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Abstract

Seasonal-to-decadal climate prediction is crucial for decision-making in a number of industries, but forecasts on these timescales

have limited skill. Here, we develop a data-driven method for selecting optimal analogs for seasonal-to-decadal analog forecasting.

Using an interpretable neural network, we learn a spatially-weighted mask that quantifies how important each grid point is for

determining whether two climate states will evolve similarly. We show that analogs selected using this weighted mask provide

more skillful forecasts than analogs that are selected using traditional spatially-uniform methods. This method is tested on

two prediction problems within a perfect model framework using the Max Planck Institute for Meteorology Grand Ensemble:

multi-year prediction of North Atlantic sea surface temperatures, and seasonal prediction of El Niño Southern Oscillation. This

work demonstrates a methodical approach to selecting analogs that may be useful for improving seasonal-to-decadal forecasts

and understanding their sources of skill.
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Key Points:5

• An interpretable neural network provides a spatially-weighted mask for selecting6

optimal analogs7

• Analogs selected with the weighted mask offer more skillful forecasts than tradi-8
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• The learned mask highlights precursor regions for predicting large-scale climate10

anomalies in a perfect model framework11
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Abstract12

Seasonal-to-decadal climate prediction is crucial for decision-making in a number of in-13

dustries, but forecasts on these timescales have limited skill. Here, we develop a data-14

driven method for selecting optimal analogs for seasonal-to-decadal analog forecasting.15

Using an interpretable neural network, we learn a spatially-weighted mask that quan-16

tifies how important each grid point is for determining whether two climate states will17

evolve similarly. We show that analogs selected using this weighted mask provide more18

skillful forecasts than analogs that are selected using traditional spatially-uniform meth-19

ods. This method is tested on two prediction problems within a perfect model frame-20

work using the Max Planck Institute for Meteorology Grand Ensemble: multi-year pre-21

diction of North Atlantic sea surface temperatures, and seasonal prediction of El Niño22

Southern Oscillation. This work demonstrates a methodical approach to selecting analogs23

that may be useful for improving seasonal-to-decadal forecasts and understanding their24

sources of skill.25

Plain Language Summary26

Understanding how the climate will look in one to ten years is useful for many in-27

dustries, but this task is very difficult. One method for making forecasts on these timescales28

is called analog forecasting. In analog forecasting, a researcher finds past states in ob-29

servations, or states in a climate model simulation, that look like the current state of the30

climate, and uses how those maps changed over time to predict how the climate will change31

over time. Some regions are more important for determining how a climate state will change32

over time, and we use a machine learning method called a neural network to identify these33

important regions. We find that if we only look at these important regions when deter-34

mining if two climate states are similar or not, we can improve our analog forecasting35

skill.36

1 Background37

Forecasts on seasonal-to-decadal timescales are crucial for decision-makers in a num-38

ber of industries, but forecasts on these timescales have limited skill (Kushnir et al., 2019;39

Merryfield et al., 2020; Towler et al., 2018). Analog forecasting, predicting what will hap-40

pen based on previous states with similar initial conditions, is an intuitive method for41

seasonal-to-decadal prediction. It is built on the premise that similar geophysical states42
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will evolve in similar ways (Lorenz, 1969). It follows that analogs—similar looking states43

to the initial state that is being forecast—can provide insight into how that initial state44

will continue to evolve. The analog forecasting approach is powerful for seasonal-to-decadal45

climate prediction (e.g., Ding et al., 2018, 2019; Menary et al., 2021; Delle Monache et46

al., 2013; Zhang et al., 2023) and can outperform general circulation models (GCMs) ini-47

tialized with observations, which struggle with initialization shock and climate model48

drift (Merryfield et al., 2020; Mulholland et al., 2015).49

A major hurdle in obtaining successful analog forecasts is that the climate system50

is noisy and chaotic, and thus small differences between two initial states can result in51

vast differences in their evolution (Lorenz, 1963). Thus, a successful analog forecast for52

a particular initial climate state, which we refer to as the state of interest (SOI), requires53

that the analogs and SOI are sufficiently similar such that their evolutions do not sig-54

nificantly diverge during the prediction timeframe. Sufficiently similar analogs can be55

difficult to find in the observational record since the number of independent observations56

we have on seasonal-to-decadal scales (e.g., fewer than 100 during the satellite era) is so57

much smaller than the number of degrees of freedom within a global geophysical field58

(e.g., Van den Dool, 1994). While observations are in short supply, there is a wealth of59

simulated climate data and many recent studies have used “model-analogs” (Ding et al.,60

2018) drawn from climate model output instead (e.g., Lou et al., 2023; Peng et al., 2021;61

Wu & Yan, 2023).62

We refer to the library of climate model states that can be used for analog fore-63

casting as “potential analogs.” Once a potential analog has been identified to be suffi-64

ciently similar to the SOI we refer to it as an analog. Forecasts are made by taking the65

mean evolution of the top-N analogs, where N is chosen by the user. There are several66

ways to quantify the similarity between the potential analogs and the SOI. The most straight-67

forward method is to compute the global correlation between each potential analog and68

the SOI (e.g., Mahmood et al., 2022). Using a global correlation assumes that the sim-69

ilarity between the maps at each grid point globally matters equally. A natural next step70

in complexity is to compute a correlation over a region that is known to be important71

for predictability of a given target, such as the North Pacific for predicting the Pacific72

Decadal Oscillation (e.g., Wu & Yan, 2023). While this approach removes some regions73

that may not be useful for determining the best analogs, it still assumes that each grid74

point within the region is equally important and the region must be known a priori.75
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In the following work, we train an interpretable neural network on a proxy task that76

is similar to the analog problem (Section 3). The network learns a weighted mask which77

is used for determining analogs. The forecasting skill of the analogs selected using the78

learned weighted mask is tested through a perfect model approach where climate model79

data substitutes observations and is used to predict future climate model data. We show80

in two examples, forecasting 5-year sea surface temperature (SST) anomalies in the North81

Atlantic (Section 4) and wintertime SST anomalies in the tropical Pacific (i.e. El Niño82

Southern Oscillation; Section 5), that analogs identified using the weighted mask pro-83

vide more skillful forecasts than analogs that are identified in a way that is globally or84

regionally uniform. In addition, we show that these masks, once generated by a neural85

network, can be modified post hoc to further investigate the importance of each region86

for seasonal-to-decadal prediction (Section 5).87

2 Data and Metrics88

2.1 Climate Model Data89

We use monthly SST from the historical run of the Max Planck Institute (MPI)90

for Meteorology Grand Ensemble (GE; Maher et al., 2019) at 2° latitude by 2° lon-91

gitude resolution. This dataset contains 100 members and each simulates 156 years (1850-92

2005) of the Earth’s climate with historical forcing. The MPI-GE uses the MPI Earth93

System Model version 1.1 (ESM1.1; Giorgetta et al., 2013). Each member is initialized94

using a different year of the preindustrial control simulation such that the differences be-95

tween ensemble members are a product of internal variability.96

2.2 Standardization and Selection97

Subsets of the MPI-GE ensemble members are used for different purposes. Our li-98

brary of potential analogs is made up of members 1-35. Members 36-50 are the SOIs for99

training the neural network, members 51-55 are the SOIs for the early stopping valida-100

tion set (which is used to prevent overfitting to the training data), and members 56-60101

are the SOIs for the tuning validation set (which is used to identify optimal hyperpa-102

rameters for the neural network). Finally, members 96-100, which are withheld until the103

very end, are the test set for making and evaluating the analog forecasts. Details on the104

–4–



manuscript submitted to Geophysical Research Letters

process of tuning and training the neural network, including selecting the hyperparam-105

eters, can be found in Section S1.106

Each sample i or j, from the SOIs or the library of potential analogs, is composed107

of an input field (ISOI,i or Ianalog,j) and a target (TSOI,i or Tanalog,j). The input fields108

are one or more maps of global SST leading the targets over some earlier period (the ”in-109

put period”). The targets are time- and area-mean SST anomalies over a certain region110

and forecast window.111

We removed the forced signal from the climate model data by subtracting the en-112

semble mean of the library of potential analogs at each location and year from each set113

of data. After the forced signal was removed, the data was standardized by dividing by114

the standard deviation at each grid point across the library of potential analogs. By us-115

ing the library of potential analogs to calculate the forced signal and internal variance116

we treat the SOIs as if they are truly unseen data as we would when forecasting.117

2.3 Metrics118

We measure forecasting skill with a mean absolute error (MAE) skill score. This119

skill score is calculated by comparing the MAE of the analog prediction for the SOIs in120

the test set with the MAE of climatology, as:121

Skill Score = 1− MAEpred

MAEclimo

such that a perfect prediction has a score of one, and a climatology prediction has a score122

of zero. Climatology is the prediction by the mean state, which is zero for this standard-123

ized data. Analog forecasts made using the weighted mask are compared with the fol-124

lowing additional baselines: a global analog forecast, a target region analog forecast, a125

mean target evolution forecast, and a random forecast. In the global analog forecast (tar-126

get region analog forecast), the analogs are selected if the unweighted MSE over the en-127

tire globe (target region) is the smallest. The mean target evolution forecast is based on128

how the targets in the input period evolve on average and is detailed in Section S2. The129

random forecast is made by randomly selecting targets from the library of potential analogs130

and using them as the prediction.131
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3 Optimized Analog Forecasting Approach132

Our goal is to find optimal analogs for forecasting a specific target. To do this, we133

train a neural network to identify a spatially-weighted mask. This weighted mask is then134

multiplied by the SOI and potential analogs and the mean-squared error (MSE) between135

the weighted maps is used to determine how similar they are (Figure 1). This weighted136

mask should contain large values where similarity between the analogs and the SOI is137

most important for predicting the target and near-zero values where similarity between138

the maps is not important. With this architecture, the MSE will be low if the maps agree139

where the mask weights are high, regardless of the differences between the maps where140

the mask weights are low. For the plots in this paper, the mask is normalized by divid-141

ing by the sum of the weights times the size of the input, such that the mean weight is142

one.143

We generate the weighted mask by training a neural network on a proxy task that144

is tangential to our main goal. While our goal is to identify a weighted mask that is op-145

timized for making an analog forecast, our proxy task is to predict the difference in TSOI,i146

and Tanalog,j given ISOI,i and Ianalog,j . En route to making this prediction, the neural147

network must learn the weighted mask, multiply it by the two input maps, compute the148

MSE between these weighted maps, and finally convert the MSE into a predicted dif-149

ference in the targets. This process is depicted in the red box of Figure 1.150

Once the weighted mask has been learned, a neural network is no longer needed151

to make analog predictions. The weighted mask is multiplied by the SOI and each po-152

tential analog, the MSE is computed between the weighted SOI and the weighted po-153

tential analogs, and the potential analogs with the lowest MSE are used to make the ana-154

log forecast. While the proxy task is not identical to the analog problem, it provides a155

weighted mask that improves analog forecasting skill, as we will show in Sections 4 and156

5.157

4 Multi-year Prediction of North Atlantic Sea Surface Temperature158

We first test our analog forecasting approach on a multi-year prediction of SSTs159

over the North Atlantic. North Atlantic SSTs exhibit clear variability on multi-annual160

timescales (Jackson et al., 2022) and exhibit potential for skillful decadal forecasts (Hawkins161

et al., 2011; Sutton & Allen, 1997). SST variability in the North Atlantic has been as-162
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Figure 1. Optimized analog forecasting method and interpretable neural network archi-

tecture. The analog forecasting method can be described in three steps: 1) identify a state of

interest and a library of potential analogs. 2) Determine which maps are the most similar. 3)

Make a prediction using the best analog(s). In the blue box, we show our weighted-mask ap-

proach for determining the similarity of two maps. The weighted mask is multiplied by the state

of interest and a potential analog before computing the mean squared error (MSE). In the red

box, the interpretable neural network architecture is shown. Two input samples are multiplied by

a matrix of trainable weights and the MSE is computed. This MSE is then converted to a pre-

dicted difference in the sample targets using a group of fully-connected dense layers. Note that

the weighted mask has the same dimensions as the input field(s), despite the coarser resolution in

this figure.
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sociated with weather and climate anomalies globally, including Atlantic hurricane fre-163

quency and intensity (Goldenberg et al., 2001; Balaguru et al., 2018), northern hemisphere164

precipitation (Enfield et al., 2001; Si et al., 2023), and the strength of the Asian sum-165

mer monsoon (Shekhar et al., 2022). In this prediction problem, we use global maps of166

SST, averaged over the previous five years, to predict the mean SST anomaly in the North167

Atlantic (40°-60°N, 10°-70°W) over the following five years.168

The weighted mask learned by the neural network is shown in Figure 2a. The Green-169

land Sea and the gulf stream region in the western North Atlantic emerge as the most170

important regions for identifying analogs in the MPI-GE. Over the western North At-171

lantic, there is an area of zero weight between two areas of high weight. These may be172

where the boundaries of persistent SST anomalies vary, and the neural network has learned173

that the specific locations of these boundaries are not important for the prediction prob-174

lem. Previous studies that have used an analog approach to assess North Atlantic decadal175

predictability selected the best analogs by taking a correlation over the whole globe (Mahmood176

et al., 2022) or the entire North Atlantic basin (Menary et al., 2021). As shown in Fig-177

ure 2b-d, when using the weighted mask, the best analogs only have to look like the SOI178

in the highest weight regions. An example SOI is shown in Figure 2b and its best ana-179

log in Figure 2c. These two maps look similar in the North Atlantic, but are starkly dif-180

ferent in the North Pacific and Indian Ocean, among other regions. Once the weighted181

mask has been applied to the SOI (Figure 2d) and its best analog (Figure 2e), the maps182

look nearly identical.183

These results suggest that using uniform weights across the entire North Atlantic184

basin, or the whole globe, may lead to a selection of analogs that are not optimized for185

forecasting multi-year variability in the North Atlantic. Indeed, we see that this is true186

in the skill scores shown in Figure 3a. For 1 ≤ N ≤ 50, where the top-N analogs are av-187

eraged, our weighted mask analog forecast outperforms the global and target region ana-188

log forecasts, as well as the climatology, mean target evolution, and random baselines.189

The skill score is lowest when only the single best analog is used for forecasting, and sub-190

sequently improves for larger N. Given that the skill score maximizes around N = 10,191

and the spread of the targets associated with the analogs (i.e. the uncertainty of the fore-192

cast) increases with N (Figure S1), we elect to focus on results for N = 10 analogs. The193

prediction by the top-10 analogs, and the spread of the targets, are shown in Figure 3b194

for 200 years of SOIs. The analog predictions do a good job of capturing the variabil-195
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ity of North Atlantic sea surface temperatures, though they do struggle to forecast the196

most extreme anomalies.197

5 Seasonal Prediction of El Niño Southern Oscillation198

In addition to improving multi-year forecasts of SST in the North Atlantic, the learned199

weighted mask improves forecasts of ENSO on seasonal timescales. ENSO is the lead-200

ing mode of global annual SST variability (Hsiung & Newell, 1983) and has an exten-201

sive influence on global weather and climate (reviewed in Yeh et al., 2018). Analog fore-202

casting has been applied to seasonal prediction of ENSO in several studies due to its po-203

tential to outperform initialized GCM forecasts (e.g., Ding et al., 2018, 2019). In the fol-204

lowing example, we use wintertime (November-March) global SST anomalies to forecast205

SST anomalies in the Niño3.4 region (5°S-5°N, 120-170°W; Barnston et al., 1997; Han-206

ley et al., 2003) the following winter.207

The weighted mask for forecasting ENSO looks markedly different from that for208

forecasting North Atlantic multi-year variability (Figure 4a). While a few regions are as-209

signed higher weights, the weights in Figure 4a are much more uniform across the globe210

than in Figure 2a. The four main regions that stand out in this weighted mask have also211

been identified as important precursors in previous literature: the western North Pacific212

(e.g., S.-Y. Wang et al., 2012), the Pacific Meridional Mode (e.g., Amaya, 2019), the Cen-213

tral Atlantic (e.g., Mart́ın-Rey et al., 2015), and the tropical Pacific itself (e.g., Capo-214

tondi & Sardeshmukh, 2015). The skill score of the global analog forecast (Figure 4b)215

is similar to that of our weighted mask analog forecast (but always lower, see Figure S3),216

which is not surprising since the values of the weighted mask are near one for most ar-217

eas of the globe.218

Since the weighted mask can be manually updated post hoc, we use this to explore219

the sensitivity of the forecast skill to which regions are included in the weighted mask.220

Figure 5a shows the weighted mask for ENSO prediction (Figure 4a) but where the small-221

est 95 percent of the weights have been set to zero. Forecasts made with this “constrained”222

weighted mask have similar skill to the original weighted mask (as shown in Figure S4).223

From the constrained weighted mask, we identify four main precursor regions for ENSO:224

the West Pacific (ocean grid points bounded by 0°-40°N, 100°-170°E), the Tropical Pa-225
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Figure 2. Weighted mask and example for multi-year predictions of North Atlantic SST. (a)

Weighted mask, as learned by the interpretable neural network. (b) Standardized SST anoma-

lies for a sample state of interest (SOI). (c) Standardized SST anomalies for the best analog

associated with the SOI. (d) Weighted SOI. (e) Weighted best analog.
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Figure 3. Analog forecasts of North Atlantic sea surface temperature. (a) Skill scores for our

weighted mask analog forecast and other baselines. (b) Weighted mask analog forecasts for 200

years of MPI-GE simulations, including the mean prediction from the top-10 analogs, the spread

of these predictions, and the truth values.
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Figure 4. Weighted mask and skill scores for seasonal predictions of El Niño Southern Oscil-

lation. (a) Weighted mask. (b) Skill scores for our weighted mask analog and other baselines.
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cific (25°S-10°N, 170°E-65°W), the Baja Coast (10°N-40°N, 110°-140°W), and the Trop-226

ical Atlantic (0°-20°N, 20°-80°W).227

We assess how important each precursor region is in two ways. In the first approach,228

we test the skill score of analog forecasting when each region is occluded from the con-229

strained weighted mask (weights in that region are set to zero). When all four regions230

are included, the skill score is 0.146. Removing any of the four regions from the weighted231

mask results in a skill score decrease. Interestingly, removing the Tropical Atlantic re-232

sults in the most drastic decrease in prediction skill. While the Tropical Atlantic has been233

connected to ENSO predictability (e.g., Mart́ın-Rey et al., 2015), it is not considered a234

primary driver (C. Wang, 2018). In the second approach, we isolate each of the four re-235

gions (weights outside that region are set to zero). There is no improvement over clima-236

tology when just the Baja Coast or Tropical Atlantic is used to select analogs, and more237

skill when just the West Pacific or Tropical Pacific is used. However, no region alone pro-238

vides anywhere near the skill that all four regions do together.239

6 Discussion and Conclusions240

We have shown how an interpretable neural network can be used to identify a weighted241

mask that improves the selection of analogs for seasonal-to-decadal forecasting. The pre-242

cursors identified in the weighted masks are not necessarily causal, but they do provide243

the optimal predictors for the given input. In this work we have constrained the neu-244

ral network to learn one mask that represents all pathways of predictability, however al-245

lowing the network to learn different masks for different SOIs could lead to better ana-246

log forecasts.247

While we only used a single input map of SST to predict a future target SST in248

this work, this neural network architecture can be used for many other forecasting ap-249

proaches. For example, a combination of multiple variables can be used as the predic-250

tors (such as SST and sea surface height, as in Ding et al., 2018) or other geophysical251

variables may be selected as the target (e.g., predicting precipitation over land). In ad-252

dition, one may also include variables at multiple lead times to capture the time tendency253

of the climate system. We show results that include SST tendency as an input for the254

North Atlantic multi-year prediction example in Figure S5.255
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Figure 5. Analog forecasting skill of El Niño Southern Oscillation when various regions are

occluded or isolated. (a) As in Figure 4a, but the lowest 95 percent of weights are set to zero.

Four regions of focus are highlighted by the colored boxes. (b) Skill scores for analog forecasts

when each region is occluded from the mask (top) and when the region is isolated to make a

forecast (bottom).
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We have explored this method through a perfect model setup. As such, the iden-256

tified precursors are intrinsic to MPI-ESM1.1 and may not reflect patterns of predictabil-257

ity in the observed Earth system. Training the weighted mask on a multi-model ensem-258

ble may provide patterns that are more consistent with observations (e.g. Kirtman et259

al., 2014; Rader et al., 2022) and allow for enhanced analog predictions on real data. Ad-260

ditionally, we could train on models and observations at the same time to identify a weighted261

mask that is more representative of the true Earth System. We believe that this weighted262

mask approach will be influential to analog forecasting moving forward.263

Open Research Section264

The data used in this study, simulations from the Max Planck Institute for Mete-265

orology Grand Ensemble, are publicly available at https://esgf-data.dkrz.de/projects/mpi-266

ge/. The weighted masks, and all python code used to generate the data and figures in267

this paper, can be found at XXX REVIEWERS, THIS CAN CURRENTLY BE FOUND268

AT https://github.com/jaminrader/WeightedMaskAnalogForecasting AND WILL BE269

UPLOADED TO ZENODO WHEN FINISHED XXX.270
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Abstract12

Seasonal-to-decadal climate prediction is crucial for decision-making in a number of in-13

dustries, but forecasts on these timescales have limited skill. Here, we develop a data-14

driven method for selecting optimal analogs for seasonal-to-decadal analog forecasting.15

Using an interpretable neural network, we learn a spatially-weighted mask that quan-16

tifies how important each grid point is for determining whether two climate states will17

evolve similarly. We show that analogs selected using this weighted mask provide more18

skillful forecasts than analogs that are selected using traditional spatially-uniform meth-19

ods. This method is tested on two prediction problems within a perfect model frame-20

work using the Max Planck Institute for Meteorology Grand Ensemble: multi-year pre-21

diction of North Atlantic sea surface temperatures, and seasonal prediction of El Niño22

Southern Oscillation. This work demonstrates a methodical approach to selecting analogs23

that may be useful for improving seasonal-to-decadal forecasts and understanding their24

sources of skill.25

Plain Language Summary26

Understanding how the climate will look in one to ten years is useful for many in-27

dustries, but this task is very difficult. One method for making forecasts on these timescales28

is called analog forecasting. In analog forecasting, a researcher finds past states in ob-29

servations, or states in a climate model simulation, that look like the current state of the30

climate, and uses how those maps changed over time to predict how the climate will change31

over time. Some regions are more important for determining how a climate state will change32

over time, and we use a machine learning method called a neural network to identify these33

important regions. We find that if we only look at these important regions when deter-34

mining if two climate states are similar or not, we can improve our analog forecasting35

skill.36

1 Background37

Forecasts on seasonal-to-decadal timescales are crucial for decision-makers in a num-38

ber of industries, but forecasts on these timescales have limited skill (Kushnir et al., 2019;39

Merryfield et al., 2020; Towler et al., 2018). Analog forecasting, predicting what will hap-40

pen based on previous states with similar initial conditions, is an intuitive method for41

seasonal-to-decadal prediction. It is built on the premise that similar geophysical states42
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will evolve in similar ways (Lorenz, 1969). It follows that analogs—similar looking states43

to the initial state that is being forecast—can provide insight into how that initial state44

will continue to evolve. The analog forecasting approach is powerful for seasonal-to-decadal45

climate prediction (e.g., Ding et al., 2018, 2019; Menary et al., 2021; Delle Monache et46

al., 2013; Zhang et al., 2023) and can outperform general circulation models (GCMs) ini-47

tialized with observations, which struggle with initialization shock and climate model48

drift (Merryfield et al., 2020; Mulholland et al., 2015).49

A major hurdle in obtaining successful analog forecasts is that the climate system50

is noisy and chaotic, and thus small differences between two initial states can result in51

vast differences in their evolution (Lorenz, 1963). Thus, a successful analog forecast for52

a particular initial climate state, which we refer to as the state of interest (SOI), requires53

that the analogs and SOI are sufficiently similar such that their evolutions do not sig-54

nificantly diverge during the prediction timeframe. Sufficiently similar analogs can be55

difficult to find in the observational record since the number of independent observations56

we have on seasonal-to-decadal scales (e.g., fewer than 100 during the satellite era) is so57

much smaller than the number of degrees of freedom within a global geophysical field58

(e.g., Van den Dool, 1994). While observations are in short supply, there is a wealth of59

simulated climate data and many recent studies have used “model-analogs” (Ding et al.,60

2018) drawn from climate model output instead (e.g., Lou et al., 2023; Peng et al., 2021;61

Wu & Yan, 2023).62

We refer to the library of climate model states that can be used for analog fore-63

casting as “potential analogs.” Once a potential analog has been identified to be suffi-64

ciently similar to the SOI we refer to it as an analog. Forecasts are made by taking the65

mean evolution of the top-N analogs, where N is chosen by the user. There are several66

ways to quantify the similarity between the potential analogs and the SOI. The most straight-67

forward method is to compute the global correlation between each potential analog and68

the SOI (e.g., Mahmood et al., 2022). Using a global correlation assumes that the sim-69

ilarity between the maps at each grid point globally matters equally. A natural next step70

in complexity is to compute a correlation over a region that is known to be important71

for predictability of a given target, such as the North Pacific for predicting the Pacific72

Decadal Oscillation (e.g., Wu & Yan, 2023). While this approach removes some regions73

that may not be useful for determining the best analogs, it still assumes that each grid74

point within the region is equally important and the region must be known a priori.75

–3–



manuscript submitted to Geophysical Research Letters

In the following work, we train an interpretable neural network on a proxy task that76

is similar to the analog problem (Section 3). The network learns a weighted mask which77

is used for determining analogs. The forecasting skill of the analogs selected using the78

learned weighted mask is tested through a perfect model approach where climate model79

data substitutes observations and is used to predict future climate model data. We show80

in two examples, forecasting 5-year sea surface temperature (SST) anomalies in the North81

Atlantic (Section 4) and wintertime SST anomalies in the tropical Pacific (i.e. El Niño82

Southern Oscillation; Section 5), that analogs identified using the weighted mask pro-83

vide more skillful forecasts than analogs that are identified in a way that is globally or84

regionally uniform. In addition, we show that these masks, once generated by a neural85

network, can be modified post hoc to further investigate the importance of each region86

for seasonal-to-decadal prediction (Section 5).87

2 Data and Metrics88

2.1 Climate Model Data89

We use monthly SST from the historical run of the Max Planck Institute (MPI)90

for Meteorology Grand Ensemble (GE; Maher et al., 2019) at 2° latitude by 2° lon-91

gitude resolution. This dataset contains 100 members and each simulates 156 years (1850-92

2005) of the Earth’s climate with historical forcing. The MPI-GE uses the MPI Earth93

System Model version 1.1 (ESM1.1; Giorgetta et al., 2013). Each member is initialized94

using a different year of the preindustrial control simulation such that the differences be-95

tween ensemble members are a product of internal variability.96

2.2 Standardization and Selection97

Subsets of the MPI-GE ensemble members are used for different purposes. Our li-98

brary of potential analogs is made up of members 1-35. Members 36-50 are the SOIs for99

training the neural network, members 51-55 are the SOIs for the early stopping valida-100

tion set (which is used to prevent overfitting to the training data), and members 56-60101

are the SOIs for the tuning validation set (which is used to identify optimal hyperpa-102

rameters for the neural network). Finally, members 96-100, which are withheld until the103

very end, are the test set for making and evaluating the analog forecasts. Details on the104
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process of tuning and training the neural network, including selecting the hyperparam-105

eters, can be found in Section S1.106

Each sample i or j, from the SOIs or the library of potential analogs, is composed107

of an input field (ISOI,i or Ianalog,j) and a target (TSOI,i or Tanalog,j). The input fields108

are one or more maps of global SST leading the targets over some earlier period (the ”in-109

put period”). The targets are time- and area-mean SST anomalies over a certain region110

and forecast window.111

We removed the forced signal from the climate model data by subtracting the en-112

semble mean of the library of potential analogs at each location and year from each set113

of data. After the forced signal was removed, the data was standardized by dividing by114

the standard deviation at each grid point across the library of potential analogs. By us-115

ing the library of potential analogs to calculate the forced signal and internal variance116

we treat the SOIs as if they are truly unseen data as we would when forecasting.117

2.3 Metrics118

We measure forecasting skill with a mean absolute error (MAE) skill score. This119

skill score is calculated by comparing the MAE of the analog prediction for the SOIs in120

the test set with the MAE of climatology, as:121

Skill Score = 1− MAEpred

MAEclimo

such that a perfect prediction has a score of one, and a climatology prediction has a score122

of zero. Climatology is the prediction by the mean state, which is zero for this standard-123

ized data. Analog forecasts made using the weighted mask are compared with the fol-124

lowing additional baselines: a global analog forecast, a target region analog forecast, a125

mean target evolution forecast, and a random forecast. In the global analog forecast (tar-126

get region analog forecast), the analogs are selected if the unweighted MSE over the en-127

tire globe (target region) is the smallest. The mean target evolution forecast is based on128

how the targets in the input period evolve on average and is detailed in Section S2. The129

random forecast is made by randomly selecting targets from the library of potential analogs130

and using them as the prediction.131
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3 Optimized Analog Forecasting Approach132

Our goal is to find optimal analogs for forecasting a specific target. To do this, we133

train a neural network to identify a spatially-weighted mask. This weighted mask is then134

multiplied by the SOI and potential analogs and the mean-squared error (MSE) between135

the weighted maps is used to determine how similar they are (Figure 1). This weighted136

mask should contain large values where similarity between the analogs and the SOI is137

most important for predicting the target and near-zero values where similarity between138

the maps is not important. With this architecture, the MSE will be low if the maps agree139

where the mask weights are high, regardless of the differences between the maps where140

the mask weights are low. For the plots in this paper, the mask is normalized by divid-141

ing by the sum of the weights times the size of the input, such that the mean weight is142

one.143

We generate the weighted mask by training a neural network on a proxy task that144

is tangential to our main goal. While our goal is to identify a weighted mask that is op-145

timized for making an analog forecast, our proxy task is to predict the difference in TSOI,i146

and Tanalog,j given ISOI,i and Ianalog,j . En route to making this prediction, the neural147

network must learn the weighted mask, multiply it by the two input maps, compute the148

MSE between these weighted maps, and finally convert the MSE into a predicted dif-149

ference in the targets. This process is depicted in the red box of Figure 1.150

Once the weighted mask has been learned, a neural network is no longer needed151

to make analog predictions. The weighted mask is multiplied by the SOI and each po-152

tential analog, the MSE is computed between the weighted SOI and the weighted po-153

tential analogs, and the potential analogs with the lowest MSE are used to make the ana-154

log forecast. While the proxy task is not identical to the analog problem, it provides a155

weighted mask that improves analog forecasting skill, as we will show in Sections 4 and156

5.157

4 Multi-year Prediction of North Atlantic Sea Surface Temperature158

We first test our analog forecasting approach on a multi-year prediction of SSTs159

over the North Atlantic. North Atlantic SSTs exhibit clear variability on multi-annual160

timescales (Jackson et al., 2022) and exhibit potential for skillful decadal forecasts (Hawkins161

et al., 2011; Sutton & Allen, 1997). SST variability in the North Atlantic has been as-162
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Figure 1. Optimized analog forecasting method and interpretable neural network archi-

tecture. The analog forecasting method can be described in three steps: 1) identify a state of

interest and a library of potential analogs. 2) Determine which maps are the most similar. 3)

Make a prediction using the best analog(s). In the blue box, we show our weighted-mask ap-

proach for determining the similarity of two maps. The weighted mask is multiplied by the state

of interest and a potential analog before computing the mean squared error (MSE). In the red

box, the interpretable neural network architecture is shown. Two input samples are multiplied by

a matrix of trainable weights and the MSE is computed. This MSE is then converted to a pre-

dicted difference in the sample targets using a group of fully-connected dense layers. Note that

the weighted mask has the same dimensions as the input field(s), despite the coarser resolution in

this figure.
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sociated with weather and climate anomalies globally, including Atlantic hurricane fre-163

quency and intensity (Goldenberg et al., 2001; Balaguru et al., 2018), northern hemisphere164

precipitation (Enfield et al., 2001; Si et al., 2023), and the strength of the Asian sum-165

mer monsoon (Shekhar et al., 2022). In this prediction problem, we use global maps of166

SST, averaged over the previous five years, to predict the mean SST anomaly in the North167

Atlantic (40°-60°N, 10°-70°W) over the following five years.168

The weighted mask learned by the neural network is shown in Figure 2a. The Green-169

land Sea and the gulf stream region in the western North Atlantic emerge as the most170

important regions for identifying analogs in the MPI-GE. Over the western North At-171

lantic, there is an area of zero weight between two areas of high weight. These may be172

where the boundaries of persistent SST anomalies vary, and the neural network has learned173

that the specific locations of these boundaries are not important for the prediction prob-174

lem. Previous studies that have used an analog approach to assess North Atlantic decadal175

predictability selected the best analogs by taking a correlation over the whole globe (Mahmood176

et al., 2022) or the entire North Atlantic basin (Menary et al., 2021). As shown in Fig-177

ure 2b-d, when using the weighted mask, the best analogs only have to look like the SOI178

in the highest weight regions. An example SOI is shown in Figure 2b and its best ana-179

log in Figure 2c. These two maps look similar in the North Atlantic, but are starkly dif-180

ferent in the North Pacific and Indian Ocean, among other regions. Once the weighted181

mask has been applied to the SOI (Figure 2d) and its best analog (Figure 2e), the maps182

look nearly identical.183

These results suggest that using uniform weights across the entire North Atlantic184

basin, or the whole globe, may lead to a selection of analogs that are not optimized for185

forecasting multi-year variability in the North Atlantic. Indeed, we see that this is true186

in the skill scores shown in Figure 3a. For 1 ≤ N ≤ 50, where the top-N analogs are av-187

eraged, our weighted mask analog forecast outperforms the global and target region ana-188

log forecasts, as well as the climatology, mean target evolution, and random baselines.189

The skill score is lowest when only the single best analog is used for forecasting, and sub-190

sequently improves for larger N. Given that the skill score maximizes around N = 10,191

and the spread of the targets associated with the analogs (i.e. the uncertainty of the fore-192

cast) increases with N (Figure S1), we elect to focus on results for N = 10 analogs. The193

prediction by the top-10 analogs, and the spread of the targets, are shown in Figure 3b194

for 200 years of SOIs. The analog predictions do a good job of capturing the variabil-195
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ity of North Atlantic sea surface temperatures, though they do struggle to forecast the196

most extreme anomalies.197

5 Seasonal Prediction of El Niño Southern Oscillation198

In addition to improving multi-year forecasts of SST in the North Atlantic, the learned199

weighted mask improves forecasts of ENSO on seasonal timescales. ENSO is the lead-200

ing mode of global annual SST variability (Hsiung & Newell, 1983) and has an exten-201

sive influence on global weather and climate (reviewed in Yeh et al., 2018). Analog fore-202

casting has been applied to seasonal prediction of ENSO in several studies due to its po-203

tential to outperform initialized GCM forecasts (e.g., Ding et al., 2018, 2019). In the fol-204

lowing example, we use wintertime (November-March) global SST anomalies to forecast205

SST anomalies in the Niño3.4 region (5°S-5°N, 120-170°W; Barnston et al., 1997; Han-206

ley et al., 2003) the following winter.207

The weighted mask for forecasting ENSO looks markedly different from that for208

forecasting North Atlantic multi-year variability (Figure 4a). While a few regions are as-209

signed higher weights, the weights in Figure 4a are much more uniform across the globe210

than in Figure 2a. The four main regions that stand out in this weighted mask have also211

been identified as important precursors in previous literature: the western North Pacific212

(e.g., S.-Y. Wang et al., 2012), the Pacific Meridional Mode (e.g., Amaya, 2019), the Cen-213

tral Atlantic (e.g., Mart́ın-Rey et al., 2015), and the tropical Pacific itself (e.g., Capo-214

tondi & Sardeshmukh, 2015). The skill score of the global analog forecast (Figure 4b)215

is similar to that of our weighted mask analog forecast (but always lower, see Figure S3),216

which is not surprising since the values of the weighted mask are near one for most ar-217

eas of the globe.218

Since the weighted mask can be manually updated post hoc, we use this to explore219

the sensitivity of the forecast skill to which regions are included in the weighted mask.220

Figure 5a shows the weighted mask for ENSO prediction (Figure 4a) but where the small-221

est 95 percent of the weights have been set to zero. Forecasts made with this “constrained”222

weighted mask have similar skill to the original weighted mask (as shown in Figure S4).223

From the constrained weighted mask, we identify four main precursor regions for ENSO:224

the West Pacific (ocean grid points bounded by 0°-40°N, 100°-170°E), the Tropical Pa-225
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Figure 2. Weighted mask and example for multi-year predictions of North Atlantic SST. (a)

Weighted mask, as learned by the interpretable neural network. (b) Standardized SST anoma-

lies for a sample state of interest (SOI). (c) Standardized SST anomalies for the best analog

associated with the SOI. (d) Weighted SOI. (e) Weighted best analog.
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Figure 3. Analog forecasts of North Atlantic sea surface temperature. (a) Skill scores for our

weighted mask analog forecast and other baselines. (b) Weighted mask analog forecasts for 200

years of MPI-GE simulations, including the mean prediction from the top-10 analogs, the spread

of these predictions, and the truth values.
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Figure 4. Weighted mask and skill scores for seasonal predictions of El Niño Southern Oscil-

lation. (a) Weighted mask. (b) Skill scores for our weighted mask analog and other baselines.
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cific (25°S-10°N, 170°E-65°W), the Baja Coast (10°N-40°N, 110°-140°W), and the Trop-226

ical Atlantic (0°-20°N, 20°-80°W).227

We assess how important each precursor region is in two ways. In the first approach,228

we test the skill score of analog forecasting when each region is occluded from the con-229

strained weighted mask (weights in that region are set to zero). When all four regions230

are included, the skill score is 0.146. Removing any of the four regions from the weighted231

mask results in a skill score decrease. Interestingly, removing the Tropical Atlantic re-232

sults in the most drastic decrease in prediction skill. While the Tropical Atlantic has been233

connected to ENSO predictability (e.g., Mart́ın-Rey et al., 2015), it is not considered a234

primary driver (C. Wang, 2018). In the second approach, we isolate each of the four re-235

gions (weights outside that region are set to zero). There is no improvement over clima-236

tology when just the Baja Coast or Tropical Atlantic is used to select analogs, and more237

skill when just the West Pacific or Tropical Pacific is used. However, no region alone pro-238

vides anywhere near the skill that all four regions do together.239

6 Discussion and Conclusions240

We have shown how an interpretable neural network can be used to identify a weighted241

mask that improves the selection of analogs for seasonal-to-decadal forecasting. The pre-242

cursors identified in the weighted masks are not necessarily causal, but they do provide243

the optimal predictors for the given input. In this work we have constrained the neu-244

ral network to learn one mask that represents all pathways of predictability, however al-245

lowing the network to learn different masks for different SOIs could lead to better ana-246

log forecasts.247

While we only used a single input map of SST to predict a future target SST in248

this work, this neural network architecture can be used for many other forecasting ap-249

proaches. For example, a combination of multiple variables can be used as the predic-250

tors (such as SST and sea surface height, as in Ding et al., 2018) or other geophysical251

variables may be selected as the target (e.g., predicting precipitation over land). In ad-252

dition, one may also include variables at multiple lead times to capture the time tendency253

of the climate system. We show results that include SST tendency as an input for the254

North Atlantic multi-year prediction example in Figure S5.255
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Figure 5. Analog forecasting skill of El Niño Southern Oscillation when various regions are

occluded or isolated. (a) As in Figure 4a, but the lowest 95 percent of weights are set to zero.

Four regions of focus are highlighted by the colored boxes. (b) Skill scores for analog forecasts

when each region is occluded from the mask (top) and when the region is isolated to make a

forecast (bottom).
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We have explored this method through a perfect model setup. As such, the iden-256

tified precursors are intrinsic to MPI-ESM1.1 and may not reflect patterns of predictabil-257

ity in the observed Earth system. Training the weighted mask on a multi-model ensem-258

ble may provide patterns that are more consistent with observations (e.g. Kirtman et259

al., 2014; Rader et al., 2022) and allow for enhanced analog predictions on real data. Ad-260

ditionally, we could train on models and observations at the same time to identify a weighted261

mask that is more representative of the true Earth System. We believe that this weighted262

mask approach will be influential to analog forecasting moving forward.263

Open Research Section264

The data used in this study, simulations from the Max Planck Institute for Mete-265

orology Grand Ensemble, are publicly available at https://esgf-data.dkrz.de/projects/mpi-266

ge/. The weighted masks, and all python code used to generate the data and figures in267

this paper, can be found at XXX REVIEWERS, THIS CAN CURRENTLY BE FOUND268

AT https://github.com/jaminrader/WeightedMaskAnalogForecasting AND WILL BE269

UPLOADED TO ZENODO WHEN FINISHED XXX.270
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Text S1: Neural Network Training and Hyperparameter Tuning

The interpretable neural network architecture, shown in the blue box of Figure 1, is

composed as follows.

1) The neural network receives two input samples, such as two global maps of sea surface

temperature (SST), which are associated with two targets, such as the SST anomaly in

the North Atlantic over the following five years.

2) The input samples are each multiplied by an array of trainable weights that have the

same dimensions as the inputs. Each input sample is multiplied by identical trainable

weights.

3) The mean squared error (MSE) between the two input*weights layers is calculated.

4) The computed MSE is fed into a series of fully-connected dense layers. These dense

layers are intended to find a relationship between the weighted MSE and the absolute

difference between the targets associated with each of the inputs (which is the predictand

for this neural network task).

There are four main tunable parameters for the interpretable neural network: the learn-

ing rate, the L2 regularization applied to the mask (acts to smooth out the weights and

reduce overfitting), the size of the dense layers, and the activation function for the dense

layers.

A different neural network architecture is tuned for each prediction problem. The pre-

diction problems/experiments are: EXP-Niño, predicting NDJFM Niño3.4 SST anomalies

given global NDJFM SST one year prior, and EXP-NorAtl, predicting 5-year SST anoma-

lies in the North Atlantic given global SSTs in the five years prior. In Figure S4, we also
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show results for EXP501 - predicting 5-year SST anomalies in the North Atlantic given

global SSTs in the five years prior and the difference between the global SSTs in the five

years prior and the period 3-7 years prior (i.e. the sea surface temperature tendency).

The same hyperparameters that were tuned for EXP-NorAtl are used for EXP501.

To tune each experiment the following procedure was performed:

1) Tune the neural network using the constants in Table S1 and the hyperparameter search

space in Table S2. Train 100 total models and assess their loss on validation data (not

used for training or early stopping). This is the base hyperparameter search, and will be

used to constrain the search space for more tuning.

2) Identify the top-10 models in terms of validation loss from the base hyperparameter

search. Constrain the hyperparameter space to the ranges of hyperparameters that ap-

peared in these 10 best models. This constrained hyperparameter space is referred to as

the “refined” hyperparameter space. For the dense layers, all configurations are retained

that have a number of trainable parameters captured by the minimum and the maximum

number of trainable parameters within the dense layers (not including the input weights)

of the 10 best models.

3) Tune the neural network by training 100 new models using a random search of the

refined hyperparameter space in Tables S3-S4.

The hyperparameters associated with the model with the best validation loss in the re-

fined search were used for the results. These are shown in Tables S5-S6. The results for
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models using the random seed of 0, which is important for the initialization of weights

and the random selection of samples for neural network training, are shown in the main

text. Additionally, the results for models trained with the random seeds of 10, 20, 30, 40,

50, 60, 70, 80, and 90 can be found here in Figures S1 and S2.

Text S2: Baselines

The description of the mean target evolution baseline was withheld from the main text,

and is instead supplied here. We make a mean target evolution forecast by first binning

the samples in the training set based on the target values during the input period. The

mean evolution of each bin is determined by taking all the samples within that bin and

calculating the mean target value during the forecast window. The mean target evolution

forecast is made by then identifying which bin each sample from the test set falls into,

and using the mean evolution of that bin as the prediction.

In addition to the baselines in the main text, we present one additional baseline in the

supplement: the skill of a “vanilla model.” The vanilla model is your typical feed forward

artificial neural network. Given a state of interest as input, the vanilla model is tasked to

predict the target. It is not constrained to follow the analog framework.
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Figure S1. Mean variance of the targets associated with the top-N analogs across all testing

samples.
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Figure S2. EXP-NorAtl: results for neural networks trained on nine different seeds. (a) Nine

neural networks trained on different seeds show striking consistency in their weighted masks.

(b) Skill scores for the average of the top-10 analogs. In all cases, the highest skill comes from

the vanilla model, followed by the analog models. The masked analog outperforms the baselines

discussed in the main text.
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Figure S3. EXP-Niño: results for neural networks trained on nine different seeds. (a) Changing

the seed used for the neural network training results in slight variation in the weighted mask.

However, all weighted masks highlight the central tropical Pacific, western Pacific, Baja coast,

and central Atlantic as the most important (though to varying degrees). (b) Skill scores for the

average of the top-10 analogs. The vanilla model outperforms the weighted mask analog model

across the board. In all cases the masked analog outperforms the baselines discussed in the main

text.
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Figure S4. The skill of an analog forecast for EXP-Niño using the weighted mask when the

smallest weights are set to zero. The horizontal line indicates the forecasting skill before the

weighted mask has been altered. The vertical line indicates the forecasting skill using a weighted

mask where the smallest 95 percent of the weights have been set to zero. Removing the smallest

weights does not have much of an impact on forecasting skill, and may even improve it. These

results are for the validation data set.
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Figure S5. (a) Weighted masks for EXP501. (b) Skill scores for EXP501 versus various

baselines. Adding an SST tendency input field did not notably impact forecasting skill in this

problem.
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Table S1. Constant values for all neural networks trained.
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Table S2. Base hyperparameter search space for identifying the best neural network architec-

ture for each experiment.
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Table S3. Refined hyperparameter search space for EXP-Niño (seasonal prediction of El Niño

Southern Oscillation).
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Table S4. Refined hyperparameter search space for EXP-NorAtl (decadal prediction of the

North Atlantic).
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Table S5. Chosen hyperparameters for EXP-Niño (seasonal prediction of El Niño Oscillation).
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Table S6. Chosen hyperparameters for EXP-NorAtl (decadal prediction of the North Atlantic).

These were also the hyperparameters used for EXP501 (decadal prediction of the North Atlantic

with a time lag input–see Figure S4).
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