
P
os
te
d
on

23
J
u
n
20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
68
74
84
56
.6
00
17
48
6/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Learning Atmospheric Boundary Layer Turbulence

Sara Shamekh1 and Pierre Gentine2

1Ecole Normale Superieure
2Columbia University

June 23, 2023

Abstract

Accurately representing vertical turbulent fluxes in the planetary boundary layer is vital for moisture and energy transport.

Nonetheless, the parameterization of the boundary layer remains a major source of inaccuracy in climate models. Recently,

machine learning techniques have gained popularity for representing oceanic and atmospheric processes, yet their high dimen-

sionality limits interpretability. This study introduces a new neural network architecture employing non-linear dimensionality

reduction to predict vertical turbulent fluxes in a dry convective boundary layer. Our method utilizes turbulent kinetic energy

and scalar profiles as input to extract a physically constrained two-dimensional latent space, providing the necessary yet minimal

information for accurate flux prediction.

We obtained data by coarse-graining Large Eddy Simulations covering a broad spectrum of boundary layer conditions, from

weakly to strongly unstable. These regimes are employed to constrain the latent space disentanglement, enhancing interpretabil-

ity. By applying this constraint, we decompose the vertical turbulent flux of various scalars into two main modes of variability:

wind shear and convective transport.

Our data-driven parameterization accurately predicts vertical turbulent fluxes (heat and passive scalars) across turbulent

regimes, surpassing state-of-the-art schemes like the eddy-diffusivity mass flux scheme. By projecting each variability mode

onto its associated scalar gradient, we estimate the diffusive flux and learn the eddy diffusivity. The diffusive flux is found to be

significant only in the surface layer for both modes and becomes negligible in the mixed layer. The retrieved eddy diffusivity is

considerably smaller than previous estimates used in conventional parameterizations, highlighting the predominant non-diffusive

nature of transport.
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Abstract13

Accurately representing vertical turbulent fluxes in the planetary boundary layer14

is vital for moisture and energy transport. Nonetheless, the parameterization of the bound-15

ary layer remains a major source of inaccuracy in climate models. Recently, machine learn-16

ing techniques have gained popularity for representing oceanic and atmospheric processes,17

yet their high dimensionality often limits interpretability. This study introduces a new18

neural network architecture employing non-linear dimensionality reduction (encoder-decoder)19

to accurately predict vertical turbulent fluxes in a dry convective boundary layer. Our20

method utilizes the vertical profiles of turbulent kinetic energy and scalars as input to21

extract a physically constrained two-dimensional latent space, providing the necessary22

yet minimal information for accurate flux prediction. For this study, we obtained data23

by coarse-graining Large Eddy Simulations covering a broad spectrum of boundary layer24

conditions, ranging from weakly to strongly unstable. These regimes, driven by shear25

or buoyancy, are employed to constrain the latent space disentanglement, enhancing in-26

terpretability. By applying this constraint, we decompose the vertical turbulent flux of27

various scalars into two main modes of variability: one associated with wind shear and28

the other with convective transport. Our data-driven parameterization accurately pre-29

dicts vertical turbulent fluxes (heat and passive scalars) across turbulent regimes, sur-30

passing state-of-the-art schemes like the eddy-diffusivity mass flux scheme. By project-31

ing each variability mode onto its associated scalar gradient, we estimate the diffusive32

flux and learn the eddy diffusivity. The diffusive flux is found to be significant only in33

the surface layer for both modes and becomes negligible in the mixed layer. The retrieved34

eddy diffusivity is considerably smaller than previous estimates used in conventional pa-35

rameterizations, highlighting the predominant non-diffusive nature of transport.36

Plain Language Summary37

This study focuses on better understanding and predicting the movement of mois-38

ture and energy in the lower part of the Earth’s atmosphere, called the planetary bound-39

ary layer. This is important as it directly impacts our ability to make accurate weather40

forecasts and model the climate. The study utilizes neural networks to analyze exten-41

sive data derived from computer simulations of the atmosphere. The objective is to ex-42

tract meaningful insights from this complex data and facilitate accurate predictions. To43

achieve this, we employ an advanced form of neural networks, called encoder-decoder,44

that is a dimensionality reduction technique. This approach aims to distill the most cru-45

cial information from the data while maintaining simplicity and interpretability. Through46

this process, the neural network effectively reduces the data to two key factors influenc-47

ing the movement of moisture and energy: wind shear (variations in wind speed and di-48

rection) and convective transport (movement resulting from heating and cooling). Over-49

all, this study demonstrates that employing machine learning techniques can significantly50

advance our understanding and prediction of the intricate processes occurring in the at-51

mosphere. This, in turn, leads to the development of more precise climate models and52

improved weather forecasts.53

1 Introduction54

In the planetary boundary layer (PBL), turbulence occurs over a wide range of scales,55

causing the mixing and transport of moisture, heat, momentum, and chemical scalars56

(Stull, 1988). An accurate representation of turbulent mixing is crucial for predicting57

many critical climate processes, such as low clouds, lower free tropospheric humidity and58

temperature, air-sea interaction, and more (Stensrud, 2009). Climate and weather mod-59

els, which use a discretized spatiotemporal representation of the physical equations, can-60

not resolve scales smaller than their grid size. Therefore, these models rely on param-61

eterization, an approximation of the impact of unresolved physical processes based on62
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resolved quantities, such as turbulent mixing occurring at unresolved scales and trans-63

porting momentum, energy and scalars.64

Traditionally, boundary layer turbulent mixing was first assumed to behave as a
diffusion and therefore to be occurring down local gradient:

w′x′ = −K
dX

dz
(1)

Where K(m2s−1) is called the eddy diffusivity, w is the vertical velocity, and X repre-65

sents a scalar variable that is being transported by the flow. Over-line indicates a hor-66

izontal averaging, and prime is the deviation from the spatial average: x′ = X −X.67

Although simple and intuitive, this scheme fails to accurately predict the turbu-68

lent heat flux in the mixed layer of the convective boundary layer, where a zero or pos-69

itive gradient of potential temperature coexists with finite and positive heat flux (Corrsin,70

1975; Stull, 1988). This positive heat flux has been associated with the impact of large71

turbulent coherent structures, such as updrafts and downdrafts (Park et al., 2016), that72

are ubiquitous in the convective boundary layer and connect the surface layer to the top73

of the boundary layer by transporting heat and other variables upward, quickly within74

a model time step. Rising updrafts are accompanied by a descending counterpart in the75

convective boundary layer, and by a top-of-the-boundary layer entrainment flux occur-76

ring between the weakly turbulent stable stratification above the boundary layer and the77

convective layer (Fedorovich et al., 2004; Gentine et al., 2015). Large eddies traveling78

over large distances do not respect the eddy diffusion local gradient perspective, as these79

coherent structures bring non-locality to the turbulent fluxes.80

Over the past few decades, several approaches have been proposed to correct the81

eddy-diffusion approach and include the effect of non-local eddies in turbulent flux pa-82

rameterization, mainly considering the non-locality by adding a non-local term to the83

eddy diffusion (Ertel, 1942; Priestley & Swinbank, 1947). A few examples of such ap-84

proaches are the eddy diffusivity – counter-gradient, hereafter EDCG, (J. Deardorff, 1972;85

Troen & Mahrt, 1986; Holtslag & Moeng, 1991), the transport asymmetry (Moeng & Wyn-86

gaard, 1984, 1989; Wyngaard & Brost, 1984; Wyngaard & Weil, 1991; Wyngaard & Mo-87

eng, 1992), or the eddy diffusivity – mass flux (Siebesma & Cuijpers, 1995; Siebesma &88

Teixeira, 2000; Siebesma et al., 2007), which is now widely used in weather and climate89

models. While a thorough review of the vertical turbulent parameterization is out of the90

scope of this work, we briefly discuss the eddy diffusivity – mass flux (EDMF, Siebesma91

et al. (2007)) approach since it is widely used and several EDMF versions have been de-92

veloped and implemented in operational weather forecasts and climate models. Thus,93

we will use this as a benchmark to evaluate our parameterization for modeling vertical94

turbulent fluxes.95

The EDMF model assumes that the total vertical flux of a scalar (e.g., heat, mois-
ture) is due to the contribution of strongly convective updrafts, which cover a negligi-
ble horizontal fractional area, and a complementary slowly subsiding environment, with
negligible vertical velocity. The total flux of scalar X can then be written as:

w′x′ = auw′x′u + (1− au)w′x′e + au(wu − w)(Xu −Xe) (2)

where u and e represent the updraft and environment, respectively. au is the updraft frac-96

tional area. wu and w are the mean vertical velocity over the updraft and environment,97

and Xu and Xe are the corresponding mean scalar. Assuming a small fractional area cov-98

erage of the updrafts and a negligible vertical velocity in the environment, we can elim-99

inate the first term on the RHS, approximate w to be zero, and replace Xe with X. Thus100

Equation 2 reduces to:101

w′x′ ≈ w′x′e + auwu(Xu −X) (3)
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The first term on the RHS of Equation 3 is modeled using an eddy diffusivity (Equa-102

tion 1) and the second term is the mass flux, non-local, contribution to total vertical tur-103

bulent flux, which was inspired by modeling of deep convection (Betts, 1973) .104

Despite its successes in improving purely convective boundary layer parameteri-105

zation compared to other approaches (e.g, pure ED or EDCG), EDMF still has impor-106

tant shortcomings. First, the EDMF decomposes the total flux into ED, modelling small107

scale eddies, and MF, modelling large scale updrafts. However, these two terms are not108

coupled in any systematic way, a theory for the relative partitioning between these two109

contributions does not exist, and a theory for an optimal scale at which the continuous110

spectrum of boundary layer eddies can be divided into small eddies and large thermals111

has not been established. Additionally, one of the main assumptions in deriving Equa-112

tion 3 is that the updraft fractional area is negligible. However, recent studies (Q. Li et113

al., 2021; Chinita et al., 2018; Park et al., 2016) suggest a fractional area of 20-30 per-114

cent. Consequently, some of approximations made to derive the two-term Equation 3 does115

not hold accurately. For instance, the first term in the RHS of Equation 2 has been shown116

to be important and responsible for local fluxes in updrafts (Q. Li et al., 2021), or Xu117

may have a non-negligible impact on the domain mean value X. Furthermore, the orig-118

inal EDMF schemes have been developed for a purely convective boundary layer (Siebesma119

et al., 2007; Soares et al., 2004), i.e., with small wind shear, thus EDMF poorly gener-120

alizes to situations driven by both wind and convection (Kalina et al., 2021). Some mod-121

els, employ a hybrid scheme, such that, for weakly convective cases, they use EDCG and,122

at a certain instability threshold, they switch to EDMF (Han et al., 2016). However, this123

threshold is set arbitrarily and the switch between parameterizations appears quite ad124

hoc, and rather, a unified treatment of turbulence would be preferred.125

In addition, one of the main pitfalls of the EDMF approach is its lack of explicit126

treatment of boundary layer top entrainment processes, which ventilate and mix air from127

the lower troposphere into the boundary layer. Entrainment significantly impacts the128

growth and structure of the PBL (Angevine et al., 1994), the evolution of mixed layer129

properties, surface fluxes, and the formation and maintenance of shallow clouds (Haghshenas130

& Mellado, 2019). However, EDMF does not explicitly take entrainment into account,131

which is potentially one reason for its shortcomings in accurately predicting turbulent132

fluxes at the top of the PBL and the exchange of PBL and lower troposphere. For in-133

stance, at the European Center for Medium Weather Forecast, entrainment is added (as134

a fraction of the surface buoyancy flux) as a diagnostic correction term to the EDMF135

model to obtain reasonable diurnal growth of the PBL. Additionally, wind shear strongly136

affects the entrainment flux and should be accounted for along with (dry) convection (Haghshenas137

& Mellado, 2019). Therefore, a more complete treatment of turbulence in the PBL is re-138

quired, ideally one that can account for varying regimes from shear- to convectively-driven139

conditions and all forms of transport in the boundary layer, including eddies driven by140

shear or convection and entrainment at the top of the boundary layer.141

Machine learning has proven to be a powerful tool for parameterizing subgrid-scale142

processes in the atmosphere and the ocean, particularly with the rise in popularity of143

neural networks (NNs) and deep learning as well as the explosion of high-resolution sim-144

ulation data. In the field of atmosphere and ocean modeling, deep neural networks have145

shown significant potential in replacing traditional parameterizations of unresolved subgrid-146

scale processes (Gentine et al., 2018; Rasp et al., 2018; Mooers, Pritchard, et al., 2021;147

Yuval & O’Gorman, 2020; Bolton & Zanna, 2019; Shamekh et al., 2022; Perezhogin et148

al., 2023) due to their power in approximating a non-linear mapping between observed149

and unobserved quantities. Using ocean data, convolutional NNs have been shown to ac-150

curately predict subgrid-scale turbulent fluxes when trained on coarse-scale data (Bolton151

& Zanna, 2019), which could account for the spatial auto-correlation in the input data.152

In a similar vein, Cheng et al. (2019) used Direct Numerical Simulation (DNS) data of153

the planetary boundary layer to train a neural network that outperforms popular Large154
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Eddy Simulation (LES) schemes like the Smagorinsky (Smagorinsky, 1963) and Smagorinsky-155

Bardina (Bardina et al., 1980) turbulent flux models.156

The work mentioned above showed promise in using neural networks in climate and157

weather models to replace traditional parameterization. One avenue that deserves more158

exploration is the use of interpretable machine learning models tailored to the problem159

of interest and including physical constraints, as they could unveil new understanding160

of the underlying physics. One such candidate could be a reduced order model (ROM)161

that relies on the fact that even high-dimensional complex flows often exhibit a few dom-162

inant modes of variability (Taira et al., 2017) that can provide coarse but key informa-163

tion about the flow. Encoder-decoder and variational auto-encoder (VAE) (Kingma &164

Welling, 2022) are powerful examples of ROM that map high-dimensional complex data165

to a low-dimensional latent representation. This latent representation captures the dom-166

inant modes of variability or structure in the data and because of its reduced dimension,167

can be much more interpretable. Mooers, Tuyls, et al. (2021) showed that VAEs could168

reconstruct velocity fields from a super-parameterized storm-resolving model. Addition-169

ally, they showed that the latent space could be categorized into different clusters, each170

representing a specific convection regime. Behrens et al. (2022) took this approach fur-171

ther and showed that VAE could reconstruct large-scale variables and map the latent172

variables to convection tendencies. They found that each latent variable represented a173

specific type or aspect of convection174

In this work, we use encoder-decoder models and present a novel approach to data-175

driven parameterization of turbulence in the convective boundary layer, collapsing the176

complexity of turbulence into a few dimensions: the latent space. This latent space’s di-177

mensions are then disentangled using physical constraints based on the forcing of the bound-178

ary layer regimes: wind shear and surface heating. This constraint allows us to decom-179

pose the total flux of a scalar into two modes: one related to wind shear; the other re-180

lated to convection. We use encoder-decoder models to approximate the latent repre-181

sentations of the scalars and Turbulent Kinetic Energy (TKE) profiles and then use these182

representations to predict the corresponding turbulent fluxes and modes of variability.183

Using this neural network, we aim to achieve the following objectives:184

1. Predicting the vertical turbulent flux of various scalars across instability regimes185

(weakly to strongly convective).186

2. Decomposing the vertical turbulent fluxes into main modes of (interpretable) vari-187

ability associated with shear and convection.188

3. Quantifying the diffusive part of each mode, its associated eddy diffusivity, and189

the non-local transport fraction.190

The remainder of this work is structured as follows: In section 2, we thoroughly191

discuss the strategies and steps we take to develop our parameterization, providing jus-192

tification for each step. Section 3 discusses our methodology, including data generation193

and preprocessing, as well as the neural network structure and training. In section 4, we194

present the results for flux prediction and their decomposition, followed by a discussion195

on projecting the flux onto a diffusing term in section 4.4. Finally, in section 5, we present196

our final discussion and conclusion.197

2 Problem formulation and strategy198

In this section, we provide a comprehensive outline of the steps and strategy we199

follow to parameterize and decompose the vertical turbulent fluxes.200

First, as with most parameterizations of unresolved processes, our goal is to find
a function that uses resolved quantities as input and predicts the unresolved physics. For
the specific case of the dry convective boundary layer, we use the scalar and TKE pro-
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Figure 1: Neural network architecture.The model comprises two parts: ED-TKE and
Flux-NN. In ED-TKE, two encoder-decoder units process turbulent kinetic energy (TKE)
data, mapping it to lower-dimensional latent variables (zu and zw). These variables are
then used by the decoders to predict the horizontal and vertical distribution of TKE. In
Flux-NN, scalar profiles (e.g., heat, passive scalar) are mapped to a latent space (zx), and
the decoders combine the scalar’s latent variables with those of TKE to predict the verti-
cal turbulent flux of the corresponding scalar.

files as inputs to the neural network and aim to predict the vertical turbulent scalar flux
as the target unresolved process. Mathematically, this can be expressed as follows:

w′x′ ≈ F(X,TKE), for any X (4)

F represents the mapping between a scalar and its vertical flux. Our goal is to learn201

a function capable of predicting the vertical turbulent flux for a diverse set of scalar pro-202

files and across turbulent regimes. We rely on the neural network’s capacity to approx-203

imate such a function, which allows us to diagnose turbulent fluxes, given the scalars and204

TKE profile, across various turbulent regimes and scalar profiles. The neural network’s205

strength in capturing non-linear relationships between input and target variables makes206

this task achievable.207

The approach of using the same function to parameterize various scalar profiles has208

already been widely employed in traditional parameterizations; for instance, EDMF and209

EDCG model heat and moisture flux in a convective boundary layer in a similar man-210

ner (Stull, 1988). More specifically, EDMF assumes a same formulation and equal eddy211

diffusivity and mass flux for moisture and heat. Therefore, any variations in the heat and212

moisture flux are attributed to differences in the moisture and heat profiles. It is worth213

noting that while this approximation of diagnosing all fluxes using the same function sim-214

plifies the modeling process, it does come at the cost of some accuracy. For instance, this215
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approximation may not strictly hold in regions with strong stratification, such as in the216

inversion layer of the convective boundary layer, where gravity waves can potentially im-217

pact heat transport but not moisture or any passive scalars (Stull, 1976, 1973). More-218

over, whether a scalar is passive or active can also affect the way it is transported by the219

flow. Nevertheless, approximating the fluxes of all scalars using the same function F and220

treating them similarly naturally constrains the solution space and F to be of much lower221

dimension, enabling the capture of relevant structures for prediction. Additionally, given222

the complexity of turbulent flows and the lack of comprehensive understanding of all the223

factors that may influence vertical fluxes, this assumption is often used as a reasonable224

approximation. Furthermore, since the goal is to develop a model that can be used in225

a variety of contexts and applications, we prioritize generality over strict accuracy. Fi-226

nally, using multiple scalars with different profiles and sources/sinks and only one func-227

tional form, will reduce potential equifinalities.228

To develop a more interpretable parameterization of the vertical turbulent flux of229

a scalar, we formulate the flux as the sum of two terms, or what we refer to as modes230

hereafter. Empirically, we have found that two modes are sufficient. In fact, decompos-231

ing the turbulent flux into more than two modes does not improve the accuracy of the232

parameterization; rather, it unnecessarily complicates and makes it less interpretable.233

While there is no strict mathematical justification for utilizing only two modes, it can234

be enforced by incorporating physical constraints into the flux decomposition, as is com-235

monly done in most traditional parameterizations. For instance, by assuming a separa-236

tion between local and non-local fluxes, EDMF and EDCG (Siebesma et al., 2007; J. Dear-237

dorff, 1972) decompose the total flux into two main modes. The Transport Asymmetry238

Approach (Moeng & Wyngaard, 1984, 1989) employs a different criterion and decom-239

poses the total flux into contributions from top-down and bottom-up fluxes.240

However, we do not employ a decomposition based on local-non-local or top-down-241

bottom-up flux, but rather enforce a dynamics-based decomposition. Our flux param-242

eterization method involves decomposing the flux into two modes, where one mode rep-243

resents the mechanically generated turbulence from wind shear, and the other mode rep-244

resents the thermally generated turbulence from convection. By separating the contri-245

butions of these two modes, our method provides a more accurate representation of the246

physical processes involved in the turbulent flux. To achieve this, we use a large set of247

LES simulations with various wind shear and surface heating, thus a large range of tur-248

bulent regimes and train our neural network on all these simulations simultaneously. More249

importantly, we apply dimensionality reduction technique to the scalar and TKE pro-250

files which allows us to capture the important structures in these profiles and their dif-251

ferences across turbulent regimes. Specifically, we observe that the shape of the TKE252

profile is heavily affected by the importance of wind shear versus surface heating and a253

well-designed encoder-decoder, when trained on a wide range of turbulent regimes, can254

effectively infer how much each process contributes into the TKE and thus the turbu-255

lent flux.256

In a shear-driven boundary layer, where turbulence arises primarily from the in-257

teraction of wind shear with the flow, the horizontal TKE dominates, while vertical TKE258

is negligible. As the surface heat flux increases, thermally driven turbulence becomes im-259

portant, and vertical TKE increases. Our preliminary results (not shown) unveil that260

the encoder-decoder, when applied to the TKE profile, captures information about the261

vertical and horizontal TKE into the latent space, which we then use to develop the flux262

decomposition. We discuss in detail the formulation and how we impose the constraint263

in section 3.3.264

Therefore, we utilize the TKE and scalar profiles to create our vertical flux decom-265

position, which is formulated as follows:266
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Table 1: List of model parameters and some statistics averaged over one hour of simula-
tion.

Name Ug (ms−1) w′θ′0 (Kms−1) −zi/L w∗(ms−1) u∗(ms−1))

Ug16 - w′θ′00.03 16 0.03 3.2 0.98 0.49

Ug16 - w′θ′00.06 16 0.06 6.1 1.26 0.51

Ug8 - w′θ′00.03 8 0.03 15.0 0.98 0.292

Ug4 - w′θ′00.05 4 0.05 302.8 1.17 0.128

Ug4 - w′θ′00.1 4 0.1 596.3 1.5 0.131

Ug2 - w′θ′00.1 2 0.1 1301 1.5 0.101

w′x′ = α1f1(X,TKE) + α2f2(X,TKE) (5)

This equation assumes that each mode, represented by f1 and f2, depends on the267

scalar and TKE, with f1 modeling shear-driven turbulence and f2 modeling convective-268

driven turbulence. The coefficients α1 and α2 depend solely on large-scale forcing terms269

such as the geostrophic wind and surface heat flux and are learned through a neural net-270

work. We approximate f1, f2, α1, and α2 using a neural network, as described in detail271

in section 3.3.272

3 Methodology273

3.1 Data274

We conduct six simulations using a large eddy simulation (LES) code developed275

by Albertson (1996) and Albertson and Parlange (1999). Validation of this model has276

been performed by Bou-Zeid et al. (2005) and V. Kumar et al. (2006). A detailed de-277

scription of the numerical setup is provided in V. Kumar et al. (2006).278

For subgrid-scale modeling, the LES uses a scale dependent Lagrangian model (Bou-279

Zeid et al., 2005) with a constant subgrid-scale Prandtl number of 0.4 for all scalars (Shah280

& Bou-Zeid, 2014). The domain is cubic with 256 grids in all three directions, with hor-281

izontal grid spacing of 24 meters and vertical spacing of 6 meters. The domain is dou-282

bly periodic in the horizontal direction, and the Coriolis parameter is set to 10−4s−1.283

To prevent the reflection of gravity waves, LES has a sponge layer in the upper 25% of284

the domain. We set the initial potential temperature to 300 K below an initial PBL height285

(z0i = 0.8zl) and it increases with a lapse rate of 5K/km above this height.286

We force all simulations with a constant surface heat flux w′θ′0 and a constant pres-287

sure gradient expressed in terms of a geostrophic wind Ug in the x direction. These sim-288

ulations represent a dry convective boundary layer with stability conditions ranging from289

weakly to strongly unstable. The stability parameter is defined as zi/L, where zi is the290

boundary layer height and L is the Obukhov length (Monin & Obukhov, 1954), defined291

as u3
∗/[κ(g/T0)w′θ′0]; u∗ (ms−1 ) is the surface friction velocity, and κ is the von Kármán292

constant. We run all simulations for 6-8 eddy turnovers, after which we record the in-293

stantaneous profiles every minute. Table 1 summarizes the settings for these simulations.294
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All simulations include three passive tracers with different initial and boundary con-295

ditions, which are used to better diagnose and disentangle the transport of updrafts, down-296

drafts and boundary layer top entrainment:297

i) Surface-forced tracer (Ssf ) has a constant surface flux of 0.002 with no other sink298

or source in the domain. Ssf is initialized to zero throughout the domain. Figure 2.d and299

2.i show the Ssf profile and its vertical flux, w′s′sf , respectively.300

ii) Entrainment-forced tracer (Sef ) is initialized to zero below 0.8zi0 and to one above301

this level. The source of Sef in the boundary layer is then only the intrusion of free tro-302

pospheric air with a high concentration of Sef into the boundary layer via entrainment303

fluxes. Figure 2.e and 2.j show the Sef profile and its vertical flux, w′s′ef .304

iii) Height-dependent tracer (Sh) is initialized to s(z, t = 0) = z/zi0. Sh has a305

constant relaxation term in its advection-diffusion equation that maintains its horizon-306

tal mean profile close to its initial profile. This relaxation term is − s−s(t=t0)
τ , where τ =307

zi
6 w∗, following Q. Li et al. (2018). Figure 2.c and 2.h show the Sh profile and its ver-308

tical flux, w′s′h.309

In this paper, each simulation is identified using a naming convention that com-310

bines its geostrophic wind and surface heating. Specifically, we use a format of UgX-w′θ′0Y,311

where X and Y represent the values of the geostrophic wind and surface heating, respec-312

tively. For instance, Ug16-w′θ′00.03 refers to a simulation with a geostrophic wind of 16313

(ms−1) and surface heating of 0.03 (Kms−1). This naming convention is consistently314

used throughout the paper to refer to different simulations.315

3.2 Prepossessing316

3.2.1 Coarse-graining317

To prepare the data for the neural network training, we coarse-grain the scalar snap-318

shots to compute the state variables (θ, TKE, Sh, Ssf , and Sef ) and corresponding tur-319

bulent fluxes (w′θ′, w′s′h, w
′e′, w′s′sf , and w′s′ef ). The coarse-graining is only applied320

horizontally by averaging the data into larger grids. The averaging is based on a top-321

hat filter:322

A(i, j, k) =
1

L2

l=Ni∑
l=L(i−1)+1

m=Nj∑
m=L(j−1)+1

A(l,m, k) (6)

Here, A is the high-resolution field, N is the averaging factor, and i and j are in-323

dices in the x and y directions.324

The fluxes are computed as follows:325

w′x′ = wx− w̄x̄ (7)

We coarse-grain the results presented here using N = 64 grids, roughly equal to326

1.5 km. Given that the original horizontal domain is 256x256, this coarse-graining re-327

duces the number of horizontal grids to 4x4. Taking into account the total number of328

snapshots for each simulation, this coarse-graining results in 20k samples of each scalar329

per simulation.330

We simultaneously train the neural network on all scalars and simulations, based331

on our first assumption that all scalars are transported by turbulent flow in a similar way.332

Since we have six simulations and each simulation contains five scalars, the total num-333
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ber of samples is 6x5x20k, which equals 600k. We split these samples into training, val-334

idation, and test sets using a 70-10-20 percent ratio.335

  1 / 1

Figure 2: Inputs (shown in the first row) and outputs (shown in the second row) of the
neural network.

3.2.2 Vertical interpolation336

To train the NN, we use the entire column as input. However, we exclude the up-337

per part of the simulation domain where the fluxes vanish, i.e., all layers above the top338

of the boundary layer (TOP). We define TOP as the height where the minimum of the339

second-order derivative of potential temperature occurs:340

htop ≈ h(min(
d2θ

dz2
))

Depending on the surface heat flux, TOP varies among simulations, which means341

that the number of layers between the surface and TOP is not the same for all simula-342

tions. This variation causes the dimension of the input to the NN to differ among sim-343

ulations, which makes training with various input dimensions impractical. To address344

this challenge, we interpolate the same number of layers (128 layers) between the sur-345

face and the TOP for all simulations, thus standardizing the input dimension.346

3.2.3 Non-dimensionalization347

A proper scaling or non-dimensionalization of the inputs and outputs have been348

shown to improve the prediction and generalizability of a neural network (Beucler et al.,349

2021). To scale potential temperature, θ, and heat flux, w′θ′, we employ commonly used350

scaling parameters, θ∗ and w′θ′0, developed using the Buckingham–Pi theorem. For other351

variables we construct scaling parameters in a similar way done for θ∗ and w′θ′0. To scale352
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a vertical turbulent flux (e.g., w′x′), we divide it by a constant flux, which we show by353

w′x′∗, as follows:354

w′x′ → w′x′/w′x′∗

The associated scalar of this flux is scaled by dividing the constant flux, w′x′∗, by355

the Deardorff convective velocity scale, w∗ = ( g
T w

′θ′0zi)
1/3 (J. W. Deardorff et al., 1970),356

the velocity scale for a convective boundary layer. We formulate this as:357

X → X/X∗, where X∗ = w′x′∗/w∗

For the heat flux, w′θ′, we set w′θ′∗ to its surface value, w′θ′0, which results in X∗ =358

θ∗. We scale the turbulent surface-forced tracer flux by its surface value w′s′sf0 , while359

for other tracers, we choose a constant flux (e.g., the flux absolute maximum value) such360

that all turbulent scalar fluxes have comparable magnitudes.361

3.3 Neural network362

We use neural networks to model f1, f2, α1, and α2 to parameterize the vertical363

turbulent flux of scalars following Equation 5. However, rather than passing the high-364

dimensional profile of TKE and X directly to estimate f1 and f2 at each model level,365

we compress their profiles using non-linear dimensionality reduction techniques. This dra-366

matically reduces the dimensionality of the f1 and f2 functions, and the number of de-367

grees of freedom of the network. Using high resolution variables as input would result368

in an enormous degree of freedom, making it unlikely that a unique decomposition of fluxes369

can be achieved. Compressing the input allows us to capture the most important fea-370

tures of the data and model the fluxes with fewer parameters. This approach can also371

improve the model’s efficiency and reduces the risk of overfitting, thereby improving the372

model’s generalizability to new data. Further, non-linear dimensionality reduction tech-373

niques such as VAEs are particularly effective in capturing hidden structures in the data374

that are not immediately apparent in the high-dimensional input (Pu et al., 2016; Meng375

et al., 2017; Yang et al., 2019; Ma et al., 2020).376

We perform flux prediction in two consecutive parts (Figure 1): in the first part,377

we train two separate encoder-decoders to predict horizontal and vertical TKE (here-378

after TKEu and TKEw respectively) given TKE as input. Predicting TKEu and TKEw379

using encoder-decoders allows us to capture information related to these two variables380

directly from TKE in a latent space, which can be used for flux decomposition. Most381

climate models have a parameterization for TKE (i.e., first-order closure), but TKEu382

and TKEw are not separately available. We refer to this model as ED-TKE. In the sec-383

ond part of the flux retrieval, we employ an encoder-decoder network that receives the384

scalars profile alongside the low dimensional representation (latent space) of TKEu and385

TKEw from the first network, extracted from ED-TKE, and predict scalar flux (Figure386

1, lower channel). We call this second sub-network NN-Flux. The two following subsec-387

tions introduce the architecture of each neural network and discuss the underlying phys-388

ical assumptions in detail.389

3.3.1 Reconstructing TKEu and TKEw using double encoder-decoder390

VAEs are deep learning models that consist of both an encoder and decoder. The391

encoder compresses high-dimensional input, such as the TKE profile in this case, into392

a low-dimensional latent space, and the decoder reverses this process by reconstructing393

the high-resolution input from its low-dimensional representation (Wang et al., 2014; Do-394

ersch, 2016). VAEs adopt a Bayesian perspective in the latent space and assume that395
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the input to the second network, the encoder, is generated from a conditional probabil-396

ity distribution that describes an underlying generative model (Kingma & Welling, 2022).397

The multivariate, latent, representation of the input, typically denoted as z, is assumed398

to follow a distribution P (z). The model is then trained to maximize the probability of399

generating samples in the training dataset by optimizing both the reconstruction loss400

and the Kullback-Leibler divergence (KL divergence) of the approximate posterior, which401

is assumed to be Gaussian, as prior distribution. This Gaussian assumption is used so402

that the latent representation z can produce smooth and continuous reconstructions of403

the output, while trying to disentangle the different latent dimensions (as the Gaussian404

is assumed to be uncorrelated across dimensions and thus independent, as independence405

and uncorrelation are equivalent for Gaussian variables).406

Most weather and climate atmospheric models have a prognostic equation for TKE407

but do not typically separate the horizontal and vertical TKE. Thus, we assume that408

TKE is available and can be used in the turbulent flux parameterization. As TKE con-409

sists of a horizontal and vertical part, it is desirable if its low dimension representation410

(zTKE) can be first sub-partitioned to nodes representing horizontal TKE (hereafter zu411

) and vertical TKE, hereafter zw, separately. Based on (not shown) preliminary results,412

this partitioning is crucial for a proper and unambiguous flux decomposition in the sec-413

ond sub-network, where this latent representation (of TKE) is used to predict turbu-414

lent fluxes (see Figure 1). However, one challenge of using VAEs is that the disentan-415

glement of latent variables is not guaranteed. Each latent variable may be a linear or non-416

linear combination of the underlying latent representation, and this combination could417

vary among the profile. The entanglement of latent variables is a well-known issue in com-418

puter vision (Chen et al., 2018; Mathieu et al., 2019; Zietlow et al., 2021).419

To address this disentanglement challenge, we use two encoder-decoder networks420

instead of the VAEs. The first network takes the TKE profile as input and predicts the421

horizontal component of TKE, TKEu (upper branch), while the second network pre-422

dicts the vertical component, TKEw (lower branch). We refer to this combined model423

as ED-TKE for consistency with the previous naming convention. Unlike VAEs, these424

networks do not attempt to reconstruct the input from its low-dimensional representa-425

tion; instead, they predict the horizontal and vertical components of TKE from the TKE426

profile itself. This is important because the aim of this network is not to learn a gener-427

ative model but to decompose the TKE profile into its shear-driven (horizontal) and con-428

vective (vertical) components for use in the subsequent flux prediction step. To ensure429

that the low-dimensional representation of TKE is partitioned into separate nodes rep-430

resenting horizontal and vertical TKE (zu and zw, respectively), we use two separate431

encoder-decoder networks. The architecture of ED-TKE is shown in Figure 1. The ED-432

TKE function can be written mathematically as:433

zu = eu(TKE) (8a)

zw = ew(TKE) (8b)

TKEu = du(zu) (8c)

TKEw = dw(zw) (8d)

The encoder network eu receives high-resolution (128 vertical levels) TKE profile and434

maps it to a low-dimensional representation, zu. Similarly, ew maps high-resolution TKE435

to zw. The decoder networks du and dw project zu and zw to high-resolution TKEu and436

TKEw, respectively. The objective (loss) function of ED-TKE is presented in Appendix437

A.438

One important parameter in dimensionality reduction problems is the dimension439

of the latent space. Empirically, we find that when setting this dimension equal to two,440

the model demonstrates excellent performance in prediction. Increasing the dimension441
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only leads to a more complex model that overfits and reproduces even small variabili-442

ties in the target outputs. Therefore, we set the dimension of both zu and zw to two. We443

use zu and zv as inputs to predict vertical turbulent fluxes.444

We note that the horizontal and vertical TKE are interconnected and influenced445

by the flow, particularly at specific areas like the boundary of thermals where the ris-446

ing and sinking air mixes and the conversion between two TKE terms are more promi-447

nent. However, since the proportion of these regions is relatively small and their effect448

on the corresponding TKE terms is minimal, we exclude these interactions in our flux449

decomposition. Additionally, our TKE-based decomposition is a first-order approxima-450

tion, akin to PCA decomposition, where we assume that higher-order modes, which rep-451

resent the interaction between the two forces, are negligible. Another option is to include452

higher-order modes that estimate the joint contribution of TKEu and TKEw to Equa-453

tion 5 and construct a more complex approximation. However, this approach would re-454

quire additional assumptions and constraints regarding the interaction between TKEu455

and TKEw, which are largely unknown and make the decomposition infeasible.456

3.3.2 Predicting vertical turbulent flux457

The second, bottom, module in Figure 1 depicts the architecture of the neural net-458

work that predicts the vertical turbulent fluxes. This model comprises an encoder, de-459

noted by ex, and two decoders, denoted by f1 and f2. The encoder, ex, takes a high-dimensional460

scalar profile, X, as input and encodes it to a low-dimensional latent space, hereafter re-461

ferred to as zx. The dimension of zx is set to 2, as higher dimensions did not strongly462

improve the results yet became less interpretable.463

zx = ex(X) (9)

where X represents the coarse-grained profile of any scalar, such as θ, Sh, or Ssf ; thus:

zθ = ex(θ/θ∗) (10a)

zsh = ex(Sh/Sh∗) (10b)

zssf = ex(Ssf/Ssf∗) (10c)

zsef = ex(Sef/Sef∗) (10d)

ze = ex(TKE/w2
∗) (10e)

464

To predict fluxes, we utilize a neural network that incorporates Equation 5 (Fig-465

ure 1. lower branch). We approximate f1 and f2 using two decoders and use the latent466

representation of scalar and TKE as the input to f1 and f2. This is in line with the dis-467

cussion presented earlier.468

For predicting the vertical turbulent flux of scalar X, we rewrite Equation 5 as:469

w′x′ = α1f1(zx, zu) + α2f2(zx, zw) (11)

By replacing X with various scalar profiles, we can represent their corresponding fluxes
as follows:

w′θ′/w′θ′0 = α1f1(zθ , zu) + α2f2(zθ , zw) (12a)

w′s′h/w
′s′h∗ = α1f1(zsh , zu) + α2f2(zsh , zw) (12b)

w′s′sf/w
′s′sf0 = α1f1(zssf , zu) + α2f2(zssf , zw) (12c)

w′s′ef/w
′s′ef∗ = α1f1(zsef , zu) + α2f2(zsef , zw) (12d)

w′e′/w3
∗ = α1f1(ze , zu) + α2f2(ze , zw) (12e)
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470

The function ex is used to map various scalar profiles to their corresponding latent471

representations (as described in Equation 10). These latent variables, along with zu and472

zw, are then passed to f1 and f2, which are shared across all scalar variables and used473

to predict the turbulent fluxes.474

In order to complete our data-driven parameterization of the PBL fluxes, we must475

also model the two coefficients, α1 and α2, of the shear- and convective-dominated modes,476

in Equations 5 and 12. We further constrain these coefficients to be positive and to sum477

to unity, so they are a normalized weighting of each component:478

α1 > 0

α2 > 0

α1 + α2 = 1

These coefficients are predicted by a neural network with only large-scale condi-479

tions, Ug and w′θ′0, serving as predictors. It is worth noting that it is only necessary to480

predict α1. α2 can then be computed as α2 = 1 − α1, following the third constraint481

listed above. The loss function of Flux-NN is discussed in Appendix A.482

3.4 Training and validation483

In this section, we describe our two-fold training process. First, we train the first484

module: the ED-TKE network to extract the latent variables of the TKE profile, zu and485

zw, which serve as inputs to the Flux-NN decoders. Subsequently, we train the second486

module: the Flux-NN model to predict the fluxes (Figure 1).487

All encoders and decoders in both the ED-TKE and Flux-NN models consist of four488

hidden layers. The encoder layers have [128,64,32,16] neurons, while the decoder hidden489

layers have [16,32,64,128] neurons. Both networks take inputs in the form of mini-batches490

to train on an ensemble of small sampled profiles rather than individual samples. Each491

mini-batch consists of 128 samples drawn randomly from the various turbulent regimes492

and scalar profiles. Mini-batch training is a typical strategy for neural network optimiza-493

tion. The input shape to the encoders is [nbatch, nz], where nbatch is the number of sam-494

ples in each mini-batch, and nz is the dimension of the coarse-grained profiles, which is495

128, corresponding to the number of interpolated vertical levels. We train the model on496

mini-batches of 128 samples for 100 epochs, using early stopping with a patience of five497

epochs to prevent overfitting (Caruana et al., 2000). The networks are coded using Ten-498

sorFlow (Abadi et al., 2016) and all hyperparameters (e.g., number of neurons in each499

layer, batch size) are tuned using the Sherpa library (Hertel et al., 2020).500

At each iteration, the networks compute the loss averaged over the samples in one501

mini-batch, which contains samples from a diverse range of turbulent regimes, spanning502

strongly sheared to strongly convective flows. This loss value is then backpropagated through503

the network, and its derivative with respect to each NN parameter is computed. The NN504

parameters are then updated using the ADAM algorithm (Kingma & Ba, 2014). This505

process is repeated over all mini-batches, which correspond to one epoch. At the end of506

each epoch, the network’s performance is validated using a validation dataset that the507

network has not seen during training. The training-validation process continues until ei-508

ther the total epochs are reached or an early stopping criteria are met. In this study, the509

early stopping criterion to minimize overfitting is based on the validation loss, and it has510

a patience of five epochs. This means that if the validation loss does not improve for five511

consecutive epochs, the network training stops. Early stopping is a powerful criterion512
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for preventing network overfitting and achieving better generalization to unseen cases513

(Caruana et al., 2000).514

To ensure the robustness of our results, we initialized the weights of each neural515

network randomly and ran ED-TKE with five different initializations. We also ran two516

randomly initialized Flux-NN for each ED-TKE run, resulting in a total of ten runs. The517

results are robust to random initialization of the network. The reported statistics, in-518

cluding R2, are averaged across all runs, and the plots are generated using the run with519

the median R2.520

4 Results521

4.1 ED-TKE522

The ED-TKE network consists of two branches, each taking the TKE profile as523

input to its encoder. The top branch encodes the relevant information for predicting TKEu524

into the two-dimensional latent variables zu1 and zu2 , while the bottom branch captures525

the information relevant for predicting TKEw. The joint and marginal distributions of526

zu1
and zu2

are shown in Figure 3a, while Figure 3b shows the corresponding distribu-527

tions for zw. The marginal distribution of zw1
is approximately Gaussian with similar528

mean and standard deviation across all simulations, which is enforced by the KL diver-529

gence term in the loss function (see Appendix A for more details). The latent variables530

zu exhibit stronger non-Gaussian distribution and its distribution depends on the mag-531

nitude of geostrophic wind. Interestingly, some of the zu variables have a bimodal marginal532

distribution, which deviates from the expected Gaussian distribution. This deviation can533

be attributed to the small weight assigned to the KL divergence term (KLD) in the loss534

function (see Appendix A for details). The loss function of ED-TKE is a trade-off be-535

tween achieving Gaussian-like marginal distributions and accurate predictions of TKEu536

and TKEw by the decoder. Increasing the weight of KLD in the loss function may en-537

force Gaussianization of the marginal distributions, but it may also significantly decrease538

the accuracy of the predicted TKEu and TKEw. Since our model is focused on predic-539

tion rather than sample generation (with a stochastic latent space such as in variational540

auto-encoders), we decided to keep the weight of the KL divergence term small.541

Figure 3c displays the predicted and true profiles of TKEu, averaged over all sam-542

ples from the same corresponding simulation across shear to convective regimes. The scaled543

TKEu (divided by w2
∗) increases with the imposed wind and has the largest magnitude544

for the simulation Ug16-w′θ′00.03. The network’s prediction of the TKEu profile is highly545

similar to the true TKEu for all simulations. This indicates that the TKE profile im-546

plicitly contains all the relevant information necessary for predicting TKEu. By using547

an encoder, we can capture this information in a very low dimension, which can then be548

passed to a decoder to predict the horizontal TKE: TKEu. In other words, having ac-549

cess to the total TKE profile in a model (such as a weather or climate model) is suffi-550

cient to implicitly uncover the split between horizontal TKE and vertical part of the to-551

tal TKE, emphasizing that separate parameterizations for the horizontal and vertical TKEs552

might not be needed in the PBL.553

The second branch of the ED-TKE network serves the same purpose as the first554

branch, but is specifically designed to predict the vertical TKE: TKEw. Figure 3d demon-555

strates that TKEw can also be accurately predicted from the TKE profile. In the con-556

vective boundary layer, TKEw, normalized by w2
∗ and plotted as a function of z/zi, fol-557

lows a universal parabolic shape that has been verified by laboratory experiments (Willis558

& Deardorff, 1974; R. Kumar & Adrian, 1986), measurements (Lenschow et al., 1980,559

2012), and idealized simulations (J. W. Deardorff, 1974; Sullivan & Patton, 2011; Zhou560

et al., 2019). Our simulation results, as shown in Figure 3d, also confirm the existence561

of this universal profile. The predicted and true TKEw profiles share the same overall562
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(a) (b)

(c) (d)

(e) (f) (g)

Figure 3: ED-TKE prediction: (a) displays the joint probability distribution of zu1 and
zu2 extracted from the encoder trained on TKE profile. The marginal distributions are
presented on the top (for zu1) and the right side of the plot (for zu2). (b) is similar to (a)
but shows the joint probability distribution of zw. Plot (c) displays the predicted (solid
line) and true TKEu (dashed line) averaged over each simulation, represented by colors.
(d) is the same as (c) but for TKEw. (e) shows the R2 for TKEu and TKEw prediction.
The colors represent different simulations, which are labeled in the legend as Ug − w′θ′0.
Finally, plots (f) and (g) respectively illustrate the networks’ prediction (solid lines) and
the true profiles (dashed lines) of TKEu and TKEw for randomly selected individual
samples, distinguished by colors.

parabolic shape and primary peak. In simulations where the wind is strong (such as Ug16-563

w′θ′00.03 and Ug16-w′θ′00.06), a secondary peak in TKEw near the surface is observed,564

which deviates slightly from the universal parabolic profile. However, our predicted TKEw565

still exhibits this secondary peak, albeit with a smaller magnitude. The largest under-566

estimation occurs for simulation Ug16-w′θ′00.03, where the predicted normalized secondary567

peak has a maximum of 0.1, while the true value is 0.18. We further emphasize that our568

networks are trained across regimes and are not targeting one specific regime, such as569

this mostly shear-driven mode.570

To further investigate the ED-TKE skill in predicting TKEu and TKEw, we eval-571

uate the predicted profiles for individual samples as shown in Figures 3f and 3g. These572

samples are randomly drawn from the test set. Although the mean profiles of TKEu and573

TKEw appear very smooth (Figures 3c and 3d), individual samples exhibit considerable574

variability (Figures 3f and 3g). The network captures the overall shape of each individ-575

ual sample while smoothing out the small fluctuations observable in the true profiles. This576

behavior is consistent with existing literature (Takida et al., 2022) on the smoothness577

of encoder-decoder predictions and dimensionality reduction techniques. These meth-578

ods only retain the information that is most relevant for the prediction, resulting in a579

smoother output. Also noted is that we did not include any information on horizontal580

neighboring cells in our network prediction, yet horizontal transport and variability in581

TKE, could lead to level-specific variations that cannot be captured by our strategy.582
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(a) (b) (c)

(d)

Figure 4: Plot shows the profiles of (a) vertical heat flux, (b) surface-forced tracer flux,
and (c) entrainment-forced tracer flux, predicted by Flux-NN (dotted line), EDMF (solid
lines), and computed from LES output (dashed line). Colors distinguish LES cases. Plot
(d) shows R2 computed for the neural network’s prediction of turbulent fluxes for all sim-
ulations.

To quantify the skill of ED-TKE prediction, we compute R2 for TKEu and TKEw583

and for each simulation separately (Figure 3e). R2 is defined as one minus the ratio of584

the mean square error in prediction to the variance in the data. It ranges from zero to585

one, with one representing a perfect prediction with no error. For each simulation, we586

compute R2 at each vertical level and then average layer-wise R2 over all levels to ob-587

tain the final estimate (see Shamekh et al. (2022) for more detail). ED-TKE’s predic-588

tion of TKEu has a high R2 (∼ 0.9) across all simulations, while its prediction of TKEw589

has a slightly lower R2. Thus to summarize, our ED-TKE accurately captures relevant590

information for predicting TKEu and TKEw by only having access to TKE and shows591

a great performance across a large range of instability parameters present in the data592

set. We extract the latent variables from this network, zu and zv, to utilize as input for593

predicting vertical fluxes, as discussed in the next section.594

4.2 Flux prediction595

To predict the vertical turbulent fluxes of scalars and TKE, Flux-NN utilizes an596

encoder, ex, to map the coarse-grained scalar or TKE profiles to a two-dimensional la-597

tent space (see Figure 1). These latent variables, along with zu and zw, are then pro-598

cessed by the decoders to predict the vertical turbulent flux profile of the correspond-599

ing scalar or TKE. In this section, we compare the Flux-NN predictions with fluxes di-600

rectly computed from the coarse-grained LES output. Additionally, we compare our re-601

sults with the reference ECMWF-implementation of EDMF scheme (Köhler et al., 2011),602
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which has five tuning parameters. We re-tuned the EDMF parameters to obtain the best603

approximation of the heat flux for the Ug2-w′θ′00.1 run, which is most similar to the LES604

simulations utilized by Siebesma et al. (2007), in the originally developed parameteri-605

zation. We subsequently use the re-tuned EDMF to predict the heat flux, surface-forced,606

and entrainment-forced tracer fluxes using their corresponding scalar profiles computed607

from our LES data (Figure 4).608

The heat flux, normalized by its surface value, exhibits a universal profile as a func-609

tion of normalized height z/zi, decreasing linearly with height, reaching zero at the top610

of the mixed layer. In the inversion layer, the flux becomes negative and then approaches611

zero at the top of the boundary layer. Figure 4a illustrates the normalized turbulent heat612

fluxes predicted by Flux-NN (dotted lines), computed from LES outputs (dashed lines),613

and predicted by EDMF (solid lines) for two simulations one weakly and the other strongly614

unstable. The Flux-NN predictions closely match the coarse-grained fluxes computed615

from the LES for both illustrated cases (shear- or convectively-dominated) depicted in616

Figure 4 (and Figure S1). The EDMF scheme demonstrates reasonable heat flux pre-617

diction in the mixed layer, particularly for the strongly convective cases (as it was in-618

tended to). However, its prediction deviates from the LES output in the surface layer,619

exhibiting a considerable overestimation for the sheared cases (i.e., Ug16-w′θ′00.03). This620

overestimation decreases for cases with weak geostrophic wind, indicating the scheme’s621

shortcomings in predicting fluxes for convective boundary layers with strong winds. Al-622

though we have discussed only two of the simulations for brevity, these findings are valid623

for our other simulations as well.624

Remarkably, our Flux-NN accurately predicts the inversion layer heat flux across625

instability regimes (see Figure 4). The inversion layer flux presents a significant challenge626

for most traditional parameterizations, as it is strongly influenced by updrafts originat-627

ing from the surface layer (Fedorovich et al., 2004), shear across the inversion (Pino et628

al., 2003, 2006; Pino & Vilà-Guerau De Arellano, 2008), and the entrainment of free tro-629

pospheric air into the boundary layer (Garcia & Mellado, 2014; Haghshenas & Mellado,630

2019). Most traditional parameterizations do not explicitly incorporate the entrainment631

fluxes in their formulation and the entertainment is instead typically handled by the eddy-632

diffusion flux as in the EDMF, yet with important deviations. Indeed, as shown in Fig-633

ure 4, the EDMF dramatically overestimates the magnitude of the heat flux in the in-634

version layer, particularly for the simulation with strong wind shear (e.i., Ug16-w′θ′00.03).635

The Flux-NN is equally accurate in predicting the (normalized) surface-forced and636

entrainment-forced tracer fluxes, closely emulating the LES output (Figures 4b and 4c).637

This accuracy holds even in the inversion layer. However, EDMF significantly overes-638

timates this part of the flux, particularly for entrainment-forced tracer, regardless of the639

geostrophic wind condition. This overestimation is related to the incorrect EDMF rep-640

resentation of the entrainment flux through the eddy diffusion. Given how important this641

entrainment is for key processes such as the diurnal growth of the PBL or shallow clouds642

formation and regimes, our new flux parameterization method might provide improve-643

ments to those key entrainment-related processes.644

To further quantify the performance of Flux-NN, we computed the R2 values sep-645

arately for all simulations and fluxes (refer to Figure 4d). The R2 values are very high646

(0.92-0.95) for w′θ′, w′s′h, and w′ssf
′
across all simulations and turbulence regimes. How-647

ever, for w′sef
′
and w′e′, the R2 is smaller by about 0.1-0.15. Despite this, the flux pre-648

diction averaged over all samples of the same simulation is significantly close to the flux649

computed directly from the LES data for all scalars (Figure S1).650

Additionally, to visualize the performance of Flux-NN at predicting individual sam-651

ples, we randomly selected four samples for each scalar from the test data and plotted652

the predicted fluxes (solid lines) alongside the true fluxes (dashed lines) for these sam-653

ples (Figure S1) with each sample distinguished by a different color. Despite the signif-654
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icant variability observed among samples of the same flux, particularly for w′s′ef , w
′s′h,655

and w′e′, Flux-NN accurately captures the overall shape of individual profiles while smooth-656

ing out fluctuations. This smoothing is similar to that observed in ED-TKE prediction657

and is related to the behavior of using reduced-order models, as discussed in section 4.1658

and to the fact that we are not including the horizontal heterogeneity of the predictors659

in our vertical-only model. Thus, Flux-NN can predict vertical turbulent fluxes for var-660

ious scalar profiles across a wide range of instability regimes, even in the inversion layer.661

To summarize, Flux-NN accurately predicts turbulent fluxes of various scalars/TKE662

and provides a skillful approximation of all five fluxes across all six instability regimes663

(Figure 4d and Figure S1). Applying EDMF to the LES data reveals that this scheme664

does not generalize well to conditions with geostrophic winds or to tracers other than665

potential temperature. It overestimates the fluxes near the surface and in the inversion666

layer, particularly for entrainment-forced tracers, which rely heavily on the entrainment667

flux as the primary source of the scalar in the boundary layer. Additionally, the Flux-668

NN prediction of individual samples shows that the network can reproduce the overall669

shape of individual profiles while smoothing out fluctuations (Figure S1). This indicates670

that Flux-NN can predict the vertical turbulent fluxes of various scalars across a large671

range of instability regimes, even in the inversion layer. Therefore, it is a promising tool672

for modeling planetary boundary layers in climate and weather simulations.673

4.3 Flux decomposition674

The ED-TKE network discovers two separate latent variables that capture a hid-675

den low-dimensional representation of horizontal and vertical TKE, which we refer to676

as zu and zw, respectively. The Flux-NN then utilizes these latent representations, along677

with zx, to predict the contribution of each horizontal or vertical components to the to-678

tal flux using Equation 12. We refer to each term in Equation 12 as a mode, with the679

first term (α1f1(zx, zu)) as the shear mode and the second term (α2f2(zx, zw)) as the680

convective mode. In this section, we discuss the shear and convective modes and their681

contributions to vertical turbulent fluxes, and investigate how this contribution changes682

across instability regimes. We primarily focus on turbulent heat, surface- and entrainment-683

forced tracer fluxes, while presenting results for TKE and height-dependent tracer fluxes684

in the supplementary material.685

4.3.1 Vertical turbulent heat flux686

Figure 5 illustrates the decomposition of the heat flux for all six simulations, with687

each mode normalized by its corresponding surface heat flux and plotted against the nor-688

malized height z/zi. The shear mode (Figure 5b) is more prominent in simulations with689

a strong geostrophic wind, and its magnitude decreases as the instability parameter in-690

creases. In the most shear-driven simulation (e.g., Ug16-w′θ′00.03) the shear mode is re-691

sponsible for approximately 80% of the total flux in the surface layer. Even in the mixed692

layer, the shear mode remains significant and explains about 70% of the flux. For the693

second most shear-driven simulation (e.g., Ug16-w′θ′00.06) and strongly convective cases,694

the contribution of the shear mode to the flux near the surface decreases from 75% and695

50%, respectively. In these cases, the shear mode rapidly decreases with height, as ex-696

pected, and becomes negligible in the mixed layer (0.2 < z/zi < 0.6). In all simula-697

tions, the shear mode becomes negative in the upper part of the mixed layer ( z/zi ∼698

0.6− 0.8). In the inversion layer ( z/zi ∼ 0.8− 1), the shear mode increases (becomes699

more negative) with geostrophic wind, being more significant in highly sheared simula-700

tions.701

Figure 5c depicts the convective modes of w′θ′ normalized by their respective sur-702

face heat flux and plotted as a function of z/zi. The convective mode acts in the oppo-703

site direction to the shear mode and increases with instability, being larger for highly704
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convective cases, as would be expected from basic understanding of the PBL. We note705

however that this behavior was not imposed but rather discovered by our networks when706

learning across simulation regimes. Despite differences in the instability parameters, the707

three most convective cases (Ug4-w′θ′00.05, Ug4-w′θ′00.1, and Ug2-w′θ′00.1) have very708

similar convective modes, which account for 50% of the flux near the surface and 100%709

in the mixed layer. Although one might expect the magnitude of the convective mode710

to increase with the PBL instability parameter, what we observe is that the convective711

mode is already quite large for Ug4-w′θ′00.05, which is in the free convective regime but712

has a smaller zi/L compared to Ug4-w′θ′00.1 and Ug2-w′θ′00.1. Using quadrant anal-713

ysis (Wyngaard & Moeng, 1992; D. Li & Bou-Zeid, 2011), Salesky et al. (2017) demon-714

strated that the heat transport efficiency also reaches a maximum past a given zi/L thresh-715

old. Nonetheless, since their findings were based on quadrant analysis, we cannot make716

a direct comparison to our results.717

In the inversion layer, the convective mode is strongest for simulations with larger718

instability parameters, thus Ug16-w′θ′00.03 and Ug16-w′θ′00.06 have the smallest con-719

tribution of convective mode into the flux in the inversion layer, and the three most un-720

stable simulations have similar magnitudes.721

The negative heat flux in the inversion layer has two sources: the overshoot of up-722

drafts and the intrusion of free tropospheric air. The overshooting updrafts contain air723

with a negative θ anomaly and positive vertical velocity, thus creating a negative flux724

(Ghannam et al., 2017). On the other hand, the intrusion of free tropospheric air ven-725

tilates air with a positive θ anomaly and negative vertical velocity into the inversion layer,726

creating another negative heat flux. This intrusion is affected by the overshoot and wind727

shear in the inversion layer (Stull, 1976, 1973; Mcgrath-Spangler & Denning, 2010). Fig-728

ure 5c suggests that the contribution of the convective mode to the inversion layer flux729

is larger for more convective cases, but it does not strongly scale with the surface heat730

flux or instability parameters. On the other hand, the intensity of the shear mode and731

its contribution to the inversion layer’s flux depends on the strength of the wind shear.732

Thus, simulations Ug16-w′θ′00.03 and Ug16-w′θ′00.06 have the largest shear mode in the733

inversion layer. This finding is qualitatively consistent with that of Haghshenas and Mel-734

lado (2019); Garcia and Mellado (2014); Pino et al. (2003), showing the intensification735

of inversion layer flux with the wind shear.736

4.3.2 Vertical turbulent surface-forced tracer flux737

Figures 5e and 5f display the flux decomposition for the surface-forced tracer. The738

shear and convective modes of w′ssf highly resemble those of the turbulent heat flux,739

except in the inversion layer. The vertical flux of the surface-forced tracer is always pos-740

itive, even in the inversion layer. This tracer has a source at the surface, and its concen-741

tration sharply decreases with height in the surface layer, then the tracer becomes nearly742

homogeneous vertically in the mixed layer (Figure 2). The surface-forced tracer concen-743

tration then rapidly decreases in the inversion layer, becoming zero in the free troposphere.744

The rising updrafts, which bring near-surface air with positive tracer anomaly into the745

inversion layer, create a positive flux. On the other hand, the entrainment flux injects746

free tropospheric air with a negative velocity and negative tracer anomaly (as they have747

a value of exactly zero above) into the inversion layer, generating a positive flux. Thus,748

the reduction of the surface-forced tracer concentration in the inversion layer results in749

its flux having the opposite sign of the heat flux one (Figure 5).750

4.3.3 Vertical turbulent entrainment-forced tracer flux751

Figure 2 shows the entrainment-forced tracer profile and its corresponding verti-752

cal turbulent flux computed from LES data, and Figure 5g shows the predicted flux for753

all simulations. Additionally, Figure 4c compares the predicted flux with the flux cal-754
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Plot shows (a) the vertical turbulent heat flux for various simulations, (b) shear
mode represented as α1f1 in Equation 12.a, (b) convective mode represented as α2f2 in
Equation 12.b, for heat flux decomposition. Plots d-f and g-i show the same as a-c but
for surface-forced, and entrainment-forced tracer flux, respectively. The colors represent
different simulations, which are labeled in the legend as Ug − w′θ′0.

culated from LES data. This flux is negative across all six simulations. Figures 5h and755

5i display shear and convective modes of the flux predicted by flux-NN. The shear mode756

of the strongly convective simulations is nearly zero from the surface to the middle of757

the mixed layer, at z/zi ∼ 0.5, indicating that the convective mode is mostly respon-758

sible for the flux at these layers. The significant contribution of the convective mode to759

the total flux highlights the importance of convective transport for the entrainment-forced760

tracer, despite the absence of a source near the surface or within the PBL. The only source761

of this tracer is the ventilation of free tropospheric air with a high tracer concentration762

into the boundary layer. Thus, the entrainment flux and downdraft play an essential role763

in this flux, bringing air with high tracer concentration downward, causing a negative764

flux. However, the updraft also contributes greatly to this flux by transporting near-surface765

air with a low tracer concentration upward, resulting in a negative flux. The role of the766
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updraft in generating a vertical turbulent flux of entrainment-forced tracer, also known767

as top-down tracer, is often overlooked (Chor et al., 2020; Wyngaard & Brost, 1984). This768

is likely because the flux of this tracer can be fully explained by eddy-diffusivity mod-769

els by assigning a large enough eddy diffusivity, as the flux is always down concentra-770

tion gradient. Thus, since this tracer has no source near the surface, the role of updrafts771

in its flux is often disregarded (Chor et al., 2020). We show here that this is not the case.772

Our quadrant and subdomain-division analysis provide further confirmation of the sig-773

nificant contribution of updrafts and non-diffusive transport to the vertical turbulent flux774

of the entrainment-forced tracer (not shown).775

In this section, we have discussed our approach of using a range of turbulent regimes,776

from shear-dominant to convective-dominant, to develop a constraint that enables us to777

decompose the total flux into two modes of variability. While there is no ground truth778

to accurately quantify our flux decomposition, we can qualitatively evaluate the two modes779

based on our physical understanding of turbulent flow and how the forcing can affect the780

flow. We also examined the flux decomposition for heat, surface- and entrainment-forced781

tracers and discussed the role of convective and shear modes in the vertical turbulent782

flux. Overall, the flux decomposition approach provides insight into the underlying mech-783

anisms of turbulent flow and can be used to better understand and model the bound-784

ary layer dynamics.785

4.4 Mode-specific estimation of diffusive flux using neural network786

As mentioned in the introduction, most parameterizations of turbulent flux decom-787

pose the vertical turbulent flux into a diffusion and a non-diffusion term. Typically, the788

eddy diffusivity K needs to be parameterized, but there is no unique approach for do-789

ing so. Holtslag and Moeng (1991) define an eddy diffusivity using a simplified turbu-790

lent heat flux equation. This eddy diffusivity, which is related to the variance of verti-791

cal velocity, is adapted by Siebesma et al. (2007) for their EDMF scheme. Chor et al.792

(2020) estimate the diffusive and non-diffusive flux by maximizing for the diffusive part.793

Q. Li et al. (2021) employ a sub-domain decomposition approach and Taylor series ex-794

pansion of the updraft and downdraft mass-flux transport to approximate down-gradient795

flux and then the eddy diffusivity. Lopez-Gomez et al. (2020) define an eddy mixing length796

based on constraints derived from the TKE balance.797

While our TKE-based decomposition does not enforce a flux separation based on798

methods such as eddy length-scale or diffusivity, we are still interested in understand-799

ing the extent to which our extracted shear- and convective-modes exhibit diffusive be-800

havior. To investigate this, we project each mode onto the vertical gradient of its cor-801

responding scalar and determine the contribution of its diffusive part by maximizing the802

linear profile to the total flux. We use a regression neural network to predict an eddy803

diffusivity and compute the diffusive flux using Equation 1. As Figure B1 shows, for each804

vertical layer of the PBL, we calculate the vertical gradient of the scalars. Then, we in-805

put the TKE and the distance from the surface, z/zi, of that layer into a neural network806

which outputs an eddy diffusivity value (K) for that specific layer. Next, we multiply807

K by the local gradient of the scalar (as per Equation 1) to estimate the total diffusive808

flux at that particular level. Although we do not have access to any ground truth value809

for the diffusive flux to use as a target value for supervised learning, we train the neu-810

ral network to maximize the contribution of the diffusive flux to the total flux. In other811

words, we use our two modes f1 and f2 as the target value so that the network can pre-812

dict an eddy diffusion flux that best matches these modes. Chor et al. (2020) used a sim-813

ilar approach to decompose the total flux into diffusive and non-diffusive components,814

but they predicted the entire vertical turbulent flux, whereas in our study, we project815

on each mode separately. This means that we determine the diffusive part of each mode,816

resulting in two eddy diffusivities, Ku and Kw, representing the eddy diffusivities of the817

shear and convective modes, respectively. We assume that these two K values are the818
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(a)
(b) (c)

(d) (e) (f)

Figure 6: The plots depict the diffusive component of each mode of the vertical turbu-
lent heat flux. In plot (a), the eddy diffusivity of the convective mode, denoted as Kw, is
computed using a neural network. Plot (b) illustrates the diffusive portion of convective
mode, while plot (c) shows the non-diffusive portion of the convective mode of the heat
flux. Similarly, plots (d) to (f) present the corresponding information for the shear mode.
The colors represent different simulations, which are labeled in the legend as Ug − w′θ′0.

same for all scalars within the same simulation but vary across simulations. This assump-819

tion naturally constrains Ku and Kw, and we can express this projection as:820

.821

w′x′(z)
diff

w = −NNw(TKEw(z), z/zi).(
∂X

∂z
(z)) (14)

w′x′(z)
diff

u = −NNu(TKEu(z), z/zi).(
∂X

∂z
(z)) (15)

We use the neural network NNw to predict the eddy diffusivity Kw and NNu to
predict Ku. After training the network and approximating the diffusive flux, we calcu-
late the non-diffusive flux as a residual:

w′x′Non−Diff

u ∼ w′x′
u − (−Ku

∂X

∂z
)

for the shear mode and:822

w′x′Non−Diff

w ∼ w′x′
w − (−Kw

∂X

∂z
)
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for the convective mode. A detailed explanation of the neural network, its loss function,823

and the projection is provided in the Appendix B.824

Figure 6a and 6d display the eddy diffusivity Ku and Kw normalized by w∗zi, re-825

spectively, and plotted versus the normalized height z/zi. To facilitate comparison with826

previously suggested eddy diffusivity, we plotted the eddy diffusivity computed based827

on Holtslag and Moeng (1991), hereafter KH , shown in black lines in Figures S3, as a828

reference.829

In Figure 6b and 6e, we present the diffusive parts of shear and convective mode,830

computed for the heat flux. The diffusive shear mode is significant in the surface layer831

but quickly diminishes to zero at approximately z/zi > 0.2, and remains close to zero832

for 0.2 < z/zi < 0.6, where the vertical potential temperature gradient is insignificant.833

Therefore, a substantial portion of the shear mode, even for weakly convective cases, is834

non-diffusive (Figure 6f).835

In the upper part of the mixed layer (z/zi > 0.6), the diffusive shear flux becomes836

negative for both shear-driven and convective-driven cases. Interestingly, in the inver-837

sion layer, the shear mode is composed of both diffusive and non-diffusive components838

in shear-driven cases, but only the diffusive component is present in convective-driven839

cases. Similar to the shear mode, the convective mode (Figure 6b-c) is mostly non-diffusive840

except in the surface and inversion layers. In the inversion layer the diffusive convective841

mode is negative for all cases, and explains all convective mode flux.842

Overall, we find that the two modes learned by the neural network are mostly non-843

diffusive, except in the surface and inversion layer. Additionally, the eddy diffusivity that844

we learn is about three times smaller than the eddy diffusivity suggested by Holtslag and845

Moeng (1991), as shown in Figure S3. The small magnitude of the diffusive flux implies846

that the Flux-NN model does not heavily rely on the diffusion term to predict the shear847

and convective modes. The model’s latent variables can capture complex structures and848

learn both linear and non-linear relationships between scalars and fluxes, rather than just849

down-gradient ones.850

Furthermore, when projecting the modes onto the scalar gradients, the neural net-851

work must simultaneously provide a down-gradient diffusive flux for all scalars, which852

places a stronger constraint on the magnitude of K. In other words, the diffusive flux853

must be down-gradient for all scalars, and learning an eddy diffusivity for only one scalar854

does not guarantee a down-gradient flux for a different scalar. Conventional parameter-855

ization often learns an eddy diffusivity term that compensates for neglected processes,856

such as down-draft or entrainment, resulting in an unrealistically large eddy diffusivity.857

This approach is commonly used in ocean mixed layer modeling.858

5 Discussion and conclusion859

To predict turbulent transport in the planetary boundary layer in numerical weather860

prediction and climate models, parameterizations have been widely adopted due to the861

models’ limited spatial resolution. Historically, various approaches have been employed862

to parameterize turbulence, primarily based on scale separation, where separate schemes863

have been developed to represent small scale eddies and large scale coherent structures.864

In this work we focus on the dry convective boundary layer under different regimes from865

shear- to convective-dominated regimes and employ machine learning tools to develop866

a data-driven parameterization of vertical turbulent fluxes of various scalars and across867

a large range of instability regimes.868

Although machine learning has become a popular tool for emulating physical pro-869

cesses, it faces two major issues: its high dimensionality that limits physical interpretabil-870

ity and therefore trust, and it typically lacks the integration of physical constraints into871
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its emulators. In this work, we take a significant step towards solving these issues by in-872

troducing a lower-dimensional, latent representation of turbulent transport in the plan-873

etary boundary layer by introducing a physical constraint that enables us to decompose874

the flux into two main modes of variability. Our findings demonstrate that the latent rep-875

resentation of turbulent kinetic energy (TKE) can encode information related to the ver-876

tical and horizontal components of TKE, which reflect the relative contributions of ther-877

mal and mechanical turbulence to the vertical turbulent flux of a scalar. This is consis-878

tent with the fact that the turbulent flux in the boundary layer is primarily generated879

by the mechanical and buoyancy effects of wind shear and convection interacting with880

the flow, respectively. To ensure a separate representation of vertical and horizontal TKE881

in the latent space of TKE, we applied a physical constraint through the architecture882

of our neural network. Our approach involves using an encoder-decoder network that takes883

total TKE as input, which is readily available in most boundary layer parameterizations.884

By encapsulating the essential structural information needed for separately predicting885

horizontal and vertical TKE when given only total TKE as input, our network can ef-886

fectively capture the relevant information for predicting these components. The TKE887

latent representation is then used to predict the vertical turbulent fluxes.888

We showed that by reducing the dimension of TKE into two latent representations889

corresponding separately to horizontal and vertical TKE, we can accurately decompose890

the vertical flux of any scalar into two modes using a second set of neural networks. One891

of these modes is associated with horizontal TKE, which we refer to as a shear-driven892

mode, while the second mode is associated with vertical TKE and is called the convec-893

tive mode. This flux decomposition is distinct from traditional schemes because it en-894

ables us to learn how each forcing contributes to the total flux and quantify their frac-895

tional contribution. By training the neural network on a wide range of scalars and sim-896

ulations, we enable it to approximate a unique function for each mode that is indepen-897

dent of the scalar profile and turbulent regime. Additionally, these two modes and their898

variations with instability parameters are qualitatively consistent with our understand-899

ing of convection and shear contribution to the boundary layer vertical turbulent fluxes900

at various instability parameters.901

Our analysis helps further refine our understanding of turbulent transport in the902

boundary layer and reveals that the neural network does not rely on the local gradient903

to generate the vertical turbulent fluxes. Specifically, by projecting each mode onto the904

gradient of its corresponding scalar, we observe that the fluxes are mostly non-diffusive,905

except in the surface and inversion layers. Even for entrainment-forced tracers, which906

exhibit fluxes down the gradient, the fluxes appear to be non-diffusive in our approach.907

In contrast, Chor et al. (2020) found that entrainment-forced tracer fluxes can be explained908

through diffusive fluxes even for the most convective case they studied. The contrast-909

ing results may stem from our neural network, which decomposes the flux without en-910

forcing the gradient-following behavior, as opposed to their conventional diffusive approach.911

Our approach provides a unified framework to learn how each forcing contributes to the912

flux, offering insights into the underlying physical processes of turbulence in boundary913

layers.914

We trained our neural network on a series of simulations, with instability param-915

eters ranging from weakly unstable to strongly unstable. Our tests on the generaliza-916

tion of this network to unseen instability parameters indicate that the network exhibits917

skillful performance in interpolation. Specifically, when a simulation with an instabil-918

ity parameter between the minimum and maximum instability parameters present in the919

dataset is removed from the training set and used as a test set, the resulting R2 value920

exceeds 0.8. Moreover, the network shows reasonable extrapolation capabilities when tested921

on cases with instability parameters larger than the range of instability parameters used922

in the training set. For example, when we remove the most convective simulation (Ug2-923

w′θ′00.1) from the training set and use it as a test set, the resulting R2 value equals 0.75.924
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Hence, the model effectively extrapolates to unseen purely convective cases. This may925

be due to the fact that the non-dimensionalized profiles of TKE and scalars become sim-926

ilar at high instability parameters.927

However, the network exhibits limitations in extrapolating to cases where the in-928

stability parameter is smaller than that of the training set. Removing the most shear929

driven simulation (Ug16-w′θ′00.03) from the training set and using it as a test set re-930

sults in an R2 value of 0.5. We attribute this shortcoming to the dynamics of the bound-931

ary layer turbulence, which become markedly different when the system approaches the932

neutral situation. Additionally, the non-dimensionalized fluxes and TKE profiles exhibit933

self-similarity for unstable simulations, leading to great extrapolation performance for934

both ED-TKE and flux-NN. However, for simulations with smaller instability param-935

eters (i.e., near neutral turbulent regime), the non-dimensionalization does not result in936

a self-similar profile, making the extrapolation to simulations with instability parame-937

ters smaller than those in the training data much more challenging. In conventional pa-938

rameterization of climate models, the three cases of stable, neutral, and convective con-939

ditions are often treated using three (or, in some cases, two) separate schemes, by switch-940

ing from one scheme to another at a certain instability parameter which is, itself, set ar-941

bitrarily. This caveat is the subject of our future research to develop a parameterization942

that accurately models across a large range of instability parameters from strongly sta-943

ble to strongly unstable situations.944

One limitation of this study is the scale and grid dependency of our data-driven945

parameterization. Specifically, we coarse-grain the LES data to grids of 1.5x1.5 km2, which946

lies within the ”gray zone” of grid scales. Coarse-graining the data to a different grid size947

would alter the coarse profile of scalars and TKE, rendering the neural network trained948

on the original coarse data inaccurate for modeling other coarse data beyond the train-949

ing set. In other words, our parameterization is not yet scale-adaptive. Furthermore, our950

network is trained on a specific vertical grid spacing and is, thus, sensitive to the grid951

spacing of the test data. Ideally, we aim to develop a model that is grid-agnostic such952

that it can be easily integrated into any weather or climate model, regardless of the hor-953

izontal grid size and vertical gird spacing used in the original data. We recognize this954

shortcoming and plan to address it in future research.955

Appendix A Loss function956

Variational Autoencoders (VAEs) take a Bayesian perspective and assume that the957

input to the encoder is generated from a conditional probability distribution that describes958

an underlying generative model. The multivariate latent representation of the input, de-959

noted as z, is assumed to follow a prior distribution P(z). The model is then trained to960

maximize the probability of generating samples in the training dataset by optimizing both961

the reconstruction loss and the Kullback-Leibler divergence (KL divergence) of the ap-962

proximate posterior, which is assumed to be Gaussian, from the prior distribution. In-963

stead of predicting a single n-dimensional latent representation, the encoder predicts a964

mean and a standard deviation. The KL divergence term forces this distribution to be965

close to the prior distribution, which is typically assumed to be a normal distribution.966

This helps to enforce a disentanglement in the latent variables learned by the encoder,967

which is a property of interest in our work. Additionally, predicting a distribution in-968

stead of a single value results in a continuous latent space, which is valuable for using969

our neural network as a generator for parameterization. Therefore, we include the KL970

divergence in our loss.971

We employ a variational encoder-decoder architecture, where we approximate the972

underlying generative model but instead of reconstructing the input TKE, we predict973

the horizontal and vertical TKE. Hence, our approach involves supervised training rather974

than unsupervised training. The loss consists of four terms: two are the mean squared975
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errors of the predictions, and the other two are the KL divergences of the latent repre-976

sentations of the horizontal and vertical TKE.977

The loss of predicting horizontal and vertical TKE is:

LMSE =
1

N

(
N∑
i=1

D∑
j=1

(TKEt
u − TKEp

u)
2
ij +

N∑
i=1

D∑
j=1

(TKEt
w − TKEp

w)
2
ij

)
(A1)

where t represents the ground-truth coarse-grained profiles computed directly from978

LES, and p represents the coarse-grain profiles predicted by neural network. N repre-979

sents the batch size and D is the dimension of the input which is 128.980

The KL divergence loss, given the assumption of normal distribution for prior, is
as follow

LKLD
=

1

N
∗ 1
d

(
N∑
i=1

d∑
k=1

(1− lnσ2
uik

+µ2
uik

+σ2
uik

)+

N∑
i=1

d∑
k=1

(1− lnσ2
wik

+µ2
wik

+σ2
wik

)

)
(A2)

where µ is the mean and σ is the standard deviation predicted by the encoder. d is the981

dimension of latent space, here equal to two and N is the batch size.982

The total loss of ED-TKE is then the sum of the two terms:983

lossED = LMSE + λLKLD
(A3)

λ is a hyperparameter that we empirically set to 10−1. Assigning a lager value to984

λ increases the reconstruction error while assigning a smaller value reduces the Gaus-985

sianization of the distribution of the latent variables and their disentanglement. Gaus-986

sianization and disentanglement are desirable because many statistical models assume987

that the data is normally distributed, and by transforming the data to be closer to a Gaus-988

sian distribution, it can be easier to model and analyze the data. In the context of deep989

learning, Gaussianization can also help to regularize the learning process and prevent990

overfitting. Disentanglement refers to the property of the latent space where each dimen-991

sion of the space represents a distinct and independent factor of variation in the data.992

This means that different aspects of the data are represented by different dimensions in993

the latent space, allowing for more precise manipulation and control of the data. Dis-994

entanglement can also help with interpretability and understanding of the model, as it995

provides a clear mapping between the latent space and the original data space. There-996

fore, by promoting Gaussianization and disentanglement in the latent space, we can im-997

prove the interpretability, flexibility, and generalization performance of the model.998

The loss of Flux-NN is constructed the same way, by combining the KL divergence999

term with the MSE of flux prediction. This loss is then:1000

lossflux =
1

N
∗ 1

D

N∑
i=1

D∑
j=1

(w′x′t
ij −w′x′p

ij)
2 +

1

N
∗ 1

d

N∑
i=1

d∑
k=1

(1− lnσ2
xik

+µ2
xik

+ σ2
xik

) (A4)

Appendix B Predicting diffusive flux1001

Section 4.4 employs a neural network to predict the eddy diffusivity and, conse-1002

quently, the diffusive component of each mode of variability of the turbulent fluxes. This1003

appendix provides additional details on the network’s architecture and its training pro-1004

cess. Figure B1 displays the network’s architecture and its associated loss function. The1005

neural network takes layer-wise TKE and z/zi as inputs and generates a predicted value1006
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NNw
TKEw(z)
z/zi

Kw(z)

∂X (z)
∂ z

−Kw(z) .
∂X (z)

∂ z

loss=(w ' x 'w (z)−(−Kw(z).
∂X (z)

∂ z ))

2

Inputs Network Output

Figure B1: The neural network uses inputs such as TKEw(z) (TKEu(z)) and z/zi, rep-
resenting the distance to the surface, to predict the eddy diffusivity Kw(z) (Ku(z)). This
eddy diffusivity is then multiplied by the scalar gradient to generate the output, which
represents the diffusive flux. The network is trained with the target value of the convec-
tive (shear) mode, which compels the model to predict a diffusive flux as close as possible
to the convective (shear) mode.

for eddy diffusivity. This predicted value is then multiplied by the gradient of the scalar,1007

such as ∂θ(z/zi)
∂z , resulting in the final prediction of the neural network. The network uti-1008

lizes the convective (shear) mode as its target, meaning that it attempts to maximize1009

the predicted diffusive component of each mode. This approach is similar to the one em-1010

ployed by (Chor et al., 2020), except that they did not use a neural network for their op-1011

timization.1012

The fully connected feed-forward neural network used in this study consists of four1013

layers with 32, 64, 32, and 8 neurons in each layer, respectively. The final layer of the1014

network, responsible for outputting the eddy diffusivity, employs a rectified linear unit1015

(ReLU) activation function to ensure that the predicted eddy diffusivity remains pos-1016

itive. The network is trained using a batch size of 512 for 50 epochs, employing early stop-1017

ping with a patience of five.1018

Open Research Section1019

The machine learning tools developed for this study as well as the scripts for pre-1020

and post-processing data can be found here: https://doi.org/10.5281/zenodo.80390331021
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59 , 250–253.1088

Fedorovich, E., Conzemius, R., & Mironov, D. (2004). Convective entrainment into1089

a shear-free, linearly stratified atmosphere: Bulk models reevaluated through1090

large eddy simulations. Journal of the atmospheric sciences, 61 (3), 281–295.1091

Garcia, J. R., & Mellado, J. P. (2014). The two-layer structure of the entrainment1092

zone in the convective boundary layer. Journal of the Atmospheric Sciences,1093

71 (6), 1935–1955.1094

Gentine, P., Bellon, G., & van Heerwaarden, C. C. (2015). A closer look at bound-1095

ary layer inversion in large-eddy simulations and bulk models: Buoyancy-1096

driven case. Journal of the atmospheric Sciences, 72 (2), 728–749.1097

Gentine, P., Pritchard, M., Rasp, S., Reinaudi, G., & Yacalis, G. (2018). Could1098

machine learning break the convection parameterization deadlock? Geophysical1099

Research Letters, 45 (11), 5742–5751.1100

Ghannam, K., Duman, T., Salesky, S. T., Chamecki, M., & Katul, G. (2017).1101

The non-local character of turbulence asymmetry in the convective atmo-1102

spheric boundary layer. Quarterly Journal of the Royal Meteorological Society ,1103

143 (702), 494-507. doi: https://doi.org/10.1002/qj.29371104

Haghshenas, A., & Mellado, J. P. (2019). Characterization of wind-shear effects on1105

entrainment in a convective boundary layer. Journal of Fluid Mechanics, 858 ,1106

145–183. doi: 10.1017/jfm.2018.7611107

Han, J., Witek, M. L., Teixeira, J., Sun, R., Pan, H.-L., Fletcher, J. K., & Brether-1108

ton, C. S. (2016). Implementation in the ncep gfs of a hybrid eddy-diffusivity1109

mass-flux (edmf) boundary layer parameterization with dissipative heating and1110

modified stable boundary layer mixing. Weather and Forecasting , 31 (1), 341 -1111

352. doi: 10.1175/WAF-D-15-0053.11112

Hertel, L., Collado, J., Sadowski, P., Ott, J., & Baldi, P. (2020). Sherpa: Ro-1113

bust hyperparameter optimization for machine learning. SoftwareX . (Also1114

arXiv:2005.04048. Software available at: https://github.com/sherpa-ai/sherpa)1115

Holtslag, A., & Moeng, C.-H. (1991). Eddy diffusivity and countergradient transport1116

in the convective atmospheric boundary layer. Journal of the Atmospheric Sci-1117

ences, 48 (14), 1690–1698.1118

Kalina, E. A., Biswas, M. K., Zhang, J. A., & Newman, K. M. (2021). Sensitivity1119

of an idealized tropical cyclone to the configuration of the global forecast sys-1120

tem–eddy diffusivity mass flux planetary boundary layer scheme. Atmosphere,1121

12 (2). doi: 10.3390/atmos120202841122

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv1123

preprint arXiv:1412.6980 .1124

Kingma, D. P., & Welling, M. (2022). Auto-encoding variational bayes.1125
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Pino, D., & Vilà-Guerau De Arellano, J. (2008). Effects of shear in the convective1200

boundary layer: analysis of the turbulent kinetic energy budget. Acta Geophys-1201

ica, 56 (1), 167.1202

Priestley, C. H. B., & Swinbank, W. (1947). Vertical transport of heat by turbu-1203

lence in the atmosphere. Proceedings of the Royal Society of London. Series A.1204

Mathematical and Physical Sciences, 189 (1019), 543–561.1205

Pu, Y., Gan, Z., Henao, R., Yuan, X., Li, C., Stevens, A., & Carin, L. (2016). Vari-1206

ational autoencoder for deep learning of images, labels and captions. Advances1207

in neural information processing systems, 29 .1208

Rasp, S., Pritchard, M. S., & Gentine, P. (2018). Deep learning to represent subgrid1209

processes in climate models. Proceedings of the National Academy of Sciences,1210

115 (39), 9684–9689.1211

Salesky, S. T., Chamecki, M., & Bou-Zeid, E. (2017). On the nature of the transi-1212

tion between roll and cellular organization in the convective boundary layer.1213

Boundary-layer meteorology , 163 , 41–68.1214

Shah, S., & Bou-Zeid, E. (2014). Very-large-scale motions in the atmospheric bound-1215

ary layer educed by snapshot proper orthogonal decomposition. Boundary-1216

Layer Meteorology , 153 (3), 355–387.1217

Shamekh, S., Lamb, K. D., Huang, Y., & Gentine, P. (2022, oct). Implicit learning1218

of convective organization explains precipitation stochasticity. PNAS . doi: 101219

.1002/essoar.10512517.11220

Siebesma, A. P., & Cuijpers, J. (1995). Evaluation of parametric assumptions for1221

shallow cumulus convection. Journal of Atmospheric Sciences, 52 (6), 650–666.1222

Siebesma, A. P., Soares, P. M. M., & Teixeira, J. (2007). A combined eddy-1223

diffusivity mass-flux approach for the convective boundary layer. Journal1224

of the Atmospheric Sciences, 64 (4), 1230 - 1248. doi: https://doi.org/10.1175/1225

JAS3888.11226

Siebesma, A. P., & Teixeira, J. (2000). An advection–diffusion scheme for the con-1227

vective boundary layer: Description and 1d results. In Preprints, 14th symp.1228

on boundary layers and turbulence, aspen, co, amer. meteor. soc (Vol. 133,1229

p. 136).1230

Smagorinsky, J. (1963). General circulation experiments with the primitive equa-1231

tions: I. the basic experiment. Monthly weather review , 91 (3), 99–164.1232

Soares, P. M. M., Miranda, P. M. A., Siebesma, A. P., & Teixeira, J. (2004). An1233

eddy-diffusivity/mass-flux parametrization for dry and shallow cumulus con-1234

vection. Quarterly Journal of the Royal Meteorological Society , 130 (604),1235

3365-3383. doi: https://doi.org/10.1256/qj.03.2231236

Stensrud, D. J. (2009). Parameterization schemes: keys to understanding numerical1237

weather prediction models. Cambridge University Press.1238

Stull, R. B. (1973). Inversion rise model based on penetrative convection. Jour-1239

nal of Atmospheric Sciences, 30 (6), 1092 - 1099. doi: https://doi.org/10.1175/1240

1520-0469(1973)030⟨1092:IRMBOP⟩2.0.CO;21241

Stull, R. B. (1976). Internal gravity waves generated by penetrative convection.1242

Journal of Atmospheric Sciences, 33 (7), 1279–1286.1243

Stull, R. B. (1988). An introduction to boundary layer meteorology (Vol. 13).1244

Springer Science & Business Media.1245

Sullivan, P. P., & Patton, E. G. (2011). The effect of mesh resolution on convective1246

boundary layer statistics and structures generated by large-eddy simulation. J.1247

Atmos. Sci., 68 , 2395–2415.1248

Taira, K., Brunton, S. L., Dawson, S. T., Rowley, C. W., Colonius, T., McKeon,1249

–32–



manuscript submitted to JAMES

B. J., . . . Ukeiley, L. S. (2017). Modal analysis of fluid flows: An overview.1250

Aiaa Journal , 55 (12), 4013–4041.1251

Takida, Y., Liao, W.-H., Lai, C.-H., Uesaka, T., Takahashi, S., & Mitsufuji, Y.1252

(2022). Preventing oversmoothing in vae via generalized variance parameteriza-1253

tion. Neurocomputing , 509 , 137–156.1254

Troen, I., & Mahrt, L. (1986). A simple model of the atmospheric boundary layer;1255

sensitivity to surface evaporation. Boundary-Layer Meteorology , 37 (1), 129–1256

148.1257

Wang, W., Huang, Y., Wang, Y., & Wang, L. (2014). Generalized autoencoder:1258

A neural network framework for dimensionality reduction. In Proceedings of1259

the ieee conference on computer vision and pattern recognition workshops (pp.1260

490–497).1261

Willis, G. E., & Deardorff, J. W. (1974). A laboratory model of the unstable plane-1262

tary boundary layer. J. Atmos. Sci., 31 , 1297–1307.1263

Wyngaard, J. C., & Brost, R. A. (1984). Top-down and bottom-up diffusion of a1264

scalar in the convective boundary layer. Journal of Atmospheric Sciences,1265

41 (1), 102–112.1266

Wyngaard, J. C., & Moeng, C.-H. (1992). Parameterizing turbulent diffusion1267

through the joint probability density. Boundary-layer meteorology , 60 (1),1268

1–13.1269

Wyngaard, J. C., & Weil, J. C. (1991). Transport asymmetry in skewed turbulence.1270

Physics of Fluids A: Fluid Dynamics, 3 (1), 155–162.1271

Yang, Y., Zheng, K., Wu, C., & Yang, Y. (2019). Improving the classification ef-1272

fectiveness of intrusion detection by using improved conditional variational1273

autoencoder and deep neural network. Sensors, 19 (11), 2528.1274

Yuval, J., & O’Gorman, P. A. (2020). Stable machine-learning parameterization of1275

subgrid processes for climate modeling at a range of resolutions. Nature com-1276

munications, 11 (1), 1–10.1277

Zhou, B., Sun, S., Sun, J., & Zhu, K. (2019). The universality of the normalized1278

vertical velocity variance in contrast to the horizontal velocity variance in the1279

convective boundary layer. Journal of the Atmospheric Sciences, 76 (5), 1437 -1280

1456. doi: https://doi.org/10.1175/JAS-D-18-0325.11281

Zietlow, D., Rolinek, M., & Martius, G. (2021). Demystifying inductive biases for1282

(beta-) vae based architectures. In International conference on machine learn-1283

ing (pp. 12945–12954).1284

–33–



manuscript submitted to JAMES

Learning Atmospheric Boundary Layer Turbulence1

S. Shamekh1,2, P. Gentine1,22

1Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA3
2Center for Learning the Earth with Artificial Intelligence And Physics (LEAP), Columbia University,4

New York, NY, USA5

Key Points:6

• We propose a physics-informed machine learning technique to predict the verti-7

cal turbulent fluxes in the planetary boundary layer8
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Abstract13

Accurately representing vertical turbulent fluxes in the planetary boundary layer14

is vital for moisture and energy transport. Nonetheless, the parameterization of the bound-15

ary layer remains a major source of inaccuracy in climate models. Recently, machine learn-16

ing techniques have gained popularity for representing oceanic and atmospheric processes,17

yet their high dimensionality often limits interpretability. This study introduces a new18

neural network architecture employing non-linear dimensionality reduction (encoder-decoder)19

to accurately predict vertical turbulent fluxes in a dry convective boundary layer. Our20

method utilizes the vertical profiles of turbulent kinetic energy and scalars as input to21

extract a physically constrained two-dimensional latent space, providing the necessary22

yet minimal information for accurate flux prediction. For this study, we obtained data23

by coarse-graining Large Eddy Simulations covering a broad spectrum of boundary layer24

conditions, ranging from weakly to strongly unstable. These regimes, driven by shear25

or buoyancy, are employed to constrain the latent space disentanglement, enhancing in-26

terpretability. By applying this constraint, we decompose the vertical turbulent flux of27

various scalars into two main modes of variability: one associated with wind shear and28

the other with convective transport. Our data-driven parameterization accurately pre-29

dicts vertical turbulent fluxes (heat and passive scalars) across turbulent regimes, sur-30

passing state-of-the-art schemes like the eddy-diffusivity mass flux scheme. By project-31

ing each variability mode onto its associated scalar gradient, we estimate the diffusive32

flux and learn the eddy diffusivity. The diffusive flux is found to be significant only in33

the surface layer for both modes and becomes negligible in the mixed layer. The retrieved34

eddy diffusivity is considerably smaller than previous estimates used in conventional pa-35

rameterizations, highlighting the predominant non-diffusive nature of transport.36

Plain Language Summary37

This study focuses on better understanding and predicting the movement of mois-38

ture and energy in the lower part of the Earth’s atmosphere, called the planetary bound-39

ary layer. This is important as it directly impacts our ability to make accurate weather40

forecasts and model the climate. The study utilizes neural networks to analyze exten-41

sive data derived from computer simulations of the atmosphere. The objective is to ex-42

tract meaningful insights from this complex data and facilitate accurate predictions. To43

achieve this, we employ an advanced form of neural networks, called encoder-decoder,44

that is a dimensionality reduction technique. This approach aims to distill the most cru-45

cial information from the data while maintaining simplicity and interpretability. Through46

this process, the neural network effectively reduces the data to two key factors influenc-47

ing the movement of moisture and energy: wind shear (variations in wind speed and di-48

rection) and convective transport (movement resulting from heating and cooling). Over-49

all, this study demonstrates that employing machine learning techniques can significantly50

advance our understanding and prediction of the intricate processes occurring in the at-51

mosphere. This, in turn, leads to the development of more precise climate models and52

improved weather forecasts.53

1 Introduction54

In the planetary boundary layer (PBL), turbulence occurs over a wide range of scales,55

causing the mixing and transport of moisture, heat, momentum, and chemical scalars56

(Stull, 1988). An accurate representation of turbulent mixing is crucial for predicting57

many critical climate processes, such as low clouds, lower free tropospheric humidity and58

temperature, air-sea interaction, and more (Stensrud, 2009). Climate and weather mod-59

els, which use a discretized spatiotemporal representation of the physical equations, can-60

not resolve scales smaller than their grid size. Therefore, these models rely on param-61

eterization, an approximation of the impact of unresolved physical processes based on62
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resolved quantities, such as turbulent mixing occurring at unresolved scales and trans-63

porting momentum, energy and scalars.64

Traditionally, boundary layer turbulent mixing was first assumed to behave as a
diffusion and therefore to be occurring down local gradient:

w′x′ = −K
dX

dz
(1)

Where K(m2s−1) is called the eddy diffusivity, w is the vertical velocity, and X repre-65

sents a scalar variable that is being transported by the flow. Over-line indicates a hor-66

izontal averaging, and prime is the deviation from the spatial average: x′ = X −X.67

Although simple and intuitive, this scheme fails to accurately predict the turbu-68

lent heat flux in the mixed layer of the convective boundary layer, where a zero or pos-69

itive gradient of potential temperature coexists with finite and positive heat flux (Corrsin,70

1975; Stull, 1988). This positive heat flux has been associated with the impact of large71

turbulent coherent structures, such as updrafts and downdrafts (Park et al., 2016), that72

are ubiquitous in the convective boundary layer and connect the surface layer to the top73

of the boundary layer by transporting heat and other variables upward, quickly within74

a model time step. Rising updrafts are accompanied by a descending counterpart in the75

convective boundary layer, and by a top-of-the-boundary layer entrainment flux occur-76

ring between the weakly turbulent stable stratification above the boundary layer and the77

convective layer (Fedorovich et al., 2004; Gentine et al., 2015). Large eddies traveling78

over large distances do not respect the eddy diffusion local gradient perspective, as these79

coherent structures bring non-locality to the turbulent fluxes.80

Over the past few decades, several approaches have been proposed to correct the81

eddy-diffusion approach and include the effect of non-local eddies in turbulent flux pa-82

rameterization, mainly considering the non-locality by adding a non-local term to the83

eddy diffusion (Ertel, 1942; Priestley & Swinbank, 1947). A few examples of such ap-84

proaches are the eddy diffusivity – counter-gradient, hereafter EDCG, (J. Deardorff, 1972;85

Troen & Mahrt, 1986; Holtslag & Moeng, 1991), the transport asymmetry (Moeng & Wyn-86

gaard, 1984, 1989; Wyngaard & Brost, 1984; Wyngaard & Weil, 1991; Wyngaard & Mo-87

eng, 1992), or the eddy diffusivity – mass flux (Siebesma & Cuijpers, 1995; Siebesma &88

Teixeira, 2000; Siebesma et al., 2007), which is now widely used in weather and climate89

models. While a thorough review of the vertical turbulent parameterization is out of the90

scope of this work, we briefly discuss the eddy diffusivity – mass flux (EDMF, Siebesma91

et al. (2007)) approach since it is widely used and several EDMF versions have been de-92

veloped and implemented in operational weather forecasts and climate models. Thus,93

we will use this as a benchmark to evaluate our parameterization for modeling vertical94

turbulent fluxes.95

The EDMF model assumes that the total vertical flux of a scalar (e.g., heat, mois-
ture) is due to the contribution of strongly convective updrafts, which cover a negligi-
ble horizontal fractional area, and a complementary slowly subsiding environment, with
negligible vertical velocity. The total flux of scalar X can then be written as:

w′x′ = auw′x′u + (1− au)w′x′e + au(wu − w)(Xu −Xe) (2)

where u and e represent the updraft and environment, respectively. au is the updraft frac-96

tional area. wu and w are the mean vertical velocity over the updraft and environment,97

and Xu and Xe are the corresponding mean scalar. Assuming a small fractional area cov-98

erage of the updrafts and a negligible vertical velocity in the environment, we can elim-99

inate the first term on the RHS, approximate w to be zero, and replace Xe with X. Thus100

Equation 2 reduces to:101

w′x′ ≈ w′x′e + auwu(Xu −X) (3)

–3–



manuscript submitted to JAMES

The first term on the RHS of Equation 3 is modeled using an eddy diffusivity (Equa-102

tion 1) and the second term is the mass flux, non-local, contribution to total vertical tur-103

bulent flux, which was inspired by modeling of deep convection (Betts, 1973) .104

Despite its successes in improving purely convective boundary layer parameteri-105

zation compared to other approaches (e.g, pure ED or EDCG), EDMF still has impor-106

tant shortcomings. First, the EDMF decomposes the total flux into ED, modelling small107

scale eddies, and MF, modelling large scale updrafts. However, these two terms are not108

coupled in any systematic way, a theory for the relative partitioning between these two109

contributions does not exist, and a theory for an optimal scale at which the continuous110

spectrum of boundary layer eddies can be divided into small eddies and large thermals111

has not been established. Additionally, one of the main assumptions in deriving Equa-112

tion 3 is that the updraft fractional area is negligible. However, recent studies (Q. Li et113

al., 2021; Chinita et al., 2018; Park et al., 2016) suggest a fractional area of 20-30 per-114

cent. Consequently, some of approximations made to derive the two-term Equation 3 does115

not hold accurately. For instance, the first term in the RHS of Equation 2 has been shown116

to be important and responsible for local fluxes in updrafts (Q. Li et al., 2021), or Xu117

may have a non-negligible impact on the domain mean value X. Furthermore, the orig-118

inal EDMF schemes have been developed for a purely convective boundary layer (Siebesma119

et al., 2007; Soares et al., 2004), i.e., with small wind shear, thus EDMF poorly gener-120

alizes to situations driven by both wind and convection (Kalina et al., 2021). Some mod-121

els, employ a hybrid scheme, such that, for weakly convective cases, they use EDCG and,122

at a certain instability threshold, they switch to EDMF (Han et al., 2016). However, this123

threshold is set arbitrarily and the switch between parameterizations appears quite ad124

hoc, and rather, a unified treatment of turbulence would be preferred.125

In addition, one of the main pitfalls of the EDMF approach is its lack of explicit126

treatment of boundary layer top entrainment processes, which ventilate and mix air from127

the lower troposphere into the boundary layer. Entrainment significantly impacts the128

growth and structure of the PBL (Angevine et al., 1994), the evolution of mixed layer129

properties, surface fluxes, and the formation and maintenance of shallow clouds (Haghshenas130

& Mellado, 2019). However, EDMF does not explicitly take entrainment into account,131

which is potentially one reason for its shortcomings in accurately predicting turbulent132

fluxes at the top of the PBL and the exchange of PBL and lower troposphere. For in-133

stance, at the European Center for Medium Weather Forecast, entrainment is added (as134

a fraction of the surface buoyancy flux) as a diagnostic correction term to the EDMF135

model to obtain reasonable diurnal growth of the PBL. Additionally, wind shear strongly136

affects the entrainment flux and should be accounted for along with (dry) convection (Haghshenas137

& Mellado, 2019). Therefore, a more complete treatment of turbulence in the PBL is re-138

quired, ideally one that can account for varying regimes from shear- to convectively-driven139

conditions and all forms of transport in the boundary layer, including eddies driven by140

shear or convection and entrainment at the top of the boundary layer.141

Machine learning has proven to be a powerful tool for parameterizing subgrid-scale142

processes in the atmosphere and the ocean, particularly with the rise in popularity of143

neural networks (NNs) and deep learning as well as the explosion of high-resolution sim-144

ulation data. In the field of atmosphere and ocean modeling, deep neural networks have145

shown significant potential in replacing traditional parameterizations of unresolved subgrid-146

scale processes (Gentine et al., 2018; Rasp et al., 2018; Mooers, Pritchard, et al., 2021;147

Yuval & O’Gorman, 2020; Bolton & Zanna, 2019; Shamekh et al., 2022; Perezhogin et148

al., 2023) due to their power in approximating a non-linear mapping between observed149

and unobserved quantities. Using ocean data, convolutional NNs have been shown to ac-150

curately predict subgrid-scale turbulent fluxes when trained on coarse-scale data (Bolton151

& Zanna, 2019), which could account for the spatial auto-correlation in the input data.152

In a similar vein, Cheng et al. (2019) used Direct Numerical Simulation (DNS) data of153

the planetary boundary layer to train a neural network that outperforms popular Large154
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Eddy Simulation (LES) schemes like the Smagorinsky (Smagorinsky, 1963) and Smagorinsky-155

Bardina (Bardina et al., 1980) turbulent flux models.156

The work mentioned above showed promise in using neural networks in climate and157

weather models to replace traditional parameterization. One avenue that deserves more158

exploration is the use of interpretable machine learning models tailored to the problem159

of interest and including physical constraints, as they could unveil new understanding160

of the underlying physics. One such candidate could be a reduced order model (ROM)161

that relies on the fact that even high-dimensional complex flows often exhibit a few dom-162

inant modes of variability (Taira et al., 2017) that can provide coarse but key informa-163

tion about the flow. Encoder-decoder and variational auto-encoder (VAE) (Kingma &164

Welling, 2022) are powerful examples of ROM that map high-dimensional complex data165

to a low-dimensional latent representation. This latent representation captures the dom-166

inant modes of variability or structure in the data and because of its reduced dimension,167

can be much more interpretable. Mooers, Tuyls, et al. (2021) showed that VAEs could168

reconstruct velocity fields from a super-parameterized storm-resolving model. Addition-169

ally, they showed that the latent space could be categorized into different clusters, each170

representing a specific convection regime. Behrens et al. (2022) took this approach fur-171

ther and showed that VAE could reconstruct large-scale variables and map the latent172

variables to convection tendencies. They found that each latent variable represented a173

specific type or aspect of convection174

In this work, we use encoder-decoder models and present a novel approach to data-175

driven parameterization of turbulence in the convective boundary layer, collapsing the176

complexity of turbulence into a few dimensions: the latent space. This latent space’s di-177

mensions are then disentangled using physical constraints based on the forcing of the bound-178

ary layer regimes: wind shear and surface heating. This constraint allows us to decom-179

pose the total flux of a scalar into two modes: one related to wind shear; the other re-180

lated to convection. We use encoder-decoder models to approximate the latent repre-181

sentations of the scalars and Turbulent Kinetic Energy (TKE) profiles and then use these182

representations to predict the corresponding turbulent fluxes and modes of variability.183

Using this neural network, we aim to achieve the following objectives:184

1. Predicting the vertical turbulent flux of various scalars across instability regimes185

(weakly to strongly convective).186

2. Decomposing the vertical turbulent fluxes into main modes of (interpretable) vari-187

ability associated with shear and convection.188

3. Quantifying the diffusive part of each mode, its associated eddy diffusivity, and189

the non-local transport fraction.190

The remainder of this work is structured as follows: In section 2, we thoroughly191

discuss the strategies and steps we take to develop our parameterization, providing jus-192

tification for each step. Section 3 discusses our methodology, including data generation193

and preprocessing, as well as the neural network structure and training. In section 4, we194

present the results for flux prediction and their decomposition, followed by a discussion195

on projecting the flux onto a diffusing term in section 4.4. Finally, in section 5, we present196

our final discussion and conclusion.197

2 Problem formulation and strategy198

In this section, we provide a comprehensive outline of the steps and strategy we199

follow to parameterize and decompose the vertical turbulent fluxes.200

First, as with most parameterizations of unresolved processes, our goal is to find
a function that uses resolved quantities as input and predicts the unresolved physics. For
the specific case of the dry convective boundary layer, we use the scalar and TKE pro-
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Figure 1: Neural network architecture.The model comprises two parts: ED-TKE and
Flux-NN. In ED-TKE, two encoder-decoder units process turbulent kinetic energy (TKE)
data, mapping it to lower-dimensional latent variables (zu and zw). These variables are
then used by the decoders to predict the horizontal and vertical distribution of TKE. In
Flux-NN, scalar profiles (e.g., heat, passive scalar) are mapped to a latent space (zx), and
the decoders combine the scalar’s latent variables with those of TKE to predict the verti-
cal turbulent flux of the corresponding scalar.

files as inputs to the neural network and aim to predict the vertical turbulent scalar flux
as the target unresolved process. Mathematically, this can be expressed as follows:

w′x′ ≈ F(X,TKE), for any X (4)

F represents the mapping between a scalar and its vertical flux. Our goal is to learn201

a function capable of predicting the vertical turbulent flux for a diverse set of scalar pro-202

files and across turbulent regimes. We rely on the neural network’s capacity to approx-203

imate such a function, which allows us to diagnose turbulent fluxes, given the scalars and204

TKE profile, across various turbulent regimes and scalar profiles. The neural network’s205

strength in capturing non-linear relationships between input and target variables makes206

this task achievable.207

The approach of using the same function to parameterize various scalar profiles has208

already been widely employed in traditional parameterizations; for instance, EDMF and209

EDCG model heat and moisture flux in a convective boundary layer in a similar man-210

ner (Stull, 1988). More specifically, EDMF assumes a same formulation and equal eddy211

diffusivity and mass flux for moisture and heat. Therefore, any variations in the heat and212

moisture flux are attributed to differences in the moisture and heat profiles. It is worth213

noting that while this approximation of diagnosing all fluxes using the same function sim-214

plifies the modeling process, it does come at the cost of some accuracy. For instance, this215
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approximation may not strictly hold in regions with strong stratification, such as in the216

inversion layer of the convective boundary layer, where gravity waves can potentially im-217

pact heat transport but not moisture or any passive scalars (Stull, 1976, 1973). More-218

over, whether a scalar is passive or active can also affect the way it is transported by the219

flow. Nevertheless, approximating the fluxes of all scalars using the same function F and220

treating them similarly naturally constrains the solution space and F to be of much lower221

dimension, enabling the capture of relevant structures for prediction. Additionally, given222

the complexity of turbulent flows and the lack of comprehensive understanding of all the223

factors that may influence vertical fluxes, this assumption is often used as a reasonable224

approximation. Furthermore, since the goal is to develop a model that can be used in225

a variety of contexts and applications, we prioritize generality over strict accuracy. Fi-226

nally, using multiple scalars with different profiles and sources/sinks and only one func-227

tional form, will reduce potential equifinalities.228

To develop a more interpretable parameterization of the vertical turbulent flux of229

a scalar, we formulate the flux as the sum of two terms, or what we refer to as modes230

hereafter. Empirically, we have found that two modes are sufficient. In fact, decompos-231

ing the turbulent flux into more than two modes does not improve the accuracy of the232

parameterization; rather, it unnecessarily complicates and makes it less interpretable.233

While there is no strict mathematical justification for utilizing only two modes, it can234

be enforced by incorporating physical constraints into the flux decomposition, as is com-235

monly done in most traditional parameterizations. For instance, by assuming a separa-236

tion between local and non-local fluxes, EDMF and EDCG (Siebesma et al., 2007; J. Dear-237

dorff, 1972) decompose the total flux into two main modes. The Transport Asymmetry238

Approach (Moeng & Wyngaard, 1984, 1989) employs a different criterion and decom-239

poses the total flux into contributions from top-down and bottom-up fluxes.240

However, we do not employ a decomposition based on local-non-local or top-down-241

bottom-up flux, but rather enforce a dynamics-based decomposition. Our flux param-242

eterization method involves decomposing the flux into two modes, where one mode rep-243

resents the mechanically generated turbulence from wind shear, and the other mode rep-244

resents the thermally generated turbulence from convection. By separating the contri-245

butions of these two modes, our method provides a more accurate representation of the246

physical processes involved in the turbulent flux. To achieve this, we use a large set of247

LES simulations with various wind shear and surface heating, thus a large range of tur-248

bulent regimes and train our neural network on all these simulations simultaneously. More249

importantly, we apply dimensionality reduction technique to the scalar and TKE pro-250

files which allows us to capture the important structures in these profiles and their dif-251

ferences across turbulent regimes. Specifically, we observe that the shape of the TKE252

profile is heavily affected by the importance of wind shear versus surface heating and a253

well-designed encoder-decoder, when trained on a wide range of turbulent regimes, can254

effectively infer how much each process contributes into the TKE and thus the turbu-255

lent flux.256

In a shear-driven boundary layer, where turbulence arises primarily from the in-257

teraction of wind shear with the flow, the horizontal TKE dominates, while vertical TKE258

is negligible. As the surface heat flux increases, thermally driven turbulence becomes im-259

portant, and vertical TKE increases. Our preliminary results (not shown) unveil that260

the encoder-decoder, when applied to the TKE profile, captures information about the261

vertical and horizontal TKE into the latent space, which we then use to develop the flux262

decomposition. We discuss in detail the formulation and how we impose the constraint263

in section 3.3.264

Therefore, we utilize the TKE and scalar profiles to create our vertical flux decom-265

position, which is formulated as follows:266
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Table 1: List of model parameters and some statistics averaged over one hour of simula-
tion.

Name Ug (ms−1) w′θ′0 (Kms−1) −zi/L w∗(ms−1) u∗(ms−1))

Ug16 - w′θ′00.03 16 0.03 3.2 0.98 0.49

Ug16 - w′θ′00.06 16 0.06 6.1 1.26 0.51

Ug8 - w′θ′00.03 8 0.03 15.0 0.98 0.292

Ug4 - w′θ′00.05 4 0.05 302.8 1.17 0.128

Ug4 - w′θ′00.1 4 0.1 596.3 1.5 0.131

Ug2 - w′θ′00.1 2 0.1 1301 1.5 0.101

w′x′ = α1f1(X,TKE) + α2f2(X,TKE) (5)

This equation assumes that each mode, represented by f1 and f2, depends on the267

scalar and TKE, with f1 modeling shear-driven turbulence and f2 modeling convective-268

driven turbulence. The coefficients α1 and α2 depend solely on large-scale forcing terms269

such as the geostrophic wind and surface heat flux and are learned through a neural net-270

work. We approximate f1, f2, α1, and α2 using a neural network, as described in detail271

in section 3.3.272

3 Methodology273

3.1 Data274

We conduct six simulations using a large eddy simulation (LES) code developed275

by Albertson (1996) and Albertson and Parlange (1999). Validation of this model has276

been performed by Bou-Zeid et al. (2005) and V. Kumar et al. (2006). A detailed de-277

scription of the numerical setup is provided in V. Kumar et al. (2006).278

For subgrid-scale modeling, the LES uses a scale dependent Lagrangian model (Bou-279

Zeid et al., 2005) with a constant subgrid-scale Prandtl number of 0.4 for all scalars (Shah280

& Bou-Zeid, 2014). The domain is cubic with 256 grids in all three directions, with hor-281

izontal grid spacing of 24 meters and vertical spacing of 6 meters. The domain is dou-282

bly periodic in the horizontal direction, and the Coriolis parameter is set to 10−4s−1.283

To prevent the reflection of gravity waves, LES has a sponge layer in the upper 25% of284

the domain. We set the initial potential temperature to 300 K below an initial PBL height285

(z0i = 0.8zl) and it increases with a lapse rate of 5K/km above this height.286

We force all simulations with a constant surface heat flux w′θ′0 and a constant pres-287

sure gradient expressed in terms of a geostrophic wind Ug in the x direction. These sim-288

ulations represent a dry convective boundary layer with stability conditions ranging from289

weakly to strongly unstable. The stability parameter is defined as zi/L, where zi is the290

boundary layer height and L is the Obukhov length (Monin & Obukhov, 1954), defined291

as u3
∗/[κ(g/T0)w′θ′0]; u∗ (ms−1 ) is the surface friction velocity, and κ is the von Kármán292

constant. We run all simulations for 6-8 eddy turnovers, after which we record the in-293

stantaneous profiles every minute. Table 1 summarizes the settings for these simulations.294
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All simulations include three passive tracers with different initial and boundary con-295

ditions, which are used to better diagnose and disentangle the transport of updrafts, down-296

drafts and boundary layer top entrainment:297

i) Surface-forced tracer (Ssf ) has a constant surface flux of 0.002 with no other sink298

or source in the domain. Ssf is initialized to zero throughout the domain. Figure 2.d and299

2.i show the Ssf profile and its vertical flux, w′s′sf , respectively.300

ii) Entrainment-forced tracer (Sef ) is initialized to zero below 0.8zi0 and to one above301

this level. The source of Sef in the boundary layer is then only the intrusion of free tro-302

pospheric air with a high concentration of Sef into the boundary layer via entrainment303

fluxes. Figure 2.e and 2.j show the Sef profile and its vertical flux, w′s′ef .304

iii) Height-dependent tracer (Sh) is initialized to s(z, t = 0) = z/zi0. Sh has a305

constant relaxation term in its advection-diffusion equation that maintains its horizon-306

tal mean profile close to its initial profile. This relaxation term is − s−s(t=t0)
τ , where τ =307

zi
6 w∗, following Q. Li et al. (2018). Figure 2.c and 2.h show the Sh profile and its ver-308

tical flux, w′s′h.309

In this paper, each simulation is identified using a naming convention that com-310

bines its geostrophic wind and surface heating. Specifically, we use a format of UgX-w′θ′0Y,311

where X and Y represent the values of the geostrophic wind and surface heating, respec-312

tively. For instance, Ug16-w′θ′00.03 refers to a simulation with a geostrophic wind of 16313

(ms−1) and surface heating of 0.03 (Kms−1). This naming convention is consistently314

used throughout the paper to refer to different simulations.315

3.2 Prepossessing316

3.2.1 Coarse-graining317

To prepare the data for the neural network training, we coarse-grain the scalar snap-318

shots to compute the state variables (θ, TKE, Sh, Ssf , and Sef ) and corresponding tur-319

bulent fluxes (w′θ′, w′s′h, w
′e′, w′s′sf , and w′s′ef ). The coarse-graining is only applied320

horizontally by averaging the data into larger grids. The averaging is based on a top-321

hat filter:322

A(i, j, k) =
1

L2

l=Ni∑
l=L(i−1)+1

m=Nj∑
m=L(j−1)+1

A(l,m, k) (6)

Here, A is the high-resolution field, N is the averaging factor, and i and j are in-323

dices in the x and y directions.324

The fluxes are computed as follows:325

w′x′ = wx− w̄x̄ (7)

We coarse-grain the results presented here using N = 64 grids, roughly equal to326

1.5 km. Given that the original horizontal domain is 256x256, this coarse-graining re-327

duces the number of horizontal grids to 4x4. Taking into account the total number of328

snapshots for each simulation, this coarse-graining results in 20k samples of each scalar329

per simulation.330

We simultaneously train the neural network on all scalars and simulations, based331

on our first assumption that all scalars are transported by turbulent flow in a similar way.332

Since we have six simulations and each simulation contains five scalars, the total num-333
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ber of samples is 6x5x20k, which equals 600k. We split these samples into training, val-334

idation, and test sets using a 70-10-20 percent ratio.335

  1 / 1

Figure 2: Inputs (shown in the first row) and outputs (shown in the second row) of the
neural network.

3.2.2 Vertical interpolation336

To train the NN, we use the entire column as input. However, we exclude the up-337

per part of the simulation domain where the fluxes vanish, i.e., all layers above the top338

of the boundary layer (TOP). We define TOP as the height where the minimum of the339

second-order derivative of potential temperature occurs:340

htop ≈ h(min(
d2θ

dz2
))

Depending on the surface heat flux, TOP varies among simulations, which means341

that the number of layers between the surface and TOP is not the same for all simula-342

tions. This variation causes the dimension of the input to the NN to differ among sim-343

ulations, which makes training with various input dimensions impractical. To address344

this challenge, we interpolate the same number of layers (128 layers) between the sur-345

face and the TOP for all simulations, thus standardizing the input dimension.346

3.2.3 Non-dimensionalization347

A proper scaling or non-dimensionalization of the inputs and outputs have been348

shown to improve the prediction and generalizability of a neural network (Beucler et al.,349

2021). To scale potential temperature, θ, and heat flux, w′θ′, we employ commonly used350

scaling parameters, θ∗ and w′θ′0, developed using the Buckingham–Pi theorem. For other351

variables we construct scaling parameters in a similar way done for θ∗ and w′θ′0. To scale352
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a vertical turbulent flux (e.g., w′x′), we divide it by a constant flux, which we show by353

w′x′∗, as follows:354

w′x′ → w′x′/w′x′∗

The associated scalar of this flux is scaled by dividing the constant flux, w′x′∗, by355

the Deardorff convective velocity scale, w∗ = ( g
T w

′θ′0zi)
1/3 (J. W. Deardorff et al., 1970),356

the velocity scale for a convective boundary layer. We formulate this as:357

X → X/X∗, where X∗ = w′x′∗/w∗

For the heat flux, w′θ′, we set w′θ′∗ to its surface value, w′θ′0, which results in X∗ =358

θ∗. We scale the turbulent surface-forced tracer flux by its surface value w′s′sf0 , while359

for other tracers, we choose a constant flux (e.g., the flux absolute maximum value) such360

that all turbulent scalar fluxes have comparable magnitudes.361

3.3 Neural network362

We use neural networks to model f1, f2, α1, and α2 to parameterize the vertical363

turbulent flux of scalars following Equation 5. However, rather than passing the high-364

dimensional profile of TKE and X directly to estimate f1 and f2 at each model level,365

we compress their profiles using non-linear dimensionality reduction techniques. This dra-366

matically reduces the dimensionality of the f1 and f2 functions, and the number of de-367

grees of freedom of the network. Using high resolution variables as input would result368

in an enormous degree of freedom, making it unlikely that a unique decomposition of fluxes369

can be achieved. Compressing the input allows us to capture the most important fea-370

tures of the data and model the fluxes with fewer parameters. This approach can also371

improve the model’s efficiency and reduces the risk of overfitting, thereby improving the372

model’s generalizability to new data. Further, non-linear dimensionality reduction tech-373

niques such as VAEs are particularly effective in capturing hidden structures in the data374

that are not immediately apparent in the high-dimensional input (Pu et al., 2016; Meng375

et al., 2017; Yang et al., 2019; Ma et al., 2020).376

We perform flux prediction in two consecutive parts (Figure 1): in the first part,377

we train two separate encoder-decoders to predict horizontal and vertical TKE (here-378

after TKEu and TKEw respectively) given TKE as input. Predicting TKEu and TKEw379

using encoder-decoders allows us to capture information related to these two variables380

directly from TKE in a latent space, which can be used for flux decomposition. Most381

climate models have a parameterization for TKE (i.e., first-order closure), but TKEu382

and TKEw are not separately available. We refer to this model as ED-TKE. In the sec-383

ond part of the flux retrieval, we employ an encoder-decoder network that receives the384

scalars profile alongside the low dimensional representation (latent space) of TKEu and385

TKEw from the first network, extracted from ED-TKE, and predict scalar flux (Figure386

1, lower channel). We call this second sub-network NN-Flux. The two following subsec-387

tions introduce the architecture of each neural network and discuss the underlying phys-388

ical assumptions in detail.389

3.3.1 Reconstructing TKEu and TKEw using double encoder-decoder390

VAEs are deep learning models that consist of both an encoder and decoder. The391

encoder compresses high-dimensional input, such as the TKE profile in this case, into392

a low-dimensional latent space, and the decoder reverses this process by reconstructing393

the high-resolution input from its low-dimensional representation (Wang et al., 2014; Do-394

ersch, 2016). VAEs adopt a Bayesian perspective in the latent space and assume that395
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the input to the second network, the encoder, is generated from a conditional probabil-396

ity distribution that describes an underlying generative model (Kingma & Welling, 2022).397

The multivariate, latent, representation of the input, typically denoted as z, is assumed398

to follow a distribution P (z). The model is then trained to maximize the probability of399

generating samples in the training dataset by optimizing both the reconstruction loss400

and the Kullback-Leibler divergence (KL divergence) of the approximate posterior, which401

is assumed to be Gaussian, as prior distribution. This Gaussian assumption is used so402

that the latent representation z can produce smooth and continuous reconstructions of403

the output, while trying to disentangle the different latent dimensions (as the Gaussian404

is assumed to be uncorrelated across dimensions and thus independent, as independence405

and uncorrelation are equivalent for Gaussian variables).406

Most weather and climate atmospheric models have a prognostic equation for TKE407

but do not typically separate the horizontal and vertical TKE. Thus, we assume that408

TKE is available and can be used in the turbulent flux parameterization. As TKE con-409

sists of a horizontal and vertical part, it is desirable if its low dimension representation410

(zTKE) can be first sub-partitioned to nodes representing horizontal TKE (hereafter zu411

) and vertical TKE, hereafter zw, separately. Based on (not shown) preliminary results,412

this partitioning is crucial for a proper and unambiguous flux decomposition in the sec-413

ond sub-network, where this latent representation (of TKE) is used to predict turbu-414

lent fluxes (see Figure 1). However, one challenge of using VAEs is that the disentan-415

glement of latent variables is not guaranteed. Each latent variable may be a linear or non-416

linear combination of the underlying latent representation, and this combination could417

vary among the profile. The entanglement of latent variables is a well-known issue in com-418

puter vision (Chen et al., 2018; Mathieu et al., 2019; Zietlow et al., 2021).419

To address this disentanglement challenge, we use two encoder-decoder networks420

instead of the VAEs. The first network takes the TKE profile as input and predicts the421

horizontal component of TKE, TKEu (upper branch), while the second network pre-422

dicts the vertical component, TKEw (lower branch). We refer to this combined model423

as ED-TKE for consistency with the previous naming convention. Unlike VAEs, these424

networks do not attempt to reconstruct the input from its low-dimensional representa-425

tion; instead, they predict the horizontal and vertical components of TKE from the TKE426

profile itself. This is important because the aim of this network is not to learn a gener-427

ative model but to decompose the TKE profile into its shear-driven (horizontal) and con-428

vective (vertical) components for use in the subsequent flux prediction step. To ensure429

that the low-dimensional representation of TKE is partitioned into separate nodes rep-430

resenting horizontal and vertical TKE (zu and zw, respectively), we use two separate431

encoder-decoder networks. The architecture of ED-TKE is shown in Figure 1. The ED-432

TKE function can be written mathematically as:433

zu = eu(TKE) (8a)

zw = ew(TKE) (8b)

TKEu = du(zu) (8c)

TKEw = dw(zw) (8d)

The encoder network eu receives high-resolution (128 vertical levels) TKE profile and434

maps it to a low-dimensional representation, zu. Similarly, ew maps high-resolution TKE435

to zw. The decoder networks du and dw project zu and zw to high-resolution TKEu and436

TKEw, respectively. The objective (loss) function of ED-TKE is presented in Appendix437

A.438

One important parameter in dimensionality reduction problems is the dimension439

of the latent space. Empirically, we find that when setting this dimension equal to two,440

the model demonstrates excellent performance in prediction. Increasing the dimension441
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only leads to a more complex model that overfits and reproduces even small variabili-442

ties in the target outputs. Therefore, we set the dimension of both zu and zw to two. We443

use zu and zv as inputs to predict vertical turbulent fluxes.444

We note that the horizontal and vertical TKE are interconnected and influenced445

by the flow, particularly at specific areas like the boundary of thermals where the ris-446

ing and sinking air mixes and the conversion between two TKE terms are more promi-447

nent. However, since the proportion of these regions is relatively small and their effect448

on the corresponding TKE terms is minimal, we exclude these interactions in our flux449

decomposition. Additionally, our TKE-based decomposition is a first-order approxima-450

tion, akin to PCA decomposition, where we assume that higher-order modes, which rep-451

resent the interaction between the two forces, are negligible. Another option is to include452

higher-order modes that estimate the joint contribution of TKEu and TKEw to Equa-453

tion 5 and construct a more complex approximation. However, this approach would re-454

quire additional assumptions and constraints regarding the interaction between TKEu455

and TKEw, which are largely unknown and make the decomposition infeasible.456

3.3.2 Predicting vertical turbulent flux457

The second, bottom, module in Figure 1 depicts the architecture of the neural net-458

work that predicts the vertical turbulent fluxes. This model comprises an encoder, de-459

noted by ex, and two decoders, denoted by f1 and f2. The encoder, ex, takes a high-dimensional460

scalar profile, X, as input and encodes it to a low-dimensional latent space, hereafter re-461

ferred to as zx. The dimension of zx is set to 2, as higher dimensions did not strongly462

improve the results yet became less interpretable.463

zx = ex(X) (9)

where X represents the coarse-grained profile of any scalar, such as θ, Sh, or Ssf ; thus:

zθ = ex(θ/θ∗) (10a)

zsh = ex(Sh/Sh∗) (10b)

zssf = ex(Ssf/Ssf∗) (10c)

zsef = ex(Sef/Sef∗) (10d)

ze = ex(TKE/w2
∗) (10e)

464

To predict fluxes, we utilize a neural network that incorporates Equation 5 (Fig-465

ure 1. lower branch). We approximate f1 and f2 using two decoders and use the latent466

representation of scalar and TKE as the input to f1 and f2. This is in line with the dis-467

cussion presented earlier.468

For predicting the vertical turbulent flux of scalar X, we rewrite Equation 5 as:469

w′x′ = α1f1(zx, zu) + α2f2(zx, zw) (11)

By replacing X with various scalar profiles, we can represent their corresponding fluxes
as follows:

w′θ′/w′θ′0 = α1f1(zθ , zu) + α2f2(zθ , zw) (12a)

w′s′h/w
′s′h∗ = α1f1(zsh , zu) + α2f2(zsh , zw) (12b)

w′s′sf/w
′s′sf0 = α1f1(zssf , zu) + α2f2(zssf , zw) (12c)

w′s′ef/w
′s′ef∗ = α1f1(zsef , zu) + α2f2(zsef , zw) (12d)

w′e′/w3
∗ = α1f1(ze , zu) + α2f2(ze , zw) (12e)
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470

The function ex is used to map various scalar profiles to their corresponding latent471

representations (as described in Equation 10). These latent variables, along with zu and472

zw, are then passed to f1 and f2, which are shared across all scalar variables and used473

to predict the turbulent fluxes.474

In order to complete our data-driven parameterization of the PBL fluxes, we must475

also model the two coefficients, α1 and α2, of the shear- and convective-dominated modes,476

in Equations 5 and 12. We further constrain these coefficients to be positive and to sum477

to unity, so they are a normalized weighting of each component:478

α1 > 0

α2 > 0

α1 + α2 = 1

These coefficients are predicted by a neural network with only large-scale condi-479

tions, Ug and w′θ′0, serving as predictors. It is worth noting that it is only necessary to480

predict α1. α2 can then be computed as α2 = 1 − α1, following the third constraint481

listed above. The loss function of Flux-NN is discussed in Appendix A.482

3.4 Training and validation483

In this section, we describe our two-fold training process. First, we train the first484

module: the ED-TKE network to extract the latent variables of the TKE profile, zu and485

zw, which serve as inputs to the Flux-NN decoders. Subsequently, we train the second486

module: the Flux-NN model to predict the fluxes (Figure 1).487

All encoders and decoders in both the ED-TKE and Flux-NN models consist of four488

hidden layers. The encoder layers have [128,64,32,16] neurons, while the decoder hidden489

layers have [16,32,64,128] neurons. Both networks take inputs in the form of mini-batches490

to train on an ensemble of small sampled profiles rather than individual samples. Each491

mini-batch consists of 128 samples drawn randomly from the various turbulent regimes492

and scalar profiles. Mini-batch training is a typical strategy for neural network optimiza-493

tion. The input shape to the encoders is [nbatch, nz], where nbatch is the number of sam-494

ples in each mini-batch, and nz is the dimension of the coarse-grained profiles, which is495

128, corresponding to the number of interpolated vertical levels. We train the model on496

mini-batches of 128 samples for 100 epochs, using early stopping with a patience of five497

epochs to prevent overfitting (Caruana et al., 2000). The networks are coded using Ten-498

sorFlow (Abadi et al., 2016) and all hyperparameters (e.g., number of neurons in each499

layer, batch size) are tuned using the Sherpa library (Hertel et al., 2020).500

At each iteration, the networks compute the loss averaged over the samples in one501

mini-batch, which contains samples from a diverse range of turbulent regimes, spanning502

strongly sheared to strongly convective flows. This loss value is then backpropagated through503

the network, and its derivative with respect to each NN parameter is computed. The NN504

parameters are then updated using the ADAM algorithm (Kingma & Ba, 2014). This505

process is repeated over all mini-batches, which correspond to one epoch. At the end of506

each epoch, the network’s performance is validated using a validation dataset that the507

network has not seen during training. The training-validation process continues until ei-508

ther the total epochs are reached or an early stopping criteria are met. In this study, the509

early stopping criterion to minimize overfitting is based on the validation loss, and it has510

a patience of five epochs. This means that if the validation loss does not improve for five511

consecutive epochs, the network training stops. Early stopping is a powerful criterion512
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for preventing network overfitting and achieving better generalization to unseen cases513

(Caruana et al., 2000).514

To ensure the robustness of our results, we initialized the weights of each neural515

network randomly and ran ED-TKE with five different initializations. We also ran two516

randomly initialized Flux-NN for each ED-TKE run, resulting in a total of ten runs. The517

results are robust to random initialization of the network. The reported statistics, in-518

cluding R2, are averaged across all runs, and the plots are generated using the run with519

the median R2.520

4 Results521

4.1 ED-TKE522

The ED-TKE network consists of two branches, each taking the TKE profile as523

input to its encoder. The top branch encodes the relevant information for predicting TKEu524

into the two-dimensional latent variables zu1 and zu2 , while the bottom branch captures525

the information relevant for predicting TKEw. The joint and marginal distributions of526

zu1
and zu2

are shown in Figure 3a, while Figure 3b shows the corresponding distribu-527

tions for zw. The marginal distribution of zw1
is approximately Gaussian with similar528

mean and standard deviation across all simulations, which is enforced by the KL diver-529

gence term in the loss function (see Appendix A for more details). The latent variables530

zu exhibit stronger non-Gaussian distribution and its distribution depends on the mag-531

nitude of geostrophic wind. Interestingly, some of the zu variables have a bimodal marginal532

distribution, which deviates from the expected Gaussian distribution. This deviation can533

be attributed to the small weight assigned to the KL divergence term (KLD) in the loss534

function (see Appendix A for details). The loss function of ED-TKE is a trade-off be-535

tween achieving Gaussian-like marginal distributions and accurate predictions of TKEu536

and TKEw by the decoder. Increasing the weight of KLD in the loss function may en-537

force Gaussianization of the marginal distributions, but it may also significantly decrease538

the accuracy of the predicted TKEu and TKEw. Since our model is focused on predic-539

tion rather than sample generation (with a stochastic latent space such as in variational540

auto-encoders), we decided to keep the weight of the KL divergence term small.541

Figure 3c displays the predicted and true profiles of TKEu, averaged over all sam-542

ples from the same corresponding simulation across shear to convective regimes. The scaled543

TKEu (divided by w2
∗) increases with the imposed wind and has the largest magnitude544

for the simulation Ug16-w′θ′00.03. The network’s prediction of the TKEu profile is highly545

similar to the true TKEu for all simulations. This indicates that the TKE profile im-546

plicitly contains all the relevant information necessary for predicting TKEu. By using547

an encoder, we can capture this information in a very low dimension, which can then be548

passed to a decoder to predict the horizontal TKE: TKEu. In other words, having ac-549

cess to the total TKE profile in a model (such as a weather or climate model) is suffi-550

cient to implicitly uncover the split between horizontal TKE and vertical part of the to-551

tal TKE, emphasizing that separate parameterizations for the horizontal and vertical TKEs552

might not be needed in the PBL.553

The second branch of the ED-TKE network serves the same purpose as the first554

branch, but is specifically designed to predict the vertical TKE: TKEw. Figure 3d demon-555

strates that TKEw can also be accurately predicted from the TKE profile. In the con-556

vective boundary layer, TKEw, normalized by w2
∗ and plotted as a function of z/zi, fol-557

lows a universal parabolic shape that has been verified by laboratory experiments (Willis558

& Deardorff, 1974; R. Kumar & Adrian, 1986), measurements (Lenschow et al., 1980,559

2012), and idealized simulations (J. W. Deardorff, 1974; Sullivan & Patton, 2011; Zhou560

et al., 2019). Our simulation results, as shown in Figure 3d, also confirm the existence561

of this universal profile. The predicted and true TKEw profiles share the same overall562
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(a) (b)

(c) (d)

(e) (f) (g)

Figure 3: ED-TKE prediction: (a) displays the joint probability distribution of zu1 and
zu2 extracted from the encoder trained on TKE profile. The marginal distributions are
presented on the top (for zu1) and the right side of the plot (for zu2). (b) is similar to (a)
but shows the joint probability distribution of zw. Plot (c) displays the predicted (solid
line) and true TKEu (dashed line) averaged over each simulation, represented by colors.
(d) is the same as (c) but for TKEw. (e) shows the R2 for TKEu and TKEw prediction.
The colors represent different simulations, which are labeled in the legend as Ug − w′θ′0.
Finally, plots (f) and (g) respectively illustrate the networks’ prediction (solid lines) and
the true profiles (dashed lines) of TKEu and TKEw for randomly selected individual
samples, distinguished by colors.

parabolic shape and primary peak. In simulations where the wind is strong (such as Ug16-563

w′θ′00.03 and Ug16-w′θ′00.06), a secondary peak in TKEw near the surface is observed,564

which deviates slightly from the universal parabolic profile. However, our predicted TKEw565

still exhibits this secondary peak, albeit with a smaller magnitude. The largest under-566

estimation occurs for simulation Ug16-w′θ′00.03, where the predicted normalized secondary567

peak has a maximum of 0.1, while the true value is 0.18. We further emphasize that our568

networks are trained across regimes and are not targeting one specific regime, such as569

this mostly shear-driven mode.570

To further investigate the ED-TKE skill in predicting TKEu and TKEw, we eval-571

uate the predicted profiles for individual samples as shown in Figures 3f and 3g. These572

samples are randomly drawn from the test set. Although the mean profiles of TKEu and573

TKEw appear very smooth (Figures 3c and 3d), individual samples exhibit considerable574

variability (Figures 3f and 3g). The network captures the overall shape of each individ-575

ual sample while smoothing out the small fluctuations observable in the true profiles. This576

behavior is consistent with existing literature (Takida et al., 2022) on the smoothness577

of encoder-decoder predictions and dimensionality reduction techniques. These meth-578

ods only retain the information that is most relevant for the prediction, resulting in a579

smoother output. Also noted is that we did not include any information on horizontal580

neighboring cells in our network prediction, yet horizontal transport and variability in581

TKE, could lead to level-specific variations that cannot be captured by our strategy.582
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(a) (b) (c)

(d)

Figure 4: Plot shows the profiles of (a) vertical heat flux, (b) surface-forced tracer flux,
and (c) entrainment-forced tracer flux, predicted by Flux-NN (dotted line), EDMF (solid
lines), and computed from LES output (dashed line). Colors distinguish LES cases. Plot
(d) shows R2 computed for the neural network’s prediction of turbulent fluxes for all sim-
ulations.

To quantify the skill of ED-TKE prediction, we compute R2 for TKEu and TKEw583

and for each simulation separately (Figure 3e). R2 is defined as one minus the ratio of584

the mean square error in prediction to the variance in the data. It ranges from zero to585

one, with one representing a perfect prediction with no error. For each simulation, we586

compute R2 at each vertical level and then average layer-wise R2 over all levels to ob-587

tain the final estimate (see Shamekh et al. (2022) for more detail). ED-TKE’s predic-588

tion of TKEu has a high R2 (∼ 0.9) across all simulations, while its prediction of TKEw589

has a slightly lower R2. Thus to summarize, our ED-TKE accurately captures relevant590

information for predicting TKEu and TKEw by only having access to TKE and shows591

a great performance across a large range of instability parameters present in the data592

set. We extract the latent variables from this network, zu and zv, to utilize as input for593

predicting vertical fluxes, as discussed in the next section.594

4.2 Flux prediction595

To predict the vertical turbulent fluxes of scalars and TKE, Flux-NN utilizes an596

encoder, ex, to map the coarse-grained scalar or TKE profiles to a two-dimensional la-597

tent space (see Figure 1). These latent variables, along with zu and zw, are then pro-598

cessed by the decoders to predict the vertical turbulent flux profile of the correspond-599

ing scalar or TKE. In this section, we compare the Flux-NN predictions with fluxes di-600

rectly computed from the coarse-grained LES output. Additionally, we compare our re-601

sults with the reference ECMWF-implementation of EDMF scheme (Köhler et al., 2011),602
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which has five tuning parameters. We re-tuned the EDMF parameters to obtain the best603

approximation of the heat flux for the Ug2-w′θ′00.1 run, which is most similar to the LES604

simulations utilized by Siebesma et al. (2007), in the originally developed parameteri-605

zation. We subsequently use the re-tuned EDMF to predict the heat flux, surface-forced,606

and entrainment-forced tracer fluxes using their corresponding scalar profiles computed607

from our LES data (Figure 4).608

The heat flux, normalized by its surface value, exhibits a universal profile as a func-609

tion of normalized height z/zi, decreasing linearly with height, reaching zero at the top610

of the mixed layer. In the inversion layer, the flux becomes negative and then approaches611

zero at the top of the boundary layer. Figure 4a illustrates the normalized turbulent heat612

fluxes predicted by Flux-NN (dotted lines), computed from LES outputs (dashed lines),613

and predicted by EDMF (solid lines) for two simulations one weakly and the other strongly614

unstable. The Flux-NN predictions closely match the coarse-grained fluxes computed615

from the LES for both illustrated cases (shear- or convectively-dominated) depicted in616

Figure 4 (and Figure S1). The EDMF scheme demonstrates reasonable heat flux pre-617

diction in the mixed layer, particularly for the strongly convective cases (as it was in-618

tended to). However, its prediction deviates from the LES output in the surface layer,619

exhibiting a considerable overestimation for the sheared cases (i.e., Ug16-w′θ′00.03). This620

overestimation decreases for cases with weak geostrophic wind, indicating the scheme’s621

shortcomings in predicting fluxes for convective boundary layers with strong winds. Al-622

though we have discussed only two of the simulations for brevity, these findings are valid623

for our other simulations as well.624

Remarkably, our Flux-NN accurately predicts the inversion layer heat flux across625

instability regimes (see Figure 4). The inversion layer flux presents a significant challenge626

for most traditional parameterizations, as it is strongly influenced by updrafts originat-627

ing from the surface layer (Fedorovich et al., 2004), shear across the inversion (Pino et628

al., 2003, 2006; Pino & Vilà-Guerau De Arellano, 2008), and the entrainment of free tro-629

pospheric air into the boundary layer (Garcia & Mellado, 2014; Haghshenas & Mellado,630

2019). Most traditional parameterizations do not explicitly incorporate the entrainment631

fluxes in their formulation and the entertainment is instead typically handled by the eddy-632

diffusion flux as in the EDMF, yet with important deviations. Indeed, as shown in Fig-633

ure 4, the EDMF dramatically overestimates the magnitude of the heat flux in the in-634

version layer, particularly for the simulation with strong wind shear (e.i., Ug16-w′θ′00.03).635

The Flux-NN is equally accurate in predicting the (normalized) surface-forced and636

entrainment-forced tracer fluxes, closely emulating the LES output (Figures 4b and 4c).637

This accuracy holds even in the inversion layer. However, EDMF significantly overes-638

timates this part of the flux, particularly for entrainment-forced tracer, regardless of the639

geostrophic wind condition. This overestimation is related to the incorrect EDMF rep-640

resentation of the entrainment flux through the eddy diffusion. Given how important this641

entrainment is for key processes such as the diurnal growth of the PBL or shallow clouds642

formation and regimes, our new flux parameterization method might provide improve-643

ments to those key entrainment-related processes.644

To further quantify the performance of Flux-NN, we computed the R2 values sep-645

arately for all simulations and fluxes (refer to Figure 4d). The R2 values are very high646

(0.92-0.95) for w′θ′, w′s′h, and w′ssf
′
across all simulations and turbulence regimes. How-647

ever, for w′sef
′
and w′e′, the R2 is smaller by about 0.1-0.15. Despite this, the flux pre-648

diction averaged over all samples of the same simulation is significantly close to the flux649

computed directly from the LES data for all scalars (Figure S1).650

Additionally, to visualize the performance of Flux-NN at predicting individual sam-651

ples, we randomly selected four samples for each scalar from the test data and plotted652

the predicted fluxes (solid lines) alongside the true fluxes (dashed lines) for these sam-653

ples (Figure S1) with each sample distinguished by a different color. Despite the signif-654
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icant variability observed among samples of the same flux, particularly for w′s′ef , w
′s′h,655

and w′e′, Flux-NN accurately captures the overall shape of individual profiles while smooth-656

ing out fluctuations. This smoothing is similar to that observed in ED-TKE prediction657

and is related to the behavior of using reduced-order models, as discussed in section 4.1658

and to the fact that we are not including the horizontal heterogeneity of the predictors659

in our vertical-only model. Thus, Flux-NN can predict vertical turbulent fluxes for var-660

ious scalar profiles across a wide range of instability regimes, even in the inversion layer.661

To summarize, Flux-NN accurately predicts turbulent fluxes of various scalars/TKE662

and provides a skillful approximation of all five fluxes across all six instability regimes663

(Figure 4d and Figure S1). Applying EDMF to the LES data reveals that this scheme664

does not generalize well to conditions with geostrophic winds or to tracers other than665

potential temperature. It overestimates the fluxes near the surface and in the inversion666

layer, particularly for entrainment-forced tracers, which rely heavily on the entrainment667

flux as the primary source of the scalar in the boundary layer. Additionally, the Flux-668

NN prediction of individual samples shows that the network can reproduce the overall669

shape of individual profiles while smoothing out fluctuations (Figure S1). This indicates670

that Flux-NN can predict the vertical turbulent fluxes of various scalars across a large671

range of instability regimes, even in the inversion layer. Therefore, it is a promising tool672

for modeling planetary boundary layers in climate and weather simulations.673

4.3 Flux decomposition674

The ED-TKE network discovers two separate latent variables that capture a hid-675

den low-dimensional representation of horizontal and vertical TKE, which we refer to676

as zu and zw, respectively. The Flux-NN then utilizes these latent representations, along677

with zx, to predict the contribution of each horizontal or vertical components to the to-678

tal flux using Equation 12. We refer to each term in Equation 12 as a mode, with the679

first term (α1f1(zx, zu)) as the shear mode and the second term (α2f2(zx, zw)) as the680

convective mode. In this section, we discuss the shear and convective modes and their681

contributions to vertical turbulent fluxes, and investigate how this contribution changes682

across instability regimes. We primarily focus on turbulent heat, surface- and entrainment-683

forced tracer fluxes, while presenting results for TKE and height-dependent tracer fluxes684

in the supplementary material.685

4.3.1 Vertical turbulent heat flux686

Figure 5 illustrates the decomposition of the heat flux for all six simulations, with687

each mode normalized by its corresponding surface heat flux and plotted against the nor-688

malized height z/zi. The shear mode (Figure 5b) is more prominent in simulations with689

a strong geostrophic wind, and its magnitude decreases as the instability parameter in-690

creases. In the most shear-driven simulation (e.g., Ug16-w′θ′00.03) the shear mode is re-691

sponsible for approximately 80% of the total flux in the surface layer. Even in the mixed692

layer, the shear mode remains significant and explains about 70% of the flux. For the693

second most shear-driven simulation (e.g., Ug16-w′θ′00.06) and strongly convective cases,694

the contribution of the shear mode to the flux near the surface decreases from 75% and695

50%, respectively. In these cases, the shear mode rapidly decreases with height, as ex-696

pected, and becomes negligible in the mixed layer (0.2 < z/zi < 0.6). In all simula-697

tions, the shear mode becomes negative in the upper part of the mixed layer ( z/zi ∼698

0.6− 0.8). In the inversion layer ( z/zi ∼ 0.8− 1), the shear mode increases (becomes699

more negative) with geostrophic wind, being more significant in highly sheared simula-700

tions.701

Figure 5c depicts the convective modes of w′θ′ normalized by their respective sur-702

face heat flux and plotted as a function of z/zi. The convective mode acts in the oppo-703

site direction to the shear mode and increases with instability, being larger for highly704
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convective cases, as would be expected from basic understanding of the PBL. We note705

however that this behavior was not imposed but rather discovered by our networks when706

learning across simulation regimes. Despite differences in the instability parameters, the707

three most convective cases (Ug4-w′θ′00.05, Ug4-w′θ′00.1, and Ug2-w′θ′00.1) have very708

similar convective modes, which account for 50% of the flux near the surface and 100%709

in the mixed layer. Although one might expect the magnitude of the convective mode710

to increase with the PBL instability parameter, what we observe is that the convective711

mode is already quite large for Ug4-w′θ′00.05, which is in the free convective regime but712

has a smaller zi/L compared to Ug4-w′θ′00.1 and Ug2-w′θ′00.1. Using quadrant anal-713

ysis (Wyngaard & Moeng, 1992; D. Li & Bou-Zeid, 2011), Salesky et al. (2017) demon-714

strated that the heat transport efficiency also reaches a maximum past a given zi/L thresh-715

old. Nonetheless, since their findings were based on quadrant analysis, we cannot make716

a direct comparison to our results.717

In the inversion layer, the convective mode is strongest for simulations with larger718

instability parameters, thus Ug16-w′θ′00.03 and Ug16-w′θ′00.06 have the smallest con-719

tribution of convective mode into the flux in the inversion layer, and the three most un-720

stable simulations have similar magnitudes.721

The negative heat flux in the inversion layer has two sources: the overshoot of up-722

drafts and the intrusion of free tropospheric air. The overshooting updrafts contain air723

with a negative θ anomaly and positive vertical velocity, thus creating a negative flux724

(Ghannam et al., 2017). On the other hand, the intrusion of free tropospheric air ven-725

tilates air with a positive θ anomaly and negative vertical velocity into the inversion layer,726

creating another negative heat flux. This intrusion is affected by the overshoot and wind727

shear in the inversion layer (Stull, 1976, 1973; Mcgrath-Spangler & Denning, 2010). Fig-728

ure 5c suggests that the contribution of the convective mode to the inversion layer flux729

is larger for more convective cases, but it does not strongly scale with the surface heat730

flux or instability parameters. On the other hand, the intensity of the shear mode and731

its contribution to the inversion layer’s flux depends on the strength of the wind shear.732

Thus, simulations Ug16-w′θ′00.03 and Ug16-w′θ′00.06 have the largest shear mode in the733

inversion layer. This finding is qualitatively consistent with that of Haghshenas and Mel-734

lado (2019); Garcia and Mellado (2014); Pino et al. (2003), showing the intensification735

of inversion layer flux with the wind shear.736

4.3.2 Vertical turbulent surface-forced tracer flux737

Figures 5e and 5f display the flux decomposition for the surface-forced tracer. The738

shear and convective modes of w′ssf highly resemble those of the turbulent heat flux,739

except in the inversion layer. The vertical flux of the surface-forced tracer is always pos-740

itive, even in the inversion layer. This tracer has a source at the surface, and its concen-741

tration sharply decreases with height in the surface layer, then the tracer becomes nearly742

homogeneous vertically in the mixed layer (Figure 2). The surface-forced tracer concen-743

tration then rapidly decreases in the inversion layer, becoming zero in the free troposphere.744

The rising updrafts, which bring near-surface air with positive tracer anomaly into the745

inversion layer, create a positive flux. On the other hand, the entrainment flux injects746

free tropospheric air with a negative velocity and negative tracer anomaly (as they have747

a value of exactly zero above) into the inversion layer, generating a positive flux. Thus,748

the reduction of the surface-forced tracer concentration in the inversion layer results in749

its flux having the opposite sign of the heat flux one (Figure 5).750

4.3.3 Vertical turbulent entrainment-forced tracer flux751

Figure 2 shows the entrainment-forced tracer profile and its corresponding verti-752

cal turbulent flux computed from LES data, and Figure 5g shows the predicted flux for753

all simulations. Additionally, Figure 4c compares the predicted flux with the flux cal-754
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Plot shows (a) the vertical turbulent heat flux for various simulations, (b) shear
mode represented as α1f1 in Equation 12.a, (b) convective mode represented as α2f2 in
Equation 12.b, for heat flux decomposition. Plots d-f and g-i show the same as a-c but
for surface-forced, and entrainment-forced tracer flux, respectively. The colors represent
different simulations, which are labeled in the legend as Ug − w′θ′0.

culated from LES data. This flux is negative across all six simulations. Figures 5h and755

5i display shear and convective modes of the flux predicted by flux-NN. The shear mode756

of the strongly convective simulations is nearly zero from the surface to the middle of757

the mixed layer, at z/zi ∼ 0.5, indicating that the convective mode is mostly respon-758

sible for the flux at these layers. The significant contribution of the convective mode to759

the total flux highlights the importance of convective transport for the entrainment-forced760

tracer, despite the absence of a source near the surface or within the PBL. The only source761

of this tracer is the ventilation of free tropospheric air with a high tracer concentration762

into the boundary layer. Thus, the entrainment flux and downdraft play an essential role763

in this flux, bringing air with high tracer concentration downward, causing a negative764

flux. However, the updraft also contributes greatly to this flux by transporting near-surface765

air with a low tracer concentration upward, resulting in a negative flux. The role of the766
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updraft in generating a vertical turbulent flux of entrainment-forced tracer, also known767

as top-down tracer, is often overlooked (Chor et al., 2020; Wyngaard & Brost, 1984). This768

is likely because the flux of this tracer can be fully explained by eddy-diffusivity mod-769

els by assigning a large enough eddy diffusivity, as the flux is always down concentra-770

tion gradient. Thus, since this tracer has no source near the surface, the role of updrafts771

in its flux is often disregarded (Chor et al., 2020). We show here that this is not the case.772

Our quadrant and subdomain-division analysis provide further confirmation of the sig-773

nificant contribution of updrafts and non-diffusive transport to the vertical turbulent flux774

of the entrainment-forced tracer (not shown).775

In this section, we have discussed our approach of using a range of turbulent regimes,776

from shear-dominant to convective-dominant, to develop a constraint that enables us to777

decompose the total flux into two modes of variability. While there is no ground truth778

to accurately quantify our flux decomposition, we can qualitatively evaluate the two modes779

based on our physical understanding of turbulent flow and how the forcing can affect the780

flow. We also examined the flux decomposition for heat, surface- and entrainment-forced781

tracers and discussed the role of convective and shear modes in the vertical turbulent782

flux. Overall, the flux decomposition approach provides insight into the underlying mech-783

anisms of turbulent flow and can be used to better understand and model the bound-784

ary layer dynamics.785

4.4 Mode-specific estimation of diffusive flux using neural network786

As mentioned in the introduction, most parameterizations of turbulent flux decom-787

pose the vertical turbulent flux into a diffusion and a non-diffusion term. Typically, the788

eddy diffusivity K needs to be parameterized, but there is no unique approach for do-789

ing so. Holtslag and Moeng (1991) define an eddy diffusivity using a simplified turbu-790

lent heat flux equation. This eddy diffusivity, which is related to the variance of verti-791

cal velocity, is adapted by Siebesma et al. (2007) for their EDMF scheme. Chor et al.792

(2020) estimate the diffusive and non-diffusive flux by maximizing for the diffusive part.793

Q. Li et al. (2021) employ a sub-domain decomposition approach and Taylor series ex-794

pansion of the updraft and downdraft mass-flux transport to approximate down-gradient795

flux and then the eddy diffusivity. Lopez-Gomez et al. (2020) define an eddy mixing length796

based on constraints derived from the TKE balance.797

While our TKE-based decomposition does not enforce a flux separation based on798

methods such as eddy length-scale or diffusivity, we are still interested in understand-799

ing the extent to which our extracted shear- and convective-modes exhibit diffusive be-800

havior. To investigate this, we project each mode onto the vertical gradient of its cor-801

responding scalar and determine the contribution of its diffusive part by maximizing the802

linear profile to the total flux. We use a regression neural network to predict an eddy803

diffusivity and compute the diffusive flux using Equation 1. As Figure B1 shows, for each804

vertical layer of the PBL, we calculate the vertical gradient of the scalars. Then, we in-805

put the TKE and the distance from the surface, z/zi, of that layer into a neural network806

which outputs an eddy diffusivity value (K) for that specific layer. Next, we multiply807

K by the local gradient of the scalar (as per Equation 1) to estimate the total diffusive808

flux at that particular level. Although we do not have access to any ground truth value809

for the diffusive flux to use as a target value for supervised learning, we train the neu-810

ral network to maximize the contribution of the diffusive flux to the total flux. In other811

words, we use our two modes f1 and f2 as the target value so that the network can pre-812

dict an eddy diffusion flux that best matches these modes. Chor et al. (2020) used a sim-813

ilar approach to decompose the total flux into diffusive and non-diffusive components,814

but they predicted the entire vertical turbulent flux, whereas in our study, we project815

on each mode separately. This means that we determine the diffusive part of each mode,816

resulting in two eddy diffusivities, Ku and Kw, representing the eddy diffusivities of the817

shear and convective modes, respectively. We assume that these two K values are the818
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(a)
(b) (c)

(d) (e) (f)

Figure 6: The plots depict the diffusive component of each mode of the vertical turbu-
lent heat flux. In plot (a), the eddy diffusivity of the convective mode, denoted as Kw, is
computed using a neural network. Plot (b) illustrates the diffusive portion of convective
mode, while plot (c) shows the non-diffusive portion of the convective mode of the heat
flux. Similarly, plots (d) to (f) present the corresponding information for the shear mode.
The colors represent different simulations, which are labeled in the legend as Ug − w′θ′0.

same for all scalars within the same simulation but vary across simulations. This assump-819

tion naturally constrains Ku and Kw, and we can express this projection as:820

.821

w′x′(z)
diff

w = −NNw(TKEw(z), z/zi).(
∂X

∂z
(z)) (14)

w′x′(z)
diff

u = −NNu(TKEu(z), z/zi).(
∂X

∂z
(z)) (15)

We use the neural network NNw to predict the eddy diffusivity Kw and NNu to
predict Ku. After training the network and approximating the diffusive flux, we calcu-
late the non-diffusive flux as a residual:

w′x′Non−Diff

u ∼ w′x′
u − (−Ku

∂X

∂z
)

for the shear mode and:822

w′x′Non−Diff

w ∼ w′x′
w − (−Kw

∂X

∂z
)
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for the convective mode. A detailed explanation of the neural network, its loss function,823

and the projection is provided in the Appendix B.824

Figure 6a and 6d display the eddy diffusivity Ku and Kw normalized by w∗zi, re-825

spectively, and plotted versus the normalized height z/zi. To facilitate comparison with826

previously suggested eddy diffusivity, we plotted the eddy diffusivity computed based827

on Holtslag and Moeng (1991), hereafter KH , shown in black lines in Figures S3, as a828

reference.829

In Figure 6b and 6e, we present the diffusive parts of shear and convective mode,830

computed for the heat flux. The diffusive shear mode is significant in the surface layer831

but quickly diminishes to zero at approximately z/zi > 0.2, and remains close to zero832

for 0.2 < z/zi < 0.6, where the vertical potential temperature gradient is insignificant.833

Therefore, a substantial portion of the shear mode, even for weakly convective cases, is834

non-diffusive (Figure 6f).835

In the upper part of the mixed layer (z/zi > 0.6), the diffusive shear flux becomes836

negative for both shear-driven and convective-driven cases. Interestingly, in the inver-837

sion layer, the shear mode is composed of both diffusive and non-diffusive components838

in shear-driven cases, but only the diffusive component is present in convective-driven839

cases. Similar to the shear mode, the convective mode (Figure 6b-c) is mostly non-diffusive840

except in the surface and inversion layers. In the inversion layer the diffusive convective841

mode is negative for all cases, and explains all convective mode flux.842

Overall, we find that the two modes learned by the neural network are mostly non-843

diffusive, except in the surface and inversion layer. Additionally, the eddy diffusivity that844

we learn is about three times smaller than the eddy diffusivity suggested by Holtslag and845

Moeng (1991), as shown in Figure S3. The small magnitude of the diffusive flux implies846

that the Flux-NN model does not heavily rely on the diffusion term to predict the shear847

and convective modes. The model’s latent variables can capture complex structures and848

learn both linear and non-linear relationships between scalars and fluxes, rather than just849

down-gradient ones.850

Furthermore, when projecting the modes onto the scalar gradients, the neural net-851

work must simultaneously provide a down-gradient diffusive flux for all scalars, which852

places a stronger constraint on the magnitude of K. In other words, the diffusive flux853

must be down-gradient for all scalars, and learning an eddy diffusivity for only one scalar854

does not guarantee a down-gradient flux for a different scalar. Conventional parameter-855

ization often learns an eddy diffusivity term that compensates for neglected processes,856

such as down-draft or entrainment, resulting in an unrealistically large eddy diffusivity.857

This approach is commonly used in ocean mixed layer modeling.858

5 Discussion and conclusion859

To predict turbulent transport in the planetary boundary layer in numerical weather860

prediction and climate models, parameterizations have been widely adopted due to the861

models’ limited spatial resolution. Historically, various approaches have been employed862

to parameterize turbulence, primarily based on scale separation, where separate schemes863

have been developed to represent small scale eddies and large scale coherent structures.864

In this work we focus on the dry convective boundary layer under different regimes from865

shear- to convective-dominated regimes and employ machine learning tools to develop866

a data-driven parameterization of vertical turbulent fluxes of various scalars and across867

a large range of instability regimes.868

Although machine learning has become a popular tool for emulating physical pro-869

cesses, it faces two major issues: its high dimensionality that limits physical interpretabil-870

ity and therefore trust, and it typically lacks the integration of physical constraints into871

–24–



manuscript submitted to JAMES

its emulators. In this work, we take a significant step towards solving these issues by in-872

troducing a lower-dimensional, latent representation of turbulent transport in the plan-873

etary boundary layer by introducing a physical constraint that enables us to decompose874

the flux into two main modes of variability. Our findings demonstrate that the latent rep-875

resentation of turbulent kinetic energy (TKE) can encode information related to the ver-876

tical and horizontal components of TKE, which reflect the relative contributions of ther-877

mal and mechanical turbulence to the vertical turbulent flux of a scalar. This is consis-878

tent with the fact that the turbulent flux in the boundary layer is primarily generated879

by the mechanical and buoyancy effects of wind shear and convection interacting with880

the flow, respectively. To ensure a separate representation of vertical and horizontal TKE881

in the latent space of TKE, we applied a physical constraint through the architecture882

of our neural network. Our approach involves using an encoder-decoder network that takes883

total TKE as input, which is readily available in most boundary layer parameterizations.884

By encapsulating the essential structural information needed for separately predicting885

horizontal and vertical TKE when given only total TKE as input, our network can ef-886

fectively capture the relevant information for predicting these components. The TKE887

latent representation is then used to predict the vertical turbulent fluxes.888

We showed that by reducing the dimension of TKE into two latent representations889

corresponding separately to horizontal and vertical TKE, we can accurately decompose890

the vertical flux of any scalar into two modes using a second set of neural networks. One891

of these modes is associated with horizontal TKE, which we refer to as a shear-driven892

mode, while the second mode is associated with vertical TKE and is called the convec-893

tive mode. This flux decomposition is distinct from traditional schemes because it en-894

ables us to learn how each forcing contributes to the total flux and quantify their frac-895

tional contribution. By training the neural network on a wide range of scalars and sim-896

ulations, we enable it to approximate a unique function for each mode that is indepen-897

dent of the scalar profile and turbulent regime. Additionally, these two modes and their898

variations with instability parameters are qualitatively consistent with our understand-899

ing of convection and shear contribution to the boundary layer vertical turbulent fluxes900

at various instability parameters.901

Our analysis helps further refine our understanding of turbulent transport in the902

boundary layer and reveals that the neural network does not rely on the local gradient903

to generate the vertical turbulent fluxes. Specifically, by projecting each mode onto the904

gradient of its corresponding scalar, we observe that the fluxes are mostly non-diffusive,905

except in the surface and inversion layers. Even for entrainment-forced tracers, which906

exhibit fluxes down the gradient, the fluxes appear to be non-diffusive in our approach.907

In contrast, Chor et al. (2020) found that entrainment-forced tracer fluxes can be explained908

through diffusive fluxes even for the most convective case they studied. The contrast-909

ing results may stem from our neural network, which decomposes the flux without en-910

forcing the gradient-following behavior, as opposed to their conventional diffusive approach.911

Our approach provides a unified framework to learn how each forcing contributes to the912

flux, offering insights into the underlying physical processes of turbulence in boundary913

layers.914

We trained our neural network on a series of simulations, with instability param-915

eters ranging from weakly unstable to strongly unstable. Our tests on the generaliza-916

tion of this network to unseen instability parameters indicate that the network exhibits917

skillful performance in interpolation. Specifically, when a simulation with an instabil-918

ity parameter between the minimum and maximum instability parameters present in the919

dataset is removed from the training set and used as a test set, the resulting R2 value920

exceeds 0.8. Moreover, the network shows reasonable extrapolation capabilities when tested921

on cases with instability parameters larger than the range of instability parameters used922

in the training set. For example, when we remove the most convective simulation (Ug2-923

w′θ′00.1) from the training set and use it as a test set, the resulting R2 value equals 0.75.924
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Hence, the model effectively extrapolates to unseen purely convective cases. This may925

be due to the fact that the non-dimensionalized profiles of TKE and scalars become sim-926

ilar at high instability parameters.927

However, the network exhibits limitations in extrapolating to cases where the in-928

stability parameter is smaller than that of the training set. Removing the most shear929

driven simulation (Ug16-w′θ′00.03) from the training set and using it as a test set re-930

sults in an R2 value of 0.5. We attribute this shortcoming to the dynamics of the bound-931

ary layer turbulence, which become markedly different when the system approaches the932

neutral situation. Additionally, the non-dimensionalized fluxes and TKE profiles exhibit933

self-similarity for unstable simulations, leading to great extrapolation performance for934

both ED-TKE and flux-NN. However, for simulations with smaller instability param-935

eters (i.e., near neutral turbulent regime), the non-dimensionalization does not result in936

a self-similar profile, making the extrapolation to simulations with instability parame-937

ters smaller than those in the training data much more challenging. In conventional pa-938

rameterization of climate models, the three cases of stable, neutral, and convective con-939

ditions are often treated using three (or, in some cases, two) separate schemes, by switch-940

ing from one scheme to another at a certain instability parameter which is, itself, set ar-941

bitrarily. This caveat is the subject of our future research to develop a parameterization942

that accurately models across a large range of instability parameters from strongly sta-943

ble to strongly unstable situations.944

One limitation of this study is the scale and grid dependency of our data-driven945

parameterization. Specifically, we coarse-grain the LES data to grids of 1.5x1.5 km2, which946

lies within the ”gray zone” of grid scales. Coarse-graining the data to a different grid size947

would alter the coarse profile of scalars and TKE, rendering the neural network trained948

on the original coarse data inaccurate for modeling other coarse data beyond the train-949

ing set. In other words, our parameterization is not yet scale-adaptive. Furthermore, our950

network is trained on a specific vertical grid spacing and is, thus, sensitive to the grid951

spacing of the test data. Ideally, we aim to develop a model that is grid-agnostic such952

that it can be easily integrated into any weather or climate model, regardless of the hor-953

izontal grid size and vertical gird spacing used in the original data. We recognize this954

shortcoming and plan to address it in future research.955

Appendix A Loss function956

Variational Autoencoders (VAEs) take a Bayesian perspective and assume that the957

input to the encoder is generated from a conditional probability distribution that describes958

an underlying generative model. The multivariate latent representation of the input, de-959

noted as z, is assumed to follow a prior distribution P(z). The model is then trained to960

maximize the probability of generating samples in the training dataset by optimizing both961

the reconstruction loss and the Kullback-Leibler divergence (KL divergence) of the ap-962

proximate posterior, which is assumed to be Gaussian, from the prior distribution. In-963

stead of predicting a single n-dimensional latent representation, the encoder predicts a964

mean and a standard deviation. The KL divergence term forces this distribution to be965

close to the prior distribution, which is typically assumed to be a normal distribution.966

This helps to enforce a disentanglement in the latent variables learned by the encoder,967

which is a property of interest in our work. Additionally, predicting a distribution in-968

stead of a single value results in a continuous latent space, which is valuable for using969

our neural network as a generator for parameterization. Therefore, we include the KL970

divergence in our loss.971

We employ a variational encoder-decoder architecture, where we approximate the972

underlying generative model but instead of reconstructing the input TKE, we predict973

the horizontal and vertical TKE. Hence, our approach involves supervised training rather974

than unsupervised training. The loss consists of four terms: two are the mean squared975
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errors of the predictions, and the other two are the KL divergences of the latent repre-976

sentations of the horizontal and vertical TKE.977

The loss of predicting horizontal and vertical TKE is:

LMSE =
1

N

(
N∑
i=1

D∑
j=1

(TKEt
u − TKEp

u)
2
ij +

N∑
i=1

D∑
j=1

(TKEt
w − TKEp

w)
2
ij

)
(A1)

where t represents the ground-truth coarse-grained profiles computed directly from978

LES, and p represents the coarse-grain profiles predicted by neural network. N repre-979

sents the batch size and D is the dimension of the input which is 128.980

The KL divergence loss, given the assumption of normal distribution for prior, is
as follow

LKLD
=

1

N
∗ 1
d
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d∑
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+µ2
uik

+σ2
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+σ2
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)
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where µ is the mean and σ is the standard deviation predicted by the encoder. d is the981

dimension of latent space, here equal to two and N is the batch size.982

The total loss of ED-TKE is then the sum of the two terms:983

lossED = LMSE + λLKLD
(A3)

λ is a hyperparameter that we empirically set to 10−1. Assigning a lager value to984

λ increases the reconstruction error while assigning a smaller value reduces the Gaus-985

sianization of the distribution of the latent variables and their disentanglement. Gaus-986

sianization and disentanglement are desirable because many statistical models assume987

that the data is normally distributed, and by transforming the data to be closer to a Gaus-988

sian distribution, it can be easier to model and analyze the data. In the context of deep989

learning, Gaussianization can also help to regularize the learning process and prevent990

overfitting. Disentanglement refers to the property of the latent space where each dimen-991

sion of the space represents a distinct and independent factor of variation in the data.992

This means that different aspects of the data are represented by different dimensions in993

the latent space, allowing for more precise manipulation and control of the data. Dis-994

entanglement can also help with interpretability and understanding of the model, as it995

provides a clear mapping between the latent space and the original data space. There-996

fore, by promoting Gaussianization and disentanglement in the latent space, we can im-997

prove the interpretability, flexibility, and generalization performance of the model.998

The loss of Flux-NN is constructed the same way, by combining the KL divergence999

term with the MSE of flux prediction. This loss is then:1000

lossflux =
1

N
∗ 1

D

N∑
i=1

D∑
j=1

(w′x′t
ij −w′x′p

ij)
2 +

1

N
∗ 1

d

N∑
i=1

d∑
k=1

(1− lnσ2
xik

+µ2
xik

+ σ2
xik

) (A4)

Appendix B Predicting diffusive flux1001

Section 4.4 employs a neural network to predict the eddy diffusivity and, conse-1002

quently, the diffusive component of each mode of variability of the turbulent fluxes. This1003

appendix provides additional details on the network’s architecture and its training pro-1004

cess. Figure B1 displays the network’s architecture and its associated loss function. The1005

neural network takes layer-wise TKE and z/zi as inputs and generates a predicted value1006

–27–



manuscript submitted to JAMES

NNw
TKEw(z)
z/zi

Kw(z)

∂X (z)
∂ z

−Kw(z) .
∂X (z)

∂ z

loss=(w ' x 'w (z)−(−Kw(z).
∂X (z)

∂ z ))

2

Inputs Network Output

Figure B1: The neural network uses inputs such as TKEw(z) (TKEu(z)) and z/zi, rep-
resenting the distance to the surface, to predict the eddy diffusivity Kw(z) (Ku(z)). This
eddy diffusivity is then multiplied by the scalar gradient to generate the output, which
represents the diffusive flux. The network is trained with the target value of the convec-
tive (shear) mode, which compels the model to predict a diffusive flux as close as possible
to the convective (shear) mode.

for eddy diffusivity. This predicted value is then multiplied by the gradient of the scalar,1007

such as ∂θ(z/zi)
∂z , resulting in the final prediction of the neural network. The network uti-1008

lizes the convective (shear) mode as its target, meaning that it attempts to maximize1009

the predicted diffusive component of each mode. This approach is similar to the one em-1010

ployed by (Chor et al., 2020), except that they did not use a neural network for their op-1011

timization.1012

The fully connected feed-forward neural network used in this study consists of four1013

layers with 32, 64, 32, and 8 neurons in each layer, respectively. The final layer of the1014

network, responsible for outputting the eddy diffusivity, employs a rectified linear unit1015

(ReLU) activation function to ensure that the predicted eddy diffusivity remains pos-1016

itive. The network is trained using a batch size of 512 for 50 epochs, employing early stop-1017

ping with a patience of five.1018

Open Research Section1019

The machine learning tools developed for this study as well as the scripts for pre-1020

and post-processing data can be found here: https://doi.org/10.5281/zenodo.80390331021

Acknowledgments1022

SS and PG acknowledge funding from European Research council grant USMILE, from1023

Schmidt Future project M2LiNES and from the National Science Foundation Science and1024

Technology Center (STC) Learning the Earth with Artificial intelligence and Physics (LEAP),1025

Award # 2019625 - STC. SS is particularly grateful to Qi Li and Yuanfeng Cui for their1026

generous assistance with large eddy simulations.1027

References1028

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., . . . others (2016).1029

Tensorflow: a system for large-scale machine learning. In Osdi (Vol. 16, pp.1030

–28–



manuscript submitted to JAMES

265–283).1031

Albertson, J. D. (1996). Large eddy simulation of land-atmosphere interaction. Uni-1032

versity of California, Davis.1033

Albertson, J. D., & Parlange, M. B. (1999). Surface length scales and shear stress:1034

Implications for land-atmosphere interaction over complex terrain. Wa-1035

ter Resources Research, 35 (7), 2121-2132. doi: https://doi.org/10.1029/1036

1999WR9000941037

Angevine, W. M., White, A. B., & Avery, S. K. (1994). Boundary-layer depth and1038

entrainment zone characterization with a boundary-layer profiler. Boundary-1039

Layer Meteorology , 68 (4), 375–385.1040

Bardina, J., Ferziger, J., & Reynolds, W. (1980). Improved subgrid-scale models for1041

large-eddy simulation. In 13th fluid and plasmadynamics conference (p. 1357).1042

Behrens, G., Beucler, T., Gentine, P., Iglesias-Suarez, F., Pritchard, M., & Eyring,1043

V. (2022). Non-linear dimensionality reduction with a variational encoder1044

decoder to understand convective processes in climate models. Journal of Ad-1045

vances in Modeling Earth Systems, 14 (8), e2022MS003130. (e2022MS0031301046

2022MS003130) doi: https://doi.org/10.1029/2022MS0031301047

Betts, A. (1973). Non-precipitating cumulus convection and its parameterization.1048

Quarterly Journal of the Royal Meteorological Society , 99 (419), 178–196.1049

Beucler, T., Pritchard, M. S., Yuval, J., Gupta, A., Peng, L., Rasp, S., . . . Gentine,1050

P. (2021). Climate-invariant machine learning. CoRR, abs/2112.08440 .1051

Bolton, T., & Zanna, L. (2019). Applications of deep learning to ocean data in-1052

ference and subgrid parameterization. Journal of Advances in Modeling Earth1053

Systems, 11 (1), 376-399. doi: https://doi.org/10.1029/2018MS0014721054

Bou-Zeid, E., Meneveau, C., & Parlange, M. (2005). A scale-dependent lagrangian1055

dynamic model for large eddy simulation of complex turbulent flows. Physics1056

of Fluids, 17 (2), 025105. doi: 10.1063/1.18391521057

Caruana, R., Lawrence, S., & Giles, C. (2000). Overfitting in neural nets: Backprop-1058

agation, conjugate gradient, and early stopping. Advances in neural informa-1059

tion processing systems, 13 .1060

Chen, R. T., Li, X., Grosse, R. B., & Duvenaud, D. K. (2018). Isolating sources of1061

disentanglement in variational autoencoders. Advances in neural information1062

processing systems, 31 .1063

Cheng, Y., Giometto, M., Kauffmann, P., Lin, L., Cao, C., Zupnick, C., . . . Gen-1064

tine, P. (2019). Deep learning for subgrid-scale turbulence modeling in1065

large-eddy simulations of the atmospheric boundary layer. arXiv preprint1066

arXiv:1910.12125 .1067

Chinita, M. J., Matheou, G., & Teixeira, J. (2018). A joint probability den-1068

sity–based decomposition of turbulence in the atmospheric boundary layer.1069

Monthly Weather Review , 146 (2), 503 - 523. doi: 10.1175/MWR-D-17-0166.11070

Chor, T., McWilliams, J. C., & Chamecki, M. (2020). Diffusive–nondiffusive flux de-1071

compositions in atmospheric boundary layers. Journal of the Atmospheric Sci-1072

ences, 77 (10), 3479–3494.1073

Corrsin, S. (1975). Limitations of gradient transport models in random walks and in1074

turbulence. In F. Frenkiel & R. Munn (Eds.), Turbulent diffusion in environ-1075

mental pollution (Vol. 18, p. 25-60). Elsevier. doi: https://doi.org/10.1016/1076

S0065-2687(08)60451-31077

Deardorff, J. (1972). Theoretical expression for the countergradient vertical heat1078

flux. Journal of Geophysical Research, 77 (30), 5900–5904.1079

Deardorff, J. W. (1974). Three-dimensional numerical study of turbulence in an en-1080

training mixed layer. Bound.-Layer Meteor., 7 , 199–226.1081

Deardorff, J. W., et al. (1970). Convective velocity and temperature scales for the1082

unstable planetary boundary layer and for rayleigh convection. J. atmos. Sci ,1083

27 (8), 1211–1213.1084

–29–



manuscript submitted to JAMES

Doersch, C. (2016). Tutorial on variational autoencoders. arXiv preprint1085

arXiv:1606.05908 .1086

Ertel, H. (1942). Der vertikale turbulenz-wärmestrom in der atmosphäre. Meteor. Z ,1087
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Figure S1: Plots show Flux-NN prediction of scaled vertical turbulent fluxes for simulation
16-0.06. In the left column, the colors distinguish randomly selected samples, displaying the
predicted fluxes (line) alongside the true fluxes (dashed line). The right column showcases the
mean of the predicted (solid line) and true fluxes (dashed line). Shading indicates the variance
in the prediction and true profiles.
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Figure S2: TKE and height dependent tracer flux decomposition to two main modes related to
shear and convection.
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Figure S3: Plot shows (left) convective and (right) shear eddy diffusivity, computed following
section 4.4. Black lines shows the eddy diffusivity computed from Holtslag and Moeng (1991)
for comparison.
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