pro-

vides the difference between the predicted probability of a large ice jam flood using the

model that does not consider historical data uncertainty, and the predicted probability of

recording a large ice jam flood using the model that does consider historical data uncer-

tainty. These values should be similar because the model that does not consider historical

data uncertainty is trying to match the historical data exactly as recorded. They may be

different because of the influence of the systematic record.

The flood records and derived climatic variables are provided in Dataset S1 for 1915-

2020. Datasets S2-S5 provide the downscaled climatic variables for our projected scenar-

ios. All of these datasets are also available in our GitHub repository.
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Dataset S1 File cleaned dataLMSAllYears.csv provides the interpreted flood record and

annual climatic variables for 1915-2020. Climatic variables: cumulative degree-days freez-

ing for Fort Chipewyan, Fort Vermillian, and Fort Smith; Melt test; Beaverlodge snow-

pack, and the derived Grande Prairie / Beaverlodge variable that we used. Flood record:

Flood (large floods), AllLM (all large or moderate floods), AllLMS (all large, moderate,

or small floods), and FloodMag (the recorded flood category).

Dataset S2 File GCM Temp Smith.csv provides Fort Smith annual cumulative degree-

days freezing estimates for the 12 GCM and RCP scenarios used in this study.

Dataset S3 File GCM Temp Verm.csv provides Fort Vermillion annual cumulative

degree-days freezing estimates for the 12 GCM and RCP scenarios used in this study.

Dataset S4 File GCM Temp Chip.csv provides Fort Chipewyan annual cumulative

degree-days freezing estimates for the 12 GCM and RCP scenarios used in this study.

Dataset S5 File GCM Precip.csv provides Grande Prairie annual snowpack estimates

for the 12 GCM and RCP scenarios used in this study.
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Table S1. Table of DREAMzs hyperparameters.
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Table S2. Table of interquartile ranges for each of the GCM and RCP scenarios for each of

the four regression models.
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Figure S1. Marginal distributions for parameters and likelihoods in the model with historical

data uncertainty considered. Int: beta0 constant (intercept), PC: beta1 and beta2 for principal

components, pLL: η probability of recording a large flood given that a large flood truly occurred,

pNN#: θM probability of recording no large flood given that a large flood truly did not occur

and moderate (M), small (S), unknown (U), or no flood (N) was the labeled category, LP: log

posterior, LL: log likelihood, LPr: log prior.
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Figure S2. Scatterplot matrix and marginal distributions for parameters in the model with

historical data uncertainty considered. Parameter names are the same as in Figure S1.
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Figure S3. Gelman-Rubin shrink reduction for parameters in the model with historical data

uncertainty considered. Parameter names are the same as in Figure S1.
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Figure S4. Gelman-Rubin shrink reduction for parameters in the model with historical data

uncertainty considered. Parameter names are the same as in Figure S1.
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Figure S5. Autocorrelation in the selected MCMC chain samples for parameters in the model

with historical data uncertainty considered. Parameter names are the same as in Figure S1.
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Figure S6. Marginal distributions for parameters and likelihoods in the model with no

historical data uncertainty considered. Parameter names are the same as in Figure S1.
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Figure S7. Scatterplot matrix and marginal distributions for parameters in the model with

no historical data uncertainty considered. Parameter names are the same as in Figure S1.
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Figure S8. Gelman-Rubin shrink reduction for parameters in the model with no historical

data uncertainty considered. Parameter names are the same as in Figure S1.
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Figure S9. Autocorrelation in the selected MCMC chain samples for parameters in the model

with no historical data uncertainty considered. Parameter names are the same as in Figure S1.
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Figure S10. Marginal distributions for parameters and likelihoods for the best model with

Fort Smith, trained on the 1962-2020 systematic record. Parameter names are the same as in

Figure S1.
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Figure S11. Scatterplot matrix and marginal distributions for parameters in the best model

with Fort Smith, trained on the 1962-2020 systematic record. Parameter names are the same as

in Figure S1.
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Figure S12. Gelman-Rubin shrink reduction for parameters in the best model with Fort

Smith, trained on the 1962-2020 systematic record. Parameter names are the same as in Figure

S1.
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Figure S13. Autocorrelation in the selected MCMC chain samples for parameters in the best

model with Fort Smith, trained on the 1962-2020 systematic record. Parameter names are the

same as in Figure S1.
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Figure S14. Marginal distributions for parameters and likelihoods for the Lamontagne et al.

best model, trained on the 1962-2020 systematic record. Parameter names are the same as in

Figure S1.
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Figure S15. Scatterplot matrix and marginal distributions for parameters in the Lamontagne

et al. best model, trained on the 1962-2020 systematic record. Parameter names are the same

as in Figure S1.
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Figure S16. Scatterplot matrix and marginal distributions for parameters in the Lamontagne

et al. best model, trained on the 1962-2020 systematic record using a multivariate normal prior

for logistic regression model coefficients with mean equal to the estimated MAP values from

Firth’s logistic regression. Parameter names are the same as in Figure S1.
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Figure S17. Scatterplot matrix and marginal distributions for parameters in the Lamontagne

et al. best model, trained on the 1962-2020 systematic record using uniform priors for logistic

regression model coefficients. Parameter names are the same as in Figure S1.
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Figure S18. Gelman-Rubin shrink reduction for parameters in the Lamontagne et al. best

model, trained on the 1962-2020 systematic record. Parameter names are the same as in Figure

S1.
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Figure S19. Autocorrelation in the selected MCMC chain samples for parameters in the

Lamontagne et al. best model, trained on the 1962-2020 systematic record. Parameter names

are the same as in Figure S1.
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Figure S20. Marginal distributions for parameters and likelihoods for a model with a sen-

sitivity or specificity parameter for each of the historical years of record. Parameter names are

the same as in Figure S1, and numbers in each of these names match the numbers in Figures

S21-S25.
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Figure S21. Flood magnitudes shown on each of the principal component (PC) axes that

were used as predictor variables in the logistic regression. The directions of positive snowpack

and degree-days freezing are shown for reference. Recorded large floods in the historical period

are labeled with numbers that match Figure S20.
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Figure S22. Flood magnitudes shown on each of the principal component (PC) axes that were

used as predictor variables in the logistic regression. The directions of positive snowpack and

degree-days freezing are shown for reference. Recorded moderate floods in the historical period

are labeled with numbers that match Figure S20.
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Figure S23. Flood magnitudes shown on each of the principal component (PC) axes that

were used as predictor variables in the logistic regression. The directions of positive snowpack

and degree-days freezing are shown for reference. Recorded small floods in the historical period

are labeled with numbers that match Figure S20.

December 26, 2022, 6:37pm



SMITH ET AL.: BAYESIAN HISTORICAL DATA UNCERTAINTY ICE JAM FLOODS X - 29

Figure S24. Flood magnitudes shown on each of the principal component (PC) axes that

were used as predictor variables in the logistic regression. The directions of positive snowpack

and degree-days freezing are shown for reference. Recorded unknown magnitude floods in the

historical record are labeled with numbers that match Figure S20.
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Figure S25. Flood magnitudes shown on each of the principal component (PC) axes that

were used as predictor variables in the logistic regression. The directions of positive snowpack

and degree-days freezing are shown for reference. Recorded years without floods in the historical

record are labeled with numbers that match Figure S20.
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Figure S26. Difference between the predicted probability of a large ice jam flood using

the model that does not consider historical data uncertainty, and the predicted probability of

recording a large ice jam flood using the model that does consider historical data uncertainty.

Significant positive differences occur only when p is close to 1, and q is unable to reach exactly

1 because because we use a single η parameter to describe all large floods.
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