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Abstract

This paper investigates the application of physics-informed neural networks (PINNs) to solve free-surface flow problems governed

by the two-dimensional shallow water equations (SWEs). Two types of PINNs are developed and analysed: a physics-informed

fully connected neural network (PIFCN) and a physics-informed convolutional neural network (PICN). The PINNs eliminate

the need for labelled data for training by employing the SWEs, initial and boundary conditions as components of the loss

function to be minimized. Solutions obtained by both PINNs are compared against those delivered by a finite volume (FV)

solver for two idealized problems admitting analytical solutions, and one real-world flood event. The results of these tests show

that the prediction accuracy and computation time (i.e., training time) of both PINNs may be less affected by the resolution

of the domain discretization than the FV model. Overall, the PICN shows a better trade-off between computational speed and

accuracy than the PIFCN. Also, our results for the two idealized problems indicated that PICN and PIFCN can provide more

accurate predictions than the FV model, while the FV simulation with coarse resolution (e.g., 5 m and 10 m) outperformed

PICN and PIFCN in terms of the speed-accuracy trade-off. Results from the real-world test showed the finely resolved (10

m resolution) FV simulation generally provided the most accurate approximations at flooding peaks. However, both PINNs

showed better speed-accuracy trade-off than the FV model in terms of predicting the temporal distribution of water depth,

while FV models outperformed the PINNs in their predictions of discharge.
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Abstract11

This paper investigates the application of physics-informed neural networks (PINNs) to12

solve free-surface flow problems governed by the two-dimensional shallow water equa-13

tions (SWEs). Two types of PINNs are developed and analysed: a physics-informed fully14

connected neural network (PIFCN) and a physics-informed convolutional neural network15

(PICN). The PINNs eliminate the need for labelled data for training by employing the16

SWEs, initial and boundary conditions as components of the loss function to be min-17

imized. Solutions obtained by both PINNs are compared against those delivered by a18

finite volume (FV) solver for two idealized problems admitting analytical solutions, and19

one real-world flood event. The results of these tests show that the prediction accuracy20

and computation time (i.e., training time) of both PINNs may be less affected by the21

resolution of the domain discretization than the FV model. Overall, the PICN shows a22

better trade-off between computational speed and accuracy than the PIFCN. Also, our23

results for the two idealized problems indicated that PICN and PIFCN can provide more24

accurate predictions than the FV model, while the FV simulation with coarse resolution25

(e.g., 5 m and 10 m) outperformed PICN and PIFCN in terms of the speed-accuracy trade-26

off. Results from the real-world test showed the finely resolved (10 m resolution) FV sim-27

ulation generally provided the most accurate approximations at flooding peaks. How-28

ever, both PINNs showed better speed-accuracy trade-off than the FV model in terms29

of predicting the temporal distribution of water depth, while FV models outperformed30

the PINNs in their predictions of discharge.31

1 Introduction32

Free-surface flow phenomena are usually modeled by the shallow water equations33

(SWEs), a nonlinear system of partial differential equations (PDEs) governing the evo-34

lution of water depth and vertically averaged velocity in the two horizontal dimensions.35

Over the last decades, significant efforts have been made to approximate the solution to36

the SWEs in a discretized form through numerical methods, such as Finite Difference37

(FD) (e.g., Casulli, 1990; Molls & Chaudhry, 1995; Kurganov & Levy, 2002, and oth-38

ers), Finite Volume (FV) (e.g., Alcrudo & Garcia-Navarro, 1993; Bale et al., 2003; Botta39

et al., 2004; Yoon & Kang, 2004; Toro & Garcia-Navarro, 2007, and others), or Finite40

Element (FE) (e.g., Lynch & Gray, 1979; Hanert et al., 2005; Dawson et al., 2006; Mar-41

ras et al., 2016, and others). These methods are now well-established and have been the42

object of extensive tests and validation (e.g., Toro & Garcia-Navarro, 2007; Wilson et43

al., 2007; Liang & Marche, 2009; LeVeque et al., 2011, and others). While the ability of44

these models to capture the main properties of free-surface flows has been widely ver-45

ified, accurate solutions to real-world problems typically require the use of a finely re-46

solved computational mesh, which tends to significantly increase the computational cost47

(Bernard et al., 2009; Liang, 2011; Juez et al., 2014). In explicit numerical schemes for48

the solution of the 2D SWEs, the computational cost C scales cubically with the size of49

the computational grid ∆x (i.e., C ∼ ∆x−3). As a result, important applications such50

as large-scale flood simulations are often beyond the capabilities of available numerical51

methods given existing computational resources. This is particularly challenging when52

simulations need to be performed in real-time, or as part of a probabilistic flood risk anal-53

ysis (Leskens et al., 2014; Sanders & Schubert, 2019; Ferrari & Vacondio, 2022; J. Li et54

al., 2022). For example, flood risk management usually requires the simulation of a large55

number of inundation scenarios, which may increase the overall computational time by56

orders of magnitude. Although the computational speed of models can be improved by57

using state-of-the-art hardware and parallel computing algorithms (Leandro et al., 2014;58

Monnier et al., 2016), such techniques may still be insufficient to meet the computational59

requirements of many important applications (Kabir et al., 2020). Owing to these lim-60

itations, a cost-effective model for free-surface problems may offer an appealing alter-61

native.62
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Over the last decades, Machine Learning (ML) models, and Artificial Neural Net-63

works (ANNs) in particular, have found a wide range of applications, such as in finan-64

cial prediction (Henrique et al., 2019), facial recognition (Sulavko, 2020), supply chain65

optimization (Carbonneau et al., 2008), radiation forecasting (El Naqa et al., 2015), and66

automatic cancer screening (William et al., 2018), to cite only a few. The extraordinary67

increase in applications of ML models is largely due to their ability to mathematically68

describe any nonlinear relationship between inputs and outputs according to the univer-69

sal approximation theorem (Hornik et al., 1989), the increasing availability of data for70

training, and increasing computational power.71

The first works using ML for the solution of problems governed by the SWEs are72

relatively recent and focused on the development of simple meta-models (e.g., Kabir et73

al., 2020; Liu & Pender, 2015; Bermúdez et al., 2019; Mahesh et al., 2022, and others).74

In this type of model, ML is used to build a prediction model to describe the input-output75

relationship previously obtained through the solution of the governing PDEs by another76

numerical approximation model; i.e. the ML model thus becomes a surrogate model. These77

surrogate models typically need to be trained using the results of a large number of nu-78

merical simulations conducted at fine resolution, which can be very computationally de-79

manding.80

Physics-Informed Neural Networks (PINNs), for which data (and therefore expen-81

sive numerical simulations) are not required for training, have gained increasing atten-82

tion in recent years (Pang et al., 2019; Mao et al., 2020; Cai et al., 2021; Krishnapriyan83

et al., 2021; Jin et al., 2021). A PINN is essentially a ML algorithm which uses the in-84

formation contained in the physical laws (such as the governing PDEs, boundary and85

initial conditions) to train the model. This eliminates the need for training data and thus,86

expensive numerical simulations. A data-free PINN is required to satisfy the governing87

PDEs, Initial Conditions (ICs) and Boundary Conditions (BCs) simultaneously. Recent88

applications of ML algorithms to solve complex physics phenomena have focused on the89

use of Deep Learning (DL) models (e.g., Sun et al., 2020; Zhang et al., 2020; Haghighat90

et al., 2020; Vlassis & Sun, 2021, and others). DL is a form of ANN with more than one91

hidden layer, which provides the complexity required to model intricate nonlinear rela-92

tionships, such as those found in computer vision (Voulodimos et al., 2018), health man-93

agement (Khan & Yairi, 2018), language translation (Rastgoo et al., 2021), and remote94

sensing (X. X. Zhu et al., 2017). In the past few years, a large number of data-free PINNs95

have been developed by employing DL techniques, such as the Fully Connected Neural96

Networks (FCNNs) and Convolutional Neural Networks (CNNs). For example, in Raissi97

et al. (2019) several FCNNs were trained to predict the solutions to various systems of98

PDEs, including Allen–Cahn, Schrödinger, Navier–Stokes, and Korteweg–de Vries equa-99

tions. In the context of fluid dynamics, other implementations of FCNNs include those100

of Sun et al. (2020) and Mao et al. (2020), who used their DL models to find solutions101

to the Navier-Stokes (in steady state) and Euler equations (involving shock waves), re-102

spectively. The use of CNNs has also been explored, for instance, for problems governed103

by the Navier-Stokes (Cai et al., 2021) and Boltzmann transport equations (R. Li et al.,104

2021), or for predicting steady flow in random heterogeneous media (Y. Zhu et al., 2019).105

The success of these works shows that data-free PINNs should be considered as serious106

contenders for solving flow problems that are typically modelled by PDEs, and which107

have been traditionally solved using conventional numerical methods (FD, FV, etc.).108

While ML trained from labeled data (i.e., mainly conventional numerical solutions)109

has been used to solve the SWEs (e.g., Mahesh et al., 2022; Ştefănescu et al., 2014; Yıldız110

et al., 2021; C. Li et al., 2023, and others), to the authors’ knowledge only a very lim-111

ited number of articles (e.g., Bihlo & Popovych, 2022) has been published so far on the112

use of a data-free PINNs for this purpose. In Bihlo and Popovych (2022), a PINN (specif-113

ically, based on a FCNN) was employed to find solutions to the SWEs on a spherical do-114

main, and the focus was on idealized problems which may find applications in meteo-115
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rology. Whether a similar DL technique may be used to accurately and efficiently solve116

challenging free-surface flow problems involving friction and complex boundary condi-117

tions, such as large-scale simulations of flow over complex topography in rivers and coastal118

areas, remains an open question.119

The solution of PDEs, and in particular of the SWEs, using PINN algorithms is120

still in its infancy and further investigation is required to understand the main charac-121

teristics of solutions obtained by these methods. Firstly, the trainset for PINNs needs122

to be generated from a particular, discrete, set of points. It remains unclear how accu-123

racy and computational performance (i.e., training speed) depend on the discretization124

of the domain. Additionally, both FCNNs and CNNs are commonly used DL models in125

the research field of PINN. However, in a specific problem governed by a system of PDEs,126

it is usually difficult to determine which one will deliver the best performance before car-127

rying out tests.128

The aim of this paper is to develop and test two different PINN models to approx-129

imate solutions to various free-surface flow problems governed by the 2D SWEs. The PINN130

models are based on the FCNN and CNN approaches, and are hereafter referred to as131

PIFCN (physics informed fully connected network) and PICN (physics informed convo-132

lutional network), respectively. These models are data-free in that they do not require133

data from separate numerical simulations, or laboratory/field measurements, to train the134

networks. In this paper both PIFCNs and PICNs are compared against the Finite Vol-135

ume (FV) solver of the 2D SWE developed by de Almeida et al. (2016) through a set136

of test cases including two idealized flow problems and one real-world flood event. The137

rest of this paper is organized as follows. First, the governing equations and the frame-138

work of both PINNs are described in Section 2. This section also provides a concise re-139

view of FCNNs and CNNs. In Section 3, the accuracy and computational performance140

of the proposed physics-informed networks (PIFCN and PICN) are investigated for the141

three test cases. The main outcomes of the study are discussed and summarized in Sec-142

tion 4.143

2 Methods144

2.1 Overview145

Most problems requiring the simulation of free-surface flows in the horizontal plane,146

such as flow in rivers and estuaries, dam-breaks, and flood wave propagation can be mod-147

eled by the SWEs. The 2D SWEs represent a system of nonlinear, hyperbolic PDEs de-148

scribing the conservation of water mass and depth-average momentum, which can be ex-149

pressed as:150

∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
= S(U) ; (1)

U =

 h
hu
hv

 , F(U) =

 hu
hu2 + 1

2gh
2

huv

 , G(U) =

 hv
huv

hv2 + 1
2gh

2

 , S(U) =

 0
gh(sox − sfx)
gh(soy − sfy)

 ,

(2)
where x and y are the spatial (horizontal) coordinates; t is time; h(x, y, t) is the water151

depth; u(x, y, t) and v(x, y, t) denote the x and y components of the depth-averaged flow152

velocity, respectively; sox = −∂z/∂x and soy = −∂z/∂y are the bed slopes in the x153

and y directions, respectively, and z(x, y) is the terrain elevation (assumed constant in154

time); sfx and sfy denote the friction slopes in the x and y directions, respectively. The155

friction slopes can be modeled using Manning-Strickler’s expression, sfx = n2u
√
u2 + v2h−4/3,156

sfy = n2v
√
u2 + v2h−4/3, where n is the Manning coefficient. Solutions U = (h, hu, hv)T157

to this system (subject to well-posed boundary and initial conditions) can be computed158

by several numerical methods available, as discussed in the Introduction.159
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In this paper we propose a ML-based solution to this problem, whereby the input
layer x represents the independent variables and parameters of the problem, x = (x, y, t, n, z),
and the trained model ℵ is expected to provide an approximate solution for h(x), hu(x)
and hv(x) in the corresponding domain; in other words:

U(x) ∼= Ũ(x) = ℵ(x ;Γ), (3)

where Ũ(x) denotes the output from the PINN, which is in turn defined by the group160

of trainable parameters Γ (e.g., convolutional filter, weights and biases). The PINN mod-161

els proposed in this paper are trained by minimizing the composite loss function, defined162

as:163

L = λ1·Lp + λ2·Lb + λ3·L0, (4)

where L (a scalar) is the loss function to be minimized, λ1−3 are the vectors of penalty164

coefficients for every specific loss term; namely, Lp penalizes the residuals of the SWEs,165

Lb and L0 penalize the BCs (subscript b) and ICs (subscript 0) residuals, respectively.166

These loss terms are in turn given by:167

Lp =
1

N

N∑
i=1

|∂tŨi + ∂xF(Ũi) + ∂yG(Ũi)− S(Ũi)| (5a)

Lb =
1

Nb

Nb∑
i=1

|Ũb,i −Ub,i| (5b)

L0 =
1

N0

N0∑
i=1

|Ũ0,i −U0,i| (5c)

The tilde symbol ( ˜ ) denotes neuronal network output and the subscript i ∈ [1, N ]168

refers to the ith collocation point. N represents the number of collocation points, which169

in this paper is defined from a uniformly discretized domain of the independent variables170

N = nx×ny×nt, where nx, ny and nt are the number of points used to discretize the171

domain along the x, y and t coordinates, respectively. The boundaries of the spatio-temporal172

domain are represented by a subset of N ; in particular, the model will employ Nb < N173

and N0 < N points to define the BCs and ICs, respectively.174

For each approximate solution produced by the PINN, the partial derivatives in175

Eq. 5a are computed through the method of automatic differentiation (autodiff) (Paszke176

et al., 2017), which back-propagates derivatives from the outputs to the targeted inputs177

through the chain rule to compute the desired derivatives (Cai et al., 2021; Baydin et178

al., 2018). Thus, the partial derivatives of the approximate solution with respect to the179

independent variables can be computed without the errors common to numerical differ-180

entiation techniques. The loss function is minimised using the gradient descent method,181

with gradients of the loss function with respect to trainable parameters computed by back-182

propagation. These parameters can be updated either using all, or a subset (batch) of183

the collocation points.184

One significant difficulty of solutions to flow problems modeled by the SWEs is the185

so-called wet-dry front issue (i.e., moving boundary). Physically, the value of the flow186

depth h cannot be negative. Areas of the domain where such solutions may be obtained187

correspond to dry areas, which are not governed by the SWEs. To overcome this prob-188

lem, we set Lp = 0 if the predicted value of h̃ is negative. This ensures that the model189

does not penalize making predictions outside the wet domain.190

Figure 1 shows a diagram illustrating the overall modeling framework proposed in191

this paper for solving the SWEs by a PINN method. Note that the collocation points192

–5–
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can be chosen randomly in the space-time domain and their number prescribed. The gen-193

eral steps are outlined below.194

1. Define the architecture of the PINN195

2. Initialize the hyperparameters for the PINN196

3. Compute the outputs from the PINN with given inputs197

4. Compute the derivatives with respect to x, y, t and the corresponding loss L198

5. Update the PINN based on L199

6. Repeat steps 3 to 5 until the end of the user-prescribed number of training epochs200

Figure 1. A schematic diagram of a physics informed neuronal network (PINN) for finding

approximate solutions to the shallow water equations.

2.2 Fully Connected Neural Network201

The FCNN is the most commonly applied ML model and often includes more than202

one hidden layer. Every hidden layer receives the signals from the previous layer, per-203

forms basic computations defined at each neuron, and passes the results to the next layer204

(Haykin, 2009). Figure 2 shows a diagram of a FCNN. Mathematically, the basic func-205

tion of the output for the jth hidden layer yj is:206

yj = φ (Wjyj−1 + bj) (6)

where W is the matrix of weights, b is the vector of biases and φ() is the activation func-207

tion.208

In the proposed method, solutions for each output variable η(x) = h(x)+z, hu(x),209

hv(x) are approximated by 3 separate FCNNs with the same structure, as illustrated in210

Figure 2. Every FCNN receives the same raw inputs. As a result, the trainable param-211

eters of the solution for each output variable are decoupled. This can significantly im-212

prove the prediction accuracy in multivariate problems, especially when the distributions213

and magnitudes of the variables are significantly different (e.g., Sun et al., 2020; Gao et214

al., 2021; Guo et al., 2020, and others).215
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Figure 2. (a) The architecture of the physics-informed fully connected networks (PIFCNs)

employed in this paper. (b) An example of a typical fully connected neuronal network (FCNN)

which is employed as a sub-network within the PIFCN to predict each individual output; as illus-

tration, 2 hidden layers with 7 neurons each are shown, but these hyperparameters are varied in

this study.

2.3 Convolutional Neural Network216

The CNN adds one or more convolutional layers that extract features of the raw217

training dataset before feeding this onto the typical hidden layers used to build FCNNs.218

The general expression for the convolution operator ⋆ with 1 stride is:219

(s ⋆ k)i =

n∑
j=1

kjsi+j−1 i = 1, 2, . . . ,m− n+ 1 (7)

where s denotes the input signal vector of length m (in this paper, this is x), and k de-220

notes the trainable filter of length n. The convolution operation is to slide the preset con-221

volutional filter over the signal input and output the signal with a shorter length (i.e.,222

the input vector is shortened by n−1 elements). The shorter length of the convolved223

output signal allows the following typical hidden layer to have fewer neurons, facilitat-224

ing the network’s learning of large-scale problems with high complexity (Gao et al., 2021).225

Figure 3 shows the structure of the CNN used in this paper. The trainset is gen-226

erated from a number of points (i.e., collocation points) randomly sampled from a grid227

of equally spaced points. Each output variable, h(x), hu(x), hv(x), is also predicted by228

a separate sub-CNN.229

2.4 PINN design230

The accuracy and computational performance of the PINNs described in the pre-231

vious sections will be assessed and compared against the corresponding performance and232

solutions by a conventional FV model. There is currently no universal design approach233

to determine the optimal, or even appropriate, structure for a neural network (Bihlo &234

Popovych, 2022). The general selection rule for PINN design is to find a structure with235

the lowest possible complexity that achieves the desired accuracy of prediction. This rule236

can usually help provide an AI model with quick learning speed and improved predic-237
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Figure 3. An example of the structure of a CNN-based model with 3 subnets for solving

free-surface flow problems. Each output variable (η,u or v) is approximated by a separate CNN

with the above structure; all sub-networks receive the same inputs. Each CNN has two convo-

lutional layers and one hidden layer. The hyperparameters shown in the figure are discussed in

Section 2.4.

tion capabilities while avoiding overfitting issues (Blumer et al., 1987). In this paper, the238

final decision for the model structure (i.e. hyperparameters such as the number of neu-239

rons, hidden layers, and convolutional layers and channels in the case of CNN) was made240

after many practical attempts (see Appendix A). As the evaluation of the PINNs per-241

formance in this paper consists of two, often competing, criteria (accuracy and compu-242

tational cost), it may be difficult to find a single assessment metric to guide the PINNs243

design. Hence, we give priority to accuracy by gradually increasing the complexity of the244

PINNs until similar or higher accuracy than benchmark results (e.g. from an analyti-245

cal solution or a finely resolved FV simulation) is attained. Generally, in our design it-246

erations, the number of hidden layers and the corresponding neurons for building PINNs247

(i.e., PIFCN and PICN) started from 1 and 50, respectively. The number of convolutional248

layers and corresponding channels started from 1 and 5, respectively. For both PICN and249

PIFCN we use the hyperbolic tangent activation function (Tanh). Note that the PINN250

design may change significantly depending on domain and flow conditions; i.e., it can be251

very problem-specific. It is also important to recognize that the networks chosen do not252

represent the strictly optimal structure, but only the best out of the subset of structures253

that were tested.254

For improving the learning speed and reducing the effect of parameter initializa-255

tion, the Batch Normalization method of Ioffe and Szegedy (2015) was used, which nor-256

malizes the signals between adjacent convolutional or hidden layers. The Adam optimizer257

(Kingma & Ba, 2014), along with the ‘1-cycle’ (Smith & Topin, 2019) strategy was used258

to control the training of the PINNs. The PINNs were implemented on the Pytorch plat-259

form Paszke et al. (2017). The FV simulation and the training of the PIFCNs and PICNs260

were performed using the University of Southampton’s supercomputer Iridis 5 ensuring261

that the exact same hardware resources were employed (thus ensuring a fair compari-262

son across all simulations performed).263
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3 Case studies264

This section describes three case studies used to test the PINNs, comparing their265

results against analytical and numerical (Finite Volume) solutions. The first and second266

tests are idealized 1D (unsteady and steady, respectively) flow problems for which an-267

alytical solutions are available. However, simulations were performed on a 2D domain268

since the ultimate aim is to employ the PINNs developed here in 2D flow problems. The269

third test case is an unsteady two-dimensional simulation of a real-world flood event that270

took place in the Tiber river, Italy. This case study has been previously employed to eval-271

uate the performance of other numerical models (e.g., Morales-Hernández et al., 2016;272

Shamkhalchian & de Almeida, 2021, and others).273

Topographic data used in all tests are defined by square grids with different res-274

olutions. The grid points are used to generate a triangular mesh for the FV model. These275

are also employed, along with defined temporal steps, as the collocation points for the276

PINNs training. The accuracy of the solutions will be assessed by the root mean square277

error, R, of the outputs of each model relative to the benchmark solution. For example,278

in the evaluation of accuracy for the prediction of h with Np output points, the perfor-279

mance metric is defined as Rh =
√∑

(hi − h̃i)2/Np, where hi is the benchmark solu-280

tion (i.e., the analytical solution when available, or the solution of the FV model at fine281

resolution). The second performance metric we employ is the computational cost, Tc, which282

represents training time for the PINNs (PICN and PIFCN), and run time for the FV model.283

In the results presented in the following sections, predictions by the FV, PIFCN and PICN284

models are labelled with the different resolutions used. For example, FV (10) represents285

a 10 m resolved simulation using the FV hydraulic model, and PICN (50) refers to the286

prediction of the PICN trained from a 50 m resolved dataset.287

3.1 Flood wave propagation over a horizontal plane288

The first test case is a one-dimensional simulation of an inundation wave propa-289

gating over a horizontal bed. A time-dependent BC is imposed at x = 0. Under the290

idealized assumption of a flow velocity that is constant in space and time, the problem291

admits an analytical solution which can be expressed as (Hunter et al., 2005):292

ha(x, t) =

{
7

3

(
n2u2(x− ut)

)}3/7

, (8)

where the subscript a is used to denote the analytical solution. The domain used is a293

100 m wide, 1200 m long channel. The constant velocity is set as u(x, t) = 0.29 ms−1
294

and the boundary condition h(x = 0, t) is given by Eq. 8. The domain is initially dry,295

i.e., h(x, t = 0) = 0. Manning’s coefficient n is set to 0.03 sm−1/3. The duration of296

the simulation is 3600 s. The FV model was run at resolutions of 1, 2, 5 and 10 m, while297

the PINN models were trained with datasets defined at resolutions of 10, 25, 50 and 100298

m. While the time step of the explicit FV scheme is controlled by the Courant-Friedrichs-299

Lewy (CFL) stability condition, the regression approximation implemented by the PINN300

model is not limited by temporal resolution. However, the time step adopted to train301

the PINN model is a factor that clearly affects both accuracy and computational per-302

formance. For this test, we use a temporal resolution for the PINN of 300 s. The selected303

batch size is set as the full set of collocation points nx × ny × nt.304

The architecture of the PICN consists of 2 convolutional layers (the first and sec-305

ond layers have 5 and 20 channels, respectively) and 1 fully connected hidden layer with306

50 neurons. The architecture for the PIFCN consists of 3 fully connected hidden layers,307

each of which has 1000 neurons.308

Figures 4 and 5 illustrate the values of h(x, y = 50m) and hu(x, y = 50m) (left309

vertical axes), and the corresponding error (right vertical axes) ϵh(x, y = 50m) = h̃(x, y =310
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Figure 4. Test 1: Longitudinal profiles (y = 50 m) of water depth errors ϵh relative to the

analytical solution obtained by each of the models at t = 1800 s (top) and t = 3600 s (bottom),

shown against right y−axis. The analytical solution for h (purple line) is plotted against the left

y−axis; note that the right-side figure is the enlarged version of the rectangular box in the left-

side figure; both figures share the same right y−axis.
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Figure 5. Test 1: Longitudinal profiles (y = 50 m) of water depth errors ϵhu relative to the

analytical solution obtained by each of the models at t = 1800 s (top) and t = 3600 s (bottom).

The analytical solution for hu (purple line) is plotted against the left y−axis; note that the right-

side figure is the enlarged version of the rectangular box in the left-side figure; both figures share

the same right y−axis.

–11–



manuscript submitted to Water Resources Research

50m) − ha(x, y = 50m) and ϵhu(x, y = 50m) = h̃u(x, y = 50m) − (hu)a(x, y = 50m)311

computed by all three models at t = 1800 and 3600 s, respectively. Values of hv are not312

reported as the test case is fundamentally one-dimensional. Overall, all the water depth313

predictions, with the exception of PIFCN (100), show good agreement with the analyt-314

ical solution (i.e. most results displaying |ϵ| < 0.01m). As the position of the wet-dry315

front predicted by the models does not exactly match the analytical solution, and the316

front is steep at that point, errors are larger in this region. PICN and FV both show sim-317

ilar prediction accuracy of both h and hu, whereas PIFCNs with coarsely resolved train-318

sets (i.e., 50 m and 100 m) provide higher prediction errors of hu.319

Figure 6 shows Rh (relative to the analytical solution ha) for all results obtained320

with the PICN, PIFCN, and FV models as a function of the corresponding computational321

time Tc. The sum to compute Rh is over all collocation points; i.e., spanning the whole322

spatio-temporal domain. In this figure, the various points (blue and red) presented for323

each PINN model represent solutions obtained at different epochs during the training324

of the networks, which correspond to different computation time and level of accuracy.325

The green cross points represent the simulation accuracy and computation time for the326

FV model. The results in this figure are based on model (i.e. PICN, PIFCN, and FV)327

outputs at the same grid points selected from the entire domain with a spatial and tem-328

poral resolution of 10 m and 360 s. Predictions of hu follow the general pattern observed329

for h on Figure 6 and are not reported here to avoid repetition. Figure 6 allows us to330

comparatively assess the performance of the models tested in terms of their speed-accuracy331

trade-off. Based on this criterion, a model performs better than another when it provides332

more accurate results under the same computational time, or vice-versa; in other words,333

the best results are those closest to the bottom left corner of the plot.334

Figure 6 shows that FV (10) and FV (5) produce sub-centimetre Rh (which is usu-335

ally considered a good level of accuracy for many applications) at least one order of mag-336

nitude faster than the PINN models, whereas FV (2) takes slightly longer than PICNs337

(for the same level of accuracy), and FV (1) only outperforms PIFCN (10) in terms of338

the speed-accuracy trade-off. All PINNs except PIFCN (100) show the potential to achieve339

better accuracy of prediction than the FV model at the highest resolution tested here340

(1 m), provided they are trained for long enough. PICNs provide a faster solution (for341

similar Rh values) than PIFCNs. Also, for PIFCN, the trainset size (which in this case342

is determined by the resolution) did not significantly affect its maximum accuracy at res-343

olutions ≤ 50 m, whereas the accuracy of the FV model continues to improve as the mesh344

is refined below 10 m.345

3.2 Subcritical steady flow over an undulating bed346

The second test case represents a 1D, steady, non-uniform flow over an undulat-347

ing bed, for which an analytical solution is available (see MacDonald, 1996; de Almeida348

& Bates, 2013; Delestre et al., 2013). This test case will be used to evaluate the solu-349

tion obtained by the PICN and PIFCN in a problem with variable topography. The (rect-350

angular) channel is 1000 m long, and Manning’s coefficient n is set to 0.03 sm−1/3. The351

constant inflow discharge per unit width of the channel is qx = uh = 2 m2s−1, and the352

downstream water depth is 9
8 m. We prescribe the following function representing the353

water depth h(x) (which is the benchmark solution against which the PINN approxima-354

tions will be compared):355

h(x) =
9

8
+

1

4
sin

( πx

500

)
. (9)

We model this 1D problem in a 2D domain using a width of 50 m (and qy = 0)356

for the reasons discussed previously. Also, although the solution sought is for a steady357

flow problem, the steady condition was reached via an unsteady flow simulation, as the358
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Figure 6. Test 1: Values of Rh as a function of Tc (training time for PICN and PIFCN and

run time for FV); note that the right-most point of each cloud corresponds to the highest ac-

curacy that any given PINN can achieve. The number in brackets represents the resolution (in

meters) of the training data set (for PICN and PIFCN) or mesh (for the FV model).

object of this paper is to test approximate methods to solve the time-dependent SWEs.359

The unsteady simulations were run from an initially dry domain over a period of 20 hours,360

whereby the upstream BCs increase linearly with time from zero to the aforementioned361

constant values over the first 10 hours of the simulation.362

The training dataset for PICN and PIFCN was obtained from grids resolved at 5,363

10, 25 and 50 m at the following times: 0, 1, 3, 5, 10, 15 and 20 hours. The selected batch364

size is 2/7×N , where the value 2/7 comes from trial and error (larger batch sizes de-365

creased the accuracy of the results). The FV model was run at resolutions of 2, 5 and366

10 m.367

For this case, the architecture of the PICN consists of 2 convolutional layers (the368

first and second layers have 5 and 20 channels, respectively) and 1 fully connected hid-369

den layer with 50 neurons (same as in Test 1). The architecture of the PIFCN consists370

of 3 fully connected hidden layers, each of which has 1000 neurons (different from Test371

1).372

Figure 7 shows the analytical curve for depth profile at the centre of the channel373

h(x, y = 30 m ) (left axis) and the corresponding errors of each of the approximate so-374

lutions ϵh (right axis) predicted by the PICN (blue points), PIFCN (red points), and FV375

models (green points). Figure 8 presents similar results but for the variable hu. As the376

analytical solution is for the steady state, only the results at the end of the simulations377

are assessed. Overall, all models tested delivered results at sub-centimeter level of ac-378

curacy for h. The three PICNs showed the lowest errors of both h and hu, followed by379

FV (2).Values of ϵhu obtained from FV models display small (mostly within 1% of the380

actual value of hu) spatial variations, while they nearly are constant for both PIFCN and381

PICN.382
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Figure 7. Test 2: Longitudinal profiles (y = 30 m) of water depth errors obtained by each of

the models at the end of the simulation/training (right y−axis). The analytical solution h (pur-

ple line) is plotted against the left y−axis.

Figure 8. Test 2: Longitudinal profiles (y = 30 m) of water depth errors obtained by each

of the models at the end of the simulation/training (right y−axis). The analytical solution hu

(purple line) is plotted against the left y−axis.
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Figure 9. Test 2: Values of Rh as a function of Tc (training time for PICN and PIFCN and

run time for FV); note that the right-most point of each cloud corresponds to the highest ac-

curacy that any given PINN can achieve. The number in brackets represents the resolution (in

meters) of the training data set (for PICN and PIFCN) or mesh (for the FV model).

Figure 9 presents the values of Rh against the corresponding computational time383

taken to train the PICN (blue points), PIFCN (red points), and to run the FV model384

(green cross points) at different resolutions. The value of Rh of each model is calculated385

from its steady-state predictions of h; namely: Rh =

(√∑
(hi − h̃i)2/Np

)∣∣∣∣
t=ts

, where386

ts is the time after which a steady state is reached for each PINN or FV model. For the387

computation time of FV models described in Figure 9, the value of Tc is the time required388

for all FV models to reach steady state. The results for hu show a pattern similar to that389

in Figure 9 and are not presented for conciseness. All simulations achieve sub-centimetric390

Rh, with FV (10) delivering the results at least one order of magnitude faster than the391

other solutions. PIFCN (10) was the slowest of all models. Figure 9 shows that the pre-392

diction of h from PICN (10) displays the highest accuracy, with an Rh of 0.85 mm, al-393

though this was obtained at a computation time that was 56 times longer than FV (10).394

All the PINN results also attain an accuracy higher than or similar to that of FV(2). In395

this test case, the relative differences in the prediction accuracy among the PICN mod-396

els is less than the difference observed from FV (5) to FV (10). In terms of the influence397

of resolution on the computational speed, the PICN is also less sensitive than PIFCN398

in this problem.399

3.3 Simulation of real-world river flooding400

While Tests 1 and 2 have assessed the ability of PINN models to deal with impor-401

tant aspects of flow problems, such as unsteadiness and variable topography, both case402

studies represented idealized, one-dimensional problems. In order to investigate the per-403

formance of PINNs under more complex and realistic problems, this section presents the404

results of simulations of a real-world scenario. The scenario in question is a flood event405

that occurred between 27 November and 1 December 2005 in the Tiber river (Morales-406

Hernández et al., 2016), which flows from the Apennine Mountains to the Tyrrhenian407

Sea in Italy. The reach of river employed in this simulation is approximately 6 km long408

and is located near the city of Rome. In this region, the mean discharge of the Tiber river409
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is 267 m3s−1, while its peak discharge for a 200-year return period is around 3200 m3s−1.410

The event modeled in this paper was also previously simulated in Morales-Hernández411

et al. (2016) and Shamkhalchian and de Almeida (2021). The domain comprises an area412

of 6 km × 2 km. The duration of the event simulated is 113 hours. The values of Man-413

ning’s coefficient n used are the same as in Morales-Hernández et al. (2016) and Shamkhalchian414

and de Almeida (2021); namely, n = 0.035 sm−1/3 for the main channel, and n = 0.0446415

sm−1/3 for the floodplains.416

The boundary conditions were obtained from Morales-Hernández et al. (2016), and417

correspond to the time series of flow discharge and water surface elevation at the upstream418

and downstream sections of the river at the boundary of the computational domain. The419

initial conditions U(x, y, t = 0) were defined from the results of the FV model under420

steady-state conditions (Q = 374 m3s−1) performed at 5 m resolution. PINNs were trained421

from datasets resolved at 50, 100 and 200 m, while the FV model was run using meshes422

generated from gridded data at resolutions of 10, 25 and 50 m. The corresponding tem-423

poral resolution for the trainset for the PINNs is 4 hours. The batch size was set to one424

third of the total number of collocation points.425

For this test case, the architecture of the PICN consists of 2 convolutional layers426

(the first and second layers have 10 and 40 channels, respectively) and 1 fully connected427

hidden layer with 100 neurons. The architecture of the PIFCN consists of 3 fully con-428

nected hidden layers, each having 2000 neurons. Our tests showed that further increas-429

ing the network complexity would not improve the model’s prediction accuracy, and may430

substantially increase the training time and/or cause the program to exceed the mem-431

ory capacity of the computer resources used.432

Since an analytical solution is not available for this problem, the results of the FV433

simulation at fine resolution (5 m) were used as the benchmark. The accuracy of the so-434

lutions of the time-dependent variables is assessed at two cross-sections (located approx-435

imately at distances of 1/3 and 2/3 of the length of the river within the domain from436

the upstream boundary, and hereafter referred to as S1 and S2, respectively) at 1 hour437

temporal resolution.438

Figures 10 and 11 illustrate the time series of prediction errors (right vertical axes),439

along with the actual predicted values of the flow depth h and flow discharge Q (left ver-440

tical axes) at cross-sections S1 and S2 for each PICN, PIFCN, and FV models. Figure 10441

shows that the FV and PIFCN simulations consistently predict larger and lower depths442

than the benchmark solution, respectively, at both cross sections in the main channel,443

while PICN results display both positive and negative values of ϵh. Results from PICNs444

at S1 and S2 are markedly more accurate than those delivered by PIFCNs and the coarse-445

resolution FV models. For example, FV (50) and FV (25) produced results that devi-446

ate substantially (i.e. up to approximately 1.2 m and 2.5 m at S1 and S2, respectively)447

from the benchmark solution. On the other hand, FV (10) generally produced the most448

accurate depth predictions out of all models tested. The ability of the models to predict449

flow velocities (and therefore, the volumetric flow rate Q) is assessed by ϵQ = Q̃−|Q|,450

where Q =
∫
hŨ·ndl is the total discharge; l is the length along the cross-sections (i.e.,451

S1 and S2, which span across the whole domain) and n is the unit vector normal to the452

cross-section. Figure 11 shows the predicted errors ϵQ obtained by all models as a func-453

tion of time. These results are markedly different from those previously presented for454

ϵh. Namely, all FV models display values of ϵQ that are substantially smaller than those455

predicted by PICN and PIFCN models. The maximum values of ϵQ for PICN and PIFCN456

are more than 50% and 70% of the benchmark (FV (5)) in S2, respectively. The pos-457

sible reason behind these results might be that the water surface (η = h+ z) presents458

much less spatial variation than Q in the domain. However, this hypothesis would need459

to be tested thoroughly in the future through a set of specifically designed case studies.460
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Figure 12 assesses the overall accuracy of temporal prediction for h of each model461

against the corresponding computational time, using the root-mean-square error met-462

ric Rt
h =

(√∑
(hi − h̃i)2/N t

p

)∣∣∣∣
(x,y)∈S

, where S denotes the corresponding cross-section463

and N t
p is the number of collocation points in the testset. The best values of Rt

h (i.e.,464

across all epochs) obtained from all PICN models are within the range of 0.22 m < Rt
h <465

0.30 m (S1) and 0.26 m < Rt
h < 0.34 m (S2), while FV (10) delivered Rt

h = 0.29 m466

(S1) and 0.35 m (S2), and results from FV (25) and FV (50) were substantially less ac-467

curate. It is interesting to note that PINN models trained with coarse datasets (e.g., 200468

m) do not necessarily deliver poorer accuracy compared to their fine resolution counter-469

parts; this contrasts with what is typically observed in simulations with traditional nu-470

merical methods such as FV. Figure 12 also indicates that PICN models may offer im-471

proved depth predictions at lower cost than a FV model. For example, the accuracy of472

depth predictions by PICN (200) is better than the accuracy delivered by FV (10), while473

the computational cost is more than one order of magnitude lower. Overall, the PICN474

shows better h prediction performance than PIFCN and FV in terms of the speed-accuracy475

trade-off.476

Figure 13 shows examples of flood depth maps at t = 32 hours obtained by the FV477

model at resolutions of 5 m and 25 m, along with those produced by PICN and PIFCN478

at 100 m resolved trainsets. As expected from the results presented in Figure 10, FV (25)479

overestimates h during the peak time (which also translates into a larger flooded area),480

while the opposite is observed for PICN (100) and PIFCN (100). Further spatial anal-481

ysis can be seen in Appendix B.482

4 Concluding remarks483

In this paper, two physics-informed neuronal networks (PINNs) were developed to484

predict the evolution of free-surface flows typically modeled by the shallow water equa-485

tions (SWEs). The PINN formulation eliminates the need for labeled data, which is typ-486

ically required in supervised learning. This is achieved by defining a loss function that487

combines the SWEs, the boundary conditions (BCs) and initial conditions (ICs), allow-488

ing the trained PINN to serve as an alternative method for solving the SWEs. The two489

PINNs developed and tested here vary in their architecture and main features. The first490

is based on the fully-connected neural network (PIFCN), and the second on the convo-491

lutional neural network (PICN) approach.492

Three test cases were used to assess the accuracy and computational performance493

of each model, including two idealized flow problems for which analytical solutions are494

available, and one simulation of a real-world flood event over a relatively large-scale and495

complex topography domain. In the idealized problems, the PICN and PIFCN predic-496

tions achieved higher accuracy (lower Rh) than the Finite Volume (FV) solver employed497

for comparison. However, in these problems, PINNs generally took longer to reach the498

same prediction accuracy as the coarsely resolved FV model. For the real-world flood-499

ing problem, in general, PINNs were able to yield similarly accurate predictions of flow500

depths compared to finely resolved FV simulations. However, all FV models show much501

higher accuracy in their predictions of Q. For the spatial analysis of flow depths at the502

peak of the flood event, PINNs were able to produce flood maps with accuracy (relative503

to the benchmark finely resolved FV simulation) that is comparable to the results of FV504

models run at intermediate resolution (e.g., 25 m). Some of the PINN models (e.g., PICN505

at 100 and 200 m resolution) achieved the same level of accuracy as the 25 m resolution506

FV model at least one order of magnitude faster. In addition, the prediction capability507

of PINNs may be less affected by changes in grid resolution than the FV solver, which508

may represent important advantages in real-world applications where finely resolved to-509

pographic data may not always be available. At the same resolution (e.g., 10 m in Tests510

1 and 2, or 50 m in Test 3), the training process of PICNs and PIFCNs with random ini-511
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Figure 10. Test 3: Predicted water depths error ϵh (plotted against right y−axis) at cross-

sections S1 (top) and S2 (bottom) of the main channel in the Tiber river. Benchmark solution

(from a finely resolved FV simulation) shown by the purple line against the left y−axis.
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Figure 11. Test 3: Predicted water discharge error ϵQ (plotted against right y−axis) at cross-

sections S1 (top) and S2 (bottom), which span across the whole domain. Benchmark solution

(from a finely resolved FV simulation) shown by the purple line against the left y−axis.
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Figure 12. Test 3: Rt
h as a function of Tc (training time for PICN and PIFCN and run time

for FV) at cross-sections S1 (top) and S2 (bottom) of the Tiber river; note that the right-most

point of each cloud corresponds to the highest accuracy that any given PINN can achieve. The

number in brackets represents the resolution (in meters) of the training data set (for PICN and

PIFCN) or mesh (for the FV model). The benchmark results are those from the FV (5) simula-

tion.
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Figure 13. Examples of flood maps at time t = 32 hours produced by the FV model and

PINNs. Note that FV (5) represents the benchmark results.
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tialization of weights and biases takes longer than the run time of the FV model. Re-512

sults show that, in most circumstances, PICNs usually exhibit better performance in terms513

of speed-accuracy trade-off than PIFCNs. However, more comparative tests between PICN514

and PIFCN are necessary before reaching general conclusions in this regard.515

While the results in this paper may not suggest that PINNs can replace other well-516

established numerical techniques, they indicate that PINNs (and in particular PICNs)517

should be considered as an emerging technique that has the potential to deliver accu-518

rate and efficient solutions, and which should be further developed and assessed. Our519

results show that the approach might be particularly useful under certain circumstances520

which are challenging to conventional techniques. For example, in simulations performed521

at coarse resolutions (a typical case in real-world problems), PINN models may achieve522

a higher prediction accuracy with a lower computational cost than a FV solver. Since523

these techniques are still in their infancy, further research and development may enable524

PINNs to become a competitive alternative to simulate flow problems governed by the525

SWEs in the near future.526
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Appendix A PINN Design Experiments751

This section illustrates the heuristic approach followed to determine the best pos-752

sible design of the PINNs. We focus on Test 1, described in Section 3.1. All the PINNs753

shown in this section are trained from the same dataset resolved at 50 m resolution. Fig-754

ures A1 and A2 show the accuracy (Rh) of the PICNs and PIFCNs, respectively, as their755

architecture (number of layers and channels/neurons) is varied. In short, these figures756

show that it is difficult to conclude whether a single architecture can lead to significantly757

improved results, and we thus prioritize simplicity in our PINNs design. While this heuris-758

tic approach is, by definition, not guaranteed to find the optimal solution, it represents759

the summary of very many iterations. This holds for other tests and dataset resolutions760

considered in this study.761

Similarly, we have tested three widely used activation functions: Relu, Sigmoid and762

Tanh (see Table A1). The chosen architecture for testing the PICN and PIFCN mod-763

els is CNN-5-20 and FCNN-3(1000), respectively. For PICN, Sigmoid and Tanh display764

the same accuracy, while the result of the Relu-based PICN has higher errors. The PIFCN765

with Tanh yields better accuracy than using the other two activation functions. As a re-766

sult, Tanh was chosen as the activation function to be employed in all PINNs discussed767

in this paper.768

Figure A1. Comparison of PICNs with different architectures; the last hidden layer of all

PICNs is one typical fully connected layer with 50 neurons. In the legend bar, the following for-

mat is adopted: PICN-X-Y, where the PICN has X channles in the first convolutional layer and

Y channels in the second convolutional layer (thus, PICN-X denotes a network with one convolu-

tional layer only).

Table A1. Results of water depth prediction by using Relu, Sigmoid and Tanh activation

functions for PICN and PIFCN models. The trainset is a 50 m resolved dataset from Test 1; the

evaluation metric is Rh and its unit is m.

Model Relu Sigmoid Tanh

PICN 0.021 0.002 0.002
PIFCN 0.154 0.028 0.004
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Figure A2. Comparison of PIFCNs with different architectures. In the legend bar, the follow-

ing format is adopted: PIFCN-X(Y), where X denotes the number of hidden layers and Y is the

number of neurons per layer.

Appendix B Further Spatial Analysis For Test 3769

Table B1. Computation time and spatial prediction accuracy relative to benchmark simulation

for the comparison. The unit for Rs
h is m, and the unit for Rs

hu and Rs
hv is m2s−1.

Model Tc t = 32 hours t = 68 hours
name (min) Rs

h Rs
hu Rs

hv Rs
h Rs

hu Rs
hv

PICN (50) 59.4 0.52 1.68 1.16 0.41 1.87 1.21
PICN (100) 15.3 0.40 1.72 1.18 0.37 1.92 1.20
PICN (200) 5.3 0.48 1.69 1.12 0.39 1.88 1.17

PIFCN (50) 504.9 0.59 2.21 1.32 0.52 2.21 1.28
PIFCN (100) 127.9 0.59 2.16 1.28 0.50 2.21 1.18
PIFCN (200) 30.2 0.63 2.27 1.21 0.47 2.16 1.15

FV (10) 2576.0 0.19 0.89 0.56 0.19 0.86 0.56
FV (25) 83.3 0.64 1.20 1.25 0.64 1.36 1.21
FV (50) 8.6 1.24 2.18 1.95 1.24 2.32 1.87

Table B1 summarizes the spatial prediction accuracy (i.e. Rs
h, Rs

hu, Rs
hv) computed770

from a 50 m resolved set of points for each model at t = 32 and 68 hours, as well as their771

overall Tc (i.e. training time for PINN and computation time for FV). Among all the mod-772

els, FV (10) and FV (50) achieve the highest and lowest accuracy, respectively. All PINNs773

present lower Rs
h than FV (25) and FV (50). On the other hand, FV (25) is more ac-774

curate than all PINNs in terms of hu prediction. PIFCN show a relatively similar value775

of Rs
hu to FV (50) at both time points. Moreover, the prediction accuracy of the PICNs776

and PIFCNs is less affected by the resolution of the input dataset than in the FV model.777

This last point may potentially be a main advantage of PINNs relative to conventional778

numerical methods in general, whose performance (numerical stability and accuracy) tends779

to be highly dependent on the mesh resolution.780
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Abstract11

This paper investigates the application of physics-informed neural networks (PINNs) to12

solve free-surface flow problems governed by the two-dimensional shallow water equa-13

tions (SWEs). Two types of PINNs are developed and analysed: a physics-informed fully14

connected neural network (PIFCN) and a physics-informed convolutional neural network15

(PICN). The PINNs eliminate the need for labelled data for training by employing the16

SWEs, initial and boundary conditions as components of the loss function to be min-17

imized. Solutions obtained by both PINNs are compared against those delivered by a18

finite volume (FV) solver for two idealized problems admitting analytical solutions, and19

one real-world flood event. The results of these tests show that the prediction accuracy20

and computation time (i.e., training time) of both PINNs may be less affected by the21

resolution of the domain discretization than the FV model. Overall, the PICN shows a22

better trade-off between computational speed and accuracy than the PIFCN. Also, our23

results for the two idealized problems indicated that PICN and PIFCN can provide more24

accurate predictions than the FV model, while the FV simulation with coarse resolution25

(e.g., 5 m and 10 m) outperformed PICN and PIFCN in terms of the speed-accuracy trade-26

off. Results from the real-world test showed the finely resolved (10 m resolution) FV sim-27

ulation generally provided the most accurate approximations at flooding peaks. How-28

ever, both PINNs showed better speed-accuracy trade-off than the FV model in terms29

of predicting the temporal distribution of water depth, while FV models outperformed30

the PINNs in their predictions of discharge.31

1 Introduction32

Free-surface flow phenomena are usually modeled by the shallow water equations33

(SWEs), a nonlinear system of partial differential equations (PDEs) governing the evo-34

lution of water depth and vertically averaged velocity in the two horizontal dimensions.35

Over the last decades, significant efforts have been made to approximate the solution to36

the SWEs in a discretized form through numerical methods, such as Finite Difference37

(FD) (e.g., Casulli, 1990; Molls & Chaudhry, 1995; Kurganov & Levy, 2002, and oth-38

ers), Finite Volume (FV) (e.g., Alcrudo & Garcia-Navarro, 1993; Bale et al., 2003; Botta39

et al., 2004; Yoon & Kang, 2004; Toro & Garcia-Navarro, 2007, and others), or Finite40

Element (FE) (e.g., Lynch & Gray, 1979; Hanert et al., 2005; Dawson et al., 2006; Mar-41

ras et al., 2016, and others). These methods are now well-established and have been the42

object of extensive tests and validation (e.g., Toro & Garcia-Navarro, 2007; Wilson et43

al., 2007; Liang & Marche, 2009; LeVeque et al., 2011, and others). While the ability of44

these models to capture the main properties of free-surface flows has been widely ver-45

ified, accurate solutions to real-world problems typically require the use of a finely re-46

solved computational mesh, which tends to significantly increase the computational cost47

(Bernard et al., 2009; Liang, 2011; Juez et al., 2014). In explicit numerical schemes for48

the solution of the 2D SWEs, the computational cost C scales cubically with the size of49

the computational grid ∆x (i.e., C ∼ ∆x−3). As a result, important applications such50

as large-scale flood simulations are often beyond the capabilities of available numerical51

methods given existing computational resources. This is particularly challenging when52

simulations need to be performed in real-time, or as part of a probabilistic flood risk anal-53

ysis (Leskens et al., 2014; Sanders & Schubert, 2019; Ferrari & Vacondio, 2022; J. Li et54

al., 2022). For example, flood risk management usually requires the simulation of a large55

number of inundation scenarios, which may increase the overall computational time by56

orders of magnitude. Although the computational speed of models can be improved by57

using state-of-the-art hardware and parallel computing algorithms (Leandro et al., 2014;58

Monnier et al., 2016), such techniques may still be insufficient to meet the computational59

requirements of many important applications (Kabir et al., 2020). Owing to these lim-60

itations, a cost-effective model for free-surface problems may offer an appealing alter-61

native.62
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Over the last decades, Machine Learning (ML) models, and Artificial Neural Net-63

works (ANNs) in particular, have found a wide range of applications, such as in finan-64

cial prediction (Henrique et al., 2019), facial recognition (Sulavko, 2020), supply chain65

optimization (Carbonneau et al., 2008), radiation forecasting (El Naqa et al., 2015), and66

automatic cancer screening (William et al., 2018), to cite only a few. The extraordinary67

increase in applications of ML models is largely due to their ability to mathematically68

describe any nonlinear relationship between inputs and outputs according to the univer-69

sal approximation theorem (Hornik et al., 1989), the increasing availability of data for70

training, and increasing computational power.71

The first works using ML for the solution of problems governed by the SWEs are72

relatively recent and focused on the development of simple meta-models (e.g., Kabir et73

al., 2020; Liu & Pender, 2015; Bermúdez et al., 2019; Mahesh et al., 2022, and others).74

In this type of model, ML is used to build a prediction model to describe the input-output75

relationship previously obtained through the solution of the governing PDEs by another76

numerical approximation model; i.e. the ML model thus becomes a surrogate model. These77

surrogate models typically need to be trained using the results of a large number of nu-78

merical simulations conducted at fine resolution, which can be very computationally de-79

manding.80

Physics-Informed Neural Networks (PINNs), for which data (and therefore expen-81

sive numerical simulations) are not required for training, have gained increasing atten-82

tion in recent years (Pang et al., 2019; Mao et al., 2020; Cai et al., 2021; Krishnapriyan83

et al., 2021; Jin et al., 2021). A PINN is essentially a ML algorithm which uses the in-84

formation contained in the physical laws (such as the governing PDEs, boundary and85

initial conditions) to train the model. This eliminates the need for training data and thus,86

expensive numerical simulations. A data-free PINN is required to satisfy the governing87

PDEs, Initial Conditions (ICs) and Boundary Conditions (BCs) simultaneously. Recent88

applications of ML algorithms to solve complex physics phenomena have focused on the89

use of Deep Learning (DL) models (e.g., Sun et al., 2020; Zhang et al., 2020; Haghighat90

et al., 2020; Vlassis & Sun, 2021, and others). DL is a form of ANN with more than one91

hidden layer, which provides the complexity required to model intricate nonlinear rela-92

tionships, such as those found in computer vision (Voulodimos et al., 2018), health man-93

agement (Khan & Yairi, 2018), language translation (Rastgoo et al., 2021), and remote94

sensing (X. X. Zhu et al., 2017). In the past few years, a large number of data-free PINNs95

have been developed by employing DL techniques, such as the Fully Connected Neural96

Networks (FCNNs) and Convolutional Neural Networks (CNNs). For example, in Raissi97

et al. (2019) several FCNNs were trained to predict the solutions to various systems of98

PDEs, including Allen–Cahn, Schrödinger, Navier–Stokes, and Korteweg–de Vries equa-99

tions. In the context of fluid dynamics, other implementations of FCNNs include those100

of Sun et al. (2020) and Mao et al. (2020), who used their DL models to find solutions101

to the Navier-Stokes (in steady state) and Euler equations (involving shock waves), re-102

spectively. The use of CNNs has also been explored, for instance, for problems governed103

by the Navier-Stokes (Cai et al., 2021) and Boltzmann transport equations (R. Li et al.,104

2021), or for predicting steady flow in random heterogeneous media (Y. Zhu et al., 2019).105

The success of these works shows that data-free PINNs should be considered as serious106

contenders for solving flow problems that are typically modelled by PDEs, and which107

have been traditionally solved using conventional numerical methods (FD, FV, etc.).108

While ML trained from labeled data (i.e., mainly conventional numerical solutions)109

has been used to solve the SWEs (e.g., Mahesh et al., 2022; Ştefănescu et al., 2014; Yıldız110

et al., 2021; C. Li et al., 2023, and others), to the authors’ knowledge only a very lim-111

ited number of articles (e.g., Bihlo & Popovych, 2022) has been published so far on the112

use of a data-free PINNs for this purpose. In Bihlo and Popovych (2022), a PINN (specif-113

ically, based on a FCNN) was employed to find solutions to the SWEs on a spherical do-114

main, and the focus was on idealized problems which may find applications in meteo-115
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rology. Whether a similar DL technique may be used to accurately and efficiently solve116

challenging free-surface flow problems involving friction and complex boundary condi-117

tions, such as large-scale simulations of flow over complex topography in rivers and coastal118

areas, remains an open question.119

The solution of PDEs, and in particular of the SWEs, using PINN algorithms is120

still in its infancy and further investigation is required to understand the main charac-121

teristics of solutions obtained by these methods. Firstly, the trainset for PINNs needs122

to be generated from a particular, discrete, set of points. It remains unclear how accu-123

racy and computational performance (i.e., training speed) depend on the discretization124

of the domain. Additionally, both FCNNs and CNNs are commonly used DL models in125

the research field of PINN. However, in a specific problem governed by a system of PDEs,126

it is usually difficult to determine which one will deliver the best performance before car-127

rying out tests.128

The aim of this paper is to develop and test two different PINN models to approx-129

imate solutions to various free-surface flow problems governed by the 2D SWEs. The PINN130

models are based on the FCNN and CNN approaches, and are hereafter referred to as131

PIFCN (physics informed fully connected network) and PICN (physics informed convo-132

lutional network), respectively. These models are data-free in that they do not require133

data from separate numerical simulations, or laboratory/field measurements, to train the134

networks. In this paper both PIFCNs and PICNs are compared against the Finite Vol-135

ume (FV) solver of the 2D SWE developed by de Almeida et al. (2016) through a set136

of test cases including two idealized flow problems and one real-world flood event. The137

rest of this paper is organized as follows. First, the governing equations and the frame-138

work of both PINNs are described in Section 2. This section also provides a concise re-139

view of FCNNs and CNNs. In Section 3, the accuracy and computational performance140

of the proposed physics-informed networks (PIFCN and PICN) are investigated for the141

three test cases. The main outcomes of the study are discussed and summarized in Sec-142

tion 4.143

2 Methods144

2.1 Overview145

Most problems requiring the simulation of free-surface flows in the horizontal plane,146

such as flow in rivers and estuaries, dam-breaks, and flood wave propagation can be mod-147

eled by the SWEs. The 2D SWEs represent a system of nonlinear, hyperbolic PDEs de-148

scribing the conservation of water mass and depth-average momentum, which can be ex-149

pressed as:150

∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
= S(U) ; (1)

U =

 h
hu
hv

 , F(U) =

 hu
hu2 + 1

2gh
2

huv

 , G(U) =

 hv
huv

hv2 + 1
2gh

2

 , S(U) =

 0
gh(sox − sfx)
gh(soy − sfy)

 ,

(2)
where x and y are the spatial (horizontal) coordinates; t is time; h(x, y, t) is the water151

depth; u(x, y, t) and v(x, y, t) denote the x and y components of the depth-averaged flow152

velocity, respectively; sox = −∂z/∂x and soy = −∂z/∂y are the bed slopes in the x153

and y directions, respectively, and z(x, y) is the terrain elevation (assumed constant in154

time); sfx and sfy denote the friction slopes in the x and y directions, respectively. The155

friction slopes can be modeled using Manning-Strickler’s expression, sfx = n2u
√
u2 + v2h−4/3,156

sfy = n2v
√
u2 + v2h−4/3, where n is the Manning coefficient. Solutions U = (h, hu, hv)T157

to this system (subject to well-posed boundary and initial conditions) can be computed158

by several numerical methods available, as discussed in the Introduction.159
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In this paper we propose a ML-based solution to this problem, whereby the input
layer x represents the independent variables and parameters of the problem, x = (x, y, t, n, z),
and the trained model ℵ is expected to provide an approximate solution for h(x), hu(x)
and hv(x) in the corresponding domain; in other words:

U(x) ∼= Ũ(x) = ℵ(x ;Γ), (3)

where Ũ(x) denotes the output from the PINN, which is in turn defined by the group160

of trainable parameters Γ (e.g., convolutional filter, weights and biases). The PINN mod-161

els proposed in this paper are trained by minimizing the composite loss function, defined162

as:163

L = λ1·Lp + λ2·Lb + λ3·L0, (4)

where L (a scalar) is the loss function to be minimized, λ1−3 are the vectors of penalty164

coefficients for every specific loss term; namely, Lp penalizes the residuals of the SWEs,165

Lb and L0 penalize the BCs (subscript b) and ICs (subscript 0) residuals, respectively.166

These loss terms are in turn given by:167

Lp =
1

N

N∑
i=1

|∂tŨi + ∂xF(Ũi) + ∂yG(Ũi)− S(Ũi)| (5a)

Lb =
1

Nb

Nb∑
i=1

|Ũb,i −Ub,i| (5b)

L0 =
1

N0

N0∑
i=1

|Ũ0,i −U0,i| (5c)

The tilde symbol ( ˜ ) denotes neuronal network output and the subscript i ∈ [1, N ]168

refers to the ith collocation point. N represents the number of collocation points, which169

in this paper is defined from a uniformly discretized domain of the independent variables170

N = nx×ny×nt, where nx, ny and nt are the number of points used to discretize the171

domain along the x, y and t coordinates, respectively. The boundaries of the spatio-temporal172

domain are represented by a subset of N ; in particular, the model will employ Nb < N173

and N0 < N points to define the BCs and ICs, respectively.174

For each approximate solution produced by the PINN, the partial derivatives in175

Eq. 5a are computed through the method of automatic differentiation (autodiff) (Paszke176

et al., 2017), which back-propagates derivatives from the outputs to the targeted inputs177

through the chain rule to compute the desired derivatives (Cai et al., 2021; Baydin et178

al., 2018). Thus, the partial derivatives of the approximate solution with respect to the179

independent variables can be computed without the errors common to numerical differ-180

entiation techniques. The loss function is minimised using the gradient descent method,181

with gradients of the loss function with respect to trainable parameters computed by back-182

propagation. These parameters can be updated either using all, or a subset (batch) of183

the collocation points.184

One significant difficulty of solutions to flow problems modeled by the SWEs is the185

so-called wet-dry front issue (i.e., moving boundary). Physically, the value of the flow186

depth h cannot be negative. Areas of the domain where such solutions may be obtained187

correspond to dry areas, which are not governed by the SWEs. To overcome this prob-188

lem, we set Lp = 0 if the predicted value of h̃ is negative. This ensures that the model189

does not penalize making predictions outside the wet domain.190

Figure 1 shows a diagram illustrating the overall modeling framework proposed in191

this paper for solving the SWEs by a PINN method. Note that the collocation points192

–5–



manuscript submitted to Water Resources Research

can be chosen randomly in the space-time domain and their number prescribed. The gen-193

eral steps are outlined below.194

1. Define the architecture of the PINN195

2. Initialize the hyperparameters for the PINN196

3. Compute the outputs from the PINN with given inputs197

4. Compute the derivatives with respect to x, y, t and the corresponding loss L198

5. Update the PINN based on L199

6. Repeat steps 3 to 5 until the end of the user-prescribed number of training epochs200

Figure 1. A schematic diagram of a physics informed neuronal network (PINN) for finding

approximate solutions to the shallow water equations.

2.2 Fully Connected Neural Network201

The FCNN is the most commonly applied ML model and often includes more than202

one hidden layer. Every hidden layer receives the signals from the previous layer, per-203

forms basic computations defined at each neuron, and passes the results to the next layer204

(Haykin, 2009). Figure 2 shows a diagram of a FCNN. Mathematically, the basic func-205

tion of the output for the jth hidden layer yj is:206

yj = φ (Wjyj−1 + bj) (6)

where W is the matrix of weights, b is the vector of biases and φ() is the activation func-207

tion.208

In the proposed method, solutions for each output variable η(x) = h(x)+z, hu(x),209

hv(x) are approximated by 3 separate FCNNs with the same structure, as illustrated in210

Figure 2. Every FCNN receives the same raw inputs. As a result, the trainable param-211

eters of the solution for each output variable are decoupled. This can significantly im-212

prove the prediction accuracy in multivariate problems, especially when the distributions213

and magnitudes of the variables are significantly different (e.g., Sun et al., 2020; Gao et214

al., 2021; Guo et al., 2020, and others).215
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Figure 2. (a) The architecture of the physics-informed fully connected networks (PIFCNs)

employed in this paper. (b) An example of a typical fully connected neuronal network (FCNN)

which is employed as a sub-network within the PIFCN to predict each individual output; as illus-

tration, 2 hidden layers with 7 neurons each are shown, but these hyperparameters are varied in

this study.

2.3 Convolutional Neural Network216

The CNN adds one or more convolutional layers that extract features of the raw217

training dataset before feeding this onto the typical hidden layers used to build FCNNs.218

The general expression for the convolution operator ⋆ with 1 stride is:219

(s ⋆ k)i =

n∑
j=1

kjsi+j−1 i = 1, 2, . . . ,m− n+ 1 (7)

where s denotes the input signal vector of length m (in this paper, this is x), and k de-220

notes the trainable filter of length n. The convolution operation is to slide the preset con-221

volutional filter over the signal input and output the signal with a shorter length (i.e.,222

the input vector is shortened by n−1 elements). The shorter length of the convolved223

output signal allows the following typical hidden layer to have fewer neurons, facilitat-224

ing the network’s learning of large-scale problems with high complexity (Gao et al., 2021).225

Figure 3 shows the structure of the CNN used in this paper. The trainset is gen-226

erated from a number of points (i.e., collocation points) randomly sampled from a grid227

of equally spaced points. Each output variable, h(x), hu(x), hv(x), is also predicted by228

a separate sub-CNN.229

2.4 PINN design230

The accuracy and computational performance of the PINNs described in the pre-231

vious sections will be assessed and compared against the corresponding performance and232

solutions by a conventional FV model. There is currently no universal design approach233

to determine the optimal, or even appropriate, structure for a neural network (Bihlo &234

Popovych, 2022). The general selection rule for PINN design is to find a structure with235

the lowest possible complexity that achieves the desired accuracy of prediction. This rule236

can usually help provide an AI model with quick learning speed and improved predic-237
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Figure 3. An example of the structure of a CNN-based model with 3 subnets for solving

free-surface flow problems. Each output variable (η,u or v) is approximated by a separate CNN

with the above structure; all sub-networks receive the same inputs. Each CNN has two convo-

lutional layers and one hidden layer. The hyperparameters shown in the figure are discussed in

Section 2.4.

tion capabilities while avoiding overfitting issues (Blumer et al., 1987). In this paper, the238

final decision for the model structure (i.e. hyperparameters such as the number of neu-239

rons, hidden layers, and convolutional layers and channels in the case of CNN) was made240

after many practical attempts (see Appendix A). As the evaluation of the PINNs per-241

formance in this paper consists of two, often competing, criteria (accuracy and compu-242

tational cost), it may be difficult to find a single assessment metric to guide the PINNs243

design. Hence, we give priority to accuracy by gradually increasing the complexity of the244

PINNs until similar or higher accuracy than benchmark results (e.g. from an analyti-245

cal solution or a finely resolved FV simulation) is attained. Generally, in our design it-246

erations, the number of hidden layers and the corresponding neurons for building PINNs247

(i.e., PIFCN and PICN) started from 1 and 50, respectively. The number of convolutional248

layers and corresponding channels started from 1 and 5, respectively. For both PICN and249

PIFCN we use the hyperbolic tangent activation function (Tanh). Note that the PINN250

design may change significantly depending on domain and flow conditions; i.e., it can be251

very problem-specific. It is also important to recognize that the networks chosen do not252

represent the strictly optimal structure, but only the best out of the subset of structures253

that were tested.254

For improving the learning speed and reducing the effect of parameter initializa-255

tion, the Batch Normalization method of Ioffe and Szegedy (2015) was used, which nor-256

malizes the signals between adjacent convolutional or hidden layers. The Adam optimizer257

(Kingma & Ba, 2014), along with the ‘1-cycle’ (Smith & Topin, 2019) strategy was used258

to control the training of the PINNs. The PINNs were implemented on the Pytorch plat-259

form Paszke et al. (2017). The FV simulation and the training of the PIFCNs and PICNs260

were performed using the University of Southampton’s supercomputer Iridis 5 ensuring261

that the exact same hardware resources were employed (thus ensuring a fair compari-262

son across all simulations performed).263
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3 Case studies264

This section describes three case studies used to test the PINNs, comparing their265

results against analytical and numerical (Finite Volume) solutions. The first and second266

tests are idealized 1D (unsteady and steady, respectively) flow problems for which an-267

alytical solutions are available. However, simulations were performed on a 2D domain268

since the ultimate aim is to employ the PINNs developed here in 2D flow problems. The269

third test case is an unsteady two-dimensional simulation of a real-world flood event that270

took place in the Tiber river, Italy. This case study has been previously employed to eval-271

uate the performance of other numerical models (e.g., Morales-Hernández et al., 2016;272

Shamkhalchian & de Almeida, 2021, and others).273

Topographic data used in all tests are defined by square grids with different res-274

olutions. The grid points are used to generate a triangular mesh for the FV model. These275

are also employed, along with defined temporal steps, as the collocation points for the276

PINNs training. The accuracy of the solutions will be assessed by the root mean square277

error, R, of the outputs of each model relative to the benchmark solution. For example,278

in the evaluation of accuracy for the prediction of h with Np output points, the perfor-279

mance metric is defined as Rh =
√∑

(hi − h̃i)2/Np, where hi is the benchmark solu-280

tion (i.e., the analytical solution when available, or the solution of the FV model at fine281

resolution). The second performance metric we employ is the computational cost, Tc, which282

represents training time for the PINNs (PICN and PIFCN), and run time for the FV model.283

In the results presented in the following sections, predictions by the FV, PIFCN and PICN284

models are labelled with the different resolutions used. For example, FV (10) represents285

a 10 m resolved simulation using the FV hydraulic model, and PICN (50) refers to the286

prediction of the PICN trained from a 50 m resolved dataset.287

3.1 Flood wave propagation over a horizontal plane288

The first test case is a one-dimensional simulation of an inundation wave propa-289

gating over a horizontal bed. A time-dependent BC is imposed at x = 0. Under the290

idealized assumption of a flow velocity that is constant in space and time, the problem291

admits an analytical solution which can be expressed as (Hunter et al., 2005):292

ha(x, t) =

{
7

3

(
n2u2(x− ut)

)}3/7

, (8)

where the subscript a is used to denote the analytical solution. The domain used is a293

100 m wide, 1200 m long channel. The constant velocity is set as u(x, t) = 0.29 ms−1
294

and the boundary condition h(x = 0, t) is given by Eq. 8. The domain is initially dry,295

i.e., h(x, t = 0) = 0. Manning’s coefficient n is set to 0.03 sm−1/3. The duration of296

the simulation is 3600 s. The FV model was run at resolutions of 1, 2, 5 and 10 m, while297

the PINN models were trained with datasets defined at resolutions of 10, 25, 50 and 100298

m. While the time step of the explicit FV scheme is controlled by the Courant-Friedrichs-299

Lewy (CFL) stability condition, the regression approximation implemented by the PINN300

model is not limited by temporal resolution. However, the time step adopted to train301

the PINN model is a factor that clearly affects both accuracy and computational per-302

formance. For this test, we use a temporal resolution for the PINN of 300 s. The selected303

batch size is set as the full set of collocation points nx × ny × nt.304

The architecture of the PICN consists of 2 convolutional layers (the first and sec-305

ond layers have 5 and 20 channels, respectively) and 1 fully connected hidden layer with306

50 neurons. The architecture for the PIFCN consists of 3 fully connected hidden layers,307

each of which has 1000 neurons.308

Figures 4 and 5 illustrate the values of h(x, y = 50m) and hu(x, y = 50m) (left309

vertical axes), and the corresponding error (right vertical axes) ϵh(x, y = 50m) = h̃(x, y =310
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Figure 4. Test 1: Longitudinal profiles (y = 50 m) of water depth errors ϵh relative to the

analytical solution obtained by each of the models at t = 1800 s (top) and t = 3600 s (bottom),

shown against right y−axis. The analytical solution for h (purple line) is plotted against the left

y−axis; note that the right-side figure is the enlarged version of the rectangular box in the left-

side figure; both figures share the same right y−axis.
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Figure 5. Test 1: Longitudinal profiles (y = 50 m) of water depth errors ϵhu relative to the

analytical solution obtained by each of the models at t = 1800 s (top) and t = 3600 s (bottom).

The analytical solution for hu (purple line) is plotted against the left y−axis; note that the right-

side figure is the enlarged version of the rectangular box in the left-side figure; both figures share

the same right y−axis.
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50m) − ha(x, y = 50m) and ϵhu(x, y = 50m) = h̃u(x, y = 50m) − (hu)a(x, y = 50m)311

computed by all three models at t = 1800 and 3600 s, respectively. Values of hv are not312

reported as the test case is fundamentally one-dimensional. Overall, all the water depth313

predictions, with the exception of PIFCN (100), show good agreement with the analyt-314

ical solution (i.e. most results displaying |ϵ| < 0.01m). As the position of the wet-dry315

front predicted by the models does not exactly match the analytical solution, and the316

front is steep at that point, errors are larger in this region. PICN and FV both show sim-317

ilar prediction accuracy of both h and hu, whereas PIFCNs with coarsely resolved train-318

sets (i.e., 50 m and 100 m) provide higher prediction errors of hu.319

Figure 6 shows Rh (relative to the analytical solution ha) for all results obtained320

with the PICN, PIFCN, and FV models as a function of the corresponding computational321

time Tc. The sum to compute Rh is over all collocation points; i.e., spanning the whole322

spatio-temporal domain. In this figure, the various points (blue and red) presented for323

each PINN model represent solutions obtained at different epochs during the training324

of the networks, which correspond to different computation time and level of accuracy.325

The green cross points represent the simulation accuracy and computation time for the326

FV model. The results in this figure are based on model (i.e. PICN, PIFCN, and FV)327

outputs at the same grid points selected from the entire domain with a spatial and tem-328

poral resolution of 10 m and 360 s. Predictions of hu follow the general pattern observed329

for h on Figure 6 and are not reported here to avoid repetition. Figure 6 allows us to330

comparatively assess the performance of the models tested in terms of their speed-accuracy331

trade-off. Based on this criterion, a model performs better than another when it provides332

more accurate results under the same computational time, or vice-versa; in other words,333

the best results are those closest to the bottom left corner of the plot.334

Figure 6 shows that FV (10) and FV (5) produce sub-centimetre Rh (which is usu-335

ally considered a good level of accuracy for many applications) at least one order of mag-336

nitude faster than the PINN models, whereas FV (2) takes slightly longer than PICNs337

(for the same level of accuracy), and FV (1) only outperforms PIFCN (10) in terms of338

the speed-accuracy trade-off. All PINNs except PIFCN (100) show the potential to achieve339

better accuracy of prediction than the FV model at the highest resolution tested here340

(1 m), provided they are trained for long enough. PICNs provide a faster solution (for341

similar Rh values) than PIFCNs. Also, for PIFCN, the trainset size (which in this case342

is determined by the resolution) did not significantly affect its maximum accuracy at res-343

olutions ≤ 50 m, whereas the accuracy of the FV model continues to improve as the mesh344

is refined below 10 m.345

3.2 Subcritical steady flow over an undulating bed346

The second test case represents a 1D, steady, non-uniform flow over an undulat-347

ing bed, for which an analytical solution is available (see MacDonald, 1996; de Almeida348

& Bates, 2013; Delestre et al., 2013). This test case will be used to evaluate the solu-349

tion obtained by the PICN and PIFCN in a problem with variable topography. The (rect-350

angular) channel is 1000 m long, and Manning’s coefficient n is set to 0.03 sm−1/3. The351

constant inflow discharge per unit width of the channel is qx = uh = 2 m2s−1, and the352

downstream water depth is 9
8 m. We prescribe the following function representing the353

water depth h(x) (which is the benchmark solution against which the PINN approxima-354

tions will be compared):355

h(x) =
9

8
+

1

4
sin

( πx

500

)
. (9)

We model this 1D problem in a 2D domain using a width of 50 m (and qy = 0)356

for the reasons discussed previously. Also, although the solution sought is for a steady357

flow problem, the steady condition was reached via an unsteady flow simulation, as the358
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Figure 6. Test 1: Values of Rh as a function of Tc (training time for PICN and PIFCN and

run time for FV); note that the right-most point of each cloud corresponds to the highest ac-

curacy that any given PINN can achieve. The number in brackets represents the resolution (in

meters) of the training data set (for PICN and PIFCN) or mesh (for the FV model).

object of this paper is to test approximate methods to solve the time-dependent SWEs.359

The unsteady simulations were run from an initially dry domain over a period of 20 hours,360

whereby the upstream BCs increase linearly with time from zero to the aforementioned361

constant values over the first 10 hours of the simulation.362

The training dataset for PICN and PIFCN was obtained from grids resolved at 5,363

10, 25 and 50 m at the following times: 0, 1, 3, 5, 10, 15 and 20 hours. The selected batch364

size is 2/7×N , where the value 2/7 comes from trial and error (larger batch sizes de-365

creased the accuracy of the results). The FV model was run at resolutions of 2, 5 and366

10 m.367

For this case, the architecture of the PICN consists of 2 convolutional layers (the368

first and second layers have 5 and 20 channels, respectively) and 1 fully connected hid-369

den layer with 50 neurons (same as in Test 1). The architecture of the PIFCN consists370

of 3 fully connected hidden layers, each of which has 1000 neurons (different from Test371

1).372

Figure 7 shows the analytical curve for depth profile at the centre of the channel373

h(x, y = 30 m ) (left axis) and the corresponding errors of each of the approximate so-374

lutions ϵh (right axis) predicted by the PICN (blue points), PIFCN (red points), and FV375

models (green points). Figure 8 presents similar results but for the variable hu. As the376

analytical solution is for the steady state, only the results at the end of the simulations377

are assessed. Overall, all models tested delivered results at sub-centimeter level of ac-378

curacy for h. The three PICNs showed the lowest errors of both h and hu, followed by379

FV (2).Values of ϵhu obtained from FV models display small (mostly within 1% of the380

actual value of hu) spatial variations, while they nearly are constant for both PIFCN and381

PICN.382
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Figure 7. Test 2: Longitudinal profiles (y = 30 m) of water depth errors obtained by each of

the models at the end of the simulation/training (right y−axis). The analytical solution h (pur-

ple line) is plotted against the left y−axis.

Figure 8. Test 2: Longitudinal profiles (y = 30 m) of water depth errors obtained by each

of the models at the end of the simulation/training (right y−axis). The analytical solution hu

(purple line) is plotted against the left y−axis.
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Figure 9. Test 2: Values of Rh as a function of Tc (training time for PICN and PIFCN and

run time for FV); note that the right-most point of each cloud corresponds to the highest ac-

curacy that any given PINN can achieve. The number in brackets represents the resolution (in

meters) of the training data set (for PICN and PIFCN) or mesh (for the FV model).

Figure 9 presents the values of Rh against the corresponding computational time383

taken to train the PICN (blue points), PIFCN (red points), and to run the FV model384

(green cross points) at different resolutions. The value of Rh of each model is calculated385

from its steady-state predictions of h; namely: Rh =

(√∑
(hi − h̃i)2/Np

)∣∣∣∣
t=ts

, where386

ts is the time after which a steady state is reached for each PINN or FV model. For the387

computation time of FV models described in Figure 9, the value of Tc is the time required388

for all FV models to reach steady state. The results for hu show a pattern similar to that389

in Figure 9 and are not presented for conciseness. All simulations achieve sub-centimetric390

Rh, with FV (10) delivering the results at least one order of magnitude faster than the391

other solutions. PIFCN (10) was the slowest of all models. Figure 9 shows that the pre-392

diction of h from PICN (10) displays the highest accuracy, with an Rh of 0.85 mm, al-393

though this was obtained at a computation time that was 56 times longer than FV (10).394

All the PINN results also attain an accuracy higher than or similar to that of FV(2). In395

this test case, the relative differences in the prediction accuracy among the PICN mod-396

els is less than the difference observed from FV (5) to FV (10). In terms of the influence397

of resolution on the computational speed, the PICN is also less sensitive than PIFCN398

in this problem.399

3.3 Simulation of real-world river flooding400

While Tests 1 and 2 have assessed the ability of PINN models to deal with impor-401

tant aspects of flow problems, such as unsteadiness and variable topography, both case402

studies represented idealized, one-dimensional problems. In order to investigate the per-403

formance of PINNs under more complex and realistic problems, this section presents the404

results of simulations of a real-world scenario. The scenario in question is a flood event405

that occurred between 27 November and 1 December 2005 in the Tiber river (Morales-406

Hernández et al., 2016), which flows from the Apennine Mountains to the Tyrrhenian407

Sea in Italy. The reach of river employed in this simulation is approximately 6 km long408

and is located near the city of Rome. In this region, the mean discharge of the Tiber river409

–15–



manuscript submitted to Water Resources Research

is 267 m3s−1, while its peak discharge for a 200-year return period is around 3200 m3s−1.410

The event modeled in this paper was also previously simulated in Morales-Hernández411

et al. (2016) and Shamkhalchian and de Almeida (2021). The domain comprises an area412

of 6 km × 2 km. The duration of the event simulated is 113 hours. The values of Man-413

ning’s coefficient n used are the same as in Morales-Hernández et al. (2016) and Shamkhalchian414

and de Almeida (2021); namely, n = 0.035 sm−1/3 for the main channel, and n = 0.0446415

sm−1/3 for the floodplains.416

The boundary conditions were obtained from Morales-Hernández et al. (2016), and417

correspond to the time series of flow discharge and water surface elevation at the upstream418

and downstream sections of the river at the boundary of the computational domain. The419

initial conditions U(x, y, t = 0) were defined from the results of the FV model under420

steady-state conditions (Q = 374 m3s−1) performed at 5 m resolution. PINNs were trained421

from datasets resolved at 50, 100 and 200 m, while the FV model was run using meshes422

generated from gridded data at resolutions of 10, 25 and 50 m. The corresponding tem-423

poral resolution for the trainset for the PINNs is 4 hours. The batch size was set to one424

third of the total number of collocation points.425

For this test case, the architecture of the PICN consists of 2 convolutional layers426

(the first and second layers have 10 and 40 channels, respectively) and 1 fully connected427

hidden layer with 100 neurons. The architecture of the PIFCN consists of 3 fully con-428

nected hidden layers, each having 2000 neurons. Our tests showed that further increas-429

ing the network complexity would not improve the model’s prediction accuracy, and may430

substantially increase the training time and/or cause the program to exceed the mem-431

ory capacity of the computer resources used.432

Since an analytical solution is not available for this problem, the results of the FV433

simulation at fine resolution (5 m) were used as the benchmark. The accuracy of the so-434

lutions of the time-dependent variables is assessed at two cross-sections (located approx-435

imately at distances of 1/3 and 2/3 of the length of the river within the domain from436

the upstream boundary, and hereafter referred to as S1 and S2, respectively) at 1 hour437

temporal resolution.438

Figures 10 and 11 illustrate the time series of prediction errors (right vertical axes),439

along with the actual predicted values of the flow depth h and flow discharge Q (left ver-440

tical axes) at cross-sections S1 and S2 for each PICN, PIFCN, and FV models. Figure 10441

shows that the FV and PIFCN simulations consistently predict larger and lower depths442

than the benchmark solution, respectively, at both cross sections in the main channel,443

while PICN results display both positive and negative values of ϵh. Results from PICNs444

at S1 and S2 are markedly more accurate than those delivered by PIFCNs and the coarse-445

resolution FV models. For example, FV (50) and FV (25) produced results that devi-446

ate substantially (i.e. up to approximately 1.2 m and 2.5 m at S1 and S2, respectively)447

from the benchmark solution. On the other hand, FV (10) generally produced the most448

accurate depth predictions out of all models tested. The ability of the models to predict449

flow velocities (and therefore, the volumetric flow rate Q) is assessed by ϵQ = Q̃−|Q|,450

where Q =
∫
hŨ·ndl is the total discharge; l is the length along the cross-sections (i.e.,451

S1 and S2, which span across the whole domain) and n is the unit vector normal to the452

cross-section. Figure 11 shows the predicted errors ϵQ obtained by all models as a func-453

tion of time. These results are markedly different from those previously presented for454

ϵh. Namely, all FV models display values of ϵQ that are substantially smaller than those455

predicted by PICN and PIFCN models. The maximum values of ϵQ for PICN and PIFCN456

are more than 50% and 70% of the benchmark (FV (5)) in S2, respectively. The pos-457

sible reason behind these results might be that the water surface (η = h+ z) presents458

much less spatial variation than Q in the domain. However, this hypothesis would need459

to be tested thoroughly in the future through a set of specifically designed case studies.460
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Figure 12 assesses the overall accuracy of temporal prediction for h of each model461

against the corresponding computational time, using the root-mean-square error met-462

ric Rt
h =

(√∑
(hi − h̃i)2/N t

p

)∣∣∣∣
(x,y)∈S

, where S denotes the corresponding cross-section463

and N t
p is the number of collocation points in the testset. The best values of Rt

h (i.e.,464

across all epochs) obtained from all PICN models are within the range of 0.22 m < Rt
h <465

0.30 m (S1) and 0.26 m < Rt
h < 0.34 m (S2), while FV (10) delivered Rt

h = 0.29 m466

(S1) and 0.35 m (S2), and results from FV (25) and FV (50) were substantially less ac-467

curate. It is interesting to note that PINN models trained with coarse datasets (e.g., 200468

m) do not necessarily deliver poorer accuracy compared to their fine resolution counter-469

parts; this contrasts with what is typically observed in simulations with traditional nu-470

merical methods such as FV. Figure 12 also indicates that PICN models may offer im-471

proved depth predictions at lower cost than a FV model. For example, the accuracy of472

depth predictions by PICN (200) is better than the accuracy delivered by FV (10), while473

the computational cost is more than one order of magnitude lower. Overall, the PICN474

shows better h prediction performance than PIFCN and FV in terms of the speed-accuracy475

trade-off.476

Figure 13 shows examples of flood depth maps at t = 32 hours obtained by the FV477

model at resolutions of 5 m and 25 m, along with those produced by PICN and PIFCN478

at 100 m resolved trainsets. As expected from the results presented in Figure 10, FV (25)479

overestimates h during the peak time (which also translates into a larger flooded area),480

while the opposite is observed for PICN (100) and PIFCN (100). Further spatial anal-481

ysis can be seen in Appendix B.482

4 Concluding remarks483

In this paper, two physics-informed neuronal networks (PINNs) were developed to484

predict the evolution of free-surface flows typically modeled by the shallow water equa-485

tions (SWEs). The PINN formulation eliminates the need for labeled data, which is typ-486

ically required in supervised learning. This is achieved by defining a loss function that487

combines the SWEs, the boundary conditions (BCs) and initial conditions (ICs), allow-488

ing the trained PINN to serve as an alternative method for solving the SWEs. The two489

PINNs developed and tested here vary in their architecture and main features. The first490

is based on the fully-connected neural network (PIFCN), and the second on the convo-491

lutional neural network (PICN) approach.492

Three test cases were used to assess the accuracy and computational performance493

of each model, including two idealized flow problems for which analytical solutions are494

available, and one simulation of a real-world flood event over a relatively large-scale and495

complex topography domain. In the idealized problems, the PICN and PIFCN predic-496

tions achieved higher accuracy (lower Rh) than the Finite Volume (FV) solver employed497

for comparison. However, in these problems, PINNs generally took longer to reach the498

same prediction accuracy as the coarsely resolved FV model. For the real-world flood-499

ing problem, in general, PINNs were able to yield similarly accurate predictions of flow500

depths compared to finely resolved FV simulations. However, all FV models show much501

higher accuracy in their predictions of Q. For the spatial analysis of flow depths at the502

peak of the flood event, PINNs were able to produce flood maps with accuracy (relative503

to the benchmark finely resolved FV simulation) that is comparable to the results of FV504

models run at intermediate resolution (e.g., 25 m). Some of the PINN models (e.g., PICN505

at 100 and 200 m resolution) achieved the same level of accuracy as the 25 m resolution506

FV model at least one order of magnitude faster. In addition, the prediction capability507

of PINNs may be less affected by changes in grid resolution than the FV solver, which508

may represent important advantages in real-world applications where finely resolved to-509

pographic data may not always be available. At the same resolution (e.g., 10 m in Tests510

1 and 2, or 50 m in Test 3), the training process of PICNs and PIFCNs with random ini-511
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Figure 10. Test 3: Predicted water depths error ϵh (plotted against right y−axis) at cross-

sections S1 (top) and S2 (bottom) of the main channel in the Tiber river. Benchmark solution

(from a finely resolved FV simulation) shown by the purple line against the left y−axis.
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Figure 11. Test 3: Predicted water discharge error ϵQ (plotted against right y−axis) at cross-

sections S1 (top) and S2 (bottom), which span across the whole domain. Benchmark solution

(from a finely resolved FV simulation) shown by the purple line against the left y−axis.
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Figure 12. Test 3: Rt
h as a function of Tc (training time for PICN and PIFCN and run time

for FV) at cross-sections S1 (top) and S2 (bottom) of the Tiber river; note that the right-most

point of each cloud corresponds to the highest accuracy that any given PINN can achieve. The

number in brackets represents the resolution (in meters) of the training data set (for PICN and

PIFCN) or mesh (for the FV model). The benchmark results are those from the FV (5) simula-

tion.
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Figure 13. Examples of flood maps at time t = 32 hours produced by the FV model and

PINNs. Note that FV (5) represents the benchmark results.
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tialization of weights and biases takes longer than the run time of the FV model. Re-512

sults show that, in most circumstances, PICNs usually exhibit better performance in terms513

of speed-accuracy trade-off than PIFCNs. However, more comparative tests between PICN514

and PIFCN are necessary before reaching general conclusions in this regard.515

While the results in this paper may not suggest that PINNs can replace other well-516

established numerical techniques, they indicate that PINNs (and in particular PICNs)517

should be considered as an emerging technique that has the potential to deliver accu-518

rate and efficient solutions, and which should be further developed and assessed. Our519

results show that the approach might be particularly useful under certain circumstances520

which are challenging to conventional techniques. For example, in simulations performed521

at coarse resolutions (a typical case in real-world problems), PINN models may achieve522

a higher prediction accuracy with a lower computational cost than a FV solver. Since523

these techniques are still in their infancy, further research and development may enable524

PINNs to become a competitive alternative to simulate flow problems governed by the525

SWEs in the near future.526

5 Open Research527

The simulation data used for all three test cases in the study are available at the528

database from University of Southampton via https://doi.org/10.5258/SOTON/D2645529

with CC-BY license (Xin Qi, 2023).530

Acknowledgments531

The authors acknowledge the use of the IRIDIS High Performance Computing Facility,532

and associated support services at the University of Southampton, in the completion of533

this work.534

References535

Alcrudo, F., & Garcia-Navarro, P. (1993). A high-resolution godunov-type scheme536

in finite volumes for the 2d shallow-water equations. International Journal for537

Numerical Methods in Fluids, 16 (6), 489–505.538

Bale, D. S., Leveque, R. J., Mitran, S., & Rossmanith, J. A. (2003). A wave prop-539

agation method for conservation laws and balance laws with spatially varying540

flux functions. SIAM Journal on Scientific Computing , 24 (3), 955–978.541

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2018). Au-542

tomatic differentiation in machine learning: a survey. Journal of Marchine543

Learning Research, 18 , 1–43.544
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Conservative 1d–2d coupled numerical strategies applied to river flooding: The686

tiber (rome). Applied Mathematical Modelling , 40 (3), 2087–2105.687

Pang, G., Lu, L., & Karniadakis, G. E. (2019). fpinns: Fractional physics-informed688

neural networks. SIAM Journal on Scientific Computing , 41 (4), A2603–689

A2626.690

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., . . . Lerer, A.691

(2017). Automatic differentiation in pytorch.692

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural693

networks: A deep learning framework for solving forward and inverse problems694

involving nonlinear partial differential equations. Journal of Computational695

Physics, 378 , 686–707.696

Rastgoo, R., Kiani, K., Escalera, S., & Sabokrou, M. (2021). Sign language pro-697

duction: A review. In Proceedings of the ieee/cvf conference on computer vi-698

sion and pattern recognition (pp. 3451–3461).699

Sanders, B. F., & Schubert, J. E. (2019). Primo: Parallel raster inundation model.700

Advances in Water Resources, 126 , 79–95.701

Shamkhalchian, A., & de Almeida, G. A. (2021). Upscaling the shallow water equa-702

tions for fast flood modelling. Journal of Hydraulic Research, 59 (5), 739–756.703

Smith, L. N., & Topin, N. (2019). Super-convergence: Very fast training of neu-704

ral networks using large learning rates. In Artificial intelligence and machine705

learning for multi-domain operations applications (Vol. 11006, p. 1100612).706

Ştefănescu, R., Sandu, A., & Navon, I. M. (2014). Comparison of pod reduced or-707

der strategies for the nonlinear 2d shallow water equations. International Jour-708

nal for Numerical Methods in Fluids, 76 (8), 497–521.709

Sulavko, A. (2020). Bayes-minkowski measure and building on its basis immune710

machine learning algorithms for biometric facial identification. In Journal of711

physics: Conference series (Vol. 1546, p. 012103).712

Sun, L., Gao, H., Pan, S., & Wang, J.-X. (2020). Surrogate modeling for fluid flows713

based on physics-constrained deep learning without simulation data. Computer714

Methods in Applied Mechanics and Engineering , 361 , 112732.715

Toro, E. F., & Garcia-Navarro, P. (2007). Godunov-type methods for free-surface716

shallow flows: A review. Journal of Hydraulic Research, 45 (6), 736–751.717

Vlassis, N. N., & Sun, W. (2021). Sobolev training of thermodynamic-informed neu-718

ral networks for interpretable elasto-plasticity models with level set hardening.719

Computer Methods in Applied Mechanics and Engineering , 377 , 113695.720

Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep721

learning for computer vision: A brief review. Computational intelligence and722

neuroscience, 2018 .723

William, W., Ware, A., Basaza-Ejiri, A. H., & Obungoloch, J. (2018). A review of724

–25–



manuscript submitted to Water Resources Research

image analysis and machine learning techniques for automated cervical can-725

cer screening from pap-smear images. Computer methods and programs in726

biomedicine, 164 , 15–22.727

Wilson, M., Bates, P., Alsdorf, D., Forsberg, B., Horritt, M., Melack, J., . . . Famigli-728

etti, J. (2007). Modeling large-scale inundation of amazonian seasonally729

flooded wetlands. Geophysical Research Letters, 34 (15).730

Xin Qi, S. M., Gustavo A. M. de Almeida. (2023). Dataset supporting an article731

”physics informed neural networks for solving flow problems modeled by the732

shallow water equations” [dataset]. University of SOuthampton. Retrieved733

from https://doi.org/10.5258/SOTON/D2645 doi: 10.5258/SOTON/D2645734

Yıldız, S., Goyal, P., Benner, P., & Karasözen, B. (2021). Learning reduced-order735
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Appendix A PINN Design Experiments751

This section illustrates the heuristic approach followed to determine the best pos-752

sible design of the PINNs. We focus on Test 1, described in Section 3.1. All the PINNs753

shown in this section are trained from the same dataset resolved at 50 m resolution. Fig-754

ures A1 and A2 show the accuracy (Rh) of the PICNs and PIFCNs, respectively, as their755

architecture (number of layers and channels/neurons) is varied. In short, these figures756

show that it is difficult to conclude whether a single architecture can lead to significantly757

improved results, and we thus prioritize simplicity in our PINNs design. While this heuris-758

tic approach is, by definition, not guaranteed to find the optimal solution, it represents759

the summary of very many iterations. This holds for other tests and dataset resolutions760

considered in this study.761

Similarly, we have tested three widely used activation functions: Relu, Sigmoid and762

Tanh (see Table A1). The chosen architecture for testing the PICN and PIFCN mod-763

els is CNN-5-20 and FCNN-3(1000), respectively. For PICN, Sigmoid and Tanh display764

the same accuracy, while the result of the Relu-based PICN has higher errors. The PIFCN765

with Tanh yields better accuracy than using the other two activation functions. As a re-766

sult, Tanh was chosen as the activation function to be employed in all PINNs discussed767

in this paper.768

Figure A1. Comparison of PICNs with different architectures; the last hidden layer of all

PICNs is one typical fully connected layer with 50 neurons. In the legend bar, the following for-

mat is adopted: PICN-X-Y, where the PICN has X channles in the first convolutional layer and

Y channels in the second convolutional layer (thus, PICN-X denotes a network with one convolu-

tional layer only).

Table A1. Results of water depth prediction by using Relu, Sigmoid and Tanh activation

functions for PICN and PIFCN models. The trainset is a 50 m resolved dataset from Test 1; the

evaluation metric is Rh and its unit is m.

Model Relu Sigmoid Tanh

PICN 0.021 0.002 0.002
PIFCN 0.154 0.028 0.004
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Figure A2. Comparison of PIFCNs with different architectures. In the legend bar, the follow-

ing format is adopted: PIFCN-X(Y), where X denotes the number of hidden layers and Y is the

number of neurons per layer.

Appendix B Further Spatial Analysis For Test 3769

Table B1. Computation time and spatial prediction accuracy relative to benchmark simulation

for the comparison. The unit for Rs
h is m, and the unit for Rs

hu and Rs
hv is m2s−1.

Model Tc t = 32 hours t = 68 hours
name (min) Rs

h Rs
hu Rs

hv Rs
h Rs

hu Rs
hv

PICN (50) 59.4 0.52 1.68 1.16 0.41 1.87 1.21
PICN (100) 15.3 0.40 1.72 1.18 0.37 1.92 1.20
PICN (200) 5.3 0.48 1.69 1.12 0.39 1.88 1.17

PIFCN (50) 504.9 0.59 2.21 1.32 0.52 2.21 1.28
PIFCN (100) 127.9 0.59 2.16 1.28 0.50 2.21 1.18
PIFCN (200) 30.2 0.63 2.27 1.21 0.47 2.16 1.15

FV (10) 2576.0 0.19 0.89 0.56 0.19 0.86 0.56
FV (25) 83.3 0.64 1.20 1.25 0.64 1.36 1.21
FV (50) 8.6 1.24 2.18 1.95 1.24 2.32 1.87

Table B1 summarizes the spatial prediction accuracy (i.e. Rs
h, Rs

hu, Rs
hv) computed770

from a 50 m resolved set of points for each model at t = 32 and 68 hours, as well as their771

overall Tc (i.e. training time for PINN and computation time for FV). Among all the mod-772

els, FV (10) and FV (50) achieve the highest and lowest accuracy, respectively. All PINNs773

present lower Rs
h than FV (25) and FV (50). On the other hand, FV (25) is more ac-774

curate than all PINNs in terms of hu prediction. PIFCN show a relatively similar value775

of Rs
hu to FV (50) at both time points. Moreover, the prediction accuracy of the PICNs776

and PIFCNs is less affected by the resolution of the input dataset than in the FV model.777

This last point may potentially be a main advantage of PINNs relative to conventional778

numerical methods in general, whose performance (numerical stability and accuracy) tends779

to be highly dependent on the mesh resolution.780
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