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Abstract

Flash flooding is one of the most damaging weather types, yet it remains challenging to quantify its severity. We propose a

novel development – the Flashiness-Intensity-Duration-Frequency (F-IDF) curve – to quantify and spatially analyze flash flood

intensity based on the frequency and duration of the event. As a proof-of-concept, we mapped Contiguous US (CONUS)-

wide F-IDF values at 3,722 stream gage locations and explored their relations with 59 basin attributes. It is found that (1)

Climatological precipitation amounts exhibit the most positive correlation with flashiness while a basin’s drainage area is the

most negatively correlated; (2) Correlation of flashiness with basin attributes decreases with increasing F-IDF return periods

and shorter event durations. Both aspects are attributable to the rainfall signal overwhelming the underlying basin attributes

as the intensities become more extreme. This new term can have implications for hydrology, especially for hydrologic modelers,

decision-makers, and emergency responders.
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  11 

Key Points: 12 

• We introduce the Flashiness-Intensity-Duration-Frequency curve to quantify flash flood 13 
intensity 14 

• The CONUS-wide Flashiness-Intensity-Duration-Frequency values are provided at 3,722 15 
stream gage locations 16 

• The relations between 59 basin attributes and flashiness values are explored 17 

• The Flashiness-Intensity-Duration-Frequency curves have implications for hydrologic 18 
modelers, decision-makers, and emergency responders 19 

 20 

  21 
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Abstract (150 words) 22 

Flash flooding is one of the most damaging weather types, yet it remains challenging to 23 

quantify its severity. We propose a novel development – the Flashiness-Intensity-Duration-24 

Frequency (F-IDF) curve – to quantify and spatially analyze flash flood intensity based on the 25 

frequency and duration of the event. As a proof-of-concept, we mapped Contiguous US 26 

(CONUS)-wide F-IDF values at 3,722 stream gage locations and explored their relations with 59 27 

basin attributes. It is found that (1) Climatological precipitation amounts exhibit the most 28 

positive correlation with flashiness while a basin’s drainage area is the most negatively 29 

correlated; (2) Correlation of flashiness with basin attributes decreases with increasing F-IDF 30 

return periods and shorter event durations. Both aspects are attributable to the rainfall signal 31 

overwhelming the underlying basin attributes as the intensities become more extreme. This new 32 

term can have implications for hydrology, especially for hydrologic modelers, decision-makers, 33 

and emergency responders. 34 

 35 

Plain Language Summary 36 

Flash floods are among the most devasting natural hazard types that can cause severe 37 

property damage and loss of life. However, it's challenging to measure and quantify the severity. 38 

This study proposes a new way of quantifying flash flood intensity using a newly developed 39 

Flashiness-Intensity-Duration-Frequency (F-IDF) curve. It links flash flood severity with how 40 

often they happen and how long they last. We mapped F-IDF values across the United States and 41 

found that certain areas are more prone to flash floods than others. The amount of rain and the 42 

size of the basin area are the most important factors in determining how severe a flash flood is. 43 

This new quantification tool can help experts better identify and respond to flash flood risks. 44 

1 Introduction 45 

Flash floods, by definition, are a type of flood that occur within minutes to several hours 46 

of heavy rainfall or other causes (Doswell III, 2015; Gourley et al., 2013; Hong et al., 2013). In 47 
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recent years, fatalities and damage caused by flash flooding have been increasing worldwide, 48 

making it one of the most destructive weather types (Ashley & Ashley, 2008).  49 

To identify flash flood risks, researchers have sought various approaches. One of the 50 

most common practices for flash flood warning over the US and the world is the Flash Flood 51 

Guidance (FFG) methodology (Georgakakos et al., 2022). It has been adopted as the operational 52 

early-warning systems for flash flooding by the US National Weather Service since the 1970s 53 

(Georgakakos, 1986). FFG is defined as an estimate of total rainfall that causes bankful flow. As 54 

it suggests, this method does not take into account the full contiuum of land surface responses to 55 

extreme rainfall and river routing processes. Beyond FFG, there are other attempts to quantify 56 

flash flood risks. We generalize them into event-dependent and event-independent approaches. 57 

An event-dependent approach directly calculates flash flood risks based on archived flash flood 58 

events (Alipour et al., 2020) or a flashiness index (Gannon et al., 2022; Li et al., 2022; Saharia et 59 

al., 2017, 2021; Smith & Smith, 2015). The term flashiness index was introduced to measure 60 

how quickly and how high streamflow rises in response to an event (Baker et al., 2004). Among 61 

variants of flashiness index, the Richards-Baker Flashiness Index (RBI) is one of the earliest 62 

indices, denoted by the time derivative of daily streamflow (Baker et al., 2004). Gannon et al. 63 

(2022) evaluated the RBI at daily time scales and found little or no correspondence between 64 

basin responses and watershed area. This result differs with Saharia et al. (2017) who revealed a 65 

significant relationship of increasing flashiness with smaller watersheds, with the discrepancy 66 

being attributed to the latter study’s use of sub-hourly stream gage data instead of daily. Since it 67 

is event-dependent, this approach presumably delivers accurate and precise results. However, it 68 

is heavily based on a dense observational network. Alternatively, an event-independent approach 69 

seeks a statistical model that relates climate variables and basin physiography to flash flood risk 70 

(Lin et al., 2020; Ma et al., 2019). In doing so, this approach bypasses the requirement for 71 

observations, which is particularly useful in ungauged basins or rural regions. Its validity, 72 

however, requires particular attention. 73 

Given the dense stream gage network in the US, we propose a new method using the 74 

flashiness index applied to specific events. Although the definition of flashiness is diverse, this 75 

study adopts the approach of estimating the slope of the rising limb of the hydrograph to reflect 76 

the flood rising rate (Baker, 2004; Li et al., 2022; Saharia et al., 2017; Smith & Smith, 2015). 77 
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The flashiness index used in previous studies is only a static quantity that is irrespective of event 78 

frequency and duration (Li et al., 2022; Saharia et al., 2017, 2021; Smith & Smith, 2015). 79 

Weather forecasters, emergency responders, and the public are particularly concerned about the 80 

degree of severity of a flash flood event, which needs to be quantified by frequency. 81 

Additionally, we particularly value the representativeness of this index with respect to simplicity 82 

and reproducibility. In light of these concerns, we adopt the idea from the Rainfall Intensity-83 

Duration-Frequency (R-IDF) curve that encapsulates three-dimensional information of a rainfall 84 

event (Perica et al. 2013), and apply it to quantify a flash flood event. Hence, we introduce the 85 

Flashiness-Intensity-Duration-Frequency (F-IDF) curve for the first time. Similar to the R-IDF 86 

curve, the F-IDF curve describes the intensity (based on flashiness values), duration, and 87 

frequency of flash flood events. We envision such a measure has practical implications in flash 88 

flood forecasting and risk management. The aim of this article is threefold: (1) introducing the F-89 

IDF curve; (2) mapping F-IDF values for all US stream gages; and (3) investigating geographical 90 

and hydrometeorological factors associated with F-IDF values. The newly introduced F-IDF 91 

curve  can be applied to observed or simulated hydrographs, meaning that it can be integrated 92 

into any flood forecast system. We discuss how this new method can benefit hydrologic science, 93 

hydrologic modelers, emergency responders, and city planners. 94 

2 Materials and Methods 95 

2.1 Flashiness-Intensity-Duration-Frequency 96 

The F-IDF curves in this study are computed as follows: (1) Find the maximum rising 97 

(positive) slope S of a hydrograph using a recursive moving time window (i.e., D=1 hour, 2 98 

hours, 3 hours, 4 hours, 5 hours, and 6 hours) over the available period of streamflow record; (2) 99 

Extract the annual maxima for each duration D; (3) Fit the annual maxima into a general extreme 100 

value distribution (GEV) and logPearson Type III distribution (LP3); (4) Find an optimal fit 101 

based on the Bayesian Information Criterion; and (5) Return flashiness values for different 102 

frequencies (i.e., 1-in-2-years, 1-in-5-years, 1-in-10-years, 1-in-25-years, 1-in-50-years, and 1-in-103 
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100-years). The resulting flashiness value F is a measure of rapidness and magnitude changes 104 

over the time window and is represented in Eq.1. An illustrative example is given in Fig. 1a. 105 

𝐹 = !"#	{&!'&!"#,&!'&!"$,…	&!'&!"%}
+,-×/

,                                                 (1) 106 

where 𝑂0 is the observed streamflow time series at time t, d is the duration, FAC is the drainage 107 

area (km2). The unit of F is dependent on the observation but is generally expressed in units of 108 

[L/T2]. We standardize the unit of flashiness value to be measured in mm/h2. In this study, we 109 

use the USGS stream gage record at a 15-minute time interval, so a conversion factor 0.4078 is 110 

applied to convert ft3/s/km2/15-min to mm/h2. 111 

Repeating the process of calculating flashiness values at different durations and different 112 

frequencies, we can depict the F-IDF curve as shown in Fig. 1b for one site. The shape of the F-113 

IDF curve is similar to the rainfall IDF curve, where intensity decreases with longer duration but 114 

increases with event rarity. 115 
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 116 

Figure 1. (a) An illustrative example of calculating Flashiness-Intensity-Duration-Frequency 117 
values. The figure is produced with the Python Matplotlib library; (b) The empirical F-IDF plot 118 
and points are real events that surpass 2-year flashiness values. 119 

There are several noteworthy points in calculating F-IDF values. First, because flash 120 

floods typically occur within 6 hours of the causative rainfall (Li et al., 2022), we did not 121 

consider events with durations greater than six hours. Second, we select two extreme value 122 

distributions in this study: (1) LP3 distribution and (2) GEV distribution. The LP3 distribution is 123 

a common approach in hydrologic frequency analysis, recommended by the US Water Resources 124 

Council (Singh, 1998). The GEV is an alternative approach that harmonizes the type I, type II, 125 

and type III extreme value distributions into a single family to allow a continuous range of 126 

possible shapes. Wallis & Wood (1985) compared two methods and found the goodness-of-fit 127 

for the two methods varied across different sites. Third, given the short gage record length (22.3 128 
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years), we only extrapolate return periods to 100 years; otherwise, there are large uncertainties 129 

associated with the fitted GEV model (details refer to Section 3.1). 130 

3 Data 131 

 3.1 CONUS-wide streamflow 132 

We intended to collect 15-min streamflow time series data for all stream gages over the 133 

CONUS from 1950 to 2020. However, not all gauge sites have such data length, especially for 134 

sub-hourly instantaneous values. A map of stream gage data length distribution is shown in Fig. 135 

S1. We filter out gages that have available data of less than 20 years to ensure enough data 136 

samples for fitting the extreme value distributions. There are 3,722 gages left after filtering. 137 

Next, we harmonize an equal time interval of 15 minutes for all stream gages by using linear 138 

interpolation because some gages have an interval of 30 minutes. The linear interpolation method 139 

is often used to fill in gaps in streamflow data (Pestrone et al., 2010). After preprocessing, those 140 

data are analysis-ready to feed into the pipeline described in Section 2.1. 141 

 3.2 Catchment attributes 142 

To analyze the flashiness values with basin characteristics, we use the basin attributes 143 

from the HydroATLAS dataset (Linke et al., 2019). These attributes include eight sections: 144 

Hydrology (i.e., annual runoff, precipitation, natural discharge, inundation extent, groundwater 145 

table, river area, and river volume), Physiography (i.e., channel slope, catchment slope, 146 

elevation, and drainage area), Climate (i.e., annual precipitation, potential evaporation, actual 147 

evaporation, climate moisture index, aridity index, air temperature, snow cover), Soils & 148 

Geology (i.e., soil water content, clay fraction, silt fraction, sand fraction, karst fraction, soil 149 

erosion), Human (i.e., road density, urban density, population), Land Cover (i.e., area extent of 150 

trees, shrubs, herbaceous, cultivated land, water bodies, snow, and artificial lands), Natural 151 

Vegetation (i.e., evergreen, deciduous, savanna, grassland, tundra, desert), and Wetland (i.e., 152 

lake reservoir, river, and peatland). There are 59 basin attributes in total used in this study. We 153 

spatially join these attributes to the catchments of all stream gages and use the values 154 
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representing the total watershed upstream of the gage. A detailed description of these attributes is 155 

provided in Linke et al. (2019). 156 

4 Results 157 

 4.1 Mapping CONUS-wide F-IDF values 158 

After iterating through steps 1-5 in Section 2.1 for each stream gage, we can map the 159 

CONUS-wide F-IDF values. Figure 2 shows the one-hour flashiness values at six return periods 160 

(2-year, 5-year, 10-year, 25-year, 50-year, and 100-year) as an example. Maps for other 161 

durations (i.e., 2-hour, 3-hour, 4-hour, 5-hour, and 6-hour) can be found in Figs. S2-6 in the 162 

Supplementary File. A general observation for these maps as indicated in Fig. 1b is that F-163 

IDF values decrease with frequency and duration, in a similar manner as with R-IDF 164 

values. We can easily identify flashy regions in the CONUS by clustering stream gages that have 165 

flashiness values larger than 1 (shown in Fig. 2b). Those five regions are (1) West Coast, (2) 166 

Missouri Valley, (3) the Appalachians, (4) Flash Flood Alley, and (5) Southwest. The results 167 

agree well with Saharia et al. (2017) and Li et al. (2022), despite slight differences in defining 168 

the flashiness variable. We also compared our results with real flash flood events from 1970 to 169 

2020 in a newly developed US flood database (Fig. S7; Li et al., 2021). These flash flood events 170 

were verified by the US National Weather Service. Our identified regions also emerge, except 171 

for the Pacific Northwest region, which has a low incidence of flash flood reports. A similar 172 

finding is reached by Smith & Smith (2015), who reported the differences are in nature due to 173 

different measures.  174 

The main drivers for flash floods are region-dependent. On the West Coast, the main 175 

atmospheric agent for flash flooding is atmospheric rivers, which transport considerable moisture 176 

from the tropics to mid-latitudes. Even though atmospheric rivers produce long-duration winter 177 

rainfall and snowfall, the steeply sloped terrain and compact watersheds can generate fast-rising 178 

runoff (Saharia et al., 2017; Smith & Smith, 2015). Further inland, the contributions of warm-179 

season thunderstorms to flash flood occurrences start to dominate, especially for the Missouri 180 

Valley (Region 2) and Flash Flood Alley region (Region 4). The destructive flash floods in 2022 181 

in these two regions were the result of training thunderstorms that produced several record-182 

setting flood events. Flash Flood Alley also bears frequent tropical cyclones and hurricanes off 183 
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the Gulf Coast. The Appalachians (Region 3) are another known hot spot for flash flooding, 184 

extending from Georgia up to Maine. Besides the hilly terrain, extratropical cyclones are the 185 

synoptic weather types that frequently hit this region and result in a sequence of flood events (Li 186 

et al., 2021). The Southwest (Region 5) is renowned for its hot and dry environment that initiates 187 

convective thunderstorms during the North American monsoon season (Smith et al., 2019). 188 

Besides the atmospheric forcings, land surface conditions such as impervious area ratio, 189 

antecedent soil moisture, groundwater level, catchment drainage density, etc., jointly determine 190 

flash flood severity.  191 

  192 
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 193 

Figure 2. Maps of F-IDF values at 1-hour duration. Highlighted (numbers from 1-5) regions are 194 
clustered flashy regions in the CONUS. 1: West Coast; 2: Missouri Valley; 3: the Appalachians; 195 
4: Flash Flood Alley; and 5: Southwest. 196 
  197 

①
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 4.2 Factors determining flashiness values 198 

We present a comprehensive view of factors determining flashiness values by utilizing 59 199 

basin attributes and analyzing their correlation with flashiness. Figure 3 depicts the Spearman 200 

Correlation Coefficient (CC) between flashiness values and 59 basin attributes across 3,722 gage 201 

sites. For each site, we have CCs for six event durations and six return periods, but only the 202 

minimum, median, and maximum values are taken in the table and grouped into Hydrology, 203 

Physiography, Climate, Soils & Geology, Human, Land Cover, Natural Vegetation, and 204 

Wetland. Overall, climate exerts the most positive correlation with flashiness values, with 205 

annual precipitation ranked 1st place (Median CC=0.42), followed by actual evaporation and 206 

moisture index (CCs=0.4), aridity index (CC=0.39), and air temperature (CC=0.28). It's worth 207 

noting that the aridity index is positively related to the amount of moisture in the land. In other 208 

words, the lower the aridity index, the drier the land is. Hydrologic variables are mostly 209 

negatively correlated with flashiness in decreasing order: natural discharge (CC=-0.20), degree 210 

of regulation (CC=-0.27), river volume (CC=-0.32), river area (CC=-0.35). The exception is land 211 

surface runoff which has positive CC of 0.38. Physiographic variables exhibit a negative 212 

correlation with flashiness, with elevation (CC=-0.28) and drainage area (CC=-0.43) being the 213 

most significant factors. The soils & geology group has a relatively weak association with 214 

flashiness. Soil water content has the greatest CC of 0.39 within this class, followed by clay 215 

fraction (CC=0.19), silt fraction (CC=0.09), and sand fraction (CC=-0.16). The human group 216 

shows positive correlations with road density (CC=0.32) and urban density (CC=0.23) being the 217 

most significant ones. The notable features in the land cover group are deciduous trees 218 

(CC=0.25), artificial surface (CC=0.16), herbaceous (CC=-0.25), and deciduous shrubs (CC=-219 

0.38). Similar to land cover, the natural vegetation group shows the temperate deciduous region 220 

has a positive correlation (CC=0.24) with flashiness, while grassland (CC=-0.34), open shrub 221 

(CC=-0.31), boreal evergreen (CC=-0.25), and boreal deciduous (CC=-0.23) have negative 222 

correlations. The wetland group does not exhibit a significant positive correlation.  223 

The controlling factors above can be summarized as follows. First, small river reaches 224 

tend to have higher flashiness values, as the negative correlations between river area, volume, 225 

and natural discharge testify this point. Second, flood defense infrastructures impede flash flood 226 

generation, as indicated by the negative impact of the degree of regulation. Third, flashiness is 227 
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highly related to wetness or annual precipitation. Fourth, flash floods are typically not snowmelt-228 

driven processes as seen with the weakly negative correlations to snow cover. Fifth, regarding 229 

soil types, the degrees of soil types contributing to flashiness are ranked as: clay>silt>sand, 230 

which is a reversed order of permeability. Sixth, wet soils, urban density, and road density help 231 

generate flash floods by impeding soil infiltration. Lastly, dense vegetation and land cover (e.g., 232 

shrub and grassland) increase surface roughness and thus negatively correlate with flashiness. 233 

 234 

Figure 3. A table of Spearman Correlation Coefficients between flashiness and 59 basin 235 
attributes. A single asterisk (*) indicate 95% confidence level, and two asterisks (**) indicate 236 
99% confidence level to reject a null hypothesis (zero correlation).  237 

A unique finding in this study is the correlation of flashiness to basin attributes changes 238 

with regard to flash flood frequency and duration. We divide the 59 factors into positive 239 
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correlation and negative correlation and plot their respective changes with regard to return 240 

periods and durations in Fig. 4. The significance of each slope is tested against a zero slope with 241 

the general linear F-statistics. As the occurrence of flash flood events becomes less frequent (i.e., 242 

larger return period), the absolute correlation coefficient decreases. When reaching higher levels 243 

of intensity (i.e., 100-year event), the event flashiness is less influenced by basin attributes as the 244 

causative rainfall emerges as the primary driver. The correlation coefficients increase with the 245 

duration of the event (see Figs. 4b and 4d). Likewise, correlation increases with longer-duration 246 

events, as shown in the F-IDF curve in Fig.1b, and becomes more influenced by basin attributes.  247 

 248 

Figure 4. Plots of positive and negative correlation coefficients (by aggregating respective 249 
variables) with respect to return periods and duration. The black dotted line shows the mean 250 
correlation coefficient while the band shows the interquartile range from Q25 to Q75. The 251 
significance of the slope is tested against a zero slope using the general linear F-statistic with the 252 

(a) (b)

(c) (d)
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fitted regression model (equation). A single asterisk (*) indicates 95% confidence level and two 253 
asterisks (**) indicate 99% confidence level. 254 

5 Discussion 255 

5.1 The representativeness of flashiness index 256 

In this study, we choose the maximum sub-hourly time derivative of streamflow over a 257 

time window as the basis to build the F-IDF curves. First, using data collected at a time scale 258 

appropriate for the application requires consideration. For investigations of flash flooding, the 259 

time step needs to be sub-hourly. Acknowledging many other variants of flashiness indices 260 

(Gannon et al., 2022; Kim & Choi, 2011; Saharia et al., 2017, 2021; Smith & Smith, 2015), this 261 

approach has several benefits. First, it is fairly simple and reproducible. The most important 262 

factors we consider the new index is the simplicity and reproducibility as it is easy to adopt and 263 

comprehend by people. Second, it represents both the flood magnitude and flood rising limb 264 

well, which is the nature of the term “flashiness” introduced by Baker et al. (2004). The first 265 

point highlights the advantage of our method, compared to previous studies. For instance, Smith 266 

& Smith (2015) fitted the discharge into a Generalized Pareto distribution (GPD), and use the 267 

shape parameter to represent flashiness. This approach generally assumes a good fit of peak flow 268 

with GPD, and it is not straightforward. Saharia et al. (2017, 2021) used a similar approach to 269 

this study, but they rescaled the flashiness index into the range of 0-1 with an empirical 270 

cumulative distribution function (ecdf). This approach prevents reproducibility since the number 271 

of gages used in rescaling will affect the final results. 272 

This study only considers flash flood events with durations less than six hours which is a 273 

common definition for flash flooding (Clark et al., 2014). But for large basins (where the time of 274 

concentration is long) or long-duration storm, this duration of F-IDF can be further extended to 275 

12 and 24 hours by tuning the time window parameter in Eq.1.  276 

5.2 Correlation with basin attributes 277 

We calculated the Spearman Correlation Coefficient of flashiness index against 59 basin 278 

attributes acquired from the HydroATLAS. As noted, the CC values are generally low (CC<0.6) 279 

for those factors. That is mainly because flash flooding, by nature, is a dynamic weather-driven 280 

phenomenon that is challenging to predict by static features (such as basin slope and annual 281 
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precipitation). Similarly, Smith & Smith (2015) found that most of the CCs of number of flash 282 

flood peaks with basin attributes are lower than 0.6. Second, the CC values are calculated with 283 

uni-variate analysis, but we expect a higher value if we choose a multi-variate analysis, such as 284 

regression models and/or machine learning models. Since the main focus of this study is to 285 

provide a proof-of-concept of flashiness index, we will explore the predictability of a statistical 286 

model in a future work.  287 

5.3 Implications for hydrologic science and flash flood response 288 

Our proposed new metrics – F-IDF curve, has implications not only for hydrologic 289 

science but also for flash flood preparedness and responses. For the first time, this study 290 

quantifies the frequency of flash floods based on the flashiness variable computed from observed 291 

streamflow data, which provides a metric of the rapidity and severity of flooding. The same 292 

variable and associated analysis can be applied to streamflow simulations from hydrologic 293 

models. Then, the forecast flashiness and its associated frequency for a given duration can be 294 

provided ahead of time. Weather forecasters can then use such metrics to guide the issuance of 295 

flash flood warnings. Additionally, it is worth noting that the implementation of F-IDF curves is 296 

model-agnostic, meaning that it can be integrated into any flood forecast system. In the U.S., 297 

such a system may include NOAA’s FLASH system, the National Water Model, etc. Second, for 298 

hydrologic modelers, the F-IDF curve provides a means of identifying flash flood events. Prior to 299 

this study, the identification of a flash flood event was vague and subjective. A common 300 

definition – a flood that occurs within six hours of a rainfall event – was too obscure for 301 

modelers to identify the start and end date of an event. However, with the help of the F-IDF 302 

curve, one can easily establish a quantitative threshold to determine a flash flood event. For 303 

instance, in a flood study, a two-year streamflow return period has often been used as a threshold 304 

to identify a flood event, given that this threshold approximately corresponds to an overbank 305 

flow rate (Li et al., 2022). Similarly, we can use a two-year flashiness value at a particular 306 

duration to sift through flash flood events. Third, for city planners and decision-makers, the 307 

existing F-IDF values can inform them of the risks of flash floods in the local area. Mitigation 308 

strategies such as green infrastructure, low-impact development, and flood defenses can help 309 

reduce flash flood risks. Fourth, assessing the risk of flash floods and planning accordingly is 310 

crucial for emergency responders. In the US, it is common practice to block flooded roads to 311 
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prevent drivers from entering the water. However, this response requires proper guidance on 312 

when and how quickly road barriers should be put in place. With the help of our F-IDF curves, 313 

responders can access crucial information, such as the relationship between rate of action and the 314 

flood rising rate. This information supports their decision-making processes, enabling them to 315 

take timely actions that mitigate the risk associated with flash floods. There are undoubtedly 316 

other applications beyond those mentioned here. In summary, this newly introduced metric has 317 

implications not only for the scientific community but also for its potential role in the science-318 

informed, policy-making process.  319 

6 Conclusions 320 

This article introduces a new tool – the F-IDF curve – to quantify the intensity, duration, 321 

and frequency of flash floods adopting a similar concept of the rainfall IDF curve. The F-IDF 322 

curves are quantified for 3,722 US stream gages that have at least 20 years of observation of sub-323 

hourly streamflow. Additionally, the correlation of flashiness with regard to 59 basin attributes is 324 

also explored and discussed. Lastly, the application of F-IDF curves is demonstrated to a recent, 325 

devastating flash flood event – the 2021 Tennessee flooding. The conclusions are drawn as 326 

follows: 327 

1. F-IDF curves are capable of revealing the spatial variability of flashy basins across 328 

the US and the following regions are identified as prone to flash flooding: the West 329 

Coast, Missouri Valley, Appalachians, Flash Flood Alley in Texas, and the 330 

Southwest. 331 

2. Among the explored geographical and hydrometeorological factors, mean annual 332 

precipitation is the most positively correlated with flashiness while the basin’s 333 

drainage area is the most negatively correlated variable.  334 

3. The correlations weaken with increasing return periods and shorter event durations. 335 

This is attributable to the extremity of the rainfall overwhelming the influence from 336 

underlying basin attributes.  337 

Similar to flood studies, predicting flashiness values in ungauged basins is a grand 338 

challenge that warrants scientific exploration. We plan to integrate F-IDF curves into flash flood 339 

forecast models over the US and beyond in a future work. 340 
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