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Abstract

A novel quantum algorithm for solving the Boltzmann-Maxwell equations of the 6D collisionless plasma is proposed. The

equation describes the kinetic behavior of plasma particles in electromagnetic fields and is known for the classical first-principles

equations in various domains, from space to laboratory plasmas. We have constructed a quantum algorithm for a future fault-

tolerant large-scale quantum computer to accelerate its costly computation. This algorithm consists mainly of two routines:

the Boltzmann solver and the Maxwell solver. Quantum algorithms undertake these dual procedures, while classical algorithms

facilitate their interplay. Each solver has a similar structure consisting of three steps: Encoding, Propagation, and Integration.

We conducted a preliminary implementation of the quantum algorithm and performed a parallel validation against a comparable

classical approach. IBM Qiskit was used to implement all quantum circuits.
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Key Points:10

• A future fault-tolerant large-scale quantum computer speeds up simulations of the11

6D collisionless Boltzmann equation in nonlinear plasmas.12

• Future first principles simulators will have a huge number of lattices, leading to13

more advanced understanding and prediction of physics.14

• To solve nonlinear PDEs using quantum computation, we used the method of am-15

plitude embedding and quantum walk.16
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Abstract17

A novel quantum algorithm for solving the Boltzmann-Maxwell equations of the 6D col-18

lisionless plasma is proposed. The equation describes the kinetic behavior of plasma par-19

ticles in electromagnetic fields and is known for the classical first-principles equations20

in various domains, from space to laboratory plasmas. We have constructed a quantum21

algorithm for a future fault-tolerant large-scale quantum computer to accelerate its costly22

computation. This algorithm consists mainly of two routines: the Boltzmann solver and23

the Maxwell solver. Quantum algorithms undertake these dual procedures, while clas-24

sical algorithms facilitate their interplay. Each solver has a similar structure consisting25

of three steps: Encoding, Propagation, and Integration. We conducted a preliminary im-26

plementation of the quantum algorithm and performed a parallel validation against a27

comparable classical approach. IBM Qiskit was used to implement all quantum circuits.28

1 Introduction29

The space plasma environment, extending from the Sun to the magnetosphere-ion-30

osphere-atmosphere, includes regions of frozen conditions, zones of anomalous resistance31

caused by electromagnetic turbulence, interconnected regions characterized by weakly32

ionized gas systems in strong magnetic fields, coupled neutral-atmosphere chemical pro-33

cesses, and pure neutral-atmosphere collision systems. Owing to their complex interac-34

tions, an inclusive understanding and forecasting of the space environment remains an35

elusive goal, even with the advancements in high-performance instrumentation and in-36

situ observation of satellites. Therefore, it is imperative to develop space plasma sim-37

ulations capable of providing comprehensive insights, ranging from local spatial domains38

to the global schematic.39

Historically, the development of space plasma simulations has been constrained by40

computational time, memory capacity, and data storage limitations, resolving complex41

phenomena with restricted physics at local space scales. In light of these constraints, sp-42

ace plasma simulations can be divided into two principal scale hierarchies. One approach43

endeavors to reproduce Macroscopic phenomena using a coarse approximation, whereas44

the other aims to recreate Microscopic phenomena derived from first principles. Exam-45

ples of the former include magnetohydrodynamics (MHD), while the latter include tech-46

niques such as particle-in-cell (PIC) or the Vlasov equation (hereafter referred to as the47

collisionless Boltzmann equation). The choice between global simulation and compre-48

hensive simulation of physical processes depends on the required space and time scales.49

However, several thematic concerns have emerged that require simulation via coupling50

between scale hierarchies. For example, we describe the plasma instability of the cur-51

rent sheet and the initiation mechanism of magnetic reconnection. The importance of52

kinetic effects resulting from ion-electron dynamics during the onset of magnetic recon-53

nection has been demonstrated (Daughton, 2003; Moritaka & Horiuchi, 2008). To em-54

ulate this, a multi-hierarchical simulation with inter-domain coupling of MHD and PIC55

has been developed, which allows to analyze the influence of macroscopic dynamics on56

the microscopic physics of magnetic reconnection (Usami et al., 2009, 2014).57

In contrast, the collisionless Boltzmann equation requires advanced numerical com-58

putations of the 6D distribution function in both space (3D) and velocity (3D) of the59

particles, and has traditionally been limited to the analysis of low-dimensional, low-reso-60

lution or microscopic phenomena. Given the susceptibility of direct methods to numer-61

ical diffusion, the more accurate electromagnetic Vlasov method has been designed and62

implemented(Umeda, 2008; Umeda et al., 2009; Minoshima et al., 2011; Umeda et al.,63

2012). The considerable progress in its research has allowed the elucidation of numer-64

ous authentic physical phenomena through the use of full electromagnetic Vlasov sim-65

ulation, notwithstanding certain limitations regarding dimensionality and lattice num-66

ber, which depend on the availability of computational resources(Umeda, Miwa, et al.,67

–2–



manuscript submitted to JGR: Space Physics

2010; Umeda, Togano, & Ogino, 2010; Umeda et al., 2011; Umeda, 2012; Umeda et al.,68

2013, 2014). Theoretically, the integration of a collision term into the Boltzmann-Maxwell69

equations provides a comprehensive representation of the collision effects present in the70

complex coupled magnetosphere-ionosphere-atmosphere system of the Earth.71

However, the current state of simulation technology is such that the fluid equations72

incorporating these collision effects have not yet been successfully modeled. The effects73

resulting from ionospheric collisions affect a variety of facets, ranging from auroras to74

magnetospheric dynamics (e.g. Yoshikawa et al. (2013)), and further lead to the man-75

ifestation of complex phenomena (e.g. Ohtani and Yoshikawa (2016)). Consequently, the76

collisionality Boltzmann-Maxwell equations encompass a plethora of significant phenom-77

ena within their domain of interest that are relevant to space-earth electromagnetics. In78

an idealized scenario, the entirety of these phenomena could be computed using the col-79

lisional Boltzmann-Maxwell equations, eliminating the need for scaling factorial coupled80

simulations and the reliance on a variety of assumptions. However, performing high-order81

numerical computations for the first-principles collisional Boltzmann-Maxwell equation82

requires the establishment of extremely precise numerical methods, coupled with an enor-83

mous computational burden O(L6) (where L is the number of lattices per spatial degree84

of freedom), which is currently unattainable even with the computational power of to-85

day’s supercomputers.86

In recent years, advances in quantum computing, both software and hardware, have87

demonstrated numerous advantages of quantum algorithms, such as those represented88

by (Shor, 1994). Following Google’s achievement of quantum supremacy in 2019 (Arute89

et al., 2019), the pragmatic implementation of quantum computing in plasma simula-90

tion, weather forecasting, fluid simulation, and various fields is attracting interest. In nu-91

merical computation, the first paper on solving linear equations with quantum computer,92

the so-called the HHL algorithm (Harrow et al., 2009), was published. Subsequently, a93

quantum algorithm for linear ordinary differential equations (ODE)(Berry et al., 2017)94

and for partial differential equations(PDE)(Childs et al., 2021), and many for fluid sim-95

ulations have been reported in recent years (Mezzacapo et al., 2015; Budinski, 2022; Steijl96

& Barakos, 2018; Steijl, 2019, 2023; Arrazola et al., 2019; Cao et al., 2013; Wang et al.,97

2020; Gaitan, 2020, 2021). The employed methodologies vary considerably. Some use quan-98

tum computational versions of the lattice gas model (Yepez, 1998, 2001) or the lattice99

Boltzmann method (Miller et al., 2001), some use quantum Fourier transforms to solve100

the Poisson equation, some use HHL algorithms and Hamiltonian simulations and Some101

combine it with the HHL algorithm and Hamiltonian simulations, others reduce from102

PDEs to ODEs to solve nonlinear ODEs, and so on. Among them, the quantum lattice103

Boltzmann method is constructed by considering the streaming operation as Quantum104

Walk (Aharonov et al., 1993)(Succi et al., 2015). Similarly, a quantum algorithm for the105

Dirac equation was proposed (Fillion-Gourdeau et al., 2017), using the similarity of a106

sequence of time-evolving operations to Quantum Walk. And Todorova et al. developed107

a quantum algorithm for the collisionless Boltzmann equation that performs discrete real108

and discrete velocity space propagation by Quantum Walk using a discrete-velocity method109

(Todorova & Steijl, 2020). We consider that this method has an advantage over other110

quantum differential equation solving methods in that it is easier to introduce first-principles111

collision terms.112

• Collisionless Boltzmann-Maxwell equations with u(:velocity) constant and the elec-113

tromagnetic field E,B under vacuum conditions acting one way:114

∂f

∂t
+ uconst ·

∂f

∂x
+

q

m
(E + uconst ×B) · ∂f

∂v
= 0,

∇2E − 1

c2
∂2E

∂t2
= 0,

–3–
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∇2B − 1

c2
∂2B

∂t2
= 0.

We developed a quantum algorithm for the 6D Boltzmann-Maxwell equations for115

collisionless plasmas under the above conditions based on the efficient quantum walk cir-116

cuit(Douglas & Wang, 2009). In this process, we calculated the time evolution problem117

of the 6D distribution function with the addition of velocity space, referring to the quan-118

tum algorithms for the the discrete velocity method in the the Boltzmann equation(Todorova119

& Steijl, 2020) and the Macro step in the Navier-Stokes equations(Budinski, 2022). Thus,120

the implementation of the collision term, which is the final goal of our project, is much121

easier and can be developed step by step. Furthermore, according to our quantum al-122

gorithm, it is simpler and computationally less expensive to solve all regions with the123

collisionless Boltzmann-Maxwell equations than with Macro-Micro’s hierarchically cou-124

pled simulators. The quantum computer’s most important advantage, the lattice infor-125

mation in the spatial direction, is parallelized into a single state function by encoding126

amplitude embedding. The results show that the order of the Quantum Volume as the127

scale of the quantum circuit is O
(
Nt (log2(L))

2
)
, which is an improvement over the or-128

der of the computational volume O
(
NtL

6
)
of a similar classical algorithm.129

In the future, we will develop a quantum algorithm for the collisional Boltzmann-130

Maxwell equations and apply it to the plasma region from the sun to the Earth’s mag-131

netosphere-ionosphere-atmosphere. Thus, this will provide a framework in order to un-132

derstand and fully predict the space plasma environment. At that time, we expect the133

device to be used is a future fault-tolerant large-scale quantum computer. This paper134

develops the first quantum algorithm for this purpose and summarizes the methodology135

and verification results.136

This paper is organized as follows: Section 1.1 and 1.2 describe the model of nu-137

merical computation, Section 2 describes our Quantum Algorithm of Boltzmann solver,138

and Section 3 compares and verifies the results of the quantum algorithm with similar139

classical algorithms. In Section 4, we discuss current issues and future solutions.140

1.1 Governing equations141

We employ the collisionless plasma Boltzmann and Maxwell equations within an142

electromagnetic field as governing equations. Specifically, these equations are given by143

• The collisionless plasma Boltzmann equation with an electromagnetic field:

∂f

∂t
+ uconst ·

∂f

∂x
+

q

m
(E + uconst ×B) · ∂f

∂v
= 0, (1)

• Wave equation for the electric field E in vacuum:

∇2E − 1

c2
∂2E

∂t2
= 0, (2)

• Wave equation for the magnetic field B in vacuum:

∇2B − 1

c2
∂2B

∂t2
= 0. (3)

Where f is the distribution function of the plasma particles, u is the fluid velocity of the144

plasma, which we assume to be constant, q/m is the charge to mass ratio of the parti-145

cles and E and B are the electromagnetic fields. The Maxwell equations can be rewrit-146

ten in the form of wave equations for the electric and magnetic fields respectively, as above,147

to implement the quantum algorithms more efficiently.148

–4–
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1.2 Numerical simulation method149

For the execution of nonlinear partial differential equations (1,2,3) on quantum com-150

puters, these equations require discretization by methods such as the finite difference tech-151

nique or the finite element method. In the following discourse, the finite difference ap-152

proach is adopted for the Boltzmann-Maxwell equation, resulting in difference equations153

that are implementable on quantum circuits.154

Proceeding with the application of the Forward Time Centered Space(FTCS) scheme,155

we differentiate the Boltzmann equations for collisionless plasma and derive a discretized156

representation. The differencing equation for the governing equation (1) is given by157

f(x, y, z, vx, vy, vz; t+∆t) = f − ux∆t

2∆x
(fx+∆x − fx−∆x)−

uy∆t

2∆y
(fy+∆y − fy−∆y)

−uz∆t
2∆z

(fz+∆z − fz−∆z)

−q(E + uconst ×B)x∆t

2m∆vx
(fvx+∆vx − fvx−∆vx)

−q(E + uconst ×B)y∆t

2m∆vy
(fvy+∆vy − fvy−∆vy )

−q(E + uconst ×B)z∆t

2m∆vz
(fvz+∆vz − fvz−∆vz ), (4)

where the value of f(x, y, z, vx, vy, vz; t), namely the distribution function at the refer-158

ence point x, y, z, vx, vy, vz and time t, is simply denoted as f , and the same at the point159

deviating by one unit distance in each direction is denoted with subscripts:160

(e.g.) fx+∆x := f(x+∆x, y, z, vx, vy, vz; t).161

We simplify the difference Boltzmann equation with the following assumption:162

ux∆t

2∆x
=
uy∆t

2∆y
=
uz∆t

2∆z
= 1. (5)

Similarly, the difference equations for the electric and magnetic fields are given as163

E(x, y, z; t+∆t) =

(
2− 2

∆t2

µ0ϵ0
(

1

∆x2
+

1

∆y2
+

1

∆z2
)

)
E −Et−∆t

+
∆t2

µ0ϵ0∆x2
(Ex+∆x +Ex−∆x) +

∆t2

µ0ϵ0∆y2
(Ey+∆y +Ey−∆y)

+
∆t2

µ0ϵ0∆z2
(Ez+∆z +Ez−∆z) , (6)

B(x, y, z; t+∆t) =

(
2− 2

∆t2

µ0ϵ0
(

1

∆x2
+

1

∆y2
+

1

∆z2
)

)
B −Bt−∆t

+
∆t2

µ0ϵ0∆x2
(Bx+∆x +Bx−∆x) +

∆t2

µ0ϵ0∆y2
(By+∆y +By−∆y)

+
∆t2

µ0ϵ0∆z2
(Bz+∆z +Bz−∆z) , (7)

where quantities such as E and B are defined in the same manner as f above.164

Furthermore, for simplicity of notation, we set hereafter as the Lorentz force term165

as166

F := u×B. (8)

Also, the speed of light c in equation (2,3) is rewritten here using the permittivity and167

the permeability (ϵ0 and µ0) in the vacuum. Similar to the Boltzmann equation exam-168

ple, we make the following assumption:169

∆t2

µ0ϵ0∆x2
=

∆t2

µ0ϵ0∆y2
=

∆t2

µ0ϵ0∆z2
= 1. (9)

–5–
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Under the postulates of this manuscript, no velocity is obtained from the first-order ve-170

locity moment of the distribution function. Given the use of uniform velocities in both171

the temporal and spatial domains, the discretized magnetic field equation transforms into172

the propagation equation of the Lorentz force term.173

As a result, we obtain the discretized Botzmann-Maxwell equation to be implemented174

as follows:175

f(x, y, z, vx, vy, vz; t+∆t) = f − (fx+∆x − fx−∆x)− (fy+∆y − fy−∆y)

−(fz+∆z − fz−∆z)

−q(E + F )x∆t

2m∆vx
(fvx+∆vx − fvx−∆vx)

−q(E + F )y∆t

2m∆vy
(fvy+∆vy − fvy−∆vy )

−q(E + F )z∆t

2m∆vz
(fvz+∆vz − fvz−∆vz ), (10)

E(x, y, z; t+∆t) = −4E −Et−∆t + (Ex+∆x +Ex−∆x)

+ (Ey+∆y +Ey−∆y) + (Ez+∆z +Ez−∆z) , (11)

F (x, y, z; t+∆t) = −4F − Ft−∆t + (Fx+∆x + Fx−∆x)

+ (Fy+∆y + Fy−∆y) + (Fz+∆z + Fz−∆z) . (12)

This allows us to evolve the values of f and , (E, B) independently. We call the quan-176

tum routines that perform this evolution the Boltzmann solver and the Maxwell solver,177

respectively. For the evolution of f (Boltzmann solver), we need the values of E and F178

at each time step as they appear in the right-hand side of the equation (10), so we use179

the values obtained by the Maxwell solver.180

2 Quantum Algorithm181

In this section, a quantum algorithm based on the discretized Boltzmann-Maxwell182

equations (4,6,7) is constructed and implemented on quantum circuits. This quantum183

algorithm can be divided into two independent routines: the Boltzmann solver and the184

Maxwell solver. They take an initial function of f and (E,B) as input, respectively. Both185

routines fix time and output physical quantities that evolve in one time step according186

to difference equations (11,12). By iterating this one-step evolution many times, we can187

obtain the value of a physical quantity that has evolved for an arbitrary time step.188

The electric and magnetic fields derived by Maxwell solver are incorporated into189

the Propagation circuit of the Boltzmann solver as shown in the FIG. 1, thereby cou-190

pling each routine. The quantum calculations in this paper are carried out exactly in a191

way that deals with state vectors using a classical simulator provided by IBM Qiskit. It192

is straightforward to construct an authentic quantum algorithm based on measurements.193

194

2.1 Boltzmann195

Our Boltzmann solver can be segmented into three principal steps: Encoding, Prop-196

agation and Integration.197

2.1.1 Encoding198

First of all, it is necessary to encode the classical information of the physical quan-199

tities into the amplitudes of quantum states. Fixing the number of lattice sites in all spa-200

tial and velocity directions to be L, f will have V := L6 degrees of freedom. In the en-201

coding step, we associate each of these degrees of freedom with one computational ba-202

–6–
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Figure 1. A Schematic of the quantum circuit of our algorithm for solving the Boltzmann-

Maxwell equations. They consist of two routines that operate on the coin operator.

sis and encode the value of f in the amplitude of the corresponding quantum state. Thus,203

a total of V bases must be prepared in total, requiring ⌈log2 V ⌉ qubits. This method of204

encoding classical information into quantum information amplitudes is commonly referred205

to as the amplitude embedding technique.206

To elucidate the relationship between physical quantities and probability ampli-207

tudes, the following conversion from a function f(x,v; t) to a vector fi , (0 ≤ i ≤ V−208

1) is implemented. The subscripts i specify a point in the 6D lattice space. For exam-209

ple, i = 0 corresponds to the origin point (x,v) = (0, 0, 0, 0, 0, 0), and i = 1 represents210

the value of the distribution function moved by one lattice point in the x direction:211

(x,v) = (∆x, 0, 0, 0, 0, 0). Namely, the amount of fi follows212

(e.g.) f0 = f(0, 0, 0, 0, 0, 0; t = tr), (13)

f1 = f(∆x, 0, 0, 0, 0, 0; t = tr). (14)

Note that the quantum state does not contain any information about time, since the prop-213

agation takes place with fixed time. We will assume L = 2NL in the following. As ev-214

idenced in Section 3, our actual numerical calculations are executed with NL = 3 (L =215

8).216

The first important algorithm in the Encoding step is with a given distribution func-217

tion at a fixed t = tr to prepare a quantum state, which we name |ϕ0⟩phys, with these218

values in its amplitudes:219

|ϕ0⟩phys =
V−1∑
i=0

f̃i|i⟩, (15)
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where f̃ is the normalized distribution function as follows:220

f̃i = Cfi , C =

(
V−1∑
i=0

|fi|2
)−1/2

. (16)

At the initial time step of t = 0, an arbitrary distribution can be designated as an ini-221

tial function. Post the second step, the distribution function generated by the Boltzmann222

solver in the prior step ought to be provided as input. This iterative process allows for223

the computation of the distribution function at any desired time step. This procedure224

of state preparation can be executed in alignment with Appendix B.225

It should be noted that, within the context of this manuscript, we have formulated226

the algorithm in a manner that measures f post each step and re-encodes it in the sub-227

sequent step, in order to circumvent excessive enlargement of the quantum circuit’s depth.228

This design necessitates O(V ) measurements at every time step, failing the advantage229

of the quantum algorithm. However, it is straightforward to connect each time step seam-230

lessly. Namely, any measurements are required between each time step, implying that231

such a design will be beneficial when managing large-scale quantum apparatuses in the232

future. Further discussion on quantum advantage will be given in later sections.233

The qubits prepared within this context are termed as the physical qubits, denoted234

as |phys⟩. Looking more closely, |phys⟩ is prepared by a total of 6 closed Hilbert spaces235

corresponding to spatial and velocity degrees of freedom, each having NL(= log2 L) qubits.236

Namely, we write it as237

|phys⟩ = |phys;x⟩|phys;y⟩|phys;z⟩|phys;vx⟩|phys;vy⟩|phys;vz⟩ (17)

Subsequent to the Propagation step, the ensuing quantum algorithms necessitate an ad-238

ditional qubit, which depending on their role, is identified as either subnode qubits |sub⟩239

or ancilla qubits |ancilla⟩. As will explaind later the number of subnode and ancilla qubits240

are fixed to 4 and 1, respectively, regardless of the parameters and physical setup. Thus,241

the numbers of qubits required by the Boltzmann solver are242

Nphis = 6NL , Nsub = 4 , Nanc = 1, (18)

and the following quantum state is prepared and output in after this Encoding step:243

|ϕ1⟩ = |ϕ0⟩phys ⊗ |0⟩sub ⊗ |0⟩ancilla, (19)

=

V−1∑
i=0

f̃i|i⟩phys|0⟩sub|0⟩ancilla. (20)

2.1.2 Propagation244

In the Propagation step, we partially utilize the tequniques of quantum algorithm245

method (Douglas & Wang, 2009) and implement an algorithm that multiplies each prob-246

ability amplitude of ϕ1 by the coefficient of each term in the discretized equation.247

The subnode bases and their corresponding physical quantities f, ϵ, andσ denote248

the normalized distribution encoded as the amplitude of the associated state, the coef-249

ficients to be incorporated via the coin operator, and the sign to be multiplied during250

the integration step, respectively. To solve the evolution equation (10), we need to pre-251

pare and add up all the terms that arise in the equation such as:252

f, ∓fx±∆x, · · · ,∓
q(E + F )x∆t

2m∆vx
fvx±∆vx , · · · .

After passing through the encoding step, we are now in possession of a quantum state253

|ϕ1⟩, within which the data of the distribution function are encoded in the amplitude.254
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Table 1. The subnode bases and their corresponding physical quantities. f, ϵ, and σ respec-

tively represent the (unnormalized) distribution function associated with each basis state, the

coefficients to be incorporated via the coin operator, and the sign to be multiplied during the

integration step. These are the quantities that appear on the right-hand side of the difference

equation (10).

j |j⟩sub fj ϵj σj

0 |0000⟩ f(x, y, z, vx, vy, vz) 1 +1
1 |0001⟩ f(x+∆x, y, z, vx, vy, vz) 1 −1
2 |0010⟩ f(x−∆x, y, z, vx, vy, vz) 1 +1
3 |0011⟩ f(x, y +∆y, z, vx, vy, vz) 1 −1
4 |0100⟩ f(x, y −∆y, z, vx, vy, vz) 1 +1
5 |0101⟩ f(x, y, z +∆z, vx, vy, vz) 1 −1
6 |0110⟩ f(x, y, z −∆z, vx, vy, vz) 1 +1

7 |0111⟩ f(x, y, z, vx +∆vx, vy, vz) qEx(x,y,z)+Fx(x,y,z)∆t
2m∆vx

−1

8 |1000⟩ f(x, y, z, vx −∆vx, vy, vz) qEx(x,y,z)+Fx(x,y,z)∆t
2m∆vx

+1

9 |1001⟩ f(x, y, z, vx, vy +∆vy, vz) q
Ey(x,y,z)+Fy(x,y,z)∆t

2m∆vy
−1

10 |1010⟩ f(x, y, z, vx, vy −∆vy, vz) q
Ey(x,y,z)+Fy(x,y,z)∆t

2m∆vy
+1

11 |1011⟩ f(x, y, z, vx, vy, vz +∆vz) qEz(x,y,z)+Fz(x,y,z)∆t
2m∆vz

−1

12 |1100⟩ f(x, y, z, vx, vy, vz −∆vz) qEz(x,y,z)+Fz(x,y,z)∆t
2m∆vz

+1

13 |1101⟩ 0 0 −1
14 |1110⟩ 0 0 +1
15 |1111⟩ 0 0 −1

Therefore, by considering an algorithm that multiplies each coefficient such as q(E+F )x∆t
2m∆vx

255

by the corresponding state, the amplitudes of all states are updated to the state with256

the appropriate coefficient appearing in equation (10). We will deal with the explicit sign257

in the equation later. The values of E and F at the certain time step are obtained from258

Maxwell solver.259

Subnodes serve to identify the terms that arise at a specific time step, namely260

f, fx±∆x, · · · , fvx±∆vx · · · . In total, there are 13 (= 1+2×6) terms: one term f ,261

which precedes propagation, and terms propagated by each ±1 unit for each of the six262

directions in space and velocity. Hence, 4 (= ⌈13⌉) qubits are necessitated as a subn-263

ode. It should be noted that this number remains uninfluenced by physical quantities264

like volume. For simplicity, we have associated them as depicted in TABLE 1. Here, ϵj265

is the coefficient applied to each term, and σj is the sign explicitly attributed to each term266

in TABLE 1. In fact, both ϵj and σj are coefficients in the difference equation (10), so267

it is possible to define epsilon to include the sign of σj . However, we choose to distin-268

guish between them because ϵj represents a quantity that depends on a specific assump-269

tion as indicated by the assumption (5,9), while σj is a universally determined quantity.270

By making this distinction, we think we can minimize the part that we need to be mod-271

ified based on different assumptions.272

As elucidated below, the coin operator is accountable for the multiplication of these273

coefficients, and the shift operator assumes responsibility for correlating each term with274

the basis of the subnode.275

We can create the appropriate coefficients by first make the subnodes in superpoti-276

tion using the H-gate. Then apply the diagonal matrix with {ϵ} as components:277

Λ := diag(ϵ0, ϵ1, · · · , ϵ15). (21)
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The operation with this diagonal matrix is not a unitary and thus it must be embedded278

in a unitary matrix of larger size. Since the coefficients are real, this procedure can be279

done easily as explained in the Appendix Appendix B. Here, we use the ancilla qubit280

|a0⟩ to create a unitary matrix of larger size. We call this whole operator acting on the281

subnode (and the ancilla qubit) the “coin operator” according to the terminology of quan-282

tum walk. As a result, we obtain the state after operating the coin operator as follows:283

UCoin|ϕ1⟩ =

V−1∑
i=0

UCoinf̃i|i⟩phys|0⟩sub|0⟩ancilla,

=

V−1∑
i=0

15∑
j=0

f̃iϵ̃j |i⟩phys|j⟩sub|0⟩ancilla + |∗⟩|1⟩ancilla, (22)

where ϵ̃ represents a normalized quantity. |∗⟩ represents the computationally unneces-284

sary states, which are identified by the ancilla qubit being |1⟩ancilla.285

Next, so-called increment/decrement gates are applied on both subnode and phys-286

ical qubits to associate the basis of subnode and physical amount at different points. The287

increment/decrement gates are operators that shift one computational basis, respectively.288

Specifically, those operator satisfy289

UIncr.|i⟩ = |i+ 1⟩,
UDecr.|i⟩ = |i− 1⟩. (23)

Suppose the periodic boundary condition on the N -qubits system:290

UIncr.|2N − 1⟩ = |0⟩,
UDecr.|0⟩ = |2N − 1⟩, (24)

those operator follow the relation:U†
Incr. = UDecr.. The increment circuit can be specif-291

ically configured as follows.292

UIncr. =

• • • X

• •
•

, UDecr. =

X

(25)

By performing controlled-Increment/Decrement gates on the subnode as control293

registers and the physical qubits as target registers, we can map the subnode to a phys-294

ical quantity on each lattice point. We call this sequential operations as the ”shift op-295

erator”. The circuit of the shift operator is shown in FIG.2.296

As a result, after applying both the coin operator and the shift operator, we ob-297

tain the following state as a final output of this propagation step:298

|ϕ2⟩ =
V−1∑
i=0

15∑
j=0

ϵ̃j f̃i,j |i⟩phys|j⟩sub|0⟩ancilla + |∗⟩|1⟩ancilla. (26)

We can articulate the exact correlation between f̃ i and f̃ i, j as outlined herein. Initially,299

we had the capacity to signify the index i as i = sL + t, (0 ≤ s < 6, 0 ≤ t < L),300

which, for instance, correlates with the direction x when s = 0, y when s = 1, and so301

forth, and the coordinates of the corresponding directions are symbolized by t. The shift302

–10–



manuscript submitted to JGR: Space Physics

|phys;x⟩ /UDecr UIncr

|phys;y⟩ / UDecr UIncr

|phys;z⟩ / UDecr UIncr

|phys;vx⟩ / UDecr UIncr

|phys;vy⟩ / UDecr UIncr

|phys;vz⟩ / UDecr UIncr

|sub⟩ • • • • • •
|sub⟩ • • • • • •
|sub⟩ • • • • •
|sub⟩ • • • • •

Figure 2. A Quantum circuit for the shift operators. Increment and Decrement operators

controlled by subnodes are aligned according to the order of TABLE 1.

operator moves computational bases in each subspace by ±1, respecting periodic bound-303

ary conditions in each orientation. This ±1 direction is specified by the index j as shown304

in TABLE 1. Therefore, f̃i,j can be represented as follows:305

f̃i,j = f̃sL+(t+(−1)j)modL, (27)

when i = sL+ t, (0 ≤ s < 6, 0 ≤ t < L).306

2.1.3 Integration307

Passing through the encoding and propagation steps so far, we obtain a state in308

which the all 13 terms arising in the right-hand side of the equation (10) for a fixed time309

step under are encoded in the amplitude of each basis state. In this step, we perform a310

superposition of subnode states to compute the sum of all terms and collect them into311

the amplitude of a single state|0000⟩sub. However, As a preprocessing step, we need to312

invert the phases of certain states as explained below.313

The amplitude of each basis are multiplied by the coefficients in the difference equa-314

tion 10, excluding the explicit sign, which is denoted by sigma in TABLE 1. Therefore,315

we need to inverse the phase of corresponding state for the terms with a minus sign. This316

process is also very simple and only requires one application of Z gate as shown in cir-317

cuit 28 before applying H gates.318

Finally, we superimpose all sunode states by applying H as shown in circuit(28).

|sub⟩ Z H

|sub⟩ H

|sub⟩ H

|sub⟩ H

(28)
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As a result, the amplitudes of the states from |0000⟩subto|1111⟩sub are summed and gath-319

ered as the amplitude of |0000⟩sub state with equal weighting of 1/4. Therefore, we fi-320

nally obtain the following state321

|ϕ3⟩ =
1

4

V∑
i=0

12∑
j=0

σj ϵ̃j f̃i,j |i⟩phys|0000⟩sub|0⟩ancilla + |∗⟩. (29)

With more clear form, we can write:322

12∑
j=0

σj ϵ̃j f̃i,j ∼ f − (fx+∆x − fx−∆x)− (fy+∆y − fy−∆y)− (fz+∆z − fz−∆z)

−q(E + F )x∆t

2m∆vx
(fvx+∆vx − fvx−∆vx)−

q(E + F )y∆t

2m∆vy
(fvy+∆vy − fvy−∆vy ),

= f(x, y, z, vx, vy, vz; t+∆t), (30)

where the distribution function is at the corresponding point of (x, y, z, vx, xy, vz) to the323

index i. Since the normalizing factors of f and ϵ are involved here, the relation is denoted324

as “∼”.325

According to the resultant state |ϕ3⟩, we can measure the physical and subnode326

qubits and focus on the |0⟩sub to obtain a distribution function that is one time step evo-327

lved according to the Boltzmann-Maxwell equation. For further time steps, we can use328

this distribution function as an initial value to input to the first encoding step, and fur-329

ther time evolution can be implemented by performing similar steps.330

Here are remarks on this algorithm, most of what is touched on here will be dis-331

cussed more comprehensively in the Section 4. First, we asserted that the measurement332

of the state delivers the value of the distribution function; however, what is specifically333

attained is the square of the absolute value of the distribution function. Nevertheless,334

given that the value of the distribution function f is consistently real and non-negative,335

the precise value of f can be accurately recovered from the measurements. On the other336

hand, E and B handled by Maxwell solver in Appendix Appendix A are real but also337

have negative values, so not exactly the same algorithm can be used. However, during338

computation with real quantum algorithms, there isn’t a genuine necessity to measure339

the values of E and B. The primary function of the Maxwell solver is simply to convey340

these values to the Boltzmann solver within the quantum circuit, hence this does not pre-341

sent a significant issue. If one want to measure E and B values as well, a further an-342

cilla node that identifies the sign must be prepared, and an additional quantum oracle343

is also needed.344

Next, Actually measuring f does not lead to quantum advantage. This is because345

f still has O(V = L6) degrees of freedom, and it is inevitable to measure it O(V ) times346

in order to obtain full information. However, this problem can be avoided because what347

we are physically interested in is not f itself, but the velocity moment quantity obtained348

by integrating f with respect to velocity v. If we could implement this integral, i.e., just349

a sum in the discrete system, in an efficient quantum algorithm, the computational com-350

plexity would be superior to that of a naive classical algorithm. Furthermore, we believe351

that it is possible to reduce the Hilbert space to be measured based on physical condi-352

tions such as uniformity with respect to a certain spatial direction, limiting the measure-353

ment to the physical space of interest, etc.354

3 Comparison355

In this paper, all quantum circuits were exactly simulated by dealing directly with356

statevectors. Thus it is expected that the results will be in exact agreement with numer-357

ical calculations using conventional classical algorithms. We prepared L = 8 lattice sites358
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in each spatial and velocity direction and calculated with the volume V = 86. As for359

the quantum algorithm 6× ⌈log2 L⌉ = 18 qubits were used as |phys⟩.360

And we set ∆x = ∆y = ∆z = 30m,∆t = 10−7s, satisfying the assumption (9).361

Thereby, vx = vy = vz = 3 × 108m/s is constant at the speed of light. The plasma362

particles are assumed to be positrons and set e = 1.6×10−19C,me = 9.1×10−31kg, so363

we put ∆vx = ∆vy = ∆vz = 105m/s. In this section, for simplicity, we re-scale vari-364

ables x, y, · · · dividing by the unit ∆x,∆y, · · · and denote them as coordinates on a lat-365

tice space. That is, x = n denotes the point where x = n∆x physically.366

3.1 Initial condition367

As the initial distribution function, we employed a simple setup: we set 0 for (x =368

1, y = 1) or (vx = 1, vy = 1), and set 1 for the other spaces. Namely,369

f(x, y, z, vx, vy, vz; t = 0)|x=1∩y=1 = 0,

f(x, y, z, vx, vy, vz; t = 0)|vx=1∩vy=1 = 0,

f(x, y, z, vx, vy, vz; t = 0) = 1 (otherwise).

This is a simple setup to compare the agreement with the classical algorithm, and in prac-370

tice it is necessary to give a suitable initial condition corresponding to considering phys-371

ical phenomena such as plasma.
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Figure 3. The initial distribution function in the space for (a) the x - y subplane with

z = vx = vy = vz = 0, and (b) the vx - vy subplane with x = y = z = vz = 0. This makes

it possible to check the influence of electromagnetic fields on propagation in velocity space as well

as in real space.

372

Since we implemented the Increment/Decrement circuits periodic (24), the simu-373

lation results are also periodic so that the 0-th and L-th lattice points are identical for374

all directions.375

3.2 Simulation result376

We implemented our quantum algorithm with the input conditions and advanced377

time evolution from time step = 0 to time step = 3.378
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Figure 4. The results show (a) real space propagation at z = vx = vy = vz = 0 and (b) ve-

locity space propagation at x = y = z = vz = 0 with time evolution to time step = 3 using our

quantum algorithm.
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Figure 5. The results are based on a classical algorithm of the time evolution of the difference

equations (4,6,7) using the same FTCS scheme as in this paper, with similar initial and boundary

conditions. (a) shows real space propagation at z = vx = vy = vz = 0 and (b) shows velocity

space propagation at x = y = z = vz = 0 with time evolution to time step = 3

Comparing FIG. 4 and FIG. 5, the simulation results of the quantum algorithm379

perfectly match those of the classical algorithm with similar conditions and methods. This380

is because we are simulating exactly with statevector in this case, and the actual results381

based on measurements will have statistical errors depending on the number of shots.382

Although f should take values between 0 and 1, this is not the case in FIG. 4 and383

FIG. 5. This is a consequence of numerical diffusion due to discretization using the FTCS384

scheme, which occurs universally in classical algorithms. As noted in the discussion, the385

numerical diffusion is reduced by O(∆t) in the time direction and O
(
(∆x)

2
)
in the space386

direction , so it is guaranteed to give correct results if the calculation is performed on387

a sufficiently large system.388
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The propagation in real space and velocity space is different, showing that it is acted389

upon by the electromagnetic field solved with the Maxwell solver. We achieved one of390

our goals in this paper, that is, the coupling of the Boltzmann equation and the Maxwell391

equation. However, note that this is a unilateral interaction from the Maxwell equation,392

since the assumption of uniform velocity and vacuum condition is used.393

4 Discussion394

Our plasma simulator is not yet able to cover generic phenomena according to the395

governing equations (1,2,3). This paper is in the middle stage of our project. This means396

that our plasma simulator does not yet account for velocity inhomogeneity in the con-397

vective term of the distribution function, the interaction between electromagnetic fields398

and plasma particles, and the collisional effects. To add these physical effects, new quan-399

tum algorithms must be developed.400

• Self-consistent collisionless Boltzmann-Maxwell equations interacting with the elec-401

tromagnetic field by calculating ρ charge density, velocity, and j current density402

in moment quantities of the distribution function:403

∂f

∂t
+ v · ∂f

∂x
+

q

m
(E + v ×B) · ∂f

∂v
= 0,

∇2E − 1

c2
∂2E

∂t2
=

1

ϵ0
∇ρ+ µ0

∂j

∂t
,

∇2B − 1

c2
∂2B

∂t2
= −µ0 (∇× j) .

The next stage will be to improve the current quantum algorithm to the quantum al-404

gorithm for the collisionless Boltzmann-Maxwell equation described above. To do this,405

a quantum algorithm that calculates the amount of velocity moments in the distribu-406

tion function should be developed. Thereby, the electromagnetic field and plasma par-407

ticles can interact with each other via velocity inhomogeneity, charge density, and cur-408

rent density. This stage can simulate all the complex kinetic effects of collisionless plasma409

in an electromagnetic field; it simulates macroscopic MHD phenomena that reflect ki-410

netic effects as Micro phenomena. In other words, even macroscopic phenomena can fall411

back to microscopic phenomena, thus contributing to the complete understanding of the412

physical process and to the prediction. The domain covers space plasmas in space plan-413

etary science, such as the solar surface, and the earth’s magnetosphere and astrophysics,414

such as black hole accretion disks and interstellar winds.415

• Self-consistent collisional Boltzmann-Maxwell equations interacting with an elec-416

tromagnetic field, with the addition of a first-principles collision term:417

∂f

∂t
+ v · ∂f

∂x
+

q

m
(E + v ×B) · ∂f

∂v
= Col(f, f ′),

∇2E − 1

c2
∂2E

∂t2
=

1

ϵ0
∇ρ+ µ0

∂j

∂t
,

∇2B − 1

c2
∂2B

∂t2
= −µ0 (∇× j) .

Furthermore, in the final stage, this quantum algorithm will be improved to a quantum418

algorithm for computing the collision term from the distribution function. By adding a419

first-principles collision term, the domain of coverage is further extended. It covers the420

highly complex collisional effects of space plasma versus neutral atmospheres, simulat-421

ing the ionospheric dynamics of various planetary systems; except for Maxwell solver,422

it calculates non-equilibrium states of rarefied gases first principles; apply Boltzmann so-423

lver and it solves problems of neutrinos and bubble structure in the universe.424
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We used a finite difference FTCS scheme as our numerical model; the FTCS scheme425

has numerical errors on the order of O(∆t), O(∆x2i ) and O(∆v2xi
) per time evolution.426

Previously, 6D Vlasov simulation research using classical computers has been able to al-427

locate only L ∼ 100 (L: lattices per spatial degree of freedom), even using supercom-428

puters. Therefore, simple numerical methods such as the FTCS scheme are not very ap-429

propriate for classical algorithms because of the large numerical errors. However, in the430

case of quantum computation with a large-scale quantum computer in a domain that is431

impossible with a classical computer, the number of lattices per spatial degree of free-432

dom (≫ 100 lattices) is a very large quantity, and thus the numerical error is inevitably433

very small. For example, we estimate that L > 106 is needed to simulate the auroral elec-434

tron acceleration problem in the magnetosphere-ionosphere. For that very large L, the435

numerical error from the FTCS scheme is small enough. Moreover, since L increases ex-436

ponentially with the line increase in hardware logical qubits, the speed of expansion and437

growth of the computational domain and the speed of improvement in accuracy become438

exponential.439

The greatest advantage of quantum algorithms over classical algorithms is massively440

parallelization. We estimate the Quantum Volume of our quantum algorithm and de-441

scribe the quantum advantage of the Boltzmann-Maxwell equation. Simply, we will call442

Quantum Volume=width(number of qubits)× depth(number of gates) in our quantum443

algorithm. The width of this quantum algorithm is 6 log2(L)+6 where L denotes the444

number of lattice points in each direction. Comparing to the classical algorithm O(L)445

computational complexity of the classical algorithm, the fact that it can be expressed446

in log2(L) qubits is a quantum advantage. On the other hand, the measured quantum447

circuits for L = 2, L = 4, and L = 8, were found to be approximately 600 × log2(L)448

per time evolution. In case of time evolution to Time step = Nt, the approximated Quan-449

tum Volume would be 3600×Nt log2(L) (log2(L) + 1). This is of the order of of the scale:450

O
(
Nt (log2(L))

2
)
. Compared to the computational volume of a similar classical algo-451

rithm O
(
NtL

6
)
, the order is improved by compression of 6D spatial information. Thus,452

the larger L is, the higher the quantum superiority.453

Our quantum algorithms are intended for a future large-scale quantum computer,454

but there remain several issues in terms of efficient algorithms. There is a problem of455

the efficient preparation of the initial distribution function on quantum circuits. The En-456

coding step Appendix B method has the exponential complexity O
(
2N
)
of preparing ar-457

bitrary quantum states in a 2N -dimensional Hilbert space with an N qubit(Zalka, 1998;458

Georgescu et al., 2014). This problem is an important topic in quantum computation,459

and various efficient methods have been proposed. For example, Georgescu et al. devel-460

oped an efficient method to prepare quantum states with polynomial complexity in a num-461

ber of qubits(Georgescu et al., 2014), and other efficient quantum state initialization meth-462

ods such as log-concave. Other efficient methods for specific cases, such as log-concave463

probability distribution functions, have been reported as well(Grover & Rudolph, 2002).464

Although the initial distribution function varies depending on the physical phenomenon465

to be simulated, the Maxwell velocity distribution function, for example, is a log-concave466

probability distribution function and may be efficiently prepared(Todorova & Steijl, 2020).467

Our quantum algorithm is more efficient than the classical algorithm in spatial in-468

formation, but not in the time direction. The reason for this is that the finite difference469

method of a numerical computation does not allow time information to enter the width470

of quantum circuits. The finite difference method is a time-marching-based method for471

classical numerical calculations using the forward term on the left side of the difference472

equation. Due to its nature, one of the degrees of freedom must always be in the depth473

when implemented in a quantum computer. Variables that are not set to width are not474

accelerated, so there are restrictions on the number of lattices with respect to the num-475

ber of degrees of freedom that can be set to depth, even for large-scale quantum com-476

putation. One simple way to improve this is to rewrite the difference equation of the fi-477
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nite difference method so that the smallest number of lattice degrees of freedom is the478

evolution parameter instead of time. Although only one degree of freedom is restricted,479

this method can keep the depth relatively small.480

A common problem in quantum differential equation solving is the problem of van-481

ishing time-marching-based measurement probabilities. In general terms, quantum lin-482

ear system algorithms have an exponentially decreasing measurement probability with483

respect to the time step, depending on the number of time steps. The quantum algorithm484

in this study suffers from the same problem. The first possible solution to this problem485

is the application of the compression gadget proposed by Fang et al(Fang et al., 2023).486

This is a time-marching-based quantum differential equation solving method that is in-487

dependent of time steps by repeating uniform singular value amplification.They verified488

their implementation on linear ODEs, but it may be applicable to our PDEs. Next, we489

also consider the use of different quantum differential equation solving methods as a so-490

lution. Hamiltonian simulations are a common method for solving quantum differential491

equations, and the Vlasov-poisson and Vlasov-Maxwell equations have already been used492

(Toyoizumi et al., 2023; Engel et al., 2019). While it is easy to implement the compres-493

sion gadget (Fang et al., 2023) within a Hamiltonian simulation, we consider that it is494

difficult to implement the nonlinear Boltzmann-Maxwell equations with first-principles495

collision terms in a Hamiltonian simulation.496

5 Summary497

In this paper, a novel quantum algorithm for solving the Boltzmann-Maxwell equa-498

tion for collisionless plasmas has been formulated; both the Boltzmann and Maxwell equa-499

tion solvers were structured with a similar quantum circuit. To confirm the validity of500

our quantum algorithm, we performed simulations of the distribution function propa-501

gation process under the background electromagnetic field propagation using the Qiskit502

platform. We compared the results of the quantum calculation with the results of the503

parallel classical calculation and found perfect agreement between them. This completes504

the framework for efficiently solving nonlinear problems in various plasmas, such as space505

plasmas. Prospective endeavors may cultivate the development of a more generalized quan-506

tum algorithm for the Boltzmann-Maxwell equation for collisional plasmas, wherein the507

vacuum condition is eliminated and first-principles collision terms are incorporated.508
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Appendix A Maxwell solver517

The basic structure of the Maxwell solver is almost identical to that of the Boltz-518

mann solver. Similar to the Boltzmann solver, the Maxwell solver consists of three steps:519

encoding, propagation, and integration. The algorithm is briefly described, with special520

emphasis on the differences to the Boltzmann solver.521
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A1 Encoding522

In Maxwell solver, the physical quantities E and B are written together as g, and523

develop them simultaneously according to the equations (11,12). Since there are no ve-524

locity degrees of freedom, only Nphys = 3⌈log2 L⌉ qubit are prepared for |phys⟩, and525

one additional qubit representing time is also prepared. |sub⟩ requires Nsub = 6 qubit526

in this case. This is because we need Nspecies = 1 qubit to distinguish the difference of527

the physical quantity, namely E or B, Ndirection = 2(= ⌈log2 3⌉) qubits to specify the528

elements of the vector for them as they are vector, and Nterm = 3(= ⌈log2 8⌉) qubits529

to indicate 8 terms appearing the equations (11,12). Collectively, these are called subn-530

odes, but their roles are actually divided as follows:531

|sub⟩ → |species⟩|direction⟩|sub⟩. (A1)

These correspondences are shown in Table A1 where ϵ and σ represent the the coefficient532

and explicit sign of each term in the equations (11,12). Therefore, using exactly the same533

algorithm as the Boltzmann solver, we obtain the following state as the outcome of this534

encoding step:535

|ϕ1⟩ =
V−1∑
i=0

1∑
s=0

2∑
d=0

g̃i,t,d|i⟩phys|0⟩time|s⟩species|d⟩direction|0⟩term|0⟩ancilla, (A2)

where the subscript i indicates a lattice point using the same rules as in the Boltzmann536

solver, gi,t,d are given in TABLE A1, and g̃ is normalized g. At the first time step we537

need to specify the initial values for g.538

A2 Propagation539

The structure of the Propagation step in Maxwell solver is fundamentally a Quan-540

tum Walk, similar to the Propagation in Boltzmann solver. Thus we need to construct541

the coin operator and the shift operator. However, the elements of the Coin operator,542

the time qubits, and the type of subnodes are different. Furthermore, the time increment543

circuit is used only with respect to the state |111⟩sub to use the physical quantity of one544

previous time. Therefore, in this section, Propagation step generate the states correspond-545

ing to the terms propagated in space-time by using the increment and decrement circuits.546

The coin operator acts on the subnodes.547

Ucoin|s⟩species|d⟩direction|j⟩sub = ϵ̃s,d,j |s⟩species|d⟩direction|j⟩sub, (A3)

where you can also find ϵs,d,j in TABLE A1 and ϵ̃ is normalized ϵ.548

One difference from the Boltzmann solver is that the right-hand side of the expres-549

sion (11,12) contains a term gi,t−1,s,d that also evolves in the time direction. This effect550

can be easily implemented by treating time as part of the spatial direction and apply-551

ing the shift operator in the same way, but note that only the increment circuit is op-552

erated since the direction is only negative. After operating the coin and the shift oper-553

ator, we obtain the following state as the outcome of this propagation step:554

|ϕ2⟩ =

V−1∑
i=0

1∑
t=0

1∑
s=0

2∑
d=0

7∑
j=0

ϵ̃s,d,j g̃i,t,s,d|i⟩phys|t⟩time|s⟩species|d⟩direction|j⟩sub|0⟩ancilla

+|∗⟩|1⟩ancilla, (A4)

where g̃i,t,s,d represents the shift of ±1 unit in each spatial and the temporal. As for the555

time direction, |1⟩time|111⟩sub and the initial amplitude at |0⟩time|000⟩sub are exchanged556

by the increment circuit (25).The reason for this exchange is because one previous time557

state is needed to generate a term that propagates in the time direction.558
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A3 Integration559

In contrast to the Boltzmann equation, the Maxwell equation is a second-order dif-
ferential equation. As a result, the signs σj that appear in the corresponding difference
equation (10) differ from those in the Boltzmann equation (as shown in Table A1). In
such cases, an controlled-inverse gate, which is shown as follows, should be applied prior
to the superposition by the H gate:

UInv. =

|sub⟩ •
|sub⟩
|sub⟩ •

The rest of the integration step can use the same method as the Boltzmann solver,560

but this time we are dealing with different physical quantities,E and B, in the same cir-561

cuit, so we need to sum each of them and not confuse them. As a result, we can spec-562

ify the spatial lattice point (i) and the species, and obtain the time-evolved quantities563

E,B developed in the amplitude of |000⟩sub.

Table A1. The subnode bases and their corresponding physical quantities. g, ϵ, and σ respec-

tively represent the (unnormalized) electromagnetic fields associated with each basis state, the

coefficients to be incorporated via the coin operator, and the sign to be multiplied during the

integration step. These are the quantities that appear on the right side of the difference equa-

tions (11,12). Here we write only for |direction⟩ = |00⟩direction as an example; |01⟩direction and

|10⟩direction correspond to the y- and z- components of E and F , respectively.

|s⟩species|d = 0⟩direction|j⟩sub gs,d=0,j ϵs,d=0,j σj

|0⟩species|00⟩direction|000⟩sub Ex(x, y, z; t) −4 +1
|0⟩species|00⟩direction|001⟩sub Ex(x+∆x, y, z; t) 1 +1
|0⟩species|00⟩direction|010⟩sub Ex(x−∆x, y, z; t) 1 +1
|0⟩species|00⟩direction|011⟩sub Ex(x, y +∆y, z; t) 1 +1
|0⟩species|00⟩direction|100⟩sub Ex(x, y −∆y, z; t) 1 +1
|0⟩species|00⟩direction|101⟩sub Ex(x, y, z +∆z; t) 1 +1
|0⟩species|00⟩direction|110⟩sub Ex(x, y, z −∆z; t) 1 +1
|0⟩species|00⟩direction|111⟩sub Ex(x, y, z; t−∆t) 1 −1
|1⟩species|00⟩direction|000⟩sub Fx(x, y, z; t) −4 +1
|1⟩species|00⟩direction|001⟩sub Fx(x+∆x, y, z; t) 1 +1
|1⟩species|00⟩direction|010⟩sub Fx(x−∆x, y, z; t) 1 +1
|1⟩species|00⟩direction|011⟩sub Fx(x, y +∆y, z; t) 1 +1
|1⟩species|00⟩direction|100⟩sub Fx(x, y −∆y, z; t) 1 +1
|1⟩species|00⟩direction|101⟩sub Fx(x, y, z +∆z; t) 1 +1
|1⟩species|00⟩direction|110⟩sub Fx(x, y, z −∆z; t) 1 +1
|1⟩species|00⟩direction|111⟩sub Fx(x, y, z; t−∆t) 1 −1

564

Appendix B Construction of our coin operator565

In this section we consider an algorithm to multiply a vector to each quantum ba-566

sis. Let Λ denote the multiplying vector:567

Λ = (λ0, λ2, · · ·λM−1) , (B1)

where we suppose that {λ} take real values and Λ be normalized:
∑

i λ
2
i = 1.568

To implement this algorithm, we need operate a diagonal matrix A having entries569

corresponding to Λ but this cannot be done directly because it is not unitary operator570
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in general. Thus we realized this non-unitary operation by using one ancilla qubit and571

embedding the matrix A in a unitary matrix with larger size, which is known as the block572

encoding method. As {λ} are always real, this procedure can easily be implemented as573

follows:574

U =

(
A B
B −A

)
, (B2)

with575

A = diag (λ1, λ2, · · · ) , (B3)

B = diag

(√
1− λ21,

√
1− λ22, · · ·

)
. (B4)

After performing this unitary operation on an arbitrary state:576

|ψ⟩ =
∑
i

αi|i⟩phys|0⟩anc, (B5)

we obtain the following state:577

|ψ′⟩ = U |ψ⟩, (B6)

=
∑
i

λiαi|i⟩phys|0⟩ancilla + |∗⟩|1⟩ancilla, (B7)

which we can distinguish desired/unnecessary states with |0/1⟩ancilla.578
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Key Points:10

• A future fault-tolerant large-scale quantum computer speeds up simulations of the11

6D collisionless Boltzmann equation in nonlinear plasmas.12

• Future first principles simulators will have a huge number of lattices, leading to13

more advanced understanding and prediction of physics.14

• To solve nonlinear PDEs using quantum computation, we used the method of am-15

plitude embedding and quantum walk.16
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Abstract17

A novel quantum algorithm for solving the Boltzmann-Maxwell equations of the 6D col-18

lisionless plasma is proposed. The equation describes the kinetic behavior of plasma par-19

ticles in electromagnetic fields and is known for the classical first-principles equations20

in various domains, from space to laboratory plasmas. We have constructed a quantum21

algorithm for a future fault-tolerant large-scale quantum computer to accelerate its costly22

computation. This algorithm consists mainly of two routines: the Boltzmann solver and23

the Maxwell solver. Quantum algorithms undertake these dual procedures, while clas-24

sical algorithms facilitate their interplay. Each solver has a similar structure consisting25

of three steps: Encoding, Propagation, and Integration. We conducted a preliminary im-26

plementation of the quantum algorithm and performed a parallel validation against a27

comparable classical approach. IBM Qiskit was used to implement all quantum circuits.28

1 Introduction29

The space plasma environment, extending from the Sun to the magnetosphere-ion-30

osphere-atmosphere, includes regions of frozen conditions, zones of anomalous resistance31

caused by electromagnetic turbulence, interconnected regions characterized by weakly32

ionized gas systems in strong magnetic fields, coupled neutral-atmosphere chemical pro-33

cesses, and pure neutral-atmosphere collision systems. Owing to their complex interac-34

tions, an inclusive understanding and forecasting of the space environment remains an35

elusive goal, even with the advancements in high-performance instrumentation and in-36

situ observation of satellites. Therefore, it is imperative to develop space plasma sim-37

ulations capable of providing comprehensive insights, ranging from local spatial domains38

to the global schematic.39

Historically, the development of space plasma simulations has been constrained by40

computational time, memory capacity, and data storage limitations, resolving complex41

phenomena with restricted physics at local space scales. In light of these constraints, sp-42

ace plasma simulations can be divided into two principal scale hierarchies. One approach43

endeavors to reproduce Macroscopic phenomena using a coarse approximation, whereas44

the other aims to recreate Microscopic phenomena derived from first principles. Exam-45

ples of the former include magnetohydrodynamics (MHD), while the latter include tech-46

niques such as particle-in-cell (PIC) or the Vlasov equation (hereafter referred to as the47

collisionless Boltzmann equation). The choice between global simulation and compre-48

hensive simulation of physical processes depends on the required space and time scales.49

However, several thematic concerns have emerged that require simulation via coupling50

between scale hierarchies. For example, we describe the plasma instability of the cur-51

rent sheet and the initiation mechanism of magnetic reconnection. The importance of52

kinetic effects resulting from ion-electron dynamics during the onset of magnetic recon-53

nection has been demonstrated (Daughton, 2003; Moritaka & Horiuchi, 2008). To em-54

ulate this, a multi-hierarchical simulation with inter-domain coupling of MHD and PIC55

has been developed, which allows to analyze the influence of macroscopic dynamics on56

the microscopic physics of magnetic reconnection (Usami et al., 2009, 2014).57

In contrast, the collisionless Boltzmann equation requires advanced numerical com-58

putations of the 6D distribution function in both space (3D) and velocity (3D) of the59

particles, and has traditionally been limited to the analysis of low-dimensional, low-reso-60

lution or microscopic phenomena. Given the susceptibility of direct methods to numer-61

ical diffusion, the more accurate electromagnetic Vlasov method has been designed and62

implemented(Umeda, 2008; Umeda et al., 2009; Minoshima et al., 2011; Umeda et al.,63

2012). The considerable progress in its research has allowed the elucidation of numer-64

ous authentic physical phenomena through the use of full electromagnetic Vlasov sim-65

ulation, notwithstanding certain limitations regarding dimensionality and lattice num-66

ber, which depend on the availability of computational resources(Umeda, Miwa, et al.,67
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2010; Umeda, Togano, & Ogino, 2010; Umeda et al., 2011; Umeda, 2012; Umeda et al.,68

2013, 2014). Theoretically, the integration of a collision term into the Boltzmann-Maxwell69

equations provides a comprehensive representation of the collision effects present in the70

complex coupled magnetosphere-ionosphere-atmosphere system of the Earth.71

However, the current state of simulation technology is such that the fluid equations72

incorporating these collision effects have not yet been successfully modeled. The effects73

resulting from ionospheric collisions affect a variety of facets, ranging from auroras to74

magnetospheric dynamics (e.g. Yoshikawa et al. (2013)), and further lead to the man-75

ifestation of complex phenomena (e.g. Ohtani and Yoshikawa (2016)). Consequently, the76

collisionality Boltzmann-Maxwell equations encompass a plethora of significant phenom-77

ena within their domain of interest that are relevant to space-earth electromagnetics. In78

an idealized scenario, the entirety of these phenomena could be computed using the col-79

lisional Boltzmann-Maxwell equations, eliminating the need for scaling factorial coupled80

simulations and the reliance on a variety of assumptions. However, performing high-order81

numerical computations for the first-principles collisional Boltzmann-Maxwell equation82

requires the establishment of extremely precise numerical methods, coupled with an enor-83

mous computational burden O(L6) (where L is the number of lattices per spatial degree84

of freedom), which is currently unattainable even with the computational power of to-85

day’s supercomputers.86

In recent years, advances in quantum computing, both software and hardware, have87

demonstrated numerous advantages of quantum algorithms, such as those represented88

by (Shor, 1994). Following Google’s achievement of quantum supremacy in 2019 (Arute89

et al., 2019), the pragmatic implementation of quantum computing in plasma simula-90

tion, weather forecasting, fluid simulation, and various fields is attracting interest. In nu-91

merical computation, the first paper on solving linear equations with quantum computer,92

the so-called the HHL algorithm (Harrow et al., 2009), was published. Subsequently, a93

quantum algorithm for linear ordinary differential equations (ODE)(Berry et al., 2017)94

and for partial differential equations(PDE)(Childs et al., 2021), and many for fluid sim-95

ulations have been reported in recent years (Mezzacapo et al., 2015; Budinski, 2022; Steijl96

& Barakos, 2018; Steijl, 2019, 2023; Arrazola et al., 2019; Cao et al., 2013; Wang et al.,97

2020; Gaitan, 2020, 2021). The employed methodologies vary considerably. Some use quan-98

tum computational versions of the lattice gas model (Yepez, 1998, 2001) or the lattice99

Boltzmann method (Miller et al., 2001), some use quantum Fourier transforms to solve100

the Poisson equation, some use HHL algorithms and Hamiltonian simulations and Some101

combine it with the HHL algorithm and Hamiltonian simulations, others reduce from102

PDEs to ODEs to solve nonlinear ODEs, and so on. Among them, the quantum lattice103

Boltzmann method is constructed by considering the streaming operation as Quantum104

Walk (Aharonov et al., 1993)(Succi et al., 2015). Similarly, a quantum algorithm for the105

Dirac equation was proposed (Fillion-Gourdeau et al., 2017), using the similarity of a106

sequence of time-evolving operations to Quantum Walk. And Todorova et al. developed107

a quantum algorithm for the collisionless Boltzmann equation that performs discrete real108

and discrete velocity space propagation by Quantum Walk using a discrete-velocity method109

(Todorova & Steijl, 2020). We consider that this method has an advantage over other110

quantum differential equation solving methods in that it is easier to introduce first-principles111

collision terms.112

• Collisionless Boltzmann-Maxwell equations with u(:velocity) constant and the elec-113

tromagnetic field E,B under vacuum conditions acting one way:114

∂f

∂t
+ uconst ·

∂f

∂x
+

q

m
(E + uconst ×B) · ∂f

∂v
= 0,

∇2E − 1

c2
∂2E

∂t2
= 0,

–3–
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∇2B − 1

c2
∂2B

∂t2
= 0.

We developed a quantum algorithm for the 6D Boltzmann-Maxwell equations for115

collisionless plasmas under the above conditions based on the efficient quantum walk cir-116

cuit(Douglas & Wang, 2009). In this process, we calculated the time evolution problem117

of the 6D distribution function with the addition of velocity space, referring to the quan-118

tum algorithms for the the discrete velocity method in the the Boltzmann equation(Todorova119

& Steijl, 2020) and the Macro step in the Navier-Stokes equations(Budinski, 2022). Thus,120

the implementation of the collision term, which is the final goal of our project, is much121

easier and can be developed step by step. Furthermore, according to our quantum al-122

gorithm, it is simpler and computationally less expensive to solve all regions with the123

collisionless Boltzmann-Maxwell equations than with Macro-Micro’s hierarchically cou-124

pled simulators. The quantum computer’s most important advantage, the lattice infor-125

mation in the spatial direction, is parallelized into a single state function by encoding126

amplitude embedding. The results show that the order of the Quantum Volume as the127

scale of the quantum circuit is O
(
Nt (log2(L))

2
)
, which is an improvement over the or-128

der of the computational volume O
(
NtL

6
)
of a similar classical algorithm.129

In the future, we will develop a quantum algorithm for the collisional Boltzmann-130

Maxwell equations and apply it to the plasma region from the sun to the Earth’s mag-131

netosphere-ionosphere-atmosphere. Thus, this will provide a framework in order to un-132

derstand and fully predict the space plasma environment. At that time, we expect the133

device to be used is a future fault-tolerant large-scale quantum computer. This paper134

develops the first quantum algorithm for this purpose and summarizes the methodology135

and verification results.136

This paper is organized as follows: Section 1.1 and 1.2 describe the model of nu-137

merical computation, Section 2 describes our Quantum Algorithm of Boltzmann solver,138

and Section 3 compares and verifies the results of the quantum algorithm with similar139

classical algorithms. In Section 4, we discuss current issues and future solutions.140

1.1 Governing equations141

We employ the collisionless plasma Boltzmann and Maxwell equations within an142

electromagnetic field as governing equations. Specifically, these equations are given by143

• The collisionless plasma Boltzmann equation with an electromagnetic field:

∂f

∂t
+ uconst ·

∂f

∂x
+

q

m
(E + uconst ×B) · ∂f

∂v
= 0, (1)

• Wave equation for the electric field E in vacuum:

∇2E − 1

c2
∂2E

∂t2
= 0, (2)

• Wave equation for the magnetic field B in vacuum:

∇2B − 1

c2
∂2B

∂t2
= 0. (3)

Where f is the distribution function of the plasma particles, u is the fluid velocity of the144

plasma, which we assume to be constant, q/m is the charge to mass ratio of the parti-145

cles and E and B are the electromagnetic fields. The Maxwell equations can be rewrit-146

ten in the form of wave equations for the electric and magnetic fields respectively, as above,147

to implement the quantum algorithms more efficiently.148
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1.2 Numerical simulation method149

For the execution of nonlinear partial differential equations (1,2,3) on quantum com-150

puters, these equations require discretization by methods such as the finite difference tech-151

nique or the finite element method. In the following discourse, the finite difference ap-152

proach is adopted for the Boltzmann-Maxwell equation, resulting in difference equations153

that are implementable on quantum circuits.154

Proceeding with the application of the Forward Time Centered Space(FTCS) scheme,155

we differentiate the Boltzmann equations for collisionless plasma and derive a discretized156

representation. The differencing equation for the governing equation (1) is given by157

f(x, y, z, vx, vy, vz; t+∆t) = f − ux∆t

2∆x
(fx+∆x − fx−∆x)−

uy∆t

2∆y
(fy+∆y − fy−∆y)

−uz∆t
2∆z

(fz+∆z − fz−∆z)

−q(E + uconst ×B)x∆t

2m∆vx
(fvx+∆vx − fvx−∆vx)

−q(E + uconst ×B)y∆t

2m∆vy
(fvy+∆vy − fvy−∆vy )

−q(E + uconst ×B)z∆t

2m∆vz
(fvz+∆vz − fvz−∆vz ), (4)

where the value of f(x, y, z, vx, vy, vz; t), namely the distribution function at the refer-158

ence point x, y, z, vx, vy, vz and time t, is simply denoted as f , and the same at the point159

deviating by one unit distance in each direction is denoted with subscripts:160

(e.g.) fx+∆x := f(x+∆x, y, z, vx, vy, vz; t).161

We simplify the difference Boltzmann equation with the following assumption:162

ux∆t

2∆x
=
uy∆t

2∆y
=
uz∆t

2∆z
= 1. (5)

Similarly, the difference equations for the electric and magnetic fields are given as163

E(x, y, z; t+∆t) =

(
2− 2

∆t2

µ0ϵ0
(

1

∆x2
+

1

∆y2
+

1

∆z2
)

)
E −Et−∆t

+
∆t2

µ0ϵ0∆x2
(Ex+∆x +Ex−∆x) +

∆t2

µ0ϵ0∆y2
(Ey+∆y +Ey−∆y)

+
∆t2

µ0ϵ0∆z2
(Ez+∆z +Ez−∆z) , (6)

B(x, y, z; t+∆t) =

(
2− 2

∆t2

µ0ϵ0
(

1

∆x2
+

1

∆y2
+

1

∆z2
)

)
B −Bt−∆t

+
∆t2

µ0ϵ0∆x2
(Bx+∆x +Bx−∆x) +

∆t2

µ0ϵ0∆y2
(By+∆y +By−∆y)

+
∆t2

µ0ϵ0∆z2
(Bz+∆z +Bz−∆z) , (7)

where quantities such as E and B are defined in the same manner as f above.164

Furthermore, for simplicity of notation, we set hereafter as the Lorentz force term165

as166

F := u×B. (8)

Also, the speed of light c in equation (2,3) is rewritten here using the permittivity and167

the permeability (ϵ0 and µ0) in the vacuum. Similar to the Boltzmann equation exam-168

ple, we make the following assumption:169

∆t2

µ0ϵ0∆x2
=

∆t2

µ0ϵ0∆y2
=

∆t2

µ0ϵ0∆z2
= 1. (9)
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Under the postulates of this manuscript, no velocity is obtained from the first-order ve-170

locity moment of the distribution function. Given the use of uniform velocities in both171

the temporal and spatial domains, the discretized magnetic field equation transforms into172

the propagation equation of the Lorentz force term.173

As a result, we obtain the discretized Botzmann-Maxwell equation to be implemented174

as follows:175

f(x, y, z, vx, vy, vz; t+∆t) = f − (fx+∆x − fx−∆x)− (fy+∆y − fy−∆y)

−(fz+∆z − fz−∆z)

−q(E + F )x∆t

2m∆vx
(fvx+∆vx − fvx−∆vx)

−q(E + F )y∆t

2m∆vy
(fvy+∆vy − fvy−∆vy )

−q(E + F )z∆t

2m∆vz
(fvz+∆vz − fvz−∆vz ), (10)

E(x, y, z; t+∆t) = −4E −Et−∆t + (Ex+∆x +Ex−∆x)

+ (Ey+∆y +Ey−∆y) + (Ez+∆z +Ez−∆z) , (11)

F (x, y, z; t+∆t) = −4F − Ft−∆t + (Fx+∆x + Fx−∆x)

+ (Fy+∆y + Fy−∆y) + (Fz+∆z + Fz−∆z) . (12)

This allows us to evolve the values of f and , (E, B) independently. We call the quan-176

tum routines that perform this evolution the Boltzmann solver and the Maxwell solver,177

respectively. For the evolution of f (Boltzmann solver), we need the values of E and F178

at each time step as they appear in the right-hand side of the equation (10), so we use179

the values obtained by the Maxwell solver.180

2 Quantum Algorithm181

In this section, a quantum algorithm based on the discretized Boltzmann-Maxwell182

equations (4,6,7) is constructed and implemented on quantum circuits. This quantum183

algorithm can be divided into two independent routines: the Boltzmann solver and the184

Maxwell solver. They take an initial function of f and (E,B) as input, respectively. Both185

routines fix time and output physical quantities that evolve in one time step according186

to difference equations (11,12). By iterating this one-step evolution many times, we can187

obtain the value of a physical quantity that has evolved for an arbitrary time step.188

The electric and magnetic fields derived by Maxwell solver are incorporated into189

the Propagation circuit of the Boltzmann solver as shown in the FIG. 1, thereby cou-190

pling each routine. The quantum calculations in this paper are carried out exactly in a191

way that deals with state vectors using a classical simulator provided by IBM Qiskit. It192

is straightforward to construct an authentic quantum algorithm based on measurements.193

194

2.1 Boltzmann195

Our Boltzmann solver can be segmented into three principal steps: Encoding, Prop-196

agation and Integration.197

2.1.1 Encoding198

First of all, it is necessary to encode the classical information of the physical quan-199

tities into the amplitudes of quantum states. Fixing the number of lattice sites in all spa-200

tial and velocity directions to be L, f will have V := L6 degrees of freedom. In the en-201

coding step, we associate each of these degrees of freedom with one computational ba-202
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Figure 1. A Schematic of the quantum circuit of our algorithm for solving the Boltzmann-

Maxwell equations. They consist of two routines that operate on the coin operator.

sis and encode the value of f in the amplitude of the corresponding quantum state. Thus,203

a total of V bases must be prepared in total, requiring ⌈log2 V ⌉ qubits. This method of204

encoding classical information into quantum information amplitudes is commonly referred205

to as the amplitude embedding technique.206

To elucidate the relationship between physical quantities and probability ampli-207

tudes, the following conversion from a function f(x,v; t) to a vector fi , (0 ≤ i ≤ V−208

1) is implemented. The subscripts i specify a point in the 6D lattice space. For exam-209

ple, i = 0 corresponds to the origin point (x,v) = (0, 0, 0, 0, 0, 0), and i = 1 represents210

the value of the distribution function moved by one lattice point in the x direction:211

(x,v) = (∆x, 0, 0, 0, 0, 0). Namely, the amount of fi follows212

(e.g.) f0 = f(0, 0, 0, 0, 0, 0; t = tr), (13)

f1 = f(∆x, 0, 0, 0, 0, 0; t = tr). (14)

Note that the quantum state does not contain any information about time, since the prop-213

agation takes place with fixed time. We will assume L = 2NL in the following. As ev-214

idenced in Section 3, our actual numerical calculations are executed with NL = 3 (L =215

8).216

The first important algorithm in the Encoding step is with a given distribution func-217

tion at a fixed t = tr to prepare a quantum state, which we name |ϕ0⟩phys, with these218

values in its amplitudes:219

|ϕ0⟩phys =
V−1∑
i=0

f̃i|i⟩, (15)
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where f̃ is the normalized distribution function as follows:220

f̃i = Cfi , C =

(
V−1∑
i=0

|fi|2
)−1/2

. (16)

At the initial time step of t = 0, an arbitrary distribution can be designated as an ini-221

tial function. Post the second step, the distribution function generated by the Boltzmann222

solver in the prior step ought to be provided as input. This iterative process allows for223

the computation of the distribution function at any desired time step. This procedure224

of state preparation can be executed in alignment with Appendix B.225

It should be noted that, within the context of this manuscript, we have formulated226

the algorithm in a manner that measures f post each step and re-encodes it in the sub-227

sequent step, in order to circumvent excessive enlargement of the quantum circuit’s depth.228

This design necessitates O(V ) measurements at every time step, failing the advantage229

of the quantum algorithm. However, it is straightforward to connect each time step seam-230

lessly. Namely, any measurements are required between each time step, implying that231

such a design will be beneficial when managing large-scale quantum apparatuses in the232

future. Further discussion on quantum advantage will be given in later sections.233

The qubits prepared within this context are termed as the physical qubits, denoted234

as |phys⟩. Looking more closely, |phys⟩ is prepared by a total of 6 closed Hilbert spaces235

corresponding to spatial and velocity degrees of freedom, each having NL(= log2 L) qubits.236

Namely, we write it as237

|phys⟩ = |phys;x⟩|phys;y⟩|phys;z⟩|phys;vx⟩|phys;vy⟩|phys;vz⟩ (17)

Subsequent to the Propagation step, the ensuing quantum algorithms necessitate an ad-238

ditional qubit, which depending on their role, is identified as either subnode qubits |sub⟩239

or ancilla qubits |ancilla⟩. As will explaind later the number of subnode and ancilla qubits240

are fixed to 4 and 1, respectively, regardless of the parameters and physical setup. Thus,241

the numbers of qubits required by the Boltzmann solver are242

Nphis = 6NL , Nsub = 4 , Nanc = 1, (18)

and the following quantum state is prepared and output in after this Encoding step:243

|ϕ1⟩ = |ϕ0⟩phys ⊗ |0⟩sub ⊗ |0⟩ancilla, (19)

=

V−1∑
i=0

f̃i|i⟩phys|0⟩sub|0⟩ancilla. (20)

2.1.2 Propagation244

In the Propagation step, we partially utilize the tequniques of quantum algorithm245

method (Douglas & Wang, 2009) and implement an algorithm that multiplies each prob-246

ability amplitude of ϕ1 by the coefficient of each term in the discretized equation.247

The subnode bases and their corresponding physical quantities f, ϵ, andσ denote248

the normalized distribution encoded as the amplitude of the associated state, the coef-249

ficients to be incorporated via the coin operator, and the sign to be multiplied during250

the integration step, respectively. To solve the evolution equation (10), we need to pre-251

pare and add up all the terms that arise in the equation such as:252

f, ∓fx±∆x, · · · ,∓
q(E + F )x∆t

2m∆vx
fvx±∆vx , · · · .

After passing through the encoding step, we are now in possession of a quantum state253

|ϕ1⟩, within which the data of the distribution function are encoded in the amplitude.254
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Table 1. The subnode bases and their corresponding physical quantities. f, ϵ, and σ respec-

tively represent the (unnormalized) distribution function associated with each basis state, the

coefficients to be incorporated via the coin operator, and the sign to be multiplied during the

integration step. These are the quantities that appear on the right-hand side of the difference

equation (10).

j |j⟩sub fj ϵj σj

0 |0000⟩ f(x, y, z, vx, vy, vz) 1 +1
1 |0001⟩ f(x+∆x, y, z, vx, vy, vz) 1 −1
2 |0010⟩ f(x−∆x, y, z, vx, vy, vz) 1 +1
3 |0011⟩ f(x, y +∆y, z, vx, vy, vz) 1 −1
4 |0100⟩ f(x, y −∆y, z, vx, vy, vz) 1 +1
5 |0101⟩ f(x, y, z +∆z, vx, vy, vz) 1 −1
6 |0110⟩ f(x, y, z −∆z, vx, vy, vz) 1 +1

7 |0111⟩ f(x, y, z, vx +∆vx, vy, vz) qEx(x,y,z)+Fx(x,y,z)∆t
2m∆vx

−1

8 |1000⟩ f(x, y, z, vx −∆vx, vy, vz) qEx(x,y,z)+Fx(x,y,z)∆t
2m∆vx

+1

9 |1001⟩ f(x, y, z, vx, vy +∆vy, vz) q
Ey(x,y,z)+Fy(x,y,z)∆t

2m∆vy
−1

10 |1010⟩ f(x, y, z, vx, vy −∆vy, vz) q
Ey(x,y,z)+Fy(x,y,z)∆t

2m∆vy
+1

11 |1011⟩ f(x, y, z, vx, vy, vz +∆vz) qEz(x,y,z)+Fz(x,y,z)∆t
2m∆vz

−1

12 |1100⟩ f(x, y, z, vx, vy, vz −∆vz) qEz(x,y,z)+Fz(x,y,z)∆t
2m∆vz

+1

13 |1101⟩ 0 0 −1
14 |1110⟩ 0 0 +1
15 |1111⟩ 0 0 −1

Therefore, by considering an algorithm that multiplies each coefficient such as q(E+F )x∆t
2m∆vx

255

by the corresponding state, the amplitudes of all states are updated to the state with256

the appropriate coefficient appearing in equation (10). We will deal with the explicit sign257

in the equation later. The values of E and F at the certain time step are obtained from258

Maxwell solver.259

Subnodes serve to identify the terms that arise at a specific time step, namely260

f, fx±∆x, · · · , fvx±∆vx · · · . In total, there are 13 (= 1+2×6) terms: one term f ,261

which precedes propagation, and terms propagated by each ±1 unit for each of the six262

directions in space and velocity. Hence, 4 (= ⌈13⌉) qubits are necessitated as a subn-263

ode. It should be noted that this number remains uninfluenced by physical quantities264

like volume. For simplicity, we have associated them as depicted in TABLE 1. Here, ϵj265

is the coefficient applied to each term, and σj is the sign explicitly attributed to each term266

in TABLE 1. In fact, both ϵj and σj are coefficients in the difference equation (10), so267

it is possible to define epsilon to include the sign of σj . However, we choose to distin-268

guish between them because ϵj represents a quantity that depends on a specific assump-269

tion as indicated by the assumption (5,9), while σj is a universally determined quantity.270

By making this distinction, we think we can minimize the part that we need to be mod-271

ified based on different assumptions.272

As elucidated below, the coin operator is accountable for the multiplication of these273

coefficients, and the shift operator assumes responsibility for correlating each term with274

the basis of the subnode.275

We can create the appropriate coefficients by first make the subnodes in superpoti-276

tion using the H-gate. Then apply the diagonal matrix with {ϵ} as components:277

Λ := diag(ϵ0, ϵ1, · · · , ϵ15). (21)
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The operation with this diagonal matrix is not a unitary and thus it must be embedded278

in a unitary matrix of larger size. Since the coefficients are real, this procedure can be279

done easily as explained in the Appendix Appendix B. Here, we use the ancilla qubit280

|a0⟩ to create a unitary matrix of larger size. We call this whole operator acting on the281

subnode (and the ancilla qubit) the “coin operator” according to the terminology of quan-282

tum walk. As a result, we obtain the state after operating the coin operator as follows:283

UCoin|ϕ1⟩ =

V−1∑
i=0

UCoinf̃i|i⟩phys|0⟩sub|0⟩ancilla,

=

V−1∑
i=0

15∑
j=0

f̃iϵ̃j |i⟩phys|j⟩sub|0⟩ancilla + |∗⟩|1⟩ancilla, (22)

where ϵ̃ represents a normalized quantity. |∗⟩ represents the computationally unneces-284

sary states, which are identified by the ancilla qubit being |1⟩ancilla.285

Next, so-called increment/decrement gates are applied on both subnode and phys-286

ical qubits to associate the basis of subnode and physical amount at different points. The287

increment/decrement gates are operators that shift one computational basis, respectively.288

Specifically, those operator satisfy289

UIncr.|i⟩ = |i+ 1⟩,
UDecr.|i⟩ = |i− 1⟩. (23)

Suppose the periodic boundary condition on the N -qubits system:290

UIncr.|2N − 1⟩ = |0⟩,
UDecr.|0⟩ = |2N − 1⟩, (24)

those operator follow the relation:U†
Incr. = UDecr.. The increment circuit can be specif-291

ically configured as follows.292

UIncr. =

• • • X

• •
•

, UDecr. =

X

(25)

By performing controlled-Increment/Decrement gates on the subnode as control293

registers and the physical qubits as target registers, we can map the subnode to a phys-294

ical quantity on each lattice point. We call this sequential operations as the ”shift op-295

erator”. The circuit of the shift operator is shown in FIG.2.296

As a result, after applying both the coin operator and the shift operator, we ob-297

tain the following state as a final output of this propagation step:298

|ϕ2⟩ =
V−1∑
i=0

15∑
j=0

ϵ̃j f̃i,j |i⟩phys|j⟩sub|0⟩ancilla + |∗⟩|1⟩ancilla. (26)

We can articulate the exact correlation between f̃ i and f̃ i, j as outlined herein. Initially,299

we had the capacity to signify the index i as i = sL + t, (0 ≤ s < 6, 0 ≤ t < L),300

which, for instance, correlates with the direction x when s = 0, y when s = 1, and so301

forth, and the coordinates of the corresponding directions are symbolized by t. The shift302
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|phys;x⟩ /UDecr UIncr

|phys;y⟩ / UDecr UIncr

|phys;z⟩ / UDecr UIncr

|phys;vx⟩ / UDecr UIncr

|phys;vy⟩ / UDecr UIncr

|phys;vz⟩ / UDecr UIncr

|sub⟩ • • • • • •
|sub⟩ • • • • • •
|sub⟩ • • • • •
|sub⟩ • • • • •

Figure 2. A Quantum circuit for the shift operators. Increment and Decrement operators

controlled by subnodes are aligned according to the order of TABLE 1.

operator moves computational bases in each subspace by ±1, respecting periodic bound-303

ary conditions in each orientation. This ±1 direction is specified by the index j as shown304

in TABLE 1. Therefore, f̃i,j can be represented as follows:305

f̃i,j = f̃sL+(t+(−1)j)modL, (27)

when i = sL+ t, (0 ≤ s < 6, 0 ≤ t < L).306

2.1.3 Integration307

Passing through the encoding and propagation steps so far, we obtain a state in308

which the all 13 terms arising in the right-hand side of the equation (10) for a fixed time309

step under are encoded in the amplitude of each basis state. In this step, we perform a310

superposition of subnode states to compute the sum of all terms and collect them into311

the amplitude of a single state|0000⟩sub. However, As a preprocessing step, we need to312

invert the phases of certain states as explained below.313

The amplitude of each basis are multiplied by the coefficients in the difference equa-314

tion 10, excluding the explicit sign, which is denoted by sigma in TABLE 1. Therefore,315

we need to inverse the phase of corresponding state for the terms with a minus sign. This316

process is also very simple and only requires one application of Z gate as shown in cir-317

cuit 28 before applying H gates.318

Finally, we superimpose all sunode states by applying H as shown in circuit(28).

|sub⟩ Z H

|sub⟩ H

|sub⟩ H

|sub⟩ H

(28)
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As a result, the amplitudes of the states from |0000⟩subto|1111⟩sub are summed and gath-319

ered as the amplitude of |0000⟩sub state with equal weighting of 1/4. Therefore, we fi-320

nally obtain the following state321

|ϕ3⟩ =
1

4

V∑
i=0

12∑
j=0

σj ϵ̃j f̃i,j |i⟩phys|0000⟩sub|0⟩ancilla + |∗⟩. (29)

With more clear form, we can write:322

12∑
j=0

σj ϵ̃j f̃i,j ∼ f − (fx+∆x − fx−∆x)− (fy+∆y − fy−∆y)− (fz+∆z − fz−∆z)

−q(E + F )x∆t

2m∆vx
(fvx+∆vx − fvx−∆vx)−

q(E + F )y∆t

2m∆vy
(fvy+∆vy − fvy−∆vy ),

= f(x, y, z, vx, vy, vz; t+∆t), (30)

where the distribution function is at the corresponding point of (x, y, z, vx, xy, vz) to the323

index i. Since the normalizing factors of f and ϵ are involved here, the relation is denoted324

as “∼”.325

According to the resultant state |ϕ3⟩, we can measure the physical and subnode326

qubits and focus on the |0⟩sub to obtain a distribution function that is one time step evo-327

lved according to the Boltzmann-Maxwell equation. For further time steps, we can use328

this distribution function as an initial value to input to the first encoding step, and fur-329

ther time evolution can be implemented by performing similar steps.330

Here are remarks on this algorithm, most of what is touched on here will be dis-331

cussed more comprehensively in the Section 4. First, we asserted that the measurement332

of the state delivers the value of the distribution function; however, what is specifically333

attained is the square of the absolute value of the distribution function. Nevertheless,334

given that the value of the distribution function f is consistently real and non-negative,335

the precise value of f can be accurately recovered from the measurements. On the other336

hand, E and B handled by Maxwell solver in Appendix Appendix A are real but also337

have negative values, so not exactly the same algorithm can be used. However, during338

computation with real quantum algorithms, there isn’t a genuine necessity to measure339

the values of E and B. The primary function of the Maxwell solver is simply to convey340

these values to the Boltzmann solver within the quantum circuit, hence this does not pre-341

sent a significant issue. If one want to measure E and B values as well, a further an-342

cilla node that identifies the sign must be prepared, and an additional quantum oracle343

is also needed.344

Next, Actually measuring f does not lead to quantum advantage. This is because345

f still has O(V = L6) degrees of freedom, and it is inevitable to measure it O(V ) times346

in order to obtain full information. However, this problem can be avoided because what347

we are physically interested in is not f itself, but the velocity moment quantity obtained348

by integrating f with respect to velocity v. If we could implement this integral, i.e., just349

a sum in the discrete system, in an efficient quantum algorithm, the computational com-350

plexity would be superior to that of a naive classical algorithm. Furthermore, we believe351

that it is possible to reduce the Hilbert space to be measured based on physical condi-352

tions such as uniformity with respect to a certain spatial direction, limiting the measure-353

ment to the physical space of interest, etc.354

3 Comparison355

In this paper, all quantum circuits were exactly simulated by dealing directly with356

statevectors. Thus it is expected that the results will be in exact agreement with numer-357

ical calculations using conventional classical algorithms. We prepared L = 8 lattice sites358
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in each spatial and velocity direction and calculated with the volume V = 86. As for359

the quantum algorithm 6× ⌈log2 L⌉ = 18 qubits were used as |phys⟩.360

And we set ∆x = ∆y = ∆z = 30m,∆t = 10−7s, satisfying the assumption (9).361

Thereby, vx = vy = vz = 3 × 108m/s is constant at the speed of light. The plasma362

particles are assumed to be positrons and set e = 1.6×10−19C,me = 9.1×10−31kg, so363

we put ∆vx = ∆vy = ∆vz = 105m/s. In this section, for simplicity, we re-scale vari-364

ables x, y, · · · dividing by the unit ∆x,∆y, · · · and denote them as coordinates on a lat-365

tice space. That is, x = n denotes the point where x = n∆x physically.366

3.1 Initial condition367

As the initial distribution function, we employed a simple setup: we set 0 for (x =368

1, y = 1) or (vx = 1, vy = 1), and set 1 for the other spaces. Namely,369

f(x, y, z, vx, vy, vz; t = 0)|x=1∩y=1 = 0,

f(x, y, z, vx, vy, vz; t = 0)|vx=1∩vy=1 = 0,

f(x, y, z, vx, vy, vz; t = 0) = 1 (otherwise).

This is a simple setup to compare the agreement with the classical algorithm, and in prac-370

tice it is necessary to give a suitable initial condition corresponding to considering phys-371

ical phenomena such as plasma.
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Figure 3. The initial distribution function in the space for (a) the x - y subplane with

z = vx = vy = vz = 0, and (b) the vx - vy subplane with x = y = z = vz = 0. This makes

it possible to check the influence of electromagnetic fields on propagation in velocity space as well

as in real space.

372

Since we implemented the Increment/Decrement circuits periodic (24), the simu-373

lation results are also periodic so that the 0-th and L-th lattice points are identical for374

all directions.375

3.2 Simulation result376

We implemented our quantum algorithm with the input conditions and advanced377

time evolution from time step = 0 to time step = 3.378
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Figure 4. The results show (a) real space propagation at z = vx = vy = vz = 0 and (b) ve-

locity space propagation at x = y = z = vz = 0 with time evolution to time step = 3 using our

quantum algorithm.
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Figure 5. The results are based on a classical algorithm of the time evolution of the difference

equations (4,6,7) using the same FTCS scheme as in this paper, with similar initial and boundary

conditions. (a) shows real space propagation at z = vx = vy = vz = 0 and (b) shows velocity

space propagation at x = y = z = vz = 0 with time evolution to time step = 3

Comparing FIG. 4 and FIG. 5, the simulation results of the quantum algorithm379

perfectly match those of the classical algorithm with similar conditions and methods. This380

is because we are simulating exactly with statevector in this case, and the actual results381

based on measurements will have statistical errors depending on the number of shots.382

Although f should take values between 0 and 1, this is not the case in FIG. 4 and383

FIG. 5. This is a consequence of numerical diffusion due to discretization using the FTCS384

scheme, which occurs universally in classical algorithms. As noted in the discussion, the385

numerical diffusion is reduced by O(∆t) in the time direction and O
(
(∆x)

2
)
in the space386

direction , so it is guaranteed to give correct results if the calculation is performed on387

a sufficiently large system.388
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The propagation in real space and velocity space is different, showing that it is acted389

upon by the electromagnetic field solved with the Maxwell solver. We achieved one of390

our goals in this paper, that is, the coupling of the Boltzmann equation and the Maxwell391

equation. However, note that this is a unilateral interaction from the Maxwell equation,392

since the assumption of uniform velocity and vacuum condition is used.393

4 Discussion394

Our plasma simulator is not yet able to cover generic phenomena according to the395

governing equations (1,2,3). This paper is in the middle stage of our project. This means396

that our plasma simulator does not yet account for velocity inhomogeneity in the con-397

vective term of the distribution function, the interaction between electromagnetic fields398

and plasma particles, and the collisional effects. To add these physical effects, new quan-399

tum algorithms must be developed.400

• Self-consistent collisionless Boltzmann-Maxwell equations interacting with the elec-401

tromagnetic field by calculating ρ charge density, velocity, and j current density402

in moment quantities of the distribution function:403

∂f

∂t
+ v · ∂f

∂x
+

q

m
(E + v ×B) · ∂f

∂v
= 0,

∇2E − 1

c2
∂2E

∂t2
=

1

ϵ0
∇ρ+ µ0

∂j

∂t
,

∇2B − 1

c2
∂2B

∂t2
= −µ0 (∇× j) .

The next stage will be to improve the current quantum algorithm to the quantum al-404

gorithm for the collisionless Boltzmann-Maxwell equation described above. To do this,405

a quantum algorithm that calculates the amount of velocity moments in the distribu-406

tion function should be developed. Thereby, the electromagnetic field and plasma par-407

ticles can interact with each other via velocity inhomogeneity, charge density, and cur-408

rent density. This stage can simulate all the complex kinetic effects of collisionless plasma409

in an electromagnetic field; it simulates macroscopic MHD phenomena that reflect ki-410

netic effects as Micro phenomena. In other words, even macroscopic phenomena can fall411

back to microscopic phenomena, thus contributing to the complete understanding of the412

physical process and to the prediction. The domain covers space plasmas in space plan-413

etary science, such as the solar surface, and the earth’s magnetosphere and astrophysics,414

such as black hole accretion disks and interstellar winds.415

• Self-consistent collisional Boltzmann-Maxwell equations interacting with an elec-416

tromagnetic field, with the addition of a first-principles collision term:417

∂f

∂t
+ v · ∂f

∂x
+

q

m
(E + v ×B) · ∂f

∂v
= Col(f, f ′),

∇2E − 1

c2
∂2E

∂t2
=

1

ϵ0
∇ρ+ µ0

∂j

∂t
,

∇2B − 1

c2
∂2B

∂t2
= −µ0 (∇× j) .

Furthermore, in the final stage, this quantum algorithm will be improved to a quantum418

algorithm for computing the collision term from the distribution function. By adding a419

first-principles collision term, the domain of coverage is further extended. It covers the420

highly complex collisional effects of space plasma versus neutral atmospheres, simulat-421

ing the ionospheric dynamics of various planetary systems; except for Maxwell solver,422

it calculates non-equilibrium states of rarefied gases first principles; apply Boltzmann so-423

lver and it solves problems of neutrinos and bubble structure in the universe.424
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We used a finite difference FTCS scheme as our numerical model; the FTCS scheme425

has numerical errors on the order of O(∆t), O(∆x2i ) and O(∆v2xi
) per time evolution.426

Previously, 6D Vlasov simulation research using classical computers has been able to al-427

locate only L ∼ 100 (L: lattices per spatial degree of freedom), even using supercom-428

puters. Therefore, simple numerical methods such as the FTCS scheme are not very ap-429

propriate for classical algorithms because of the large numerical errors. However, in the430

case of quantum computation with a large-scale quantum computer in a domain that is431

impossible with a classical computer, the number of lattices per spatial degree of free-432

dom (≫ 100 lattices) is a very large quantity, and thus the numerical error is inevitably433

very small. For example, we estimate that L > 106 is needed to simulate the auroral elec-434

tron acceleration problem in the magnetosphere-ionosphere. For that very large L, the435

numerical error from the FTCS scheme is small enough. Moreover, since L increases ex-436

ponentially with the line increase in hardware logical qubits, the speed of expansion and437

growth of the computational domain and the speed of improvement in accuracy become438

exponential.439

The greatest advantage of quantum algorithms over classical algorithms is massively440

parallelization. We estimate the Quantum Volume of our quantum algorithm and de-441

scribe the quantum advantage of the Boltzmann-Maxwell equation. Simply, we will call442

Quantum Volume=width(number of qubits)× depth(number of gates) in our quantum443

algorithm. The width of this quantum algorithm is 6 log2(L)+6 where L denotes the444

number of lattice points in each direction. Comparing to the classical algorithm O(L)445

computational complexity of the classical algorithm, the fact that it can be expressed446

in log2(L) qubits is a quantum advantage. On the other hand, the measured quantum447

circuits for L = 2, L = 4, and L = 8, were found to be approximately 600 × log2(L)448

per time evolution. In case of time evolution to Time step = Nt, the approximated Quan-449

tum Volume would be 3600×Nt log2(L) (log2(L) + 1). This is of the order of of the scale:450

O
(
Nt (log2(L))

2
)
. Compared to the computational volume of a similar classical algo-451

rithm O
(
NtL

6
)
, the order is improved by compression of 6D spatial information. Thus,452

the larger L is, the higher the quantum superiority.453

Our quantum algorithms are intended for a future large-scale quantum computer,454

but there remain several issues in terms of efficient algorithms. There is a problem of455

the efficient preparation of the initial distribution function on quantum circuits. The En-456

coding step Appendix B method has the exponential complexity O
(
2N
)
of preparing ar-457

bitrary quantum states in a 2N -dimensional Hilbert space with an N qubit(Zalka, 1998;458

Georgescu et al., 2014). This problem is an important topic in quantum computation,459

and various efficient methods have been proposed. For example, Georgescu et al. devel-460

oped an efficient method to prepare quantum states with polynomial complexity in a num-461

ber of qubits(Georgescu et al., 2014), and other efficient quantum state initialization meth-462

ods such as log-concave. Other efficient methods for specific cases, such as log-concave463

probability distribution functions, have been reported as well(Grover & Rudolph, 2002).464

Although the initial distribution function varies depending on the physical phenomenon465

to be simulated, the Maxwell velocity distribution function, for example, is a log-concave466

probability distribution function and may be efficiently prepared(Todorova & Steijl, 2020).467

Our quantum algorithm is more efficient than the classical algorithm in spatial in-468

formation, but not in the time direction. The reason for this is that the finite difference469

method of a numerical computation does not allow time information to enter the width470

of quantum circuits. The finite difference method is a time-marching-based method for471

classical numerical calculations using the forward term on the left side of the difference472

equation. Due to its nature, one of the degrees of freedom must always be in the depth473

when implemented in a quantum computer. Variables that are not set to width are not474

accelerated, so there are restrictions on the number of lattices with respect to the num-475

ber of degrees of freedom that can be set to depth, even for large-scale quantum com-476

putation. One simple way to improve this is to rewrite the difference equation of the fi-477
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nite difference method so that the smallest number of lattice degrees of freedom is the478

evolution parameter instead of time. Although only one degree of freedom is restricted,479

this method can keep the depth relatively small.480

A common problem in quantum differential equation solving is the problem of van-481

ishing time-marching-based measurement probabilities. In general terms, quantum lin-482

ear system algorithms have an exponentially decreasing measurement probability with483

respect to the time step, depending on the number of time steps. The quantum algorithm484

in this study suffers from the same problem. The first possible solution to this problem485

is the application of the compression gadget proposed by Fang et al(Fang et al., 2023).486

This is a time-marching-based quantum differential equation solving method that is in-487

dependent of time steps by repeating uniform singular value amplification.They verified488

their implementation on linear ODEs, but it may be applicable to our PDEs. Next, we489

also consider the use of different quantum differential equation solving methods as a so-490

lution. Hamiltonian simulations are a common method for solving quantum differential491

equations, and the Vlasov-poisson and Vlasov-Maxwell equations have already been used492

(Toyoizumi et al., 2023; Engel et al., 2019). While it is easy to implement the compres-493

sion gadget (Fang et al., 2023) within a Hamiltonian simulation, we consider that it is494

difficult to implement the nonlinear Boltzmann-Maxwell equations with first-principles495

collision terms in a Hamiltonian simulation.496

5 Summary497

In this paper, a novel quantum algorithm for solving the Boltzmann-Maxwell equa-498

tion for collisionless plasmas has been formulated; both the Boltzmann and Maxwell equa-499

tion solvers were structured with a similar quantum circuit. To confirm the validity of500

our quantum algorithm, we performed simulations of the distribution function propa-501

gation process under the background electromagnetic field propagation using the Qiskit502

platform. We compared the results of the quantum calculation with the results of the503

parallel classical calculation and found perfect agreement between them. This completes504

the framework for efficiently solving nonlinear problems in various plasmas, such as space505

plasmas. Prospective endeavors may cultivate the development of a more generalized quan-506

tum algorithm for the Boltzmann-Maxwell equation for collisional plasmas, wherein the507

vacuum condition is eliminated and first-principles collision terms are incorporated.508

6 Acknowledgment509

Discussions during the Yukawa Institute for Theoretical Physics (YITP) summer510

school YITP-W-22-13 on ”A novel numerical approach to quantum field theories” were511

useful as we started this work. HH would like to acknowledge the financial support of512

the Kyushu University Innovator Fellowship Program (Quantum Science Area). The work513

of HH and AY is supported by JSPS KAKENHI Grant Numbers JP20H01961 and JP22K21345.514

The work of JWP is supported in part by the JSPS Grant-in-Aid for Research Fellow515

Number 22J14732 and the JST SPRING, Grant Number JPMJSP2108.516

Appendix A Maxwell solver517

The basic structure of the Maxwell solver is almost identical to that of the Boltz-518

mann solver. Similar to the Boltzmann solver, the Maxwell solver consists of three steps:519

encoding, propagation, and integration. The algorithm is briefly described, with special520

emphasis on the differences to the Boltzmann solver.521
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A1 Encoding522

In Maxwell solver, the physical quantities E and B are written together as g, and523

develop them simultaneously according to the equations (11,12). Since there are no ve-524

locity degrees of freedom, only Nphys = 3⌈log2 L⌉ qubit are prepared for |phys⟩, and525

one additional qubit representing time is also prepared. |sub⟩ requires Nsub = 6 qubit526

in this case. This is because we need Nspecies = 1 qubit to distinguish the difference of527

the physical quantity, namely E or B, Ndirection = 2(= ⌈log2 3⌉) qubits to specify the528

elements of the vector for them as they are vector, and Nterm = 3(= ⌈log2 8⌉) qubits529

to indicate 8 terms appearing the equations (11,12). Collectively, these are called subn-530

odes, but their roles are actually divided as follows:531

|sub⟩ → |species⟩|direction⟩|sub⟩. (A1)

These correspondences are shown in Table A1 where ϵ and σ represent the the coefficient532

and explicit sign of each term in the equations (11,12). Therefore, using exactly the same533

algorithm as the Boltzmann solver, we obtain the following state as the outcome of this534

encoding step:535

|ϕ1⟩ =
V−1∑
i=0

1∑
s=0

2∑
d=0

g̃i,t,d|i⟩phys|0⟩time|s⟩species|d⟩direction|0⟩term|0⟩ancilla, (A2)

where the subscript i indicates a lattice point using the same rules as in the Boltzmann536

solver, gi,t,d are given in TABLE A1, and g̃ is normalized g. At the first time step we537

need to specify the initial values for g.538

A2 Propagation539

The structure of the Propagation step in Maxwell solver is fundamentally a Quan-540

tum Walk, similar to the Propagation in Boltzmann solver. Thus we need to construct541

the coin operator and the shift operator. However, the elements of the Coin operator,542

the time qubits, and the type of subnodes are different. Furthermore, the time increment543

circuit is used only with respect to the state |111⟩sub to use the physical quantity of one544

previous time. Therefore, in this section, Propagation step generate the states correspond-545

ing to the terms propagated in space-time by using the increment and decrement circuits.546

The coin operator acts on the subnodes.547

Ucoin|s⟩species|d⟩direction|j⟩sub = ϵ̃s,d,j |s⟩species|d⟩direction|j⟩sub, (A3)

where you can also find ϵs,d,j in TABLE A1 and ϵ̃ is normalized ϵ.548

One difference from the Boltzmann solver is that the right-hand side of the expres-549

sion (11,12) contains a term gi,t−1,s,d that also evolves in the time direction. This effect550

can be easily implemented by treating time as part of the spatial direction and apply-551

ing the shift operator in the same way, but note that only the increment circuit is op-552

erated since the direction is only negative. After operating the coin and the shift oper-553

ator, we obtain the following state as the outcome of this propagation step:554

|ϕ2⟩ =

V−1∑
i=0

1∑
t=0

1∑
s=0

2∑
d=0

7∑
j=0

ϵ̃s,d,j g̃i,t,s,d|i⟩phys|t⟩time|s⟩species|d⟩direction|j⟩sub|0⟩ancilla

+|∗⟩|1⟩ancilla, (A4)

where g̃i,t,s,d represents the shift of ±1 unit in each spatial and the temporal. As for the555

time direction, |1⟩time|111⟩sub and the initial amplitude at |0⟩time|000⟩sub are exchanged556

by the increment circuit (25).The reason for this exchange is because one previous time557

state is needed to generate a term that propagates in the time direction.558
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A3 Integration559

In contrast to the Boltzmann equation, the Maxwell equation is a second-order dif-
ferential equation. As a result, the signs σj that appear in the corresponding difference
equation (10) differ from those in the Boltzmann equation (as shown in Table A1). In
such cases, an controlled-inverse gate, which is shown as follows, should be applied prior
to the superposition by the H gate:

UInv. =

|sub⟩ •
|sub⟩
|sub⟩ •

The rest of the integration step can use the same method as the Boltzmann solver,560

but this time we are dealing with different physical quantities,E and B, in the same cir-561

cuit, so we need to sum each of them and not confuse them. As a result, we can spec-562

ify the spatial lattice point (i) and the species, and obtain the time-evolved quantities563

E,B developed in the amplitude of |000⟩sub.

Table A1. The subnode bases and their corresponding physical quantities. g, ϵ, and σ respec-

tively represent the (unnormalized) electromagnetic fields associated with each basis state, the

coefficients to be incorporated via the coin operator, and the sign to be multiplied during the

integration step. These are the quantities that appear on the right side of the difference equa-

tions (11,12). Here we write only for |direction⟩ = |00⟩direction as an example; |01⟩direction and

|10⟩direction correspond to the y- and z- components of E and F , respectively.

|s⟩species|d = 0⟩direction|j⟩sub gs,d=0,j ϵs,d=0,j σj

|0⟩species|00⟩direction|000⟩sub Ex(x, y, z; t) −4 +1
|0⟩species|00⟩direction|001⟩sub Ex(x+∆x, y, z; t) 1 +1
|0⟩species|00⟩direction|010⟩sub Ex(x−∆x, y, z; t) 1 +1
|0⟩species|00⟩direction|011⟩sub Ex(x, y +∆y, z; t) 1 +1
|0⟩species|00⟩direction|100⟩sub Ex(x, y −∆y, z; t) 1 +1
|0⟩species|00⟩direction|101⟩sub Ex(x, y, z +∆z; t) 1 +1
|0⟩species|00⟩direction|110⟩sub Ex(x, y, z −∆z; t) 1 +1
|0⟩species|00⟩direction|111⟩sub Ex(x, y, z; t−∆t) 1 −1
|1⟩species|00⟩direction|000⟩sub Fx(x, y, z; t) −4 +1
|1⟩species|00⟩direction|001⟩sub Fx(x+∆x, y, z; t) 1 +1
|1⟩species|00⟩direction|010⟩sub Fx(x−∆x, y, z; t) 1 +1
|1⟩species|00⟩direction|011⟩sub Fx(x, y +∆y, z; t) 1 +1
|1⟩species|00⟩direction|100⟩sub Fx(x, y −∆y, z; t) 1 +1
|1⟩species|00⟩direction|101⟩sub Fx(x, y, z +∆z; t) 1 +1
|1⟩species|00⟩direction|110⟩sub Fx(x, y, z −∆z; t) 1 +1
|1⟩species|00⟩direction|111⟩sub Fx(x, y, z; t−∆t) 1 −1

564

Appendix B Construction of our coin operator565

In this section we consider an algorithm to multiply a vector to each quantum ba-566

sis. Let Λ denote the multiplying vector:567

Λ = (λ0, λ2, · · ·λM−1) , (B1)

where we suppose that {λ} take real values and Λ be normalized:
∑

i λ
2
i = 1.568

To implement this algorithm, we need operate a diagonal matrix A having entries569

corresponding to Λ but this cannot be done directly because it is not unitary operator570
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in general. Thus we realized this non-unitary operation by using one ancilla qubit and571

embedding the matrix A in a unitary matrix with larger size, which is known as the block572

encoding method. As {λ} are always real, this procedure can easily be implemented as573

follows:574

U =

(
A B
B −A

)
, (B2)

with575

A = diag (λ1, λ2, · · · ) , (B3)

B = diag

(√
1− λ21,

√
1− λ22, · · ·

)
. (B4)

After performing this unitary operation on an arbitrary state:576

|ψ⟩ =
∑
i

αi|i⟩phys|0⟩anc, (B5)

we obtain the following state:577

|ψ′⟩ = U |ψ⟩, (B6)

=
∑
i

λiαi|i⟩phys|0⟩ancilla + |∗⟩|1⟩ancilla, (B7)

which we can distinguish desired/unnecessary states with |0/1⟩ancilla.578
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