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Abstract

Methane dynamics within salt marshes are complex because vegetation types, temperature, oscillating water levels, and changes

in salinity and redox conditions influence CH4 production and emission. These non-linear and complex interactions among

variables affect the traditionally expected functional relationships and present challenges for interpretation and developing

process-based models. We employ empirical dynamic modeling (EDM) and convergent cross mapping (CCM) as a novel approach

for characterizing seasonal/multiday and diurnal CH4 dynamics by identifying causal variables, lags, and interconnections

among multiple biophysical variables within a temperate salt marsh using five years of eddy covariance data. EDM/CCM is

a nonparametric approach capable of quantifying the coupling between variables while determining time scales where variable

interactions are most relevant. We found that gross primary productivity, tidal creek dissolved oxygen, and temperature were

important for seasonal/multiday dynamics (rho=0.73-0.80), while water level was most important for diurnal dynamics during

both the growing and dormancy phenoperiods (rho=0.72 and 0.56, respectively). Lags for top causal variables (gross primary

productivity, tidal creek dissolved oxygen, temperature, water level) occurred between 1-5 weeks at the seasonal scale and

1-24 hours at the diurnal scale. The EDM had high prediction capabilities for intra-/inter-seasonal patterns and annual CH4

sums but with limitations to represent large infrequent fluxes. Results highlight the importance of non-linearity, causal drivers,

lag times, and interconnections among multiple biophysical variables that regulate CH4 fluxes in tidal wetlands. This study

presents a new dimension for analyzing CH4 fluxes, which will prove helpful to test current paradigms in wetlands and other

ecosystems.
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Abstract 17 

Methane dynamics within salt marshes are complex because vegetation types, temperature, oscillating 18 

water levels, and changes in salinity and redox conditions influence CH4 production and emission. These 19 

non-linear and complex interactions among variables affect the traditionally expected functional 20 

relationships and present challenges for interpretation and developing process-based models. We employ 21 

empirical dynamic modeling (EDM) and convergent cross mapping (CCM) as a novel approach for 22 

characterizing seasonal/multiday and diurnal CH4 dynamics by identifying causal variables, lags, and 23 

interconnections among multiple biophysical variables within a temperate salt marsh using five years of 24 

eddy covariance data. EDM/CCM is a nonparametric approach capable of quantifying the coupling 25 

between variables while determining time scales where variable interactions are most relevant. We found 26 

that gross primary productivity, tidal creek dissolved oxygen, and temperature were important for 27 

seasonal/multiday dynamics (rho=0.73-0.80), while water level was most important for diurnal dynamics 28 

during both the growing and dormancy phenoperiods (rho=0.72 and 0.56, respectively). Lags for top 29 

causal variables (gross primary productivity, tidal creek dissolved oxygen, temperature, water level) 30 

occurred between 1-5 weeks at the seasonal scale and 1-24 hours at the diurnal scale. The EDM had high 31 

prediction capabilities for intra-/inter-seasonal patterns and annual CH4  sums but with limitations to 32 

represent large infrequent fluxes. Results highlight the importance of non-linearity, causal drivers, lag 33 

times, and interconnections among multiple biophysical variables that regulate CH4 fluxes in tidal 34 

wetlands. This study presents a new dimension for analyzing CH4 fluxes, which will prove helpful to test 35 

current paradigms in wetlands and other ecosystems. 36 

 37 

Keywords: Methane flux, Saltmarsh, Nonlinear dynamics, Methane prediction, Empirical dynamic 38 

modeling, Tidal wetland 39 
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Plain Language Summary 41 

The movement of methane gas in salt marshes is complex and influenced by various factors such 42 

as plant types, temperature, water level, and changes in water salinity and oxygen levels. These 43 

factors interact in intricate ways, making it difficult to predict the outcome of methane 44 

production and movement. We applied a new method of studying methane dynamics using 45 

Empirical Dynamic Modeling (EDM) and Convergent Cross Mapping (CCM). After analyzing 46 

five years of ecosystem-scale measurements of methane fluxes, we show that the amount of 47 

oxygen in the water, the temperature, and the amount of light received by plants are crucial for 48 

understanding regulating methane fluxes within days and across seasons. The interconnections 49 

among these variables are complex, and methane fluxes may have delayed responses, which 50 

highlight the importance of these interactions. This research improves our comprehension of how 51 

environmental factors interact to affect methane fluxes in wetlands. 52 

  53 
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Key points 54 

- Methane dynamics in salt marshes are complex and influenced by multiple variables. 55 

- Empirical dynamic modeling (EDM) and convergent cross mapping (CCM) are novel 56 

approaches to characterizing CH4 dynamics. 57 

- Results highlight non-linearity, causal drivers, lag times, and interconnections among multiple 58 

biophysical variables for CH4 dynamics. 59 

  60 
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1. Introduction 61 

Methane (CH4) is the second most potent greenhouse gas and a crucial atmospheric trace gas with 62 

a warming potential 25-38 times greater than carbon dioxide (CO2) (Wuebbles and Hayhoe 2002, 63 

Bridgham et al. 2013, Neubauer and Megonigal 2019). Following a largely unreconciled plateau during a 64 

stabilized phase from 2000-2006, there has been a steady global rise, with wetlands likely responsible for 65 

most natural contributions (Jackson et al. 2020). While there is evidence that this increase is the result of 66 

both anthropogenic and biogenic emissions (Stavert et al. 2022), there is no easy mitigation option for 67 

biogenic sources, and climate change could increase these emissions resulting in positive feedback for the 68 

global carbon cycle (Dean et al. 2018, Zhang et al. 2017). This is especially important for coastal 69 

wetlands where warming and sea level rise are expected to impact CH4 fluxes directly through changes in 70 

microbial metabolism (Yvon-Durocher et al. 2014), and indirectly from effects on co-dependent factors 71 

such as plant productivity (GPP) and sediment redox conditions (Strom et al. 2015, Liu et al. 2019, 72 

Seyfferth et al. 2020). 73 

Mechanisms driving CH4 fluxes are complex within coastal wetlands with many potential 74 

regulators (Huertas et al. 2019, Vázquez-Lule and Vargas 2021). Water level and waterlogged conditions 75 

have been identified as a substantial control for methanogenesis (Li 2007), but these ecosystems have 76 

been considered low CH4 emitters despite prevailing anoxic conditions (Conrad 2020, Bartlett et al. 1987, 77 

Wang, Zeng and Patrick 1996, Borges and Abril 2011). This paradigm relies on the idea that acetoclastic 78 

or hydrogenotrophic methanogenesis are the dominant biogeochemical pathways and prevailing sulfate-79 

reducing bacteria outcompete methanogens (Poffenbarger, Needelman, and Megonigal 2011). However, 80 

new evidence indicates coastal wetlands could have high CH4 fluxes where other biogeochemical 81 

pathways, such as methylotrophic methanogenesis, play essential roles (Al-Haj and Fulweiler 2020, 82 

Seyfferth et al. 2020, Conrad 2020). In addition, it has been recognized that multiple environmental 83 

factors (e.g., water level, temperature, GPP, salinity) regulate CH4 fluxes at different temporal scales with 84 

potential nonlinear interactions (Huertas et al. 2019, Reid et al. 2013, Li et al. 2018). Consequently, it is 85 
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imperative that we accurately understand how biophysical controls regulate CH4 fluxes in coastal 86 

wetlands to better understand ecosystem response to environmental change. 87 

Our past knowledge of CH4 dynamics in tidal wetlands has vastly relied on chamber-based 88 

manual measurements. This information has influenced the development of most functional relationships 89 

(e.g., salinity thresholds or temperature dependency) and, subsequently their incorporation into models 90 

used to predict CH4 fluxes. However, chambers often face logistical challenges and are sporadic in time 91 

and space, restricting our understanding by delivering limited or incomplete information (Hill and Vargas 92 

2022, Kim 2007, Yang et al. 2021). Technological advances have allowed us to collect higher frequency 93 

CH4 fluxes at the ecosystem scale using the eddy covariance technique (EC) (Morin 2019, Baldocchi 94 

2003). This data can be leveraged to explore relationships in greater detail, providing a wealth of 95 

information regarding the dynamics of driving mechanisms. Previous studies have analyzed how 96 

biophysical variables regulate ecosystem-scale CH4 fluxes in salt marshes (Vázquez-Lule and Vargas 97 

2021, Hill and Vargas 2022, Huertas et al. 2019, Li et al. 2018, Reid et al. 2013). Other studies outside 98 

salt marshes have used machine learning techniques (Rey-Sanchez et al. 2018, Zaki and Abdul-Aziz 99 

2022) or time series analysis and information theory to identify the dominant controls of ecosystem-scale 100 

CH4 fluxes (Knox et al. 2021, Sturtevant et al. 2016). Together, these studies provide insights into the 101 

complex mechanisms and hint that nonlinear dynamics may be more relevant for explaining ecosystem-102 

scale CH4 fluxes. Therefore, there is a need to identify potential lags, interactions, and interconnections to 103 

provide insights about causality and biogeochemical mechanisms controlling CH4 fluxes across wetland 104 

types.  105 

The complexity of CH4 dynamics in coastal wetlands results from interacting variables that 106 

cannot be readily isolated to identify independent functional relationships (Morin 2019; Vazquez-Lule 107 

and Vargas 2021). This complexity also brings an opportunity to test alternative methods for data 108 

analysis. As a novel approach, we employed a form of nonlinear state space reconstruction referred to as 109 

empirical dynamic modeling (EDM; Sugihara and May 1990, Sugihara et al. 2012). We propose EDM as 110 

an alternative to techniques such as Granger Causality, wavelets, and information theory to unravel 111 
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complex non-linear CH4 dynamics using the wealth of information from continuous time series generated 112 

from EC data (Schafer, Tripathee et al. 2014, Sturtevant, Ruddell et al. 2016, Li, Dai et al. 2018, Knox, 113 

Bansal et al. 2021). This method falls within nonlinear dynamical systems but differs from other widely 114 

used prediction-based methods, such as Granger Causality, which holds the criteria of separability 115 

(Granger 1969) and may be less effective in identifying weak-moderate couplings (Guo et al. 2022). The 116 

premise of EDM relies upon a simplex projection algorithm, the nearest neighbor forecasting method, that 117 

tracks the evolution of nearby points within a lagged coordinate state space reconstruction or embedding 118 

(Hsieh et al. 2005). In other words, simplex projection attempts to predict future values based on when 119 

similar patterns were observed in the past, with more similar past patterns assigned a higher weight for 120 

calculating the mean location of the predicted point (Petchey, 2016). In this study, we implement a form 121 

of EDM known as convergent cross mapping (CCM) as a novel approach and alternative technique to 122 

disentangling CH4 dynamics with EC data within a temperate coastal salt marsh (Munch, Rogers, and 123 

Sugihara 2022). We chose the CCM approach because it can describe the complex interrelations in a 124 

dynamic ecological system where dependencies cannot be evaluated independently. 125 

Here we examine five years of ecosystem-scale CH4 fluxes using the EC technique and CCM to 126 

study seasonal and diurnal CH4 fluxes (i.e., dependent variable) by quantifying the coupling between 127 

independent variables (i.e., predictors) while considering time lags and interconnections. Briefly, CCM 128 

uses state space reconstruction methods that allow us to analyze how variables interact and change with 129 

the flow of time by examining past variable states to determine if similar dynamics are embedded in the 130 

presently observed target variable (i.e., CH4). This method is appropriate for informing causality within 131 

complex nonlinear systems where lags or inconsistent relationships commonly manifest (McGowan et al. 132 

2017), and works within the time domain, which is fundamentally different from wavelet analysis which 133 

focuses on the frequency domain (Vargas et al. 2010). CCM can also identify complex interactions where 134 

the indirect effect of one variable is relevant via a second variable that directly influences the dependent 135 

variable. Consequently, CCM can provide interpretable empirical models that can be used to develop 136 

predictions for gap filling of data or forecasting applications. Because CH4 dynamics exhibit complex 137 
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patterns generated by multiple interactions, we propose that CCM is best suited to identify the 138 

nonlinearities and potential causal relationships that regulate CH4 dynamics in wetlands and other 139 

terrestrial ecosystems.  140 

2. Materials and Methods 141 

2.1 Study Site 142 

This study was performed at the St. Jones Reserve as part of the Delaware National Estuarine 143 

Research Reserve System (DNERR). The site is representative of a mid-Atlantic salt marsh with a mean 144 

elevation of 0.60 ± 0.26 m relative to the NAVD88 datum (McKenna et al., 2018), yet is still influenced 145 

by semi-diurnal tidal activity and site hydrology (i.e., riverine and groundwater flows). Vegetation is 146 

dominated by a monoculture of short-form S. alterniflora (~66%). The remaining cover (~33%) is 147 

associated with tall S. alterniflora, S. cynosuroides, and P. australis, which flank tidal creeks, and S. 148 

patens and P. australis along the upland terminus (Vázquez-Lule and Vargas 2021). Previous studies 149 

conducted in this wetland suggest the presence of methylotrophic methanogenesis responsible for very 150 

high CH4 concentrations (>200 𝜇M) within the sediments (Seyferth et al. 2020) but with low CH4 151 

sediment-atmosphere emissions (Capooci and Vargas 2022) These findings challenge the current 152 

paradigm that low methanogenesis is expected in tidal wetlands and consequently new approaches are 153 

needed to identify the complexity of the underlying biophysical drivers.  154 

2.2 Data Acquisition 155 

2.2.1 Eddy Covariance Measurements 156 

The eddy covariance (EC) technique was used to measure the ecosystem-scale net exchange of 157 

CH4 with an open path near-infrared gas analyzer (Li-7700, Licor, Lincoln, NE, USA) and ecosystem-158 

scale net exchange of CO2 (NEE) with an enclosed path infrared gas analyzer (Li-7200, Licor, Lincoln, 159 

NE, USA), and wind components with a 3D sonic anemometer (Gill Windmaster Pro, Gill Instruments, 160 
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Lymington, UK) recording measurements at 10 Hz. Preprocessing was completed in Eddy Pro (version 161 

7.0.6), which consisted of time lag compensations, double coordinate rotation of wind components, and 162 

Reynolds block averaging to calculate 30-minute fluxes of CH4 and CO2. Expanded preprocessing and 163 

tower set-up descriptions can be found elsewhere (Vázquez-Lule and Vargas 2021, Hill and Vargas 164 

2022). During post-processing, several standardized Ameriflux QA/QC procedures were applied, 165 

including removing values flagged for low quality during pre-processing, calculating nighttime storage 166 

fluxes determined by Eddy Pro, and range filtering of CO2 to remove outliers falling beyond +/- 50 umol 167 

m-2 s-1. A range filter was not applied to CH4 data as spikes since ebullition could occur, and the goal was 168 

to incorporate all CH4 dynamics within the 30-minute block averaging period. In addition, we used an 169 

optimal friction velocity (u*) threshold of 0.069 m s-1 to remove low turbulence conditions and applied a 170 

fetch/footprint filter to exclude fluxes originating from forested regions beyond the marsh terminus 171 

(Vázquez-Lule and Vargas 2021). 172 

Data gaps occurring in NEE were filled using marginal distribution sampling (MDS) with 173 

customized site variables consisting of energy fluxes (sensible and latent heat; H and LE), radiation, air 174 

temperature (Tair), soil temperature (Tsoil), relative humidity (RH) and vapor pressure deficit (VPD) 175 

(Vázquez-Lule and Vargas 2021). Partitioning of NEE into component fluxes of gross primary 176 

productivity (GPP) was completed with the REddyProc R package (Reichstein et al., 2005; Wutzler et al., 177 

2018) based on the standard nighttime method (Reichstein et al., 2005). To fill gaps in CH4 fluxes, we 178 

applied a random forest technique with the Caret R package and used a full suite of relevant site variables 179 

(Fig. S2) (Kim et al., 2020; Kuhn et al. 2016). This method was selected because it is less biased when 180 

identifying predictors of CH4 flux and because CCM requires continuous gap-filled data (Kim et al., 181 

2020; Chang, Ushio, and Hsieh 2017). 182 

2.2.2 Meteorology and Water Quality Measurements 183 

Meteorological variables included air temperature (Tair) and relative humidity (RH, HC2-S3, 184 

Campbell Scientific, Logan, UT), precipitation (Precip) (TE 525, Tipping Bucket Rain Gauge, Campbell 185 
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Scientific, Logan, UT), photosynthetically active radiation (PAR) (SQ-110, quantum sensor, Apogee, 186 

Logan, UT), air pressure (Patm) (CS-106, Vaisala, Vantaa, Finland) and wind speed (WSpd) (05103-L 187 

Wind Monitor, Campbell Scientific, Logan, UT). VPD was calculated using Tair and RH based on the 188 

Tetens formula (Murray 1967). Water quality data were collected from the tidal creek adjacent to the EC 189 

tower using a YSI EXO2 sonde outfitted with EXO sensors. Measured variables included water 190 

temperature (Twater), water level (Level), salinity (Sal), and dissolved oxygen (DO). Meteorological and 191 

water quality data were averaged for 30 minutes to align with flux data. Minor gaps in meteorological 192 

data were filled using available on-site sensors. Gaps in water quality data, which mainly occurred during 193 

the dormancy phenoperiod, were filled using empirical relationships from another YSI EXO2 sonde 194 

located approximately 2.0 km upstream within the St. Jones River, which shares connectivity to the tidal 195 

channel. Meteorological and water quality data were collected under the National Estuarine Research 196 

Reserve (NERR) Centralized Data Management Protocol (Kennish, 2019) and can be accessed from the 197 

NERR System Centralized Data Management Office (NERR CDMO; station: delsjmet-p). 198 

2.3 Data Selection and Phenology 199 

For examining seasonal CH4 dynamics, we selected five years spanning 2017-2021 to calculate 200 

daily means of non-gap-filled observations. This period was chosen as all years contained minimal 201 

continuous gaps (<30 days). To examine diurnal dynamics, we used data only from 2020-21, the period 202 

with the most complete record (i.e., containing 15% of data gaps) and when no substantial water surges or 203 

storm events occurred. To delineate these periods, we determined phenology dates with the Phenopix R 204 

package using the greenness chromatic coordinate (GCC) from a site phenocam (Filippa et al. 2016, Hill, 205 

Vázquez-Lule and Vargas 2021). Season start and end dates were calculated based on the upturn and 206 

recession dates of the annual GCC curve from daily midday images (Gu et al., 2009). To avoid an artifact 207 

of calendar years that would result in discontinuous time series for dormancy data, we included the tail 208 

end of 2020 and excluded the tail end of 2021. 209 
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2.4 Convergent Cross Mapping 210 

While previous studies have described in detail the methodology behind CCM (Ushio and 211 

Kawatsu 2020, Sugihara and May 1990, Sugihara et al. 2012, Chang, Ushio and Hsieh 2017, Tsonis et al. 212 

2018, Wang et al. 2018), we provide a brief overview of the implementation of CCM and how we 213 

interpreted results as they pertain to the goals of the current study (Fig. S1). All CCM analysis was 214 

completed within the rEDM R package (Ye et al. 2016). 215 

To evaluate the causality between variables, we applied CCM between CH4 and all independent 216 

variables via the function CCM (Ye et al. 2016). The CCM function is essentially a wrapper for the 217 

simplex algorithm but accesses the level improvement in nearest neighbor predictions within the state 218 

space as the data sample size increases. Specifically, this tests if lags of a predictor variable can be used to 219 

predict a target variable (e.g., does GPP have a causal relationship with CH4) (Tsonis et al. 2018, 220 

Schiecke et al. 2015, Sugihara et al. 2012). It is a standard procedure also to test the opposite cross 221 

mapping (i.e., does CH4 have a causal relationship with GPP). In a dynamic system, information about the 222 

causal variable becomes embedded within the target variable (i.e., information about past causal variables 223 

is observed in the present target variable). CCM is carried out using successively larger data samples or 224 

libraries. Predictive skill is evaluated with the output parameter rho (the overall skill of the cross-225 

mapping) and is expected to increase with increasing library (data) size (i.e., convergence) subsampled 226 

randomly from the main dataset as the first criterion for causation (Chang et al. 2017). The predictive skill 227 

at maximum library size (the complete data set) is further compared to results generated from a surrogate 228 

dataset containing a preserved seasonal phase amplitude with the original data randomized in time. Cross 229 

mappings need a higher final predictive skill than the final surrogate predictive skill as a second criterion 230 

for causation via this significance test (Tsonis et al. 2018). Aside from verifying convergence with 231 

increasing data libraries, all figures in this study present results from the full data library size for both 232 

surrogate and real data, representing 5 complete years of data. 233 



 12

Two steps are applied before CCM, which provide information about the time series of interest 234 

(CH4) (Li et al. 2021). The initial step is determining the embedding dimension (e) via the function 235 

EmbedDimension, which iteratively takes successively longer lags of a set time period defined by the 236 

parameter Tau (Ƭ). For this study, we set T to the default value of T=1 to represent one day for seasonal 237 

analyses and one hour for diurnal analyses. The lagged time series are then projected into an e-238 

dimensional state space, forming a shadow manifold or state space projection (Ye et al. 2016) (Fig. S3). 239 

The resulting manifolds are then projected back onto a coordinate axis with the best embedding 240 

dimension resulting in a nearly 1:1 mapping of the original time series (Fig. S4). The number of 241 

dimensions (e) required to recreate the original time series is both a metric of complexity and an a priori 242 

requirement for CCM. The second step is confirming nonlinear dynamics by constructing sequential 243 

locally weighted global linear maps (S-map). S-maps are like nearest neighbor predictions from the 244 

simplex algorithm, but instead of considering the average localization of the nearest neighbors, all 245 

neighboring points are regarded with more weight given to closer neighbors through an exponential 246 

localization function (Sugihara et al. 1994). This is done via the function PredictNonlinear, which 247 

determines if predictions made by S-maps depend on the local state of the variable being predicted as 248 

defined by the parameter theta (Ɵ) in a locally weighted linear regression function. If predictive skill 249 

increases at Ɵ>0, we assume that predictions are highly dependent on ecosystem state space (i.e., variable 250 

interactions change with time or under specific conditions) and the hallmark of a nonlinear dynamical 251 

system (Chang et al. 2017). 252 

We applied year-round daily data for seasonal dynamics with a minimum library size of n=15 253 

days and a maximum of  n=1,800 days. For diurnal dynamics, hourly data was used from the selected 254 

growing and dormancy phenoperiods using a minimum library size of n=15 hours and a maximum of 255 

n=2,900 and n=2,700 hours, respectively. CCM was carried out using 100 sample runs with the default 256 

time period for lags set to 1 unit (Tp=1 day or hour). The execution radius, which ignores nearest 257 

neighbors within the state space projection, was set at one day or 24 hours to help eliminate influence 258 

from temporal autocorrelation. To generate surrogate datasets, the original data was randomized in time 259 
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with the seasonal phase amplitude preserved for daily data by setting the method to ‘seasonal’. For hourly 260 

data, the method was set to ‘random’ (Deyle et al. 2016). 261 

2.5 Model Interpretation with Extended CCM and Causal Network Maps 262 

Conventional CCM provides a robust means of identifying causality between variable pairs, yet it 263 

fails to capture the optimal time period of the causal influence. Extended CCM is a computationally 264 

intensive technique that involves applying CCM iteratively across multiple time period lags to determine 265 

time periods where cross-mapping skills are maximized. The procedure is also used to help resolve issues 266 

of generalized synchrony where cross-mapping is significant in both directions (i.e., Tair causality on 267 

CH4 and CH4 causality on Tair) (Example: Fig. S7 panel C) as the most probable causal relationship will 268 

generally have a maximum predictive skill which peaks within the negative time domain (i.e., negative 269 

lags) (Fig. S8) (Ye et al. 2015b). Causal influence can occur synchronously, over a day, several hours, or 270 

an extended period, several consecutive or separate days (Sun et al. 2021). Data were binned into 7-day 271 

periods to examine seasonal dynamics, and iterations were made spanning +/- 91 days at weekly intervals. 272 

For diurnal dynamics, hourly data was used directly, and iterations were made spanning +/- 24 hours.  273 

By considering both the optimum identified time lags and the overall strength of the causal 274 

relationship, network maps can be constructed to assess how the full suite of variables interact to 275 

influence CH4 fluxes. Conceptually, this is achieved by summarizing the strength of coupling and optimal 276 

lag times between all tested variable pairs, including all ancillary variables with only positively identified 277 

(significant) connections mapped. In general, direct connectivity is exhibited when the predictive skill is 278 

high and lag times are short and indirect connectivity is exhibited when the prediction skill is lower and 279 

lag times are long (Fan et al. 2020). We selected ranking categories of high, moderate, and low based on 280 

rho values of 0.60-1.0, 0.30-0.59, and 0-0.29, respectively. This technique allows variables with indirect 281 

links that may appear to influence CH4 fluxes to be sorted from variables with highly confident direct 282 

causal links, yet it remains difficult to distinguish consistent directionality (i.e., sign positive or negative) 283 

of the connection as relationships can vary in time (i.e., state dependence) (Deyle et al., 2016). 284 
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2.6 Multivariate Predictive Modeling 285 

As an additional feature and promising application of EDM, we also made model predictions 286 

using a newly constructed multivariate EDM model. We used an out-of-sample validation method with 287 

2017-2019 as the training interval and 2020-2021 as the prediction interval. Only data from the training 288 

period was used to make predictions. Predictor data was scaled to reduce dimensional distortion in the 289 

state space. The provided prediction variance based on nearest neighbors in the state space was used to 290 

calculate a standard deviation as a metric of uncertainty. We included all variables identified as coupled 291 

to CH4 fluxes by daily CCM analysis: temperature components of soil, water, and air, DO, GPP, H2O 292 

flux, Level, LE, WSpd, PAR, Patm, RH, and Precip. While issues of cross-correlation would potentially 293 

violate assumptions for linear models, each of these variables causally impacts CH4 fluxes in different 294 

ways as determined by information embedded in the CH4 time series. Thus, the inclusion of variables that 295 

exhibit cross-correlation is possible with EDM. 296 

3. Results 297 

3.1 Site Characteristics, Phenology, and CH4 Fluxes 298 

During the study period (2017-2021), the annual average air temperature (Tair), salinity (Sal), and 299 

water level (Level) were 13.9 ± 9.1 ˚C, 8.9 ± 4.1 ppt and 0.25 ± 0.2 m above sea level, respectively with a 300 

tidal range of 1.2 m and maximum daily salinity as high as 19.5 ppt. The average annual precipitation 301 

(Precip) ranged from 567-779 mm, which is received evenly across the year (Fig. 1) (Tables S1-S3). The 302 

growing phenoperiod typically begins with green-up events occurring in April or early May, and 303 

dormancy commences with complete vegetation senescence in November. For the reference year utilizing 304 

hourly data (2020-21), the dormancy phenoperiod began on October 25th. It ended at the start of the 2021 305 

growing phenoperiod on April 26th, which continued until the subsequent dormancy phenoperiod on 306 

October 23rd. Despite high levels of GPP, which ranged from 1,412-1,609 g C m-2 yr-1, the site was a net 307 



308 

309 

310 

311 

312 

313 

314 

315 

carbon so

annual sou

Fig. 1: Ti

Air, soil, a

(pink) and

productiv

 

urce for four 

urce of CH4 w

me series of m

and water tem

d dissolved ox

ity (GPP) (blu

out of the fiv

with emission

mean daily da

mperature (gre

xygen (DO) (

ue), and f) CH

ve years (NEE

ns ranging fro

ata for top ide

een, brown, a

(teal), d) atmo

H4 flux (black

 

E range: -126 

om 15.4-16.5 g

entified predic

and blue, resp

ospheric press

k). 

to 221 g C m

g C m-2 yr-1 (F

ctive drivers 

ectively), b) l

sure (Patm) (p

m-2 yr-1) and w

Fig. 1). 

 

and CH4 flux

level (gray), c

purple), e) gro

was a constant

x from 2017-2

c and d) salin

oss primary 

15

t 

21. a) 

nity 



316 

317 

318 

319 

320 

321 

322 

323 

324 

325 

326 

327 

328 

329 

330 

331 

332 

333 

3.2 CH4 T

W

dimension

we selecte

variable d

possible r

on state sp

Fig. 2: Re

daily data

Red point

indicate p

convergen

Optimal ti

 

3.3 Causa

E

seasonal/m

Time Series C

We determined

ns to recreate 

ed the dimens

dynamics; bec

relationships. 

pace or transi

esults from C

a spanning 20

ts represent th

prediction skil

nce or overlap

ime lags (in n

ality Analysi

Examination o

multiday scal

Characteristi

d that CH4 is 

the original d

sionality with

cause  CCM i

Consequently

ient ecosystem

onvergent cro

17-21. a) Iden

he maximum p

ll of real data.

p with surroga

number of day

s with CCM 

of daily data w

e (rho>0.70) 

ics 

a highly dime

dynamics (Fig

h the greatest p

s expected to

y, we confirm

m conditions (

oss mapping (

ntification of 

predictive ski

. ns denotes n

ate data resul

ys) determine

with CCM rev

consisted of t

 

ensional indep

g. S5). Despit

predictive ski

 identify coup

med that the re

(i.e., dynamic

(CCM) and ex

strongest pre

ill achieved w

non-significan

ts. Outlined v

ed from exten

vealed that the

temperature c

pendent varia

te a slightly lo

ill to capture 

pling and qua

esponse of CH

cal and nonlin

xtended CCM

edictor variab

with simulated

nt cross-mapp

variables exhi

nded CCM.   

e top causal v

components (T

able that requ

ower peak at 

a full range o

antify the ove

H4 flux was h

near) (Fig. S6

M for seasona

les for CH4 fl

d surrogate da

ping due to a 

ibit a predicti

variables at th

Tsoil, Twater

uired at least t

four dimensi

of potential 

rall strength o

highly depend

6). 

al dynamics fr

lux using CCM

ata. Black poi

lack of 

ion skill > 0.6

he 

r, Tair), DO, a

16

en 

ons, 

of all 

dent 

 

rom 

M. 

ints 

6. b) 

and 



 17

GPP (Fig. 2a). These select variables were a distinct grouping, with all other variables falling below a 334 

threshold of rho=0.50. The remaining variables (H2O flux, Level, LE, PAR, WSpd, Patm, RH, Precip; 335 

sorted from higher to lower coupling strength) were identified as causal (rho=0.10-0.50) except for Sal, 336 

VPD, and H, which did not meet convergence criteria or overlapped with surrogate data (Fig. S7). The 337 

growing phenoperiod was complex regarding the number of predictors and lags, yet physical factors also 338 

played an important role. Examination of hourly data for the diel scale analysis from the growing 339 

phenoperiod revealed Level as the top causal variable (rho~0.70), followed by a grouping that included 340 

Patm, Sal, DO, and Tsoil (rho=0.30-0.50) (Fig. 3a). The remaining variables (PAR, Twater, RH, GPP, H, 341 

H2O flux, WSpd, LE, VPD, Tair; sorted from higher to lower coupling strength) also had a degree of 342 

coupling (rho=0.15-0.25), except Precip (Fig. S8). Examination of hourly data from the dormancy 343 

phenoperiod revealed Level, DO, and Sal as top causal variables (rho=0.55-0.30) (Fig. 3c). Most 344 

remaining variables (Patm, RH, WSpd, Tair, VPD, PAR, Precip; sorted from higher to lower coupling 345 

strength) also exhibited some coupling (rho=0.10-0.20), yet this period contained the largest number of 346 

non-significant variables, which included GPP, Tsoil, Twater, H, LE, and water fluxes (Fig. S9). 347 
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 348 

 

Fig. 3: Results from Convergent cross mapping (CCM) and extended CCM for diurnal/seasonal dynamics 349 

from select hourly data spanning 2020-21. a) Growing phenoperiod CCM at maximum library size 350 

between all variables and CH4 flux, b) Growing phenoperiod optimal time lags for extended CCM 351 

represented by the number of days (x-axis), c) Dormancy phenoperiod CCM at maximum library size 352 

between all variables and CH4 flux. d) Dormancy phenoperiod optimal time lags for extended CCM 353 

represented by the number of days (x-axis). Red points represent the maximum predictive skill achieved 354 

with simulated surrogate data. Black points indicate prediction skill of real data. ns denotes non-355 

significant cross-mapping due to a lack of convergence or overlap with surrogate results. Outlined 356 

variables exhibit a prediction skill > 0.3. 357 

 358 
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3.4 Optimal Lags with Extended CCM 359 

Implementation of extended CCM revealed that the influence of some variables is more 360 

immediate while others are associated with a lag. While any identified lags indicate the optimal time 361 

period of causal influence, these lags are not necessarily related to the overall strength of the causal 362 

relationship. However, longer lags can mean more indirect relationships within the context of causal 363 

network mapping. When applying daily data to unravel seasonal/multiday dynamics, we found that PAR, 364 

LE, and H2O fluxes are associated with the most extended lag times occurring between 49-70 days 365 

(seasonal/multiday scale) (moderate causal strength). These were followed by a grouping of top predictor 366 

variables identified by the previous CCM analysis (Tsoil, Twater, Tair, GPP) (high causal strength), 367 

which were most influential between 21-35 days (monthly scale). The remaining variables (DO, Level, 368 

WSpd, Patm, RH, Precip) exerted a close temporal relationship (0 days) at a range of causal strengths, but 369 

DO was important over a more extended period (0-3 weeks), followed by Level, Patm, and RH (0-1 370 

week) and finally WSpd and Precip (0 days). However, Precip had the weakest coupling (Fig. 2b) (Fig. 371 

S10). 372 

When applying hourly data from the growing phenoperiod to unravel diurnal dynamics, we found 373 

that lags were more complex. Both Level and Sal (strong and moderate causal strength, respectively) had 374 

peaks occurring between 0-5 hours and again between 19-23 hours, but the influence of Level was also 375 

persistent throughout the day (denoted as a gray bar in Fig. 3b). Temperature components had 376 

successively shorter lags moving from Twater (9-13 hours) to Tsoil (5-7 hours) and finally Tair (3-6 377 

hours) (all moderate causal strength). The remaining variables were influential immediately (0 hours), 378 

with GPP extending the longest (0-9 hours), followed by Patm (0-5 hours), LE and water fluxes (0-3 379 

hours), RH (0-1 hour) and finally DO, VPD, and H (0 hours) (moderate causal strength) (Fig. 3b) (Fig. 380 

S11). Lag times were much shorter for the dormancy phenoperiod. Almost all causal variables (Level, 381 

DO, Sal, Patm, RH, Tair, VPD, Tsoil) exerted a close temporal relationship (0 hours) with DO, VPD, 382 

Tsoil, Patm, and Level active over the most extended period (0-10 hours). Precip was influential between 383 
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7-8 hours, yet again had the lowest causal strength while PAR, RH, WSpd, and Tair all exerted influence 384 

between 0-5 hours) (moderate causal strength) (Fig. 3d) (Fig. S12). 385 

3.5 Causal Network Mapping 386 

Causal network maps reveal high interconnection among variables at multiple scales (seasonal, 387 

multiday, and diurnal) and indicate that fluxes result from a suite of factors. When using daily data, we 388 

discovered several interesting patterns (Fig. 4). First, PAR is important for CH4 (rho=0.66), but its action 389 

is likely indirect via greater influence on other relevant variables (e.g., H2O fluxes and temperature 390 

components) (rho=0.65 and 0.90). The strong relationship between GPP and CH4 fluxes (rho=0.86) was 391 

influenced by VPD, Tair, Sal, and DO (rho=0.52-0.82), which are in turn influenced by RH, PAR, and 392 

Level, respectively (rho=0.41-0.71). Other variables, such as RH and WSpd, were not causally connected 393 

to any variables examined. 394 
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 395 

Fig. 4: Causal network map showing seasonal dynamics between all relevant variables for daily data 396 

spanning 2017-21. Numbers represent predictive skill followed by the median value of the optimum time 397 

lag. Colors represent the strength of coupling, green=strong (0.6-1.0), orange=moderate (0.30-0.59), and 398 

red (weak) (0-0.29). Solid lines represent direct relationships, and dashed lines represent indirect 399 

relationships. Variables outlined in bold represent the top causal variables identified by CCM analysis. 400 

 

When applying hourly data for the growing phenoperiod, many highly connected variables 401 

identified from the seasonal analysis (Temperature components, GPP, DO) exert far less influence (Fig. 402 

5a). The water level was the most directly important variable (rho=0.72) and was highly connected to 403 

both Sal and DO (rho-0.90-92), which exerted moderate influence on CH4 fluxes (rho=0.35-0.38). Over 404 

seven additional variables provided moderate-low influence, but all showed a similar predictive skill 405 

(rho=0.17-0.41), highlighting the complexity associated with the sub-daily growing phenoperiod. Hourly 406 

data from the dormancy phenoperiod exhibited the most straightforward network connectivity with the 407 
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least interdependencies (Fig. 5b). As with growing phenoperiod data, Level was the most directly 408 

important variable (rho=0.60) and exerted a strong influence on Sal and DO (rho=0.81-89), which exerted 409 

moderate influence on CH4 fluxes (rho=0.38-0.49). Additional variables were associated with weaker 410 

casual relationships (rho=0.12-0.22), and only temperature components, VPD, Patm, Sal, and DO were 411 

dependent on the activity of other variables during this phenoperiod. 412 
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lines represent direct relationships, and dashed lines represent indirect relationships. Variables outlined in 418 

bold represent the top causal variables identified by CCM analysis. 419 

3.6 Modeling Output 420 

The predictive multivariate EDM model fell within 1% of the expected 2-year annual sum 421 

derived from the gap-filled EC benchmark for CH4 flux (31.6 g C m-2) (Fig. 7). This model incorporated 422 

all of the positively coupled variables identified by CCM analysis including temperature components of 423 

soil, water, air, GPP, DO, H2O flux, Level, LE, PAR, WSpd, Patm, RH, and Precip. This generated a 2-424 

year sum of 31.8 g C m-2 (0.63% difference; slope 0.57) with an annual uncertainty of +/- 29.3 g C m-2, 425 

calculated from the state space. This approach had challenges representing high fluxes during senescence 426 

and despite good overall predictions, carried a high overall uncertainty and small over-prediction bias for 427 

lower magnitude fluxes (< 50 nmol m-2 s-1) (Fig. 6b). It should be noted that the uncertainty estimated for 428 

the EDM model is based on the nearest neighbor distance weights within the projected state space and 429 

although we scaled predictor variables, including more variables can distort the state space to a greater 430 

extent. 431 

 432 

Fig. 6: a) Multivariate EDM modeling results at the daily time step for prediction years 2020-21 and b) 433 

linear regression comparisons. Black lines represent daily CH4 flux measured by eddy covariance (EC) as 434 

a benchmark +/- daily sd (grey shading), and red lines represent daily modeled CH4 flux +/- prediction 435 

variance sd (pink shading). The reported black sum is the 2-year total carbon budget from CH4 calculated 436 
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with EC data (benchmark), and the red sum is the 2-year total carbon budget from CH4 estimated with 437 

modeled data and percent difference (gray). The blue line on regression plots is a 1:1 line. 438 

 

4. Discussion 439 

4.1 Comparisons with Previous Wetland CH4 Studies 440 

There are limited CH4 studies in salt marshes but it has been reported by linear methods that 441 

temperature, PAR, plant productivity, or some proxy (e.g., GPP, biomass, chlorophyll concentration), 442 

water level, and salinity are important predictors for CH4 fluxes (Abdul-Aziz et al. 2018, Huertas et al. 443 

2019, Martin and Moseman-Valtierra 2017, Poffenbarger et al. 2011.) Despite differing temporal 444 

averaging periods (daytime, nighttime, year-round, multi-year) and different model structures (linear 445 

regression, multivariate canonical correlation, multivariate generalized least squares), multiple approaches 446 

have also been able to identify the importance of temperature, DO, and Patm for CH4 dynamics 447 

(Vázquez-Lule and Vargas 2021, Hill and Vargas 2022). Other multi-site studies have also identified 448 

similar predictor variables with both linear and other nonlinear methods, especially temperature 449 

components, in non-tidal freshwater wetlands (Knox et al, 2020). The mechanisms supported by 450 

additional variables such as water level and GPP are more complex, with influence often manifesting 451 

across several temporal scales (Sturtevant et al. 2016). Our results indicate that the effects of GPP are 452 

highly dependent on the time domain at multiple scales (seasonal and diurnal) and multivariate 453 

interactions among variables. While linear models may be capable of extracting similar variables in many 454 

cases, these methods fail to identify dependencies, lags, and complex interrelationships. Thus, linear 455 

approaches may still limit our interpretations because the influence of one variable can be the result of 456 

indirect influence from a third variable, a phenomenon that can be indirectly inferred when applying 457 

CCM. 458 
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Several studies based on non-tidal freshwater wetlands have successfully applied alternative 459 

nonlinear analysis methods (Knox et al. 2021, Sturtevant et al. 2016) or machine learning approaches 460 

such as ANN’s or random forest techniques (Rey-Sanchez et al. 2018, Zhu et al. 2013, Abbasi et al. 2019, 461 

Zaki and Abdul-Aziz 2022, Morin et al. 2017). In these non-tidal freshwater wetlands, interactions 462 

regulating fluxes do not include the same dynamics found within tidal wetlands including frequent 463 

oscillation of water level and subsequent modulation of sediment salinity, dissolved oxygen, and redox 464 

conditions (Vazquez-Lule and Vargas 2021). Further, dominant vegetation species differ, which can 465 

influence the biogeochemical conditions of the sediments and CH4 production (Seyfferth et al. 2020, 466 

Yuan et al. 2016, Gao et al. 2018). Despite differences, these studies also show that the strongest relevant 467 

drivers are identified by both linear and nonlinear approaches, yet incomplete results from solely applying 468 

linear methods limit the full mechanistic understanding of the system (Sturtevant et al. 2016). 469 

Specifically, issues of cross-correlation can restrict which variables are included to satisfy model 470 

requirements, and important lags and interrelationships fail to be identified. In fact, tidal saltwater 471 

wetlands have been purposely excluded from several FLUXNET- CH4 analyses because they do not 472 

follow the general pattern of linear relationships defined by freshwater wetlands, and an overall lack of 473 

data from these highly dynamic ecosystems creates difficulties when attempting to generalize across 474 

multiple sites (Chang et al. 2021, Delwiche et al. 2021, Knox et al. 2021). 475 

In limited cases where nonlinear methods are applied, findings largely support our results, 476 

demonstrating lags with GPP, temperature, and water level, but with temporal synchrony with VPD and 477 

energy fluxes (Delwiche et al. 2021). For example, in a multi-site synthesis study of freshwater sites, 478 

median seasonal lags associated with water level extended 17±11 days, 8±16, and 5±14 days for Tair and 479 

Tsoil, respectively, and were synchronous for Patm while at the diel scale, GPP was lagged up to 4 hours 480 

and energy fluxes and VPD were synchronous (<1 hour) (Knox et al. 2021). A similar study from a 481 

forested/shrub wetland found CH4 lags associated with GPP extending up to 60 days (Turner et al. 2021), 482 

potentially indicating different time dependencies based on vegetation type and structure. There is 483 

overwhelming evidence supporting that temporal lags exist between multiple environmental variables and 484 
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CH4 fluxes across different types of wetlands. Thus, it is important to include methods such as CCM to 485 

identify such lags in the context of causality to properly represent the complexity of how biophysical 486 

drivers control CH4 fluxes 487 

4.2 Seasonal CH4 Dynamics 488 

Seasonal CH4 dynamics are strongly controlled by temperature components, GPP, and DO, 489 

indicating reliance on biological factors. Previous studies showed that predictors such as Level, Patm, and 490 

VPD are important in a linear multivariate context but rank lower in causality in the current study 491 

(Vázquez-Lule and Vargas 2021, Hill and Vargas 2022). This is likely because these variables are less 492 

strongly coupled with CH4 activity at this scale due to: a) limited occurrence as with transient low-493 

pressure systems, which operate synchronously with CH4 emissions and rarely exert influence on scales 494 

extending beyond several days (Fig. 2b) (Mønster, Kjeldsen, and Scheutz 2019, Tokida et al. 2007, Knox 495 

et al. 2021); or b) indirect mechanisms as with Patm and pressurized gas flow (Björn et al. 2022, Zhang 496 

and Ding 2011), and VPD limiting stomatal conductance and the possible decrease in plant-mediated 497 

transport. At the seasonal scale, temperature is a strong predictor in temperate ecosystems because it 498 

regulates the window of active plant growth and belowground microbial metabolic rates (Zhu et al. 2019, 499 

Yvon-Durocher et al. 2014), influencing below-ground storage pools and, ultimately, sediment-500 

atmosphere fluxes (Reid et al. 2013, Capooci and Vargas 2022). GPP also has strong coupling and may 501 

suggest there is connectivity or flow between plant photoassimilates and methanogens in the rhizosphere, 502 

which increases with seasonal biomass development. We observed a 32-day median lag time between 503 

GPP and effects on CH4 flux, similar to the lag identified for temperature (35 days), which may indicate 504 

structural changes in the vegetation are responsible for the observed seasonal increase in CH4 flux. 505 

Weaker couplings were associated with physical variables such as Patm and lag times for these variables 506 

were much shorter. Thus, it appeared that biological vs. physical processes operate at different temporal 507 

scales. 508 
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Salinity has previously been identified as an important daily-scale predictor by linear modeling 509 

but had no direct causal influence on seasonal CH4 fluxes in this study. While salinity causes direct 510 

inhibitory effects for methanogens by limiting the availability of sulfate substrates via microbial 511 

competition in most wetlands (Reddy and DeLaune 2008), there is evidence for the presence of 512 

methylotrophic bacteria in salt marshes which produce CH4 from non-competitive substrates resulting in 513 

elevated emissions despite the presence of sulfate (Seyfferth et al. 2020, Capooci and Vargas 2022). 514 

Evidence to support this phenomenon exists from a variety of wetland studies that either lack S. 515 

alterniflora and thus more closely follow the paradigm of CH4 inhibition (Chmura, Kellman, and 516 

Guntenspergen 2011, Krauss et al. 2016, Poffenbarger et al. 2011), or contain S. alterniflora and emit 517 

methane above or at the high-end of a widely accepted CH4-sulfate threshold  (Poffenbarger et al2011, 518 

Oremland et al. 1982, Huertas et al. 2019, Rosentreter et al. 2021). We propose that the elevated 519 

emissions, especially during senescence, are tied to the release of secondary plant compounds (osmolytes) 520 

associated with S. alterniflora, including glycine betaine and dimethyl sulfoniopropionate which are 521 

broken down via fermentation to trimethylamine and dimethyl sulfide and are exclusively utilized by 522 

methylotrophic methanogens (Husband and Kiene 2007, Jones et al. 2019). It is also important to note 523 

that this marsh rarely experiences salinity extremes over 20ppt, thus sites influenced by higher salinity 524 

may experience different characteristics. 525 

4.3 Diurnal CH4 Dynamics 526 

Diurnal CH4 dynamics during the growing phenoperiod are controlled by multiple factors with 527 

many interdependencies among variables, yet the most important causal variables are Level, Patm, Sal, 528 

DO, and Tsoil. This indicates that CH4 fluxes over the diurnal course are controlled by both biochemical 529 

factors likely tied to plant and microbial activity (Sal, DO, Tsoil) and physical factors likely tied to 530 

emissions (Level, Patm) (Moore and Roulet 1993, Reid, et al 2015, Knox et al. 2021, Liu et al. 2019). 531 

While several studies have made attempts at reducing this level of complexity by applying parsimonious 532 

models that only incorporate the most important drivers (via linear methods) (Levy et al. 2012, Abdul-533 
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Aziz et al. 2018, Baird et al. 2019), this may only be useful for generating coarse-scale information. Other 534 

studies have applied more complex process-based models, although these require an extensive 535 

mechanistic understanding and often experience difficulties when moving across study sites (Zhang et al. 536 

2020, Li et al. 2016), where interacting variables and driving processes can differ considerably (Krauss et 537 

al. 2016, Rosentreter et al. 2021). This can limit the range of potential applications and may be less 538 

relevant for coastal wetlands where relationships can differ greatly from site to site. 539 

The dormancy phenoperiod is comparatively simple, with the most important causal variables 540 

consisting of Level, DO, and Sal. This is also supported by considerably less interconnection between 541 

variables. Considering the lack of active vegetation, we can assume mechanisms related to these 542 

predictors change in relation to the growing or year-round daily averaging periods (Bansal et al. 2020, 543 

Reid et al. 2013). Although the relationship is weak, coupling between CH4 and Sal increases following 544 

the end of senescence and the preceding seasonal peak in emissions. Because vegetation is no longer 545 

present, the flow of photoassimilates stops, and availability of osmolyte byproducts likely decreases 546 

within sediments. Thus, Sal may become more relevant during dormancy as competition between sulfate-547 

reducing bacteria and methanogens likely increases (Derby et al. 2021, Poffenbarger et al. 2011), while 548 

the spatial separation between production zones at depth may be less exposed to sulfate fluctuations from 549 

tidal exchange (Koebsch et al. 2019). Further, plant-mediated transport is curtailed, leading to greater 550 

importance of conditions at the sediment interface (Wang and Han 2005). This is supported by the lack of 551 

causal influence from associated variables such as GPP, LE, and H2O flux. This also likely explains the 552 

importance of DO in tidal waters, which reaches a concentration peak during dormancy, likely 553 

influencing CH4 oxidation rates. In either case, the top hourly predictor for both growing and dormancy 554 

phenoperiods is Level that oscillates between low and high tides at six-hour intervals but also shifts on a 555 

14-day spring/neap tide and is highly tied to fluctuations of DO and Sal (Vázquez-Lule and Vargas 2021). 556 

Our results show that while all these variables are related and often highly cross-correlated with linear 557 

methods, each of these variables exerts a unique influence on CH4 dynamics, yet there is also strong 558 
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interdependence with how these variables change in time, highlighting the importance of incorporating 559 

true nonlinear analysis methods. 560 

4.4 Relevance of Time Lags 561 

On a seasonal/multiday scale, almost all causally significant variables were associated with lag 562 

times where influence is exerted across several consecutive days or weeks. The most important causal 563 

variables (temperature components and GPP) had medium lag times (i.e., “slow”) near 3-5 weeks, likely 564 

associated with the possible threshold effect with the temperature-driven initiation of plant growth 565 

(O'Connell, Alber and Pennings 2020), or increased production and transport of photoassimilates to the 566 

rhizosphere (Knox et al. 2021). This lag time (3 weeks) was also associated with the effect of salinity on 567 

GPP, likely indicating increases in plant osmolyte production coinciding with initial spring biomass 568 

accumulation (Husband and Kiene 2007, Mulholland and Otte 2000). It is important to recognize that we 569 

are measuring CH4 fluxes (the physical process of release); thus, these observed lags are also likely 570 

associated with the disconnection between production and observed fluxes. The shortest lags exert 571 

immediate (<1 week) (i.e., “fast”) but also prolonged impact extending up to 1 week for Level, Patm, and 572 

RH and up to 4 weeks for DO. This effect from Level is likely a result of high/low water levels tied to 573 

spring/neap tide cycles, which oscillate on a 6-7 day period. Yet, there are also fluctuations at shorter time 574 

periods, both of which impact soil water content and biogeochemical conditions of the sediments 575 

(Seyfferth et al. 2020). Tidal waters also directly influence salinity and DO levels within sediments, but 576 

the effect of DO is prolonged and likely tied to its strong influence on GPP, as shown by our results (Fig. 577 

4). The effects of Patm and RH are likely tied to mesoscale circulation and air mass transit which modify 578 

the air column and provide a physical forcing mechanism (Tokida et al. 2007). The longest lag times were 579 

associated with LE, H2O flux, and PAR, which likely represents a major seasonal oscillation driven by 580 

solar angle and changes in available radiation (Guo et al. 2010). While only weakly causal, there were no 581 

lags associated with WSpd or Precip, indicating an effect exclusively at the sub-daily level as, in most 582 

cases, the occurrence of wind or rain rarely extends into multi-day events. 583 
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During the growing phenoperiod, top causal variables identified by CCM analysis (Level, Patm, 584 

Sal, DO, Tsoil) all operated at different peak lag times, highlighting the complexity of observing and 585 

measuring fluxes during this time. The most important causal variable (Level) exerts influence over the 586 

entire 24-hour period yet peaks in causal effect at 0-5 hours and 20-24 hours, near when Sal (moderately 587 

casual) was influential, which is likely tied to semi-diurnal tidal cycling and water levels which are 588 

typically higher during nighttime high tide (Forbrich and Giblin 2015). Influence over the entire 24-hour 589 

period may be due to a smearing-out effect as the tide shifts its range an hour each day. Patm and DO 590 

(moderately causal) were associated with a zero-lag time but the effect of Patm extended up to 5 hours. 591 

These lags are likely related to fast (immediate) oxidation activity across sediment, daily pressure 592 

fluctuations, and convective flow-through transport of CH4 via plant-mediated transport driven by solar 593 

activity (Kim, Verma and Billesbach 1999, Ding and Cai 2007). Although the overall causality was 594 

weaker and distributed across variables, many of the fast variables during the growing phenoperiod are 595 

related to energy exchange dynamics (LE and H) and tied to changes in evapotranspiration (H2O flux, 596 

VPD, RH). This is likely explained by combined evaporation from saturated sediments where CH4 has 597 

accumulated in porewater, evaporation from areas of open water that receive a lateral influx of dissolved 598 

CH4, and plant-mediated transport factors reliant on stomatal activity, which channel dissolved CH4 in the 599 

transpiration stream (Megonigal and Guenther 2008, Sun et al. 2012, Trifunovic et al. 2020). GPP is both 600 

a fast and slow variable indicating a supply of photoassimilates is triggered upon initiation of morning 601 

photosynthesis but with lags extending up to 8 hours when photosynthesis gears down in the evening. 602 

During the dormancy phenoperiod, top causal variables identified by CCM analysis (Level, Sal, 603 

DO) all had immediate influence but were influential at lag times extending up to 5-10 hours, highlighting 604 

the importance of tidal activity and modulation of associated variables (Sal and DO). While the remaining 605 

variables were only weakly causal, several interesting patterns exist. In contrast to the slower effect of 606 

Tair during the growing phenoperiod, Tair was a fast variable with short lag times in dormancy, while the 607 

effect of Tsoil had longer lags, up to 9 hours, indicating a connection to microbial activity and 608 

temperature thresholds associated with CH4 production (Chadburn et al. 2020). All top causal variables 609 
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were related to tidal activity (Level, DO, Sal), indicating that hydrological factors and the riverine-ocean 610 

connectivity become crucial during the dormancy phenoperiod. The shorter lag times during this 611 

phenoperiod may also indicate more direct coupling with physical factors and less complex interactions 612 

involving the presence of vegetation, such as substrate supply and plant-mediated transport (Vázquez-613 

Lule and Vargas 2021). Taken together, these results highlight the multi-mechanistic activities and 614 

processes which regulate CH4 fluxes. 615 

4.5 Multivariate EDM Modeling 616 

This study demonstrates high complexity in the biophysical controls of CH4 fluxes in tidal 617 

wetlands. These results are based on high-frequency measurements and long-term observations (5 years) 618 

that contribute to our understanding of CH4 dynamics. The multivariate EDM mode provided predictions 619 

within 1% of the CH4 carbon sum measured from the EC benchmark. This model captured most of the 620 

higher magnitude fluctuations and high emission peaks during the growing phenoperiod, yet omitted 621 

higher magnitude fluctuations during senescence. Despite good performance, this model still considerably 622 

underpredicted during senescence and overpredicted during green-up. Consequently, these transitions 623 

represent a challenge as rapid metabolic and structural changes happen in the plant canopy (Vazquez-Lule 624 

et al 2022). Although we included the full suite of identified causal variables from CCM, this could 625 

indicate that additional variables omitted or not measured (e.g., sediment redox potential, biomass, 626 

sediment substrate availability) are essential to explain these unusually high fluxes during senescence.  627 

5. Conclusion 628 

We demonstrate that nonlinear state space methods uncover the complex dynamics and 629 

interdependencies among predictors and their influence on CH4 flux. The technique can tease apart not 630 

only the strength of causal variables but also identify lags, and complex interconnections among the full 631 

suite of measured variables as past information about driving variables becomes embedded within the 632 

presently observed CH4 time series. Overall, CCM was able to identify and rank multiple causal variables 633 

while providing a holistic picture of variable interactions and lagged relationships, which is critical for an 634 
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accurate mechanistic understanding of system behavior. We highlight that CCM is a powerful technique 635 

that provides mechanistic information regarding causality, lags, and interconnectivity among an extensive 636 

collection of potentially important variables. Therefore, by complementing CCM with multivariate EDM 637 

we can generate interpretable empirical models that provide insights into controlling mechanisms of 638 

ecosystem processes.  639 
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