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Abstract

Measurements of biophysical tree properties and hydrologic fluxes are necessary for improving models and monitoring the

impact of disturbances. Prior research has demonstrated that measurements of tree sway frequency can be used to quantify

important ecohydrologic processes, such as drought stress and snow interception, that otherwise require expensive measurement

techniques. However, existing instruments used to measure tree sway lack spatial scalability. We investigate whether the

virtual vision sensor and multilevel binary thresholding video processing algorithms can be used to accurately extract tree

sway frequency at multiple points in a video camera field of view and enable scalable measurements of ecohydrologic processes.

Comparing sway frequencies extracted from video and accelerometer data at two sites, we show that for 30-60 s videos, the

video processing algorithms can reproduce accelerometer sway frequencies with ±0.03 Hz accuracy. The results suggest that

video processing algorithms may be suitable for applications where changes in sway frequency are on the order of tenths of

hertz or larger, for example the measurement of snow in trees. Further work is needed to clarify the accuracy of the algorithms

when applied to longer videos, which may be required to monitor processes with more subtle changes in sway frequency, such

as diurnal changes in tree water content.
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Key Points: 16 

• Measurements of tree sway frequency, typically obtained from accelerometers, can be 17 
used to quantify important ecohydrologic processes. 18 

• Two video processing algorithms can measure tree sway with comparable accuracy to 19 
accelerometers while improving the spatial scalability. 20 

• For best results, long videos of trees with exposed portions of trunk and strong contrast 21 
with the background should be used for analysis.  22 



manuscript submitted to Water Resource Research 

 

Abstract 23 

Measurements of biophysical tree properties and hydrologic fluxes are necessary for improving 24 
models and monitoring the impact of disturbances. Prior research has demonstrated that 25 
measurements of tree sway frequency can be used to quantify important ecohydrologic 26 
processes, such as drought stress and snow interception, that otherwise require expensive 27 
measurement techniques. However, existing instruments used to measure tree sway lack spatial 28 
scalability. We investigate whether the virtual vision sensor and multilevel binary thresholding 29 
video processing algorithms can be used to accurately extract tree sway frequency at multiple 30 
points in a video camera field of view and enable scalable measurements of ecohydrologic 31 
processes. Comparing sway frequencies extracted from video and accelerometer data at two 32 
sites, we show that for 30-60 s videos, the video processing algorithms can reproduce 33 
accelerometer sway frequencies with ±0.03 Hz accuracy. The results suggest that video 34 
processing algorithms may be suitable for applications where changes in sway frequency are on 35 
the order of tenths of hertz or larger, for example the measurement of snow in trees. Further 36 
work is needed to clarify the accuracy of the algorithms when applied to longer videos, which 37 
may be required to monitor processes with more subtle changes in sway frequency, such as 38 
diurnal changes in tree water content. 39 

Plain Language Summary 40 

Wind causes trees to sway back and forth at a particular frequency, much like a pendulum. 41 
Measurements of the resultant tree sway frequency can be used to quantify changes in tree 42 
properties, such as mass and stiffness, that are related to tree-water interactions. Instruments 43 
commonly used to measure tree sway frequency can be difficult to install and only collect data 44 
for one point on a single tree. Therefore, it is challenging to measure the sway frequency of 45 
multiple trees. We show that two video processing techniques can be used to extract the sway 46 
frequency of multiple trees from videos recorded with inexpensive cameras. The findings 47 
suggest video processing techniques have the potential to simplify tree sway data collection, 48 
expand the number of trees monitored, and ultimately improve our understanding of how 49 
different trees are responding to various weather/climate events. 50 

1 Introduction 51 

Understanding the timing and magnitude of ecohydrologic processes, including 52 
evapotranspiration and precipitation interception, at tree and stand scales is critical for improving 53 
models (e.g., Lundquist et al., 2021) and monitoring the impact of disturbances such as drought 54 
(e.g., Clark et al., 2016). 55 

Despite its importance to modeling and monitoring efforts, measuring tree water status 56 
and precipitation interception across space and time is challenging. Existing measurement 57 
techniques exhibit tradeoffs between measurement type (point vs. aggregated), spatial 58 
resolution/scalability, and time resolution (episodic vs. continuous). In situ point measurements 59 
are often destructive (e.g., sap flow), lack spatial scalability (e.g., weighing a severed tree (Stork 60 
et al., 2002)), episodic (e.g., leaf water potential), and/or hampered by spatial variability (e.g., 61 
precipitation interception). Airborne remote sensing products have varying space and time 62 
resolutions that are often too coarse for examining tree scale processes. 63 

 64 
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In recent decades, measurements of natural tree sway frequency have been used to infer 65 
difficult-to-measure tree processes (e.g., Ciruzzi & Loheide II, 2019; Raleigh et al., 2022; Van 66 
Emmerick et al., 2017). When excited by the wind, trees are compelled into oscillatory motion. 67 
The resulting vibration has a dominant frequency defined as the natural frequency, henceforward 68 
referred to as the sway frequency. Trees can be modeled as a damped harmonic oscillator, and 69 
the sway frequency can be related to biophysical properties including mass and stiffness 70 
(Jackson et al., 2019). Observing changes in these biophysical properties over time enables the 71 
quantification of ecohydrologic processes. Previous studies have used tree sway to classify tree 72 
health (Baker, 1997), identify changes in phenology (Gougherty et al., 2018; Jaeger et al., 2022), 73 
monitor plant water content (Ciruzzi & Loheide II, 2019; Kooreman, 2013), detect precipitation 74 
interception events (Ciruzzi & Loheide II, 2021b; Raleigh et al., 2022; Van Emmerick et al., 75 
2017), and estimate changes in canopy mass (Raleigh et al., 2022; Selker et al., 2011). 76 

Accelerometers have become a popular tool for measuring tree sway given their low cost 77 
and performance in challenging environments (Jackson et al., 2021). Using an accelerometer to 78 
obtain a vibration signal with a high signal-to-noise ratio (SNR) typically requires placing the 79 
sensor several meters above the ground (Ciruzzi & Loheide II 2019; Raleigh et al., 2022; Van 80 
Emmerick et al., 2017). Thus, accelerometers can provide useful data for a small number of 81 
trees, but it can be expensive and dangerous to scale measurements to community or stand 82 
scales. 83 

Recent work has demonstrated the potential of using a video camera to simultaneously 84 
observe mechanical vibrations at different points in space associated with groups of pixels (Chen 85 
et al., 2017; Ferrer et al., 2013; Schumacher & Shariati, 2013; Wang et al., 2022). Videos encode 86 
changes in brightness across space and time for the entire camera field of view (FOV), 87 
effectively providing an array of motion sensors. Temporal variations in brightness correspond 88 
with local motion, presuming changes in lighting, changes to the visual properties of objects in 89 
the FOV, camera motion, and camera noise are all negligible. Vibration signals can be extracted 90 
from videos using Lagrangian or Eulerian frameworks. In the Langrangian framework, a feature 91 
is tracked across space and time. Despite demonstrated success measuring the motion of tree 92 
features (Wang et al., 2022), Lagrangian vibration analysis can only resolve pixel scale motion 93 
for individual features and suffers from issues such as target occlusion. In the Eulerian 94 
framework, the evolution of the brightness of a fixed pixel (or cluster of pixels) is analyzed over 95 
time, representing the movement of objects into and out of a region. Eulerian video processing 96 
methods can resolve sub-pixel motion across large spatial extents (Chen et al., 2017; Ferrer et al., 97 
2013; Schumacher & Shariati, 2013), showing promise for measuring sway frequency for 98 
multiple trees in a camera FOV. Here, we develop and demonstrate two simple Eulerian video 99 
processing algorithms, based on the methods of Schumacher and Shariati (2013) and Ferrer et al. 100 
(2013), that can be used to capture the frequencies of swaying trees and enable analysis of 101 
ecohydrologic processes over greater spatial extents. 102 

2 Materials and Methods 103 

2.1 Video and Accelerometer Datasets 104 

We compiled videos of swaying trees (input data) and co-located accelerometer data 105 
(validation data) from two existing studies. Video and accelerometer data collected by Ciruzzi 106 
and Loheide II (2019) for a red oak tree (Quercus rubra) in the Trout Lake Watershed in northern 107 
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Wisconsin were used for a simple single-tree validation. A video camera (Bushnell TrophyCam, 108 
30 fps, 1080p resolution, 45° FOV) was tilted upwards at a slightly oblique angle towards the 109 
target tree and fastened with straps to the base of an adjacent tree so camera motion could be 110 
assumed negligible. Five, 60 s videos were recorded over a two hour period on 15 August 2019. 111 
A 3-axis accelerometer (Gulf Coast Data Concepts 2g MEL-X2,16 Hz continuous sampling) was 112 
positioned beneath the main branching of the target tree at ~8 m (total tree height ~22 m).  113 

For multitree validation, we processed video and accelerometer data recorded by Bush 114 
(2022) at the Manitou Experimental Forest in Colorado (henceforward referred to as Manitou). 115 
Bush (2022) equipped six ponderosa pine trees (Pinus ponderosa, PIPO) with 3-axis 116 
accelerometers (Gulf Coast Data Concepts 2g MEL-X2,16 Hz continuous sampling) and 117 
mounted a GoPro camera (30 fps, 1080p resolution, 155° FOV) at the top of a nearby tower to 118 
capture the motion of the study trees. Accelerometers were mounted ~6-8 m above the ground 119 
(total tree height ~8-10 m). Videos were recorded every 15-30 min for 30 s between May and 120 
September 2020. We evaluated two of the metered trees. 121 

2.2 Video Data Processing 122 

We decomposed the video processing logic into three generalized steps: translating a 123 
video into vibration signals, estimating the power spectral density (PSD) of each signal, and 124 
aggregating the frequency content across all vibration spectra. Our analysis includes two adapted 125 
end-to-end algorithms: the virtual vision sensor (VVS) algorithm from Schumacher and Schariati 126 
(2013) and the multilevel binary thresholding (MBT) algorithm from Ferrer et al. (2013), which 127 
are illustrated in Figure 1 and detailed below. The algorithms differ primarily in how vibration 128 
signals are extracted from videos. In the VVS algorithm, pixel brightness time series are treated 129 
as vibration signals. Meanwhile, the MBT algorithm constructs vibration signals by counting the 130 
number of pixels in the region of interest (ROI) that are below a brightness threshold at each 131 
time step. 132 

2.2.1 Selecting a Region of Interest 133 

For all algorithms, regions of interest (ROIs) were manually selected following 134 
Schumacher and Shariati (2013) and Ferrer et al. (2013), who emphasize the importance of 135 
selecting areas of high contrast. To maximize brightness fluctuations and evaluate pixels most 136 
representative of the tree motion, we visually inspected the FOV for areas of exposed trunk with 137 
high-contrast backgrounds (e.g., the sky). The vertical range of the bounding box was chosen so 138 
it spanned the longest vertical portion of the exposed trunk with a high-contrast background. The 139 
horizontal range was chosen so it included one edge of the trunk, approximately equal parts of 140 
trunk and background at equilibrium, and enough background pixels to maintain a baseline 141 
signal for MBT when the trunk reaches its maximum displacement. ROIs high on the trunk, 142 
where larger sway displacements result in greater changes in pixel brightnesses, were preferred 143 
to ROIs lower on the trunk. When the trunk was difficult to identify, or the trunk sway was 144 
observed to be insignificant, ROIs on the crown with high contrast were evaluated. 145 

2.2.2 Virtual Vision Sensor 146 

The Virtual Vision Sensor (VVS) method introduced by Schumacher and Shariati (2013) 147 
treats each pixel as a “virtual vision sensor,” whose brightness time series captures the temporal 148 
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The PSD of each pixel in the ROI was estimated using the periodogram technique 157 
(Oppenheim & Schafer, 2010). For a given input signal, prior to computing the PSD, we 158 
removed any linear trend, subtracted the mean, applied the Hann windowing function to reduce 159 
spectral leakage, and zero padded the signal to 8x the nearest power of two for high-quality 160 
interpolation between frequency samples. Spectra from the Trout Lake videos had a frequency 161 
resolution of 0.016 Hz, while Manitou spectra had a frequency resolution of 0.033 Hz. The 162 
frequency resolution, given by the inverse of the video duration in seconds, equivalently 163 
describes the uncertainty in peak estimates and the magnitude of frequency fluctuations that can 164 
actually be resolved. As dictated by the Nyquist-Shannon sampling theorem, the spectra initially 165 
described frequency content from 0-15 Hz. To simplify peak selection and reduce the memory 166 
burden, we trimmed the PSDs to a range of plausible candidate frequencies: 0.15-0.5 Hz. 167 

Whereas Schumacher and Shariati (2013) analyzed individual pixels, we aggregated 168 
frequency content from a subset of pixels in the ROI using two methods: (1) the average 169 
spectrum and (2) the peak frequency histogram (Figure 1b). We defined the peak frequency of a 170 
spectrum to be the frequency of the local maximum with the greatest magnitude. For both 171 
aggregation techniques, we first masked any spectra corresponding to background pixels or 172 
vibration signals with low SNRs. In particular, we only considered spectra whose frequency peak 173 
prominence, the vertical distance between the frequency peak and its lowest contour line, was 174 
above the 75th percentile of all peak prominences in the ROI. For the first aggregation technique, 175 
we computed the unweighted average of the pixel spectra and determined the peak frequency of 176 
the resulting spectrum. Compared to the raw pixel spectra, which each have 2 degrees of 177 
freedom, the average spectrum typically had over 50 degrees of freedom (greater statistical 178 
quality). For the second method, we found the peak frequency of each vibration spectrum and 179 
then counted the number of times each peak frequency occurred, building a histogram for spectra 180 
peak frequencies, where each bin represents a frequency in the PSD. The mode peak frequency 181 
was chosen as the dominant sway frequency for the ROI. Because the VVS spectra were 182 
associated with spatial coordinates, the peak frequencies were also used to create a heat map 183 
(Fig. 1b) to assess the spatial distribution of peak frequencies. 184 

2.2.3 Multilevel Binary Thresholding 185 

The multilevel binary thresholding (MBT) scheme developed by Ferrer et al. (2013) 186 
generates vibration signals by counting the number of pixels in the ROI whose grayscale 187 
brightness is below a particular threshold at each time step (Figure 1a). Each threshold emits one 188 
vibration signal, so multiple vibration signals are generated using a suite of thresholds. The 189 
resultant signals represent how much an object of a particular brightness occupies the ROI at 190 
each time step. MBT is predicated upon the motion of some high-contrast boundary. Therefore, 191 
unlike VVS, MBT requires a distinct boundary between the vibrating object and the 192 
background.  193 

We generated eight vibration signals using MBT video to vibration translation with eight 194 
thresholds evenly spaced between the minimum and maximum brightness in the ROI across all 195 
frames. Vibration spectra were computed in the same manner described for VVS. We aggregated 196 
the resultant spectra by finding the peak frequency of the average spectrum (Figure 1b). All 197 
spectra were included in the average. 198 
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2.3 Accelerometer Data Processing 199 

The aggregated spectra and sway frequencies generated by each video processing 200 
algorithm were compared against spectra and sway frequencies extracted from two lengths of 201 
accelerometer data. First, a short segment of accelerometer data with the same start time and 202 
duration as the video was used to assess accuracy. Here, the accelerometer PSD was generated 203 
by averaging the spectra of the two horizontal axes, which were computed using the same 204 
periodogram method and parameters applied to the video vibration signals. The resultant PSD 205 
had four degrees of freedom and the same frequency resolution as the video. Second, a 30-min 206 
accelerometer segment centered on the video start time was used to compare the video 207 
processing output to sway frequencies with greater statistical quality (i.e., more degrees of 208 
freedom and a higher frequency resolution), analogous to those used in practice. As before, the 209 
spectra from the two horizontal accelerometer axes were averaged together. This time, however, 210 
the PSD of each horizontal axis was estimated using Welch's method (Welch, 1967), with 50% 211 
overlapping 5-min segments, to reduce the output spectrum noise. The PSD of each segment was 212 
computed using the same method and parameters applied to the video vibration signals. The 30-213 
min accelerometer spectra had a frequency resolution of 0.003 Hz and approximately 44 degrees 214 
of freedom. 215 

2.4 Video Processing Validation 216 

We validated the video processing methods using five videos from the Trout Lake dataset 217 
and three videos from the Manitou dataset. For the Trout Lake dataset, we focused our analysis 218 
on a 30x30 pixel ROI spanning the sky-trunk boundary and applied three video processing 219 
methods: VVS with average spectrum aggregation, VVS with modal aggregation of spectral 220 
peaks, and MBT with average spectrum aggregation. For the Manitou dataset, we extracted sway 221 
frequencies for two target trees, Tree 1 and Tree 2, using 30x80 and 70x175 pixel ROIs, 222 
respectively. Since ROIs enclosing the target trees included mostly crown features that lacked 223 
distinct boundaries, we only applied the two VVS video processing methods. For all video and 224 
accelerometer data, we assumed tree sway did not change substantially over a 30-min interval. 225 
However, this assumption is invalid during events (e.g,  precipitation interception/unloading) 226 
when tree mass can change substantially in less than 30 min. 227 

3 Results 228 

Sway frequencies extracted from video and accelerometer data for both sites are 229 
compiled in Table 1. Values have been rounded to two decimal places to be consistent with the 230 
frequency resolution associated with the video data of each site. Across all trials and video 231 
processing methods, the median and maximum observed differences between video and short-232 
segment accelerometer sway frequencies were 0.03 Hz and 0.26 Hz, respectively. Meanwhile, 233 
the median and maximum observed differences between video and 30-min accelerometer sway 234 
frequencies were 0.00 Hz and 0.02 Hz, respectively. 235 

3.1 Single Tree Validation - Trout Lake 236 

For the Trout Lake dataset, the maximum differences between video and 30-min 237 
accelerometer sway frequencies was 0.02 Hz. Meanwhile, the maximum differences between 238 
video and 60-s accelerometer sway frequencies was 0.26 Hz. Even when the accelerometer 239 
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signals yielded spectra with no obvious dominant peak (e.g. the 60 s spectrum in Figure 3e), the 240 
video processing methods yielded spectra with a distinct peak. 241 
 242 

Video identification Video processing peak frequency (Hz) Accelerometer peak frequency (Hz) 
Video ID Video timestamp (local 

time) 
VVS 

average 
spectrum 

VVS 
frequency 
histogram 

MBT 
average 

spectrum 

Short 
accelerometer 

segement 
(same length as 

video) 

Long 
accelerometer 

segment 
(30 min) 

Trout Lake (60 s videos) 
Trout-A 2019-8-15 17:07:18 0.21 0.21 0.21 0.26 0.23 
Trout-B 2019-8-15 17:30:01 0.24 0.23 0.25 0.29 0.25 
Trout-C 2019-08-15 17:32:34 0.23 0.24 0.23 0.49 0.24 
Trout-D 2019-08-15 18:00:01 0.24 0.24 0.24 0.31 0.24 
Trout-E 2019-08-15 18:09:06 0.24 0.24 0.24 0.23 0.24 

Manitou, Tree 1 (30 s videos) 
Manitou-A1 2020-08-15 12:06:00 0.29 0.29 - 0.29 0.29 
Manitou-B1 2020-08-20 17:28:00 0.30 0.30 - 0.27 0.29 
Manitou-C1 2020-08-31 11:50:00 0.30 0.31 - 0.29 0.30 

Manitou, Tree 2 (30 s videos) 
Manitou-A2 2020-08-15 12:06:00 0.38 0.39 - 0.37 0.37 
Manitou-B2 2020-08-20 17:28:00 0.37 0.37 - 0.39 0.38 
Manitou-C2 2020-08-31 11:50:00 0.38 0.38 - 0.37 0.38 

Table 1. Video and Accelerometer Sway Frequency by Site and Tree 243 

Considering video sample Trout-D as an example (Figure 2), the VVS peak frequency 244 
heat maps show that pixels with relatively prominent frequency peaks were concentrated around 245 
the trunk-sky boundary. Masking removed the pixels that overlapped with the sky and regions of 246 
the trunk with poor contrast. The VVS average spectrum, VVS frequency distribution, and MBT 247 
average spectrum all yielded the same peak frequency of 0.24 Hz. The 60-s and 30-min 248 
accelerometer segments yielded sway frequencies of 0.31 Hz and 0.24 Hz, respectively. 249 

3.2 Multitree Validation – Manitou 250 

For the Manitou dataset, we examined video output for a stand of trees, as illustrated for 251 
the Manitou-B video sample (Figure 3). Sway frequencies extracted for Tree 1 and Tree 2 252 
(marked in Figure 3) from three video samples differed from accelerometer sway frequencies on 253 
the order of hundredths of Hertz. The maximum difference between video and 30-s 254 
accelerometer sway frequencies for Tree 1 and Tree 2 were 0.03 Hz and 0.02 Hz, respectively. 255 
The maximum difference between video and 30-min accelerometer sway frequencies for Tree 1 256 
and Tree 2 were 0.01 Hz and 0.02 Hz, respectively. Unmetered trees adjacent to the target trees 257 
were observed to have distinct sway frequencies (Figure 3b). 258 
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extraction of spurious sway frequencies (e.g. Trout-C). Poor accelerometer SNRs may have been 285 
due to insufficient wind forcing, chaotic motion before the natural sway oscillation, or the trees’s 286 
broadleaf canopy architecture (Jackson et al., 2019). Despite weak accelerometer signals, the 287 
video processing methods were still able to generate spectra with prominent peaks, highlighting 288 
the benefit of spatial aggregation. For the Manitou dataset, the maximum error (0.03 Hz) 289 
between video and 30-s accelerometer sway frequencies can be partially explained by the 290 
frequency resolution. However, the video vibration signals also tended to be noisier and were 291 
likely impacted by differences in ROI and accelerometer positions, branch interference, and 292 
camera motion. 293 

All three video processing algorithms performed similarly, despite constructing and/or 294 
aggregating vibration signals differently. However, each algorithm has practical tradeoffs that 295 
make it better suited for certain applications. For general use, we recommend using VVS with 296 
average spectrum aggregation. Unlike MBT, VVS can be used to generate a frequency heat map 297 
and resolve frequencies from ROIs with no distinct boundary motion (e.g., the tree crowns at 298 
Manitou). Additionally, the average spectrum aggregation yields a PSD that is more statistically 299 
robust (more degrees of freedom). The MBT method may be preferable when computational 300 
resources are a concern, the ROI has a distinct boundary (e.g., Trout Lake), and/or there are 301 
significant lighting changes in the video. 302 

4.2 Ecohydrology Capabilities and Limitations 303 

The applicability of the video processing methods to ecohydrologic studies depends on 304 
the expected magnitude of sway frequency changes and the length of videos that can be 305 
recorded. The existing videos were limited to 30 s and 60 s segments, which meant we could 306 
only achieve frequency resolutions of 0.033 Hz and 0.016 Hz, respectively. We used zero-307 
padding to interpolate to a finer resolution and improve our peak estimates, but we were unable 308 
to reliably measure frequency with 0.01 Hz precision. The results indicate that using the video 309 
processing algorithms with 30-60 s videos provides enough accuracy to resolve changes in sway 310 
frequency on the order of 0.1 Hz. For some trees, this is sufficient for observing drought stress 311 
(Ciruzzi & Loheide II, 2019), estimating the timing of major phenological changes (Jaeger et al., 312 
2022), and quantifying the timing and magnitude of snow interception (Raleigh et al., 2022). 313 
Currently, few methods exist to observe these processes at the stand scale (e.g., Friesen et al., 314 
2014). To observe changes in sway frequency an order of magnitude smaller, longer videos are 315 
needed (discussed more below). This may be necessary, for example, to characterize diurnal 316 
variations in tree water content (Ciruzzi & Loheide II, 2019), phenology changes (Gougherty et 317 
al., 2018), and rain interception (Van Emmerick et al., 2017). 318 

Results from the Manitou dataset suggest the video processing methods scale well to 319 
multiple trees and provide a spatial advantage over accelerometers. For example, in Figure 3b, 320 
we can observe that Tree 1 has a lower sway frequency than its neighbors. The identification of 321 
distinct sway frequencies in the adjacent unmetered trees coupled with the accuracy of extracted 322 
sway frequencies demonstrates the promise of using videos to measure sway frequency across a 323 
stand. However, the video processing methods have several tradeoffs. First, visible light video 324 
data is only useful during daylight hours and in clear conditions (e.g., no fog). Second, given the 325 
memory limitations of collecting video data, obtaining sway frequency measurements with high 326 
temporal resolution requires considerable storage and/or real time processing. Third, when no 327 
suitable trunk ROI is available, it can be difficult to disentangle crown signals and interpret the 328 



manuscript submitted to Water Resource Research 

 

output frequency. Accelerometers may be preferable when measurement accuracy and density 329 
are a priority.  330 

4.3 Deployment Considerations 331 

The capacity to extract meaningful sway frequency values from video data depends 332 
heavily on how the video data are collected. Simultaneously, field site constraints and the 333 
memory burden associated with video data impose considerable practical limitations. To reduce 334 
the storage and processing overhead while preserving the desired signal processing properties, 335 
special care must be taken when choosing the video parameters, camera position, and target 336 
tree(s).  337 

To reliably measure frequency with 0.01 Hz precision, which is needed for many tree 338 
sway applications, videos need to be at least 100 s long. However, we recommend recording 10-339 
min videos to improve the SNR and enable use of more robust spectral methods (e.g., Welch’s 340 
method). For studies requiring fine temporal resolution over long periods of time, 10-min videos 341 
may result in hundreds of gigabytes of data. When memory is a constraint, we recommend 342 
prioritizing video length over video quantity. In most cases, the memory burden can also be 343 
reduced by choosing a sufficiently small framerate, recording in grayscale, and eliminating 344 
audio. Following the Shannon-Nyquist sampling theorem, we advise choosing a minimum 345 
framerate around 8-10 fps. 346 

Frame resolution, lens type, distance between the camera and target trees, and tree 347 
features control the size of observed sway and corresponding signal strength. We suggest placing 348 
the camera as close to the target trees as possible and using the largest frame resolution that 349 
memory constraints allow, after first prioritizing frequency resolution and collection interval. It 350 
is unclear how the lens FOV angle affects sway measurements. Therefore, we encourage 351 
avoiding wide-angle lenses. We suggest positioning the camera so contrast between the sky and 352 
trees is maximized. When the camera is at a high point looking down (e.g., at Manitou) and/or 353 
when there is a dense forest canopy, it can be difficult to identify individual trees and choose 354 
ROIs with suitable contrast. We recommend limiting video processing analysis to tall, slender 355 
trees that are well represented by the cantilever beam model and whose trunk sway dominates 356 
branch sway (Jackson et al., 2019). We also recommend choosing trees with significant portions 357 
of unobstructed trunk. Unlike sway signals from the crown, sway signals from the trunk-358 
background boundary are straightforward to interpret and usually less noisy. 359 

4.4 Directions for Future Work 360 

Future work should apply the video processing methods to longer videos to determine 361 
how well they can measure small changes in sway frequency. Further analysis, particularly of 362 
video time series over large time scales (weeks, months), is needed to clarify when and where 363 
video processing can infer tree properties. Future work could begin by comparing sway 364 
frequency time series extracted from video and accelerometer data when there are large expected 365 
changes in sway frequency (e.g., snow interception, leaf drop). Another major advantage of 366 
video analysis is the ability to measure sway frequencies of individual branches independent of 367 
the main stem, but more work is needed to quantify when and where this is possible. 368 
Experimentation with different camera systems could also be studied. Cameras recording at the 369 
near infrared may provide high-contrast ROIs through use of the Normalized Difference 370 
Vegetation Index (NDVI). Joint camera-accelerometer systems could be developed to leverage 371 
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the advantages of both sensors. Significant improvements in the processing algorithm are also 372 
likely to improve the frequency resolution and refine the aggregation across pixels in a tree. 373 

5 Conclusions 374 

We demonstrate that using 30-60s videos, VVS and MBT Eulerian video processing 375 
algorithms can measure tree sway frequency to within approximately 0.03 Hz of accelerometer 376 
sway frequencies at multiple points in a camera field of view. The results indicate video 377 
processing can be used to collect tree sway data over greater spatial extents, improving upon a 378 
key limitation of accelerometers. Our analysis suggests that when applied to 30-60 s videos, the 379 
technology is suitable for detecting changes in sway frequency on the order of 0.1 Hz, which is 380 
sufficient to resolve changes due to snow interception and phenology variations but not diurnal 381 
drought stress, as based on currently published values (Raleigh et al., 2022; Jaeger et al, 2022; 382 
Ciruzzi & Loheide II, 2019). For best results, we recommend recording long videos (~10 min), 383 
choosing trees with unobstructed segments of trunk, and positioning the camera so contrast 384 
between the trunk and background is maximized. Further applications in the field should test the 385 
extent and effectiveness of video processing to infer tree properties. 386 
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