Optimizing Seasonal-to-Decadal Analog Forecasts with a Learned Spatially-Weighted Mask

Jamin Kurtis Rader¹ and Elizabeth A. Barnes¹

¹Colorado State University

June 23, 2023

Abstract

Seasonal-to-decadal climate prediction is crucial for decision-making in a number of industries, but forecasts on these timescales have limited skill. Here, we develop a data-driven method for selecting optimal analogs for seasonal-to-decadal analog forecasting. Using an interpretable neural network, we learn a spatially-weighted mask that quantifies how important each grid point is for determining whether two climate states will evolve similarly. We show that analogs selected using this weighted mask provide more skillful forecasts than analogs that are selected using traditional spatially-uniform methods. This method is tested on two prediction problems within a perfect model framework using the Max Planck Institute for Meteorology Grand Ensemble: multi-year prediction of North Atlantic sea surface temperatures, and seasonal prediction of El Niño Southern Oscillation. This work demonstrates a methodical approach to selecting analogs that may be useful for improving seasonal-to-decadal forecasts and understanding their sources of skill.

Optimizing Seasonal-to-Decadal Analog Forecasts with a Learned Spatially-Weighted Mask

3	Jamin K. Rader ¹ , and Elizabeth A. Barnes ¹
4	¹ Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA.
5	Key Points:
6	• An interpretable neural network provides a spatially-weighted mask for selecting
7	optimal analogs
8	• Analogs selected with the weighted mask offer more skillful forecasts than tradi-
9	tional methods for selecting analogs
10	• The learned mask highlights precursor regions for predicting large-scale climate
11	anomalies in a perfect model framework

 $Corresponding \ author: \ Jamin \ K. \ Rader, \ \texttt{jamin.rader@colostate.edu}$

12 Abstract

Seasonal-to-decadal climate prediction is crucial for decision-making in a number of in-13 dustries, but forecasts on these timescales have limited skill. Here, we develop a data-14 driven method for selecting optimal analogs for seasonal-to-decadal analog forecasting. 15 Using an interpretable neural network, we learn a spatially-weighted mask that quan-16 tifies how important each grid point is for determining whether two climate states will 17 evolve similarly. We show that analogs selected using this weighted mask provide more 18 skillful forecasts than analogs that are selected using traditional spatially-uniform meth-19 ods. This method is tested on two prediction problems within a perfect model frame-20 work using the Max Planck Institute for Meteorology Grand Ensemble: multi-year pre-21 diction of North Atlantic sea surface temperatures, and seasonal prediction of El Niño 22 Southern Oscillation. This work demonstrates a methodical approach to selecting analogs 23 that may be useful for improving seasonal-to-decadal forecasts and understanding their 24 sources of skill. 25

²⁶ Plain Language Summary

Understanding how the climate will look in one to ten years is useful for many in-27 dustries, but this task is very difficult. One method for making forecasts on these timescales 28 is called analog forecasting. In analog forecasting, a researcher finds past states in ob-29 servations, or states in a climate model simulation, that look like the current state of the 30 climate, and uses how those maps changed over time to predict how the climate will change 31 over time. Some regions are more important for determining how a climate state will change 32 over time, and we use a machine learning method called a neural network to identify these 33 important regions. We find that if we only look at these important regions when deter-34 mining if two climate states are similar or not, we can improve our analog forecasting 35 skill. 36

37 1 Background

Forecasts on seasonal-to-decadal timescales are crucial for decision-makers in a number of industries, but forecasts on these timescales have limited skill (Kushnir et al., 2019; Merryfield et al., 2020; Towler et al., 2018). Analog forecasting, predicting what will happen based on previous states with similar initial conditions, is an intuitive method for seasonal-to-decadal prediction. It is built on the premise that similar geophysical states

-2-

will evolve in similar ways (Lorenz, 1969). It follows that analogs—similar looking states
to the initial state that is being forecast—can provide insight into how that initial state
will continue to evolve. The analog forecasting approach is powerful for seasonal-to-decadal
climate prediction (e.g., Ding et al., 2018, 2019; Menary et al., 2021; Delle Monache et
al., 2013; Zhang et al., 2023) and can outperform general circulation models (GCMs) initialized with observations, which struggle with initialization shock and climate model
drift (Merryfield et al., 2020; Mulholland et al., 2015).

A major hurdle in obtaining successful analog forecasts is that the climate system 50 is noisy and chaotic, and thus small differences between two initial states can result in 51 vast differences in their evolution (Lorenz, 1963). Thus, a successful analog forecast for 52 a particular initial climate state, which we refer to as the state of interest (SOI), requires 53 that the analogs and SOI are sufficiently similar such that their evolutions do not sig-54 nificantly diverge during the prediction timeframe. Sufficiently similar analogs can be 55 difficult to find in the observational record since the number of independent observations 56 we have on seasonal-to-decadal scales (e.g., fewer than 100 during the satellite era) is so 57 much smaller than the number of degrees of freedom within a global geophysical field 58 (e.g., Van den Dool, 1994). While observations are in short supply, there is a wealth of 59 simulated climate data and many recent studies have used "model-analogs" (Ding et al., 60 2018) drawn from climate model output instead (e.g., Lou et al., 2023; Peng et al., 2021; 61 Wu & Yan, 2023). 62

We refer to the library of climate model states that can be used for analog fore-63 casting as "potential analogs." Once a potential analog has been identified to be suffi-64 ciently similar to the SOI we refer to it as an analog. Forecasts are made by taking the 65 mean evolution of the top-N analogs, where N is chosen by the user. There are several 66 ways to quantify the similarity between the potential analogs and the SOI. The most straight-67 forward method is to compute the global correlation between each potential analog and 68 the SOI (e.g., Mahmood et al., 2022). Using a global correlation assumes that the sim-69 ilarity between the maps at each grid point globally matters equally. A natural next step 70 in complexity is to compute a correlation over a region that is known to be important 71 for predictability of a given target, such as the North Pacific for predicting the Pacific 72 Decadal Oscillation (e.g., Wu & Yan, 2023). While this approach removes some regions 73 that may not be useful for determining the best analogs, it still assumes that each grid 74 point within the region is equally important and the region must be known a priori. 75

-3-

In the following work, we train an interpretable neural network on a proxy task that 76 is similar to the analog problem (Section 3). The network learns a weighted mask which 77 is used for determining analogs. The forecasting skill of the analogs selected using the 78 learned weighted mask is tested through a perfect model approach where climate model 79 data substitutes observations and is used to predict future climate model data. We show 80 in two examples, forecasting 5-year sea surface temperature (SST) anomalies in the North 81 Atlantic (Section 4) and wintertime SST anomalies in the tropical Pacific (i.e. El Niño 82 Southern Oscillation; Section 5), that analogs identified using the weighted mask pro-83 vide more skillful forecasts than analogs that are identified in a way that is globally or 84 regionally uniform. In addition, we show that these masks, once generated by a neural 85 network, can be modified *post hoc* to further investigate the importance of each region 86 for seasonal-to-decadal prediction (Section 5). 87

⁸⁸ 2 Data and Metrics

89

2.1 Climate Model Data

We use monthly SST from the historical run of the Max Planck Institute (MPI) for Meteorology Grand Ensemble (GE; Maher et al., 2019) at 2° latitude by 2° longitude resolution. This dataset contains 100 members and each simulates 156 years (1850-2005) of the Earth's climate with historical forcing. The MPI-GE uses the MPI Earth System Model version 1.1 (ESM1.1; Giorgetta et al., 2013). Each member is initialized using a different year of the preindustrial control simulation such that the differences between ensemble members are a product of internal variability.

97

2.2 Standardization and Selection

Subsets of the MPI-GE ensemble members are used for different purposes. Our library of potential analogs is made up of members 1-35. Members 36-50 are the SOIs for training the neural network, members 51-55 are the SOIs for the early stopping validation set (which is used to prevent overfitting to the training data), and members 56-60 are the SOIs for the tuning validation set (which is used to identify optimal hyperparameters for the neural network). Finally, members 96-100, which are withheld until the very end, are the test set for making and evaluating the analog forecasts. Details on the process of tuning and training the neural network, including selecting the hyperparam eters, can be found in Section S1.

Each sample *i* or *j*, from the SOIs or the library of potential analogs, is composed of an input field ($I_{SOI,i}$ or $I_{analog,j}$) and a target ($T_{SOI,i}$ or $T_{analog,j}$). The input fields are one or more maps of global SST leading the targets over some earlier period (the "input period"). The targets are time- and area-mean SST anomalies over a certain region and forecast window.

We removed the forced signal from the climate model data by subtracting the ensemble mean of the library of potential analogs at each location and year from each set of data. After the forced signal was removed, the data was standardized by dividing by the standard deviation at each grid point across the library of potential analogs. By using the library of potential analogs to calculate the forced signal and internal variance we treat the SOIs as if they are truly unseen data as we would when forecasting.

118 **2.3 Metrics**

We measure forecasting skill with a mean absolute error (MAE) skill score. This skill score is calculated by comparing the MAE of the analog prediction for the SOIs in the test set with the MAE of climatology, as:

Skill Score =
$$1 - \frac{MAE_{pred}}{MAE_{climo}}$$

such that a perfect prediction has a score of one, and a climatology prediction has a score 122 of zero. Climatology is the prediction by the mean state, which is zero for this standard-123 ized data. Analog forecasts made using the weighted mask are compared with the fol-124 lowing additional baselines: a global analog forecast, a target region analog forecast, a 125 mean target evolution forecast, and a random forecast. In the global analog forecast (tar-126 get region analog forecast), the analogs are selected if the unweighted MSE over the en-127 tire globe (target region) is the smallest. The mean target evolution forecast is based on 128 how the targets in the input period evolve on average and is detailed in Section S2. The 129 random forecast is made by randomly selecting targets from the library of potential analogs 130 and using them as the prediction. 131

¹³² 3 Optimized Analog Forecasting Approach

Our goal is to find optimal analogs for forecasting a specific target. To do this, we 133 train a neural network to identify a spatially-weighted mask. This weighted mask is then 134 multiplied by the SOI and potential analogs and the mean-squared error (MSE) between 135 the weighted maps is used to determine how similar they are (Figure 1). This weighted 136 mask should contain large values where similarity between the analogs and the SOI is 137 most important for predicting the target and near-zero values where similarity between 138 the maps is not important. With this architecture, the MSE will be low if the maps agree 139 where the mask weights are high, regardless of the differences between the maps where 140 the mask weights are low. For the plots in this paper, the mask is normalized by divid-141 ing by the sum of the weights times the size of the input, such that the mean weight is 142 one. 143

We generate the weighted mask by training a neural network on a proxy task that is tangential to our main goal. While our goal is to identify a weighted mask that is optimized for making an analog forecast, our proxy task is to predict the difference in $T_{SOI,i}$ and $T_{analog,j}$ given $I_{SOI,i}$ and $I_{analog,j}$. En route to making this prediction, the neural network must learn the weighted mask, multiply it by the two input maps, compute the MSE between these weighted maps, and finally convert the MSE into a predicted difference in the targets. This process is depicted in the red box of Figure 1.

Once the weighted mask has been learned, a neural network is no longer needed to make analog predictions. The weighted mask is multiplied by the SOI and each potential analog, the MSE is computed between the weighted SOI and the weighted potential analogs, and the potential analogs with the lowest MSE are used to make the analog forecast. While the proxy task is not identical to the analog problem, it provides a weighted mask that improves analog forecasting skill, as we will show in Sections 4 and 5.

4 Multi-year Prediction of North Atlantic Sea Surface Temperature

We first test our analog forecasting approach on a multi-year prediction of SSTs over the North Atlantic. North Atlantic SSTs exhibit clear variability on multi-annual timescales (Jackson et al., 2022) and exhibit potential for skillful decadal forecasts (Hawkins et al., 2011; Sutton & Allen, 1997). SST variability in the North Atlantic has been as-

Figure 1. Optimized analog forecasting method and interpretable neural network architecture. The analog forecasting method can be described in three steps: 1) identify a state of interest and a library of potential analogs. 2) Determine which maps are the most similar. 3) Make a prediction using the best analog(s). In the blue box, we show our weighted-mask approach for determining the similarity of two maps. The weighted mask is multiplied by the state of interest and a potential analog before computing the mean squared error (MSE). In the red box, the interpretable neural network architecture is shown. Two input samples are multiplied by a matrix of trainable weights and the MSE is computed. This MSE is then converted to a predicted difference in the sample targets using a group of fully-connected dense layers. Note that the weighted mask has the same dimensions as the input field(s), despite the coarser resolution in this figure.

sociated with weather and climate anomalies globally, including Atlantic hurricane frequency and intensity (Goldenberg et al., 2001; Balaguru et al., 2018), northern hemisphere
precipitation (Enfield et al., 2001; Si et al., 2023), and the strength of the Asian summer monsoon (Shekhar et al., 2022). In this prediction problem, we use global maps of
SST, averaged over the previous five years, to predict the mean SST anomaly in the North
Atlantic (40°-60°N, 10°-70°W) over the following five years.

The weighted mask learned by the neural network is shown in Figure 2a. The Green-169 land Sea and the gulf stream region in the western North Atlantic emerge as the most 170 important regions for identifying analogs in the MPI-GE. Over the western North At-171 lantic, there is an area of zero weight between two areas of high weight. These may be 172 where the boundaries of persistent SST anomalies vary, and the neural network has learned 173 that the specific locations of these boundaries are not important for the prediction prob-174 lem. Previous studies that have used an analog approach to assess North Atlantic decadal 175 predictability selected the best analogs by taking a correlation over the whole globe (Mahmood 176 et al., 2022) or the entire North Atlantic basin (Menary et al., 2021). As shown in Fig-177 ure 2b-d, when using the weighted mask, the best analogs only have to look like the SOI 178 in the highest weight regions. An example SOI is shown in Figure 2b and its best ana-179 log in Figure 2c. These two maps look similar in the North Atlantic, but are starkly dif-180 ferent in the North Pacific and Indian Ocean, among other regions. Once the weighted 181 mask has been applied to the SOI (Figure 2d) and its best analog (Figure 2e), the maps 182 look nearly identical. 183

These results suggest that using uniform weights across the entire North Atlantic 184 basin, or the whole globe, may lead to a selection of analogs that are not optimized for 185 forecasting multi-year variability in the North Atlantic. Indeed, we see that this is true 186 in the skill scores shown in Figure 3a. For $1 \le N \le 50$, where the top-N analogs are av-187 eraged, our weighted mask analog forecast outperforms the global and target region ana-188 log forecasts, as well as the climatology, mean target evolution, and random baselines. 189 The skill score is lowest when only the single best analog is used for forecasting, and sub-190 sequently improves for larger N. Given that the skill score maximizes around N = 10, 191 and the spread of the targets associated with the analogs (i.e. the uncertainty of the fore-192 cast) increases with N (Figure S1), we elect to focus on results for N = 10 analogs. The 193 prediction by the top-10 analogs, and the spread of the targets, are shown in Figure 3b 194 for 200 years of SOIs. The analog predictions do a good job of capturing the variabil-195

-8-

- ¹⁹⁶ ity of North Atlantic sea surface temperatures, though they do struggle to forecast the
- ¹⁹⁷ most extreme anomalies.

¹⁹⁸ 5 Seasonal Prediction of El Niño Southern Oscillation

In addition to improving multi-year forecasts of SST in the North Atlantic, the learned 199 weighted mask improves forecasts of ENSO on seasonal timescales. ENSO is the lead-200 ing mode of global annual SST variability (Hsiung & Newell, 1983) and has an exten-201 sive influence on global weather and climate (reviewed in Yeh et al., 2018). Analog fore-202 casting has been applied to seasonal prediction of ENSO in several studies due to its po-203 tential to outperform initialized GCM forecasts (e.g., Ding et al., 2018, 2019). In the fol-204 lowing example, we use wintertime (November-March) global SST anomalies to forecast 205 SST anomalies in the Niño3.4 region (5°S-5°N, 120-170°W; Barnston et al., 1997; Han-206 ley et al., 2003) the following winter. 207

The weighted mask for forecasting ENSO looks markedly different from that for 208 forecasting North Atlantic multi-year variability (Figure 4a). While a few regions are as-209 signed higher weights, the weights in Figure 4a are much more uniform across the globe 210 than in Figure 2a. The four main regions that stand out in this weighted mask have also 211 been identified as important precursors in previous literature: the western North Pacific 212 (e.g., S.-Y. Wang et al., 2012), the Pacific Meridional Mode (e.g., Amaya, 2019), the Cen-213 tral Atlantic (e.g., Martín-Rey et al., 2015), and the tropical Pacific itself (e.g., Capo-214 tondi & Sardeshmukh, 2015). The skill score of the global analog forecast (Figure 4b) 215 is similar to that of our weighted mask analog forecast (but always lower, see Figure S3), 216 which is not surprising since the values of the weighted mask are near one for most ar-217 eas of the globe. 218

Since the weighted mask can be manually updated *post hoc*, we use this to explore the sensitivity of the forecast skill to which regions are included in the weighted mask. Figure 5a shows the weighted mask for ENSO prediction (Figure 4a) but where the smallest 95 percent of the weights have been set to zero. Forecasts made with this "constrained" weighted mask have similar skill to the original weighted mask (as shown in Figure S4). From the constrained weighted mask, we identify four main precursor regions for ENSO: the West Pacific (ocean grid points bounded by 0°-40°N, 100°-170°E), the Tropical Pa-

-9-

Figure 2. Weighted mask and example for multi-year predictions of North Atlantic SST. (a) Weighted mask, as learned by the interpretable neural network. (b) Standardized SST anomalies for a sample state of interest (SOI). (c) Standardized SST anomalies for the best analog associated with the SOI. (d) Weighted SOI. (e) Weighted best analog.

Figure 3. Analog forecasts of North Atlantic sea surface temperature. (a) Skill scores for our weighted mask analog forecast and other baselines. (b) Weighted mask analog forecasts for 200 years of MPI-GE simulations, including the mean prediction from the top-10 analogs, the spread of these predictions, and the truth values.

Figure 4. Weighted mask and skill scores for seasonal predictions of El Niño Southern Oscillation. (a) Weighted mask. (b) Skill scores for our weighted mask analog and other baselines.

cific (25°S-10°N, 170°E-65°W), the Baja Coast (10°N-40°N, 110°-140°W), and the Tropical Atlantic (0°-20°N, 20°-80°W).

We assess how important each precursor region is in two ways. In the first approach, 228 we test the skill score of analog forecasting when each region is occluded from the con-229 strained weighted mask (weights in that region are set to zero). When all four regions 230 are included, the skill score is 0.146. Removing any of the four regions from the weighted 231 mask results in a skill score decrease. Interestingly, removing the Tropical Atlantic re-232 sults in the most drastic decrease in prediction skill. While the Tropical Atlantic has been 233 connected to ENSO predictability (e.g., Martín-Rey et al., 2015), it is not considered a 234 primary driver (C. Wang, 2018). In the second approach, we isolate each of the four re-235 gions (weights outside that region are set to zero). There is no improvement over clima-236 tology when just the Baja Coast or Tropical Atlantic is used to select analogs, and more 237 skill when just the West Pacific or Tropical Pacific is used. However, no region alone pro-238 vides anywhere near the skill that all four regions do together. 239

²⁴⁰ 6 Discussion and Conclusions

We have shown how an interpretable neural network can be used to identify a weighted mask that improves the selection of analogs for seasonal-to-decadal forecasting. The precursors identified in the weighted masks are not necessarily causal, but they do provide the optimal predictors for the given input. In this work we have constrained the neural network to learn one mask that represents all pathways of predictability, however allowing the network to learn different masks for different SOIs could lead to better analog forecasts.

While we only used a single input map of SST to predict a future target SST in 248 this work, this neural network architecture can be used for many other forecasting ap-249 proaches. For example, a combination of multiple variables can be used as the predic-250 tors (such as SST and sea surface height, as in Ding et al., 2018) or other geophysical 251 variables may be selected as the target (e.g., predicting precipitation over land). In ad-252 dition, one may also include variables at multiple lead times to capture the time tendency 253 of the climate system. We show results that include SST tendency as an input for the 254 North Atlantic multi-year prediction example in Figure S5. 255

Figure 5. Analog forecasting skill of El Niño Southern Oscillation when various regions are occluded or isolated. (a) As in Figure 4a, but the lowest 95 percent of weights are set to zero. Four regions of focus are highlighted by the colored boxes. (b) Skill scores for analog forecasts when each region is occluded from the mask (top) and when the region is isolated to make a forecast (bottom).

We have explored this method through a perfect model setup. As such, the iden-256 tified precursors are intrinsic to MPI-ESM1.1 and may not reflect patterns of predictabil-257 ity in the observed Earth system. Training the weighted mask on a multi-model ensem-258 ble may provide patterns that are more consistent with observations (e.g. Kirtman et 259 al., 2014; Rader et al., 2022) and allow for enhanced analog predictions on real data. Ad-260 ditionally, we could train on models and observations at the same time to identify a weighted 261 mask that is more representative of the true Earth System. We believe that this weighted 262 mask approach will be influential to analog forecasting moving forward. 263

²⁶⁴ Open Research Section

The data used in this study, simulations from the Max Planck Institute for Meteorology Grand Ensemble, are publicly available at https://esgf-data.dkrz.de/projects/mpige/. The weighted masks, and all python code used to generate the data and figures in this paper, can be found at XXX REVIEWERS, THIS CAN CURRENTLY BE FOUND AT https://github.com/jaminrader/WeightedMaskAnalogForecasting AND WILL BE UPLOADED TO ZENODO WHEN FINISHED XXX.

271 Acknowledgments

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Department of Energy Computational Science Graduate Fellowship under Award Number DE-SC0020347, and by grant AGS-2210068 from the National Science Foundation. The authors would like to thank colleagues at the NOAA Physical Sciences Laboratory for their helpful feedback.

278 References

- Amaya, D. J. (2019, December). The pacific meridional mode and ENSO: a review. Current Climate Change Reports, 5(4), 296–307. doi: 10.1007/s40641
 -019-00142-x
- Balaguru, K., Foltz, G. R., & Leung, L. R. (2018, May). Increasing magnitude of
 hurricane rapid intensification in the central and eastern tropical atlantic. *Geo- phys. Res. Lett.*, 45(9), 4238–4247. doi: 10.1029/2018gl077597
- Barnston, A. G., Chelliah, M., & Goldenberg, S. B. (1997, September). Doc-

manuscript submitted to $Geophysical\ Research\ Letters$

286	umentation of a highly ENSO-related sst region in the equatorial pa-
287	cific: Research note. $Atmosphere-Ocean, 35(3), 367-383.$ doi: 10.1080/
288	07055900.1997.9649597
289	Capotondi, A., & Sardeshmukh, P. D. (2015, November). Optimal precursors of dif-
290	ferent types of ENSO events. Geophys. Res. Lett., $42(22)$, 9952–9960. doi: 10
291	.1002/2015gl 066171
292	Delle Monache, L., Eckel, F. A., Rife, D. L., Nagarajan, B., & Searight, K. (2013,
293	October). Probabilistic weather prediction with an analog ensemble. Mon.
294	Weather Rev., $141(10)$, $3498-3516$. doi: $10.1175/mwr-d-12-00281.1$
295	Ding, H., Newman, M., Alexander, M. A., & Wittenberg, A. T. (2018, July). Skill-
296	ful climate forecasts of the tropical Indo-Pacific ocean using Model-Analogs. J .
297	Clim., $31(14)$, 5437–5459. doi: 10.1175/JCLI-D-17-0661.1
298	Ding, H., Newman, M., Alexander, M. A., & Wittenberg, A. T. (2019, February).
299	Diagnosing secular variations in retrospective ENSO seasonal forecast skill
300	using CMIP5 model-analogs. Geophys. Res. Lett., 46(3), 1721–1730. doi:
301	10.1029/2018gl 080598
302	Enfield, D. B., Mestas-Nuñez, A. M., & Trimble, P. J. (2001, May). The at-
303	lantic multidecadal oscillation and its relation to rainfall and river flows
304	in the continental U.S. Geophys. Res. Lett., 28(10), 2077–2080. doi:
305	10.1029/2000gl 012745
306	Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J., Böttinger, M.,
307	\dots Stevens, B. (2013, July). Climate and carbon cycle changes from 1850 to
308	2100 in MPI-ESM simulations for the coupled model intercomparison project
309	phase 5. J. Adv. Model. Earth Syst., 5(3), 572–597. doi: 10.1002/jame.20038
310	Goldenberg, S. B., Landsea, C. W., Mestas-Nunez, A. M., & Gray, W. M. (2001,
311	July). The recent increase in atlantic hurricane activity: causes and implica-
312	tions. Science, 293(5529), 474–479. doi: 10.1126/science.1060040
313	Hanley, D. E., Bourassa, M. A., O'Brien, J. J., Smith, S. R., & Spade, E. R. (2003,
314	April). A quantitative evaluation of ENSO indices. J. Clim., 16(8), 1249–1258.
315	doi: 10.1175/1520-0442(2003)16 (1249:AQEOEI>2.0.CO;2
316	Hawkins, E., Robson, J., Sutton, R., Smith, D., & Keenlyside, N. (2011, December).
317	Evaluating the potential for statistical decadal predictions of sea surface tem-
318	peratures with a perfect model approach. Clim. Dyn., 37(11-12), 2495–2509.

319	doi: 10.1007/s00382-011-1023-3
320	Hsiung, J., & Newell, R. E. (1983, October). The principal nonseasonal modes of
321	variation of global sea surface temperature. J. Phys. Oceanogr., $13(10)$, 1957–
322	1967. doi: 10.1175/1520-0485(1983)013 (1957:TPNMOV)2.0.CO;2
323	Jackson, L. C., Biastoch, A., Buckley, M. W., Desbruyères, D. G., Frajka-Williams,
324	E., Moat, B., & Robson, J. (2022, March). The evolution of the north at-
325	lantic meridional overturning circulation since 1980. Nature Reviews Earth \mathcal{E}
326	Environment, 3(4), 241–254. doi: 10.1038/s43017-022-00263-2
327	Kirtman, B. P., Min, D., Infanti, J. M., Kinter, J. L., Paolino, D. A., Zhang, Q.,
328	\dots Wood, E. F. (2014, April). The north american multimodel ensem-
329	ble: Phase-1 Seasonal-to-Interannual prediction; phase-2 toward developing
330	intraseasonal prediction. Bull. Am. Meteorol. Soc., 95(4), 585–601. doi:
331	10.1175/BAMS-D-12-00050.1
332	Kushnir, Y., Scaife, A. A., Arritt, R., Balsamo, G., Boer, G., Doblas-Reyes, F.,
333	Wu, B. (2019, January). Towards operational predictions of the near-term
334	climate. Nat. Clim. Chang., $9(2)$, 94–101. doi: 10.1038/s41558-018-0359-7
335	Lorenz, E. N. (1963, March). Deterministic nonperiodic flow. J. Atmos. Sci., $20(2)$,
336	130–141. doi: 10.1175/1520-0469(1963)020 (0130:DNF)2.0.CO;2
337	Lorenz, E. N. (1969, July). Atmospheric predictability as revealed by natu-
338	rally occurring analogues. J. Atmos. Sci., $26(4)$, 636–646. doi: 10.1175/
339	1520-0469(1969)26(636:APARBN)2.0.CO;2
340	Lou, Newman, M., & Hoell, A. (2023, February). Multi-decadal variation of ENSO
341	for ecast skill since the late 1800s. doi: 10.21203/rs.3.rs-2544766/v1
342	Maher, N., Milinski, S., Suarez-Gutierrez, L., & others. (2019). The max planck in-
343	stitute grand ensemble: enabling the exploration of climate system variability.
344	Journal of Advances. doi: $10.1029/2019MS001639$
345	Mahmood, R., Donat, M. G., Ortega, P., Doblas-Reyes, F. J., Delgado-Torres, C.,
346	Samsó, M., & Bretonnière, PA. (2022, October). Constraining low-frequency
347	variability in climate projections to predict climate on decadal to multi-decadal
348	timescales – a poor man's initialized prediction system. Earth Syst. Dyn.,
349	13(4), 1437–1450. doi: 10.5194/esd-13-1437-2022
350	Martín-Rey, M., Rodríguez-Fonseca, B., & others. (2015). Atlantic opportunities for
351	ENSO prediction. Geophys. Res. Lett., doi: 10.1002/2015GL065062

-17-

- Menary, M. B., Mignot, J., & Robson, J. (2021, June). Skilful decadal predictions 352 of subpolar north atlantic SSTs using CMIP model-analogues. Environ. Res. 353 Lett., 16(6), 064090. doi: 10.1088/1748-9326/ac06fb 354 Merryfield, W. J., Baehr, J., Batté, L., Becker, E. J., Butler, A. H., Coelho, 355 C. A. S., ... Yeager, S. (2020, September).Subseasonal to decadal predic-356 tion: Filling the Weather–Climate gap. Bull. Am. Meteorol. Soc., 101(9), 357 767-770. doi: 10.1175/BAMS-D-19-0037.A 358 Mulholland, D. P., Laloyaux, P., Haines, K., & Balmaseda, M. A. (2015, Novem-359 ber). Origin and impact of initialization shocks in coupled Atmosphere-360 Ocean forecasts. Mon. Weather Rev., 143(11), 4631-4644. doi: 10.1175/ 361 MWR-D-15-0076.1 362 Peng, W., Chen, Q., Zhou, S., & Huang, P. (2021, March). CMIP6 model-363 based analog forecasting for the seasonal prediction of sea surface temper-364 Geoscience Letters, 8(1), 1–8. ature in the offshore area of china. doi: 365 10.1186/s40562-021-00179-7366 Rader, J. K., Barnes, E. A., Ebert-Uphoff, I., & others. (2022). Detection of forced 367 change within combined climate fields using explainable neural networks. Jour-368 nal of Advances. 369 Shekhar, M., Sharma, A., Dimri, A. P., & Tandon, S. K. (2022, July). Asian summer 370 monsoon variability, global teleconnections, and dynamics during the last 1,000 371 years. Earth-Sci. Rev., 230, 104041. doi: 10.1016/j.earscirev.2022.104041 372 Si, D., Hu, A., Jiang, D., & Lang, X. (2023, February). Atmospheric telecon-373 nection associated with the atlantic multidecadal variability in summer: 374
- 375
 assessment of the CESM1 model.
 Clim. Dyn., 60(3), 1043–1060.
 doi:

 376
 10.1007/s00382-022-06331-z
- Sutton, R. T., & Allen, M. R. (1997, August). Decadal predictability of north at lantic sea surface temperature and climate. Nature, 388(6642), 563-567. doi:
 10.1038/41523
- Towler, E., PaiMazumder, D., & Done, J. (2018, March). Toward the application of
 decadal climate predictions. J. Appl. Meteorol. Climatol., 57(3), 555–568. doi:
 10.1175/JAMC-D-17-0113.1
- Van den Dool, H. M. (1994, May). Searching for analogues, how long must we wait?
 Tellus A, 46(3), 314–324. doi: 10.1034/j.1600-0870.1994.t01-2-00006.x

385	Wang, C. (2018, October). A review of ENSO theories. Natl Sci Rev, 5(6), 813–825.
386	doi: 10.1093/nsr/nwy104
387	Wang, SY., L'Heureux, M., & Chia, HH. (2012, March). ENSO prediction one
388	year in advance using western north pacific sea surface temperatures. $Geophys.$
389	Res. Lett., $39(5)$. doi: 10.1029/2012GL050909
390	Wu, Y., & Yan, X. (2023, May). Evaluating changes in the multiyear predictability
391	of the pacific decadal oscillation using model analogs since 1900. J. Mar. Sci.
392	Eng., $11(5)$, 980. doi: 10.3390/jmse11050980

- Yeh, S. W., Cai, W., Min, S. K., McPhaden, M. J., & others. (2018). ENSO atmo spheric teleconnections and their response to greenhouse gas forcing. *Reviews* of. doi: 10.1002/2017RG000568
- ³⁹⁶ Zhang, L., Delworth, T. L., Yang, X., Morioka, Y., Zeng, F., & Lu, F. (2023, Febru-
- ³⁹⁷ ary). Skillful decadal prediction skill over the southern ocean based on GFDL
- ³⁹⁸ SPEAR Model-Analogs. *Environ. Res. Commun.*, 5(2), 021002. doi: 10.1088/
- ³⁹⁹ 2515-7620/acb90e

Optimizing Seasonal-to-Decadal Analog Forecasts with a Learned Spatially-Weighted Mask

3	Jamin K. Rader ¹ , and Elizabeth A. Barnes ¹
4	¹ Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA.
5	Key Points:
6	• An interpretable neural network provides a spatially-weighted mask for selecting
7	optimal analogs
8	• Analogs selected with the weighted mask offer more skillful forecasts than tradi-
9	tional methods for selecting analogs
10	• The learned mask highlights precursor regions for predicting large-scale climate
11	anomalies in a perfect model framework

 $Corresponding \ author: \ Jamin \ K. \ Rader, \ \texttt{jamin.rader@colostate.edu}$

12 Abstract

Seasonal-to-decadal climate prediction is crucial for decision-making in a number of in-13 dustries, but forecasts on these timescales have limited skill. Here, we develop a data-14 driven method for selecting optimal analogs for seasonal-to-decadal analog forecasting. 15 Using an interpretable neural network, we learn a spatially-weighted mask that quan-16 tifies how important each grid point is for determining whether two climate states will 17 evolve similarly. We show that analogs selected using this weighted mask provide more 18 skillful forecasts than analogs that are selected using traditional spatially-uniform meth-19 ods. This method is tested on two prediction problems within a perfect model frame-20 work using the Max Planck Institute for Meteorology Grand Ensemble: multi-year pre-21 diction of North Atlantic sea surface temperatures, and seasonal prediction of El Niño 22 Southern Oscillation. This work demonstrates a methodical approach to selecting analogs 23 that may be useful for improving seasonal-to-decadal forecasts and understanding their 24 sources of skill. 25

²⁶ Plain Language Summary

Understanding how the climate will look in one to ten years is useful for many in-27 dustries, but this task is very difficult. One method for making forecasts on these timescales 28 is called analog forecasting. In analog forecasting, a researcher finds past states in ob-29 servations, or states in a climate model simulation, that look like the current state of the 30 climate, and uses how those maps changed over time to predict how the climate will change 31 over time. Some regions are more important for determining how a climate state will change 32 over time, and we use a machine learning method called a neural network to identify these 33 important regions. We find that if we only look at these important regions when deter-34 mining if two climate states are similar or not, we can improve our analog forecasting 35 skill. 36

37 1 Background

Forecasts on seasonal-to-decadal timescales are crucial for decision-makers in a number of industries, but forecasts on these timescales have limited skill (Kushnir et al., 2019; Merryfield et al., 2020; Towler et al., 2018). Analog forecasting, predicting what will happen based on previous states with similar initial conditions, is an intuitive method for seasonal-to-decadal prediction. It is built on the premise that similar geophysical states

-2-

will evolve in similar ways (Lorenz, 1969). It follows that analogs—similar looking states
to the initial state that is being forecast—can provide insight into how that initial state
will continue to evolve. The analog forecasting approach is powerful for seasonal-to-decadal
climate prediction (e.g., Ding et al., 2018, 2019; Menary et al., 2021; Delle Monache et
al., 2013; Zhang et al., 2023) and can outperform general circulation models (GCMs) initialized with observations, which struggle with initialization shock and climate model
drift (Merryfield et al., 2020; Mulholland et al., 2015).

A major hurdle in obtaining successful analog forecasts is that the climate system 50 is noisy and chaotic, and thus small differences between two initial states can result in 51 vast differences in their evolution (Lorenz, 1963). Thus, a successful analog forecast for 52 a particular initial climate state, which we refer to as the state of interest (SOI), requires 53 that the analogs and SOI are sufficiently similar such that their evolutions do not sig-54 nificantly diverge during the prediction timeframe. Sufficiently similar analogs can be 55 difficult to find in the observational record since the number of independent observations 56 we have on seasonal-to-decadal scales (e.g., fewer than 100 during the satellite era) is so 57 much smaller than the number of degrees of freedom within a global geophysical field 58 (e.g., Van den Dool, 1994). While observations are in short supply, there is a wealth of 59 simulated climate data and many recent studies have used "model-analogs" (Ding et al., 60 2018) drawn from climate model output instead (e.g., Lou et al., 2023; Peng et al., 2021; 61 Wu & Yan, 2023). 62

We refer to the library of climate model states that can be used for analog fore-63 casting as "potential analogs." Once a potential analog has been identified to be suffi-64 ciently similar to the SOI we refer to it as an analog. Forecasts are made by taking the 65 mean evolution of the top-N analogs, where N is chosen by the user. There are several 66 ways to quantify the similarity between the potential analogs and the SOI. The most straight-67 forward method is to compute the global correlation between each potential analog and 68 the SOI (e.g., Mahmood et al., 2022). Using a global correlation assumes that the sim-69 ilarity between the maps at each grid point globally matters equally. A natural next step 70 in complexity is to compute a correlation over a region that is known to be important 71 for predictability of a given target, such as the North Pacific for predicting the Pacific 72 Decadal Oscillation (e.g., Wu & Yan, 2023). While this approach removes some regions 73 that may not be useful for determining the best analogs, it still assumes that each grid 74 point within the region is equally important and the region must be known a priori. 75

-3-

In the following work, we train an interpretable neural network on a proxy task that 76 is similar to the analog problem (Section 3). The network learns a weighted mask which 77 is used for determining analogs. The forecasting skill of the analogs selected using the 78 learned weighted mask is tested through a perfect model approach where climate model 79 data substitutes observations and is used to predict future climate model data. We show 80 in two examples, forecasting 5-year sea surface temperature (SST) anomalies in the North 81 Atlantic (Section 4) and wintertime SST anomalies in the tropical Pacific (i.e. El Niño 82 Southern Oscillation; Section 5), that analogs identified using the weighted mask pro-83 vide more skillful forecasts than analogs that are identified in a way that is globally or 84 regionally uniform. In addition, we show that these masks, once generated by a neural 85 network, can be modified *post hoc* to further investigate the importance of each region 86 for seasonal-to-decadal prediction (Section 5). 87

⁸⁸ 2 Data and Metrics

89

2.1 Climate Model Data

We use monthly SST from the historical run of the Max Planck Institute (MPI) for Meteorology Grand Ensemble (GE; Maher et al., 2019) at 2° latitude by 2° longitude resolution. This dataset contains 100 members and each simulates 156 years (1850-2005) of the Earth's climate with historical forcing. The MPI-GE uses the MPI Earth System Model version 1.1 (ESM1.1; Giorgetta et al., 2013). Each member is initialized using a different year of the preindustrial control simulation such that the differences between ensemble members are a product of internal variability.

97

2.2 Standardization and Selection

Subsets of the MPI-GE ensemble members are used for different purposes. Our library of potential analogs is made up of members 1-35. Members 36-50 are the SOIs for training the neural network, members 51-55 are the SOIs for the early stopping validation set (which is used to prevent overfitting to the training data), and members 56-60 are the SOIs for the tuning validation set (which is used to identify optimal hyperparameters for the neural network). Finally, members 96-100, which are withheld until the very end, are the test set for making and evaluating the analog forecasts. Details on the process of tuning and training the neural network, including selecting the hyperparam eters, can be found in Section S1.

Each sample *i* or *j*, from the SOIs or the library of potential analogs, is composed of an input field ($I_{SOI,i}$ or $I_{analog,j}$) and a target ($T_{SOI,i}$ or $T_{analog,j}$). The input fields are one or more maps of global SST leading the targets over some earlier period (the "input period"). The targets are time- and area-mean SST anomalies over a certain region and forecast window.

We removed the forced signal from the climate model data by subtracting the ensemble mean of the library of potential analogs at each location and year from each set of data. After the forced signal was removed, the data was standardized by dividing by the standard deviation at each grid point across the library of potential analogs. By using the library of potential analogs to calculate the forced signal and internal variance we treat the SOIs as if they are truly unseen data as we would when forecasting.

118 **2.3 Metrics**

We measure forecasting skill with a mean absolute error (MAE) skill score. This skill score is calculated by comparing the MAE of the analog prediction for the SOIs in the test set with the MAE of climatology, as:

Skill Score =
$$1 - \frac{MAE_{pred}}{MAE_{climo}}$$

such that a perfect prediction has a score of one, and a climatology prediction has a score 122 of zero. Climatology is the prediction by the mean state, which is zero for this standard-123 ized data. Analog forecasts made using the weighted mask are compared with the fol-124 lowing additional baselines: a global analog forecast, a target region analog forecast, a 125 mean target evolution forecast, and a random forecast. In the global analog forecast (tar-126 get region analog forecast), the analogs are selected if the unweighted MSE over the en-127 tire globe (target region) is the smallest. The mean target evolution forecast is based on 128 how the targets in the input period evolve on average and is detailed in Section S2. The 129 random forecast is made by randomly selecting targets from the library of potential analogs 130 and using them as the prediction. 131

¹³² 3 Optimized Analog Forecasting Approach

Our goal is to find optimal analogs for forecasting a specific target. To do this, we 133 train a neural network to identify a spatially-weighted mask. This weighted mask is then 134 multiplied by the SOI and potential analogs and the mean-squared error (MSE) between 135 the weighted maps is used to determine how similar they are (Figure 1). This weighted 136 mask should contain large values where similarity between the analogs and the SOI is 137 most important for predicting the target and near-zero values where similarity between 138 the maps is not important. With this architecture, the MSE will be low if the maps agree 139 where the mask weights are high, regardless of the differences between the maps where 140 the mask weights are low. For the plots in this paper, the mask is normalized by divid-141 ing by the sum of the weights times the size of the input, such that the mean weight is 142 one. 143

We generate the weighted mask by training a neural network on a proxy task that is tangential to our main goal. While our goal is to identify a weighted mask that is optimized for making an analog forecast, our proxy task is to predict the difference in $T_{SOI,i}$ and $T_{analog,j}$ given $I_{SOI,i}$ and $I_{analog,j}$. En route to making this prediction, the neural network must learn the weighted mask, multiply it by the two input maps, compute the MSE between these weighted maps, and finally convert the MSE into a predicted difference in the targets. This process is depicted in the red box of Figure 1.

Once the weighted mask has been learned, a neural network is no longer needed to make analog predictions. The weighted mask is multiplied by the SOI and each potential analog, the MSE is computed between the weighted SOI and the weighted potential analogs, and the potential analogs with the lowest MSE are used to make the analog forecast. While the proxy task is not identical to the analog problem, it provides a weighted mask that improves analog forecasting skill, as we will show in Sections 4 and 5.

4 Multi-year Prediction of North Atlantic Sea Surface Temperature

We first test our analog forecasting approach on a multi-year prediction of SSTs over the North Atlantic. North Atlantic SSTs exhibit clear variability on multi-annual timescales (Jackson et al., 2022) and exhibit potential for skillful decadal forecasts (Hawkins et al., 2011; Sutton & Allen, 1997). SST variability in the North Atlantic has been as-

Figure 1. Optimized analog forecasting method and interpretable neural network architecture. The analog forecasting method can be described in three steps: 1) identify a state of interest and a library of potential analogs. 2) Determine which maps are the most similar. 3) Make a prediction using the best analog(s). In the blue box, we show our weighted-mask approach for determining the similarity of two maps. The weighted mask is multiplied by the state of interest and a potential analog before computing the mean squared error (MSE). In the red box, the interpretable neural network architecture is shown. Two input samples are multiplied by a matrix of trainable weights and the MSE is computed. This MSE is then converted to a predicted difference in the sample targets using a group of fully-connected dense layers. Note that the weighted mask has the same dimensions as the input field(s), despite the coarser resolution in this figure.

sociated with weather and climate anomalies globally, including Atlantic hurricane frequency and intensity (Goldenberg et al., 2001; Balaguru et al., 2018), northern hemisphere
precipitation (Enfield et al., 2001; Si et al., 2023), and the strength of the Asian summer monsoon (Shekhar et al., 2022). In this prediction problem, we use global maps of
SST, averaged over the previous five years, to predict the mean SST anomaly in the North
Atlantic (40°-60°N, 10°-70°W) over the following five years.

The weighted mask learned by the neural network is shown in Figure 2a. The Green-169 land Sea and the gulf stream region in the western North Atlantic emerge as the most 170 important regions for identifying analogs in the MPI-GE. Over the western North At-171 lantic, there is an area of zero weight between two areas of high weight. These may be 172 where the boundaries of persistent SST anomalies vary, and the neural network has learned 173 that the specific locations of these boundaries are not important for the prediction prob-174 lem. Previous studies that have used an analog approach to assess North Atlantic decadal 175 predictability selected the best analogs by taking a correlation over the whole globe (Mahmood 176 et al., 2022) or the entire North Atlantic basin (Menary et al., 2021). As shown in Fig-177 ure 2b-d, when using the weighted mask, the best analogs only have to look like the SOI 178 in the highest weight regions. An example SOI is shown in Figure 2b and its best ana-179 log in Figure 2c. These two maps look similar in the North Atlantic, but are starkly dif-180 ferent in the North Pacific and Indian Ocean, among other regions. Once the weighted 181 mask has been applied to the SOI (Figure 2d) and its best analog (Figure 2e), the maps 182 look nearly identical. 183

These results suggest that using uniform weights across the entire North Atlantic 184 basin, or the whole globe, may lead to a selection of analogs that are not optimized for 185 forecasting multi-year variability in the North Atlantic. Indeed, we see that this is true 186 in the skill scores shown in Figure 3a. For $1 \le N \le 50$, where the top-N analogs are av-187 eraged, our weighted mask analog forecast outperforms the global and target region ana-188 log forecasts, as well as the climatology, mean target evolution, and random baselines. 189 The skill score is lowest when only the single best analog is used for forecasting, and sub-190 sequently improves for larger N. Given that the skill score maximizes around N = 10, 191 and the spread of the targets associated with the analogs (i.e. the uncertainty of the fore-192 cast) increases with N (Figure S1), we elect to focus on results for N = 10 analogs. The 193 prediction by the top-10 analogs, and the spread of the targets, are shown in Figure 3b 194 for 200 years of SOIs. The analog predictions do a good job of capturing the variabil-195

-8-

- ¹⁹⁶ ity of North Atlantic sea surface temperatures, though they do struggle to forecast the
- ¹⁹⁷ most extreme anomalies.

¹⁹⁸ 5 Seasonal Prediction of El Niño Southern Oscillation

In addition to improving multi-year forecasts of SST in the North Atlantic, the learned 199 weighted mask improves forecasts of ENSO on seasonal timescales. ENSO is the lead-200 ing mode of global annual SST variability (Hsiung & Newell, 1983) and has an exten-201 sive influence on global weather and climate (reviewed in Yeh et al., 2018). Analog fore-202 casting has been applied to seasonal prediction of ENSO in several studies due to its po-203 tential to outperform initialized GCM forecasts (e.g., Ding et al., 2018, 2019). In the fol-204 lowing example, we use wintertime (November-March) global SST anomalies to forecast 205 SST anomalies in the Niño3.4 region (5°S-5°N, 120-170°W; Barnston et al., 1997; Han-206 ley et al., 2003) the following winter. 207

The weighted mask for forecasting ENSO looks markedly different from that for 208 forecasting North Atlantic multi-year variability (Figure 4a). While a few regions are as-209 signed higher weights, the weights in Figure 4a are much more uniform across the globe 210 than in Figure 2a. The four main regions that stand out in this weighted mask have also 211 been identified as important precursors in previous literature: the western North Pacific 212 (e.g., S.-Y. Wang et al., 2012), the Pacific Meridional Mode (e.g., Amaya, 2019), the Cen-213 tral Atlantic (e.g., Martín-Rey et al., 2015), and the tropical Pacific itself (e.g., Capo-214 tondi & Sardeshmukh, 2015). The skill score of the global analog forecast (Figure 4b) 215 is similar to that of our weighted mask analog forecast (but always lower, see Figure S3), 216 which is not surprising since the values of the weighted mask are near one for most ar-217 eas of the globe. 218

Since the weighted mask can be manually updated *post hoc*, we use this to explore the sensitivity of the forecast skill to which regions are included in the weighted mask. Figure 5a shows the weighted mask for ENSO prediction (Figure 4a) but where the smallest 95 percent of the weights have been set to zero. Forecasts made with this "constrained" weighted mask have similar skill to the original weighted mask (as shown in Figure S4). From the constrained weighted mask, we identify four main precursor regions for ENSO: the West Pacific (ocean grid points bounded by 0°-40°N, 100°-170°E), the Tropical Pa-

-9-

Figure 2. Weighted mask and example for multi-year predictions of North Atlantic SST. (a) Weighted mask, as learned by the interpretable neural network. (b) Standardized SST anomalies for a sample state of interest (SOI). (c) Standardized SST anomalies for the best analog associated with the SOI. (d) Weighted SOI. (e) Weighted best analog.

Figure 3. Analog forecasts of North Atlantic sea surface temperature. (a) Skill scores for our weighted mask analog forecast and other baselines. (b) Weighted mask analog forecasts for 200 years of MPI-GE simulations, including the mean prediction from the top-10 analogs, the spread of these predictions, and the truth values.

Figure 4. Weighted mask and skill scores for seasonal predictions of El Niño Southern Oscillation. (a) Weighted mask. (b) Skill scores for our weighted mask analog and other baselines.

cific (25°S-10°N, 170°E-65°W), the Baja Coast (10°N-40°N, 110°-140°W), and the Tropical Atlantic (0°-20°N, 20°-80°W).

We assess how important each precursor region is in two ways. In the first approach, 228 we test the skill score of analog forecasting when each region is occluded from the con-229 strained weighted mask (weights in that region are set to zero). When all four regions 230 are included, the skill score is 0.146. Removing any of the four regions from the weighted 231 mask results in a skill score decrease. Interestingly, removing the Tropical Atlantic re-232 sults in the most drastic decrease in prediction skill. While the Tropical Atlantic has been 233 connected to ENSO predictability (e.g., Martín-Rey et al., 2015), it is not considered a 234 primary driver (C. Wang, 2018). In the second approach, we isolate each of the four re-235 gions (weights outside that region are set to zero). There is no improvement over clima-236 tology when just the Baja Coast or Tropical Atlantic is used to select analogs, and more 237 skill when just the West Pacific or Tropical Pacific is used. However, no region alone pro-238 vides anywhere near the skill that all four regions do together. 239

²⁴⁰ 6 Discussion and Conclusions

We have shown how an interpretable neural network can be used to identify a weighted mask that improves the selection of analogs for seasonal-to-decadal forecasting. The precursors identified in the weighted masks are not necessarily causal, but they do provide the optimal predictors for the given input. In this work we have constrained the neural network to learn one mask that represents all pathways of predictability, however allowing the network to learn different masks for different SOIs could lead to better analog forecasts.

While we only used a single input map of SST to predict a future target SST in 248 this work, this neural network architecture can be used for many other forecasting ap-249 proaches. For example, a combination of multiple variables can be used as the predic-250 tors (such as SST and sea surface height, as in Ding et al., 2018) or other geophysical 251 variables may be selected as the target (e.g., predicting precipitation over land). In ad-252 dition, one may also include variables at multiple lead times to capture the time tendency 253 of the climate system. We show results that include SST tendency as an input for the 254 North Atlantic multi-year prediction example in Figure S5. 255

Figure 5. Analog forecasting skill of El Niño Southern Oscillation when various regions are occluded or isolated. (a) As in Figure 4a, but the lowest 95 percent of weights are set to zero. Four regions of focus are highlighted by the colored boxes. (b) Skill scores for analog forecasts when each region is occluded from the mask (top) and when the region is isolated to make a forecast (bottom).

We have explored this method through a perfect model setup. As such, the iden-256 tified precursors are intrinsic to MPI-ESM1.1 and may not reflect patterns of predictabil-257 ity in the observed Earth system. Training the weighted mask on a multi-model ensem-258 ble may provide patterns that are more consistent with observations (e.g. Kirtman et 259 al., 2014; Rader et al., 2022) and allow for enhanced analog predictions on real data. Ad-260 ditionally, we could train on models and observations at the same time to identify a weighted 261 mask that is more representative of the true Earth System. We believe that this weighted 262 mask approach will be influential to analog forecasting moving forward. 263

²⁶⁴ Open Research Section

The data used in this study, simulations from the Max Planck Institute for Meteorology Grand Ensemble, are publicly available at https://esgf-data.dkrz.de/projects/mpige/. The weighted masks, and all python code used to generate the data and figures in this paper, can be found at XXX REVIEWERS, THIS CAN CURRENTLY BE FOUND AT https://github.com/jaminrader/WeightedMaskAnalogForecasting AND WILL BE UPLOADED TO ZENODO WHEN FINISHED XXX.

271 Acknowledgments

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Department of Energy Computational Science Graduate Fellowship under Award Number DE-SC0020347, and by grant AGS-2210068 from the National Science Foundation. The authors would like to thank colleagues at the NOAA Physical Sciences Laboratory for their helpful feedback.

278 References

- Amaya, D. J. (2019, December). The pacific meridional mode and ENSO: a review. Current Climate Change Reports, 5(4), 296–307. doi: 10.1007/s40641
 -019-00142-x
- Balaguru, K., Foltz, G. R., & Leung, L. R. (2018, May). Increasing magnitude of
 hurricane rapid intensification in the central and eastern tropical atlantic. *Geo- phys. Res. Lett.*, 45(9), 4238–4247. doi: 10.1029/2018gl077597
- Barnston, A. G., Chelliah, M., & Goldenberg, S. B. (1997, September). Doc-

manuscript submitted to $Geophysical\ Research\ Letters$

286	umentation of a highly ENSO-related sst region in the equatorial pa-
287	cific: Research note. $Atmosphere-Ocean, 35(3), 367-383.$ doi: 10.1080/
288	07055900.1997.9649597
289	Capotondi, A., & Sardeshmukh, P. D. (2015, November). Optimal precursors of dif-
290	ferent types of ENSO events. Geophys. Res. Lett., $42(22)$, 9952–9960. doi: 10
291	.1002/2015gl 066171
292	Delle Monache, L., Eckel, F. A., Rife, D. L., Nagarajan, B., & Searight, K. (2013,
293	October). Probabilistic weather prediction with an analog ensemble. Mon.
294	Weather Rev., $141(10)$, $3498-3516$. doi: $10.1175/mwr-d-12-00281.1$
295	Ding, H., Newman, M., Alexander, M. A., & Wittenberg, A. T. (2018, July). Skill-
296	ful climate forecasts of the tropical Indo-Pacific ocean using Model-Analogs. J .
297	Clim., $31(14)$, 5437–5459. doi: 10.1175/JCLI-D-17-0661.1
298	Ding, H., Newman, M., Alexander, M. A., & Wittenberg, A. T. (2019, February).
299	Diagnosing secular variations in retrospective ENSO seasonal forecast skill
300	using CMIP5 model-analogs. Geophys. Res. Lett., 46(3), 1721–1730. doi:
301	10.1029/2018gl 080598
302	Enfield, D. B., Mestas-Nuñez, A. M., & Trimble, P. J. (2001, May). The at-
303	lantic multidecadal oscillation and its relation to rainfall and river flows
304	in the continental U.S. Geophys. Res. Lett., 28(10), 2077–2080. doi:
305	10.1029/2000gl 012745
306	Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J., Böttinger, M.,
307	\dots Stevens, B. (2013, July). Climate and carbon cycle changes from 1850 to
308	2100 in MPI-ESM simulations for the coupled model intercomparison project
309	phase 5. J. Adv. Model. Earth Syst., 5(3), 572–597. doi: 10.1002/jame.20038
310	Goldenberg, S. B., Landsea, C. W., Mestas-Nunez, A. M., & Gray, W. M. (2001,
311	July). The recent increase in atlantic hurricane activity: causes and implica-
312	tions. Science, 293(5529), 474–479. doi: 10.1126/science.1060040
313	Hanley, D. E., Bourassa, M. A., O'Brien, J. J., Smith, S. R., & Spade, E. R. (2003,
314	April). A quantitative evaluation of ENSO indices. J. Clim., 16(8), 1249–1258.
315	doi: 10.1175/1520-0442(2003)16 (1249:AQEOEI>2.0.CO;2
316	Hawkins, E., Robson, J., Sutton, R., Smith, D., & Keenlyside, N. (2011, December).
317	Evaluating the potential for statistical decadal predictions of sea surface tem-
318	peratures with a perfect model approach. Clim. Dyn., 37(11-12), 2495–2509.

319	doi: 10.1007/s00382-011-1023-3
320	Hsiung, J., & Newell, R. E. (1983, October). The principal nonseasonal modes of
321	variation of global sea surface temperature. J. Phys. Oceanogr., $13(10)$, 1957–
322	1967. doi: 10.1175/1520-0485(1983)013 (1957:TPNMOV)2.0.CO;2
323	Jackson, L. C., Biastoch, A., Buckley, M. W., Desbruyères, D. G., Frajka-Williams,
324	E., Moat, B., & Robson, J. (2022, March). The evolution of the north at-
325	lantic meridional overturning circulation since 1980. Nature Reviews Earth \mathcal{E}
326	Environment, 3(4), 241–254. doi: 10.1038/s43017-022-00263-2
327	Kirtman, B. P., Min, D., Infanti, J. M., Kinter, J. L., Paolino, D. A., Zhang, Q.,
328	\dots Wood, E. F. (2014, April). The north american multimodel ensem-
329	ble: Phase-1 Seasonal-to-Interannual prediction; phase-2 toward developing
330	intraseasonal prediction. Bull. Am. Meteorol. Soc., 95(4), 585–601. doi:
331	10.1175/BAMS-D-12-00050.1
332	Kushnir, Y., Scaife, A. A., Arritt, R., Balsamo, G., Boer, G., Doblas-Reyes, F.,
333	Wu, B. (2019, January). Towards operational predictions of the near-term
334	climate. Nat. Clim. Chang., $9(2)$, 94–101. doi: 10.1038/s41558-018-0359-7
335	Lorenz, E. N. (1963, March). Deterministic nonperiodic flow. J. Atmos. Sci., $20(2)$,
336	130–141. doi: 10.1175/1520-0469(1963)020 (0130:DNF)2.0.CO;2
337	Lorenz, E. N. (1969, July). Atmospheric predictability as revealed by natu-
338	rally occurring analogues. J. Atmos. Sci., $26(4)$, 636–646. doi: 10.1175/
339	1520-0469(1969)26(636:APARBN)2.0.CO;2
340	Lou, Newman, M., & Hoell, A. (2023, February). Multi-decadal variation of ENSO
341	for ecast skill since the late 1800s. doi: 10.21203/rs.3.rs-2544766/v1
342	Maher, N., Milinski, S., Suarez-Gutierrez, L., & others. (2019). The max planck in-
343	stitute grand ensemble: enabling the exploration of climate system variability.
344	Journal of Advances. doi: $10.1029/2019MS001639$
345	Mahmood, R., Donat, M. G., Ortega, P., Doblas-Reyes, F. J., Delgado-Torres, C.,
346	Samsó, M., & Bretonnière, PA. (2022, October). Constraining low-frequency
347	variability in climate projections to predict climate on decadal to multi-decadal
348	timescales – a poor man's initialized prediction system. Earth Syst. Dyn.,
349	13(4), 1437–1450. doi: 10.5194/esd-13-1437-2022
350	Martín-Rey, M., Rodríguez-Fonseca, B., & others. (2015). Atlantic opportunities for
351	ENSO prediction. Geophys. Res. Lett., doi: 10.1002/2015GL065062

-17-

- Menary, M. B., Mignot, J., & Robson, J. (2021, June). Skilful decadal predictions 352 of subpolar north atlantic SSTs using CMIP model-analogues. Environ. Res. 353 Lett., 16(6), 064090. doi: 10.1088/1748-9326/ac06fb 354 Merryfield, W. J., Baehr, J., Batté, L., Becker, E. J., Butler, A. H., Coelho, 355 C. A. S., ... Yeager, S. (2020, September).Subseasonal to decadal predic-356 tion: Filling the Weather–Climate gap. Bull. Am. Meteorol. Soc., 101(9), 357 767-770. doi: 10.1175/BAMS-D-19-0037.A 358 Mulholland, D. P., Laloyaux, P., Haines, K., & Balmaseda, M. A. (2015, Novem-359 ber). Origin and impact of initialization shocks in coupled Atmosphere-360 Ocean forecasts. Mon. Weather Rev., 143(11), 4631-4644. doi: 10.1175/ 361 MWR-D-15-0076.1 362 Peng, W., Chen, Q., Zhou, S., & Huang, P. (2021, March). CMIP6 model-363 based analog forecasting for the seasonal prediction of sea surface temper-364 Geoscience Letters, 8(1), 1–8. ature in the offshore area of china. doi: 365 10.1186/s40562-021-00179-7366 Rader, J. K., Barnes, E. A., Ebert-Uphoff, I., & others. (2022). Detection of forced 367 change within combined climate fields using explainable neural networks. Jour-368 nal of Advances. 369 Shekhar, M., Sharma, A., Dimri, A. P., & Tandon, S. K. (2022, July). Asian summer 370 monsoon variability, global teleconnections, and dynamics during the last 1,000 371 years. Earth-Sci. Rev., 230, 104041. doi: 10.1016/j.earscirev.2022.104041 372 Si, D., Hu, A., Jiang, D., & Lang, X. (2023, February). Atmospheric telecon-373 nection associated with the atlantic multidecadal variability in summer: 374
- 375
 assessment of the CESM1 model.
 Clim. Dyn., 60(3), 1043–1060.
 doi:

 376
 10.1007/s00382-022-06331-z
- Sutton, R. T., & Allen, M. R. (1997, August). Decadal predictability of north at lantic sea surface temperature and climate. Nature, 388(6642), 563-567. doi:
 10.1038/41523
- Towler, E., PaiMazumder, D., & Done, J. (2018, March). Toward the application of
 decadal climate predictions. J. Appl. Meteorol. Climatol., 57(3), 555–568. doi:
 10.1175/JAMC-D-17-0113.1
- Van den Dool, H. M. (1994, May). Searching for analogues, how long must we wait?
 Tellus A, 46(3), 314–324. doi: 10.1034/j.1600-0870.1994.t01-2-00006.x

385	Wang, C. (2018, October). A review of ENSO theories. Natl Sci Rev, 5(6), 813–825.
386	doi: 10.1093/nsr/nwy104
387	Wang, SY., L'Heureux, M., & Chia, HH. (2012, March). ENSO prediction one
388	year in advance using western north pacific sea surface temperatures. $Geophys.$
389	Res. Lett., $39(5)$. doi: 10.1029/2012GL050909
390	Wu, Y., & Yan, X. (2023, May). Evaluating changes in the multiyear predictability
391	of the pacific decadal oscillation using model analogs since 1900. J. Mar. Sci.
392	Eng., $11(5)$, 980. doi: 10.3390/jmse11050980

- Yeh, S. W., Cai, W., Min, S. K., McPhaden, M. J., & others. (2018). ENSO atmo spheric teleconnections and their response to greenhouse gas forcing. *Reviews* of. doi: 10.1002/2017RG000568
- ³⁹⁶ Zhang, L., Delworth, T. L., Yang, X., Morioka, Y., Zeng, F., & Lu, F. (2023, Febru-
- ³⁹⁷ ary). Skillful decadal prediction skill over the southern ocean based on GFDL
- ³⁹⁸ SPEAR Model-Analogs. *Environ. Res. Commun.*, 5(2), 021002. doi: 10.1088/
- ³⁹⁹ 2515-7620/acb90e

Supporting Information for "Optimizing Seasonal-to-Decadal Analog Forecasts with a Learned Spatially-Weighted Mask"

Jamin K. Rader¹, and Elizabeth A. Barnes¹

¹Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA.

Contents of this file

- 1. Text S1 to S2 $\,$
- 2. Figures S1 to S4
- 3. Tables S1 to S6

X - 2

Text S1: Neural Network Training and Hyperparameter Tuning

The interpretable neural network architecture, shown in the blue box of Figure 1, is composed as follows.

1) The neural network receives two input samples, such as two global maps of sea surface temperature (SST), which are associated with two targets, such as the SST anomaly in the North Atlantic over the following five years.

2) The input samples are each multiplied by an array of trainable weights that have the same dimensions as the inputs. Each input sample is multiplied by identical trainable weights.

3) The mean squared error (MSE) between the two input*weights layers is calculated.

4) The computed MSE is fed into a series of fully-connected dense layers. These dense layers are intended to find a relationship between the weighted MSE and the absolute difference between the targets associated with each of the inputs (which is the predict and for this neural network task).

There are four main tunable parameters for the interpretable neural network: the learning rate, the L2 regularization applied to the mask (acts to smooth out the weights and reduce overfitting), the size of the dense layers, and the activation function for the dense layers.

A different neural network architecture is tuned for each prediction problem. The prediction problems/experiments are: EXP-Niño, predicting NDJFM Niño3.4 SST anomalies given global NDJFM SST one year prior, and EXP-NorAtl, predicting 5-year SST anomalies in the North Atlantic given global SSTs in the five years prior. In Figure S4, we also

show results for EXP501 - predicting 5-year SST anomalies in the North Atlantic given global SSTs in the five years prior and the difference between the global SSTs in the five years prior and the period 3-7 years prior (i.e. the sea surface temperature tendency). The same hyperparameters that were tuned for EXP-NorAtl are used for EXP501.

To tune each experiment the following procedure was performed:

1) Tune the neural network using the constants in Table S1 and the hyperparameter search space in Table S2. Train 100 total models and assess their loss on validation data (not used for training or early stopping). This is the base hyperparameter search, and will be used to constrain the search space for more tuning.

2) Identify the top-10 models in terms of validation loss from the base hyperparameter search. Constrain the hyperparameter space to the ranges of hyperparameters that appeared in these 10 best models. This constrained hyperparameter space is referred to as the "refined" hyperparameter space. For the dense layers, all configurations are retained that have a number of trainable parameters captured by the minimum and the maximum number of trainable parameters within the dense layers (not including the input weights) of the 10 best models.

3) Tune the neural network by training 100 new models using a random search of the refined hyperparameter space in Tables S3-S4.

The hyperparameters associated with the model with the best validation loss in the refined search were used for the results. These are shown in Tables S5-S6. The results for

models using the random seed of 0, which is important for the initialization of weights and the random selection of samples for neural network training, are shown in the main text. Additionally, the results for models trained with the random seeds of 10, 20, 30, 40, 50, 60, 70, 80, and 90 can be found here in Figures S1 and S2.

Text S2: Baselines

The description of the mean target evolution baseline was withheld from the main text, and is instead supplied here. We make a mean target evolution forecast by first binning the samples in the training set based on the target values *during the input period*. The mean evolution of each bin is determined by taking all the samples within that bin and calculating the mean target value during the forecast window. The mean target evolution forecast is made by then identifying which bin each sample from the test set falls into, and using the mean evolution of that bin as the prediction.

In addition to the baselines in the main text, we present one additional baseline in the supplement: the skill of a "vanilla model." The vanilla model is your typical feed forward artificial neural network. Given a state of interest as input, the vanilla model is tasked to predict the target. It is not constrained to follow the analog framework.

Mean Variance of Top-N Analog Predictions

:

Figure S1. Mean variance of the targets associated with the top-N analogs across all testing samples.

Figure S2. EXP-NorAtl: results for neural networks trained on nine different seeds. (a) Nine neural networks trained on different seeds show striking consistency in their weighted masks. (b) Skill scores for the average of the top-10 analogs. In all cases, the highest skill comes from the vanilla model, followed by the analog models. The masked analog outperforms the baselines discussed in the main text.

Figure S3. EXP-Niño: results for neural networks trained on nine different seeds. (a) Changing the seed used for the neural network training results in slight variation in the weighted mask. However, all weighted masks highlight the central tropical Pacific, western Pacific, Baja coast, and central Atlantic as the most important (though to varying degrees). (b) Skill scores for the average of the top-10 analogs. The vanilla model outperforms the weighted mask analog model across the board. In all cases the masked analog outperforms the baselines discussed in the main text.

Figure S4. The skill of an analog forecast for EXP-Niño using the weighted mask when the smallest weights are set to zero. The horizontal line indicates the forecasting skill before the weighted mask has been altered. The vertical line indicates the forecasting skill using a weighted mask where the smallest 95 percent of the weights have been set to zero. Removing the smallest weights does not have much of an impact on forecasting skill, and may even improve it. These results are for the validation data set.

Figure S5. (a) Weighted masks for EXP501. (b) Skill scores for EXP501 versus various baselines. Adding an SST tendency input field did not notably impact forecasting skill in this problem.

Analog Members	0 through 34
Training SOI Members	35 through 49
Validation SOI Members (early stopping)	50 through 54
Validation SOI Members (tuning)	55 through 60
Testing SOI Members	95 through 99
Loss Function	MSE
Early Stopping Patience (epochs)	50
Early Stopping Minimum Delta	0.0005
Maximum # of Epochs	5,000
Validation Batch Size	2,500
Mask Activation Function *	relu
Mask Initial Value *	ones
Dense Layer Weight and Biases Initial Values	random normal

Table S1.Constant values for all neural networks trained.

Dense Layers	0-3 Layers, with 1, 2, 5, 10, 20, 50 or 100 nodes in all layers.
Activation Function	elu, relu, tanh
L2 Regularization applied to Mask * L2 Regularization applied to Input ^	0.0, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1
Learning Rate	0.01, 0.001, 0.0001

Table S2. Base hyperparameter search space for identifying the best neural network architec-ture for each experiment.

Interpretable Analog Model		
Dense Layers	1 Layer with 5, 10, 20, 50, 100 nodes 2 Layers with 2, 5, 10, 20, 50 nodes 3 Layers with 1, 2, 5, 10, 20, 50 nodes	
Activation Function	elu, relu, tanh	
L2 Regularization applied to Mask	0.0	
Learning Rate	0.01, 0.001, 0.0001	
Vanilla Model		
Dense Layers	1 Layer with 5, 10, 20, 50, 100 nodes 2 Layers with 2, 5, 10, 20, 50 nodes 3 Layers with 2, 5, 10, 20 nodes	
Activation Function	elu, relu	
L2 Regularization applied to Input	0.0, 1e-5, 1e-4, 1e-3, 1e-2	
Learning Rate	0.01, 0.001, 0.0001	
Vanilla Analog Model		
Dense Layers	1 Layer with 5, 10, 20, 50, 100 nodes 2 Layers with 2, 5, 10, 20, 50, 100 nodes 3 Layers with 2, 5, 10, 20, 50, 100 nodes	
Activation Function	elu, relu	
L2 Regularization applied to Input	0.0, 1e-5, 1e-4	
Learning Rate	0.01, 0.001, 0.0001	

Table S3. Refined hyperparameter search space for EXP-Niño (seasonal prediction of El NiñoSouthern Oscillation).

Interpretable Analog Model		
Dense Layers	1 Layer with 5, 10, 20, 50, 100 nodes 2 Layers with 2, 5, 10, 20, 50, 100 nodes 3 Layers with 1, 2, 5, 10, 20, 50 nodes	
Activation Function	elu, relu, tanh	
L2 Regularization applied to Mask	0.0	
Learning Rate	0.01, 0.001, 0.0001	
Vanilla Model		
Dense Layers	1 Layer: 1, 2, 5, 10, 20, 50, 100 nodes 2 Layers with 1, 2, 5, 10, 20, 50 nodes 3 Layers with 1, 2, 5, 10, 20 nodes	
Activation Function	elu, relu, tanh	
L2 Regularization applied to Input	0.0, 1e-5, 1e-4	
Learning Rate	0.01, 0.001, 0.0001	
Vanilla Analog Model		
Dense Layers	1 Layer with 5, 10, 20, 50, 100 nodes 2 Layers with 5, 10, 20, 50, 100 nodes 3 Layers with 2, 5, 10, 20, 50, 100 nodes	
Activation Function	elu, relu	
L2 Regularization applied to Input	0.0, 1e-5, 1e-4, 1e-3	
Learning Rate	0.01, 0.001, 0.0001	

Table S4. Refined hyperparameter search space for EXP-NorAtl (decadal prediction of theNorth Atlantic).

Interpretable Analog Model	
Dense Layers	[20, 20]
Activation Function	tanh
L2 Regularization applied to Mask	0.0
Learning Rate	0.0001
Vanilla Model	
Dense Layers	[2, 2]
Activation Function	relu
L2 Regularization applied to Input	1e-5
Learning Rate	0.0001
Vanilla Analog Model	
Dense Layers	[50, 50]
Activation Function	relu
L2 Regularization applied to Input	0.0
Learning Rate	0.0001

 Table S5.
 Chosen hyperparameters for EXP-Niño (seasonal prediction of El Niño Oscillation).

Interpretable Analog Model	
Dense Layers	[20, 20]
Activation Function	elu
L2 Regularization applied to Mask	0.0
Learning Rate	0.01
Vanilla Model	
Dense Layers	[100]
Activation Function	relu
L2 Regularization applied to Input	0.0
Learning Rate	0.0001
Vanilla Analog Model	
Dense Layers	[100, 100]
Activation Function	relu
L2 Regularization applied to Input	0.0
Learning Rate	0.0001

Table S6. Chosen hyperparameters for EXP-NorAtl (decadal prediction of the North Atlantic). These were also the hyperparameters used for EXP501 (decadal prediction of the North Atlantic with a time lag input–see Figure S4).