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Abstract

Climate and Earth system models are important tools to assess the benefits and risks of stratospheric aerosol injection (SAI)

relative to those associated with anthropogenic climate change. A “controller” algorithm has been used to specify injection

amounts of sulfur dioxide in SAI experiments performed with the Community Earth System Model (CESM). The experiments

are designed to maintain specific temperature targets, such as limiting global mean temperature to 1.5ºC above the pre-industrial

level. However, the influence of natural climate variability on the injection amount has not been extensively documented. Our

study reveals that more than 70% of the year-to-year variation in the total injection amount (excluding the long-term trend)

in CESM SAI experiments is attributed to the El Niño-Southern Oscillation (ENSO). A simplified statistical model further

suggests that the intrinsic, lagged response of the controller to the climate can increase the variance of global mean temperature

in the model simulations.
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Key Points: 9 

• The SAI controller applied in the CESM2 ARISE-SAI-1.5 simulation is significantly 10 
impacted by ENSO.  11 

• The lagged response of the current SAI controller could lead to an increase in the 12 
variance of global mean surface temperature.13 
  14 
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Abstract 15 

Climate and Earth system models are important tools to assess the benefits and risks of 16 
stratospheric aerosol injection (SAI) relative to those associated with anthropogenic climate 17 
change. A “controller” algorithm has been used to specify injection amounts of sulfur dioxide in 18 
SAI experiments performed with the Community Earth System Model (CESM). The experiments 19 
are designed to maintain specific temperature targets, such as limiting global mean temperature 20 
to 1.5ºC above the pre-industrial level. However, the influence of natural climate variability on 21 
the injection amount has not been extensively documented. Our study reveals that more than 22 
70% of the year-to-year variation in the total injection amount (excluding the long-term trend) in 23 
CESM SAI experiments is attributed to the El Niño-Southern Oscillation (ENSO). A simplified 24 
statistical model further suggests that the intrinsic, lagged response of the controller to the 25 
climate can increase the variance of global mean temperature in the model simulations. 26 

Plain Language Summary 27 

As global temperatures rise due to increasing greenhouse gas (GHG) emissions, more attention 28 
has been given to exploring the feasibility of stratospheric aerosol injection (SAI) as a means of 29 
counteracting global warming. Several SAI simulations based on numerical climate models 30 
utilize a "controller" algorithm to maintain global temperatures by adjusting aerosol injection 31 
amounts on an annual basis. However, our findings reveal a strong influence of El Niño-32 
Southern Oscillation (ENSO) on the "controller" regarding the injection amounts. This 33 
unexpected influence goes beyond the original design intent of the controller. Statistical analyses 34 
further indicate that the current controller, while successfully preventing global warming, can 35 
lead to an increased variance in global mean temperature. 36 

1 Introduction 37 

To mitigate global warming and projected future increases in weather and climate 38 
extremes, greenhouse gas emissions must be dramatically reduced (Meinshausen et al., 2009; 39 
IPCC, 2021). However, current and planned emission reductions will likely not be sufficient to 40 
limit global warming to well under the 2ºC goal of the Paris Agreement. This motivates studies 41 
exploring climate intervention (or ‘geoengineering’) as a possible approach to stabilize or reduce 42 
global temperatures and possibly buy more time for emission reductions and the implementation 43 
of climate adaptation measures. Stratospheric aerosol injection (SAI) may be one of the most 44 
effective climate intervention approaches (e.g., Caldeira et al., 2013; NRC, 2015; Xu et al., 2020; 45 
NASEM, 2021). By forming reflective aerosols in the stratosphere through injections of sulfate 46 
particles (e.g., sulfur dioxide), SAI aims to reflect a small percentage of incoming solar radiation, 47 
thus potentially offsetting greenhouse gas warming and minimizing some of the risks associated 48 
with anthropogenic climate change.  49 

Climate model simulations have been used to investigate both the benefits and potential 50 
risks of SAI in the context of climate change (e.g., Kravitz et al., 2015; Mills et al., 2017; Richter 51 
et al., 2022). MacMartin et al. (2014) introduced an SAI ‘controller’ algorithm to determine the 52 
injection amounts and locations of sulfur dioxide needed each year to reach and maintain 53 
prescribed temperature targets, such as the global mean surface temperature (GMST), the 54 
hemispheric temperature gradient, and the pole-to-Equator temperature gradient (referred to as 55 
T0, T1, and T2, respectively in Kravitz et al. 2017). To achieve this, at the end of each simulated 56 
year, the controller calculates and compares the annual-mean values of GMST, T1, and T2 with 57 
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the respective values from the target climate period. A matrix calculation (based on the climate 58 
sensitivity to SAI) is then applied to calculate the amount of sulfate particles needed at different 59 
latitudes for the next year to offset the differences in GMST, T1, and T2 between the current 60 
year and the target climate.  61 

The National Center for Atmospheric Research (NCAR) recently released a new 62 
ensemble of SAI experiments using the Community Earth System Model, version 2 (CESM2; 63 
Danabasoglu et al. 2020), which also employed this controller algorithm (Richter et al. 2022). 64 
The Assessing Responses and Impacts of Solar climate intervention on the Earth system with 65 
Stratospheric Aerosol Injection (ARISE-SAI) results demonstrate the effectiveness of the 66 
controller algorithm in maintaining the GMST at 1.5ºC above its pre-industrial value (Fig. S1a). 67 
The ensemble-averaged sulfate injection amount in ARISE-SAI-1.5 shows a nearly-linear 68 
increase with time, which resembles the increase in greenhouse gas (GHG) concentrations under 69 
the moderate Shared Socioeconomic Pathway scenario of SSP2-4.5 scenario (O'Neill et al., 70 
2016) used in the simulations. However, the total injection amounts differ significantly across 71 
individual ensemble members (Fig. S1b). This suggests that the controller may be responding not 72 
only to the forced warming but also to inter-annual temperature fluctuations driven by model-73 
generated internal variability (thin blue lines in Fig. S1a). The El Niño-Southern Oscillation 74 
(ESNO) is one of the most dominant modes of internal variability that influences both global as 75 
well as regional climate (Ropelewski & Halpert, 1987; Wang et al., 2017). Thus, it is possible 76 
that inter-annual variations in injection amounts are related to the controller's response to ENSO, 77 
over and above the injection amounts needed to offset the externally-forced global warming. 78 
Such responses might introduce unexpected fluctuations in both the SO2 injection amount and 79 
GMST. 80 

Another issue related to the controller is the ‘lagged response’ intrinsic to the controller 81 
algorithm. The injection amount determined by the controller for the following year is based on 82 
the current year’s climate. If ENSO influences the controller, the injection amount for the 83 
following year will be calculated based on both the forced warming and the ENSO-driven 84 
temperature changes from the current year. However, as the phase of ENSO can change quickly, 85 
even by the following year (Stein et al., 2010). this may lead to a mismatch between the injection 86 
amount and the ENSO-driven temperature variation. Consequently, the injection amounts may 87 
not adequately maintain the temperature targets, or they may even exacerbate temperature 88 
fluctuations in the following year. This mismatch may thus introduce potential side effects to 89 
global and regional climate, particularly during years with quick transitions of ENSO. 90 

Inspired by the two potential issues described above, we focus on two questions in this 91 
study: (1) How much does ENSO impact the injection amounts determined by the controller; and 92 
(2) to what extent does the lagged response of the controller affect the simulated climate? 93 

2 Data and Methods 94 

2.1 Model simulations 95 

Our analyses are based on ensemble simulations using the Community Earth System 96 
Model, version 2, with the Whole Atmosphere Community Climate Model, version 6 97 
(CESM2(WACCM6); Danabasolgu et al., 2020). For studies of climate intervention using SAI, 98 
representation of the entire stratosphere, including dynamics and chemistry, is needed to capture 99 
the transport of stratospheric aerosols and their interactions with stratospheric constituents such 100 
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as water ozone and water vapor. Similarly, representing key processes and interactions between 101 
multiple Earth system components is important, including coupling between the atmosphere, 102 
land, ocean, and sea ice, as well as prognostic aerosols and interactive chemistry.  103 

The ARISE-SAI experiments utilize a moderate emission scenario (SSP2-4.5) and 104 
simulate SAI deployment in 2035 with a goal of keeping GMST near 1.5ºC above the pre-105 
industrial level (Richter et al. 2022). A 10-member ensemble of ARISE-SAI is compared to an 106 
identical 10-member ensemble experiment without SAI (SSP2-4.5 hereafter). More technical 107 
details can be found in Richter et al. 2022. We analyze monthly outputs of near-surface air 108 
temperature (SAT) and sea surface temperature (SST).  109 

The controller in ARISE-SAI injects sulfur dioxide (SO2) into four one-grid boxes (15ºS, 110 
15ºN, 40ºS, and 30ºN at 180º longitude) at an altitude of 21.6 km. In this study, we focus solely 111 
on the total SO2 injection amount, which is calculated by adding the amounts at all four injection 112 
locations obtained from the controller log document. To investigate the year-to-year changes in 113 
injection amount, we calculate the difference in the total SO2 injection amount between the 114 
following year and the current year (ΔSO2 hereafter). 115 

2.2 ENSO in the model simulations 116 

As described earlier, year-to-year variations of the total SO2 injection amount may be 117 
related to model-generated internal variability, particularly that driven by ENSO. ENSO is a 118 
dominant inter-annual mode of climate variability that strongly impacts global temperature (Cai 119 
et al., 2015). Our focus, therefore, is on the potential impact of ENSO on the total injection 120 
amount in ARISE-SAI.  121 

We compute and examine the commonly-used Oceanic Niño Index (ONI; NOAA 2019) 122 
to represent ENSO in CESM2 simulations. Specifically, a standardized ONI is calculated as the 123 
3-month running mean of SST anomalies over the east-central tropical Pacific (5ºN–5ºS, 170ºW–124 
120ºW). The SST anomalies are relative to a 35-year base period from 2035 to 2069. Ensemble-125 
mean values of SST are subtracted from each simulation realization prior to the calculation in 126 
order to remove the SST changes driven by external forcings. In order to be comparable with the 127 
total sulfate injection amount, which varies annually, the annual mean of ONI is analyzed. 128 

2.3 Simplified statistical model 129 

The controller algorithm determines the SO2 injection amount for the coming year based 130 
on the annual mean temperatures of the past year. However, the GMST and the meridional 131 
gradients in temperature for the coming year could differ significantly from the previous year 132 
due to ENSO activity. To investigate how the lagged response of the controller influences the 133 
variance of GMST in the simulations, we designed a simplified statistical model (SSM hereafter) 134 
based on the GMST from the ARISE-SAI and the SSP2-4.5 simulations.  135 

The SSM simplifies the climate system and considers GMST changes only. The GMST 136 
in the SSM is set as follows: 𝑇 = 𝑇!"! 	+ 	𝑇_𝐸𝑁𝑆𝑂	, where 𝑇!"!  and 𝑇#$%& represent the GHG 137 
warming and the ENSO-driven GMST changes, respectively. To keep in line with the ARISE-138 
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SAI and SSP2-4.5 experiments, the linear fit of the ensemble-mean GMST from the SSP2-4.5 139 
experiment is applied to represent 𝑇!"!  (shown as dashed blue line in Fig. S2a).  140 

In climate models and observations, ENSO-driven GMST changes occur over different 141 
frequencies, and these may affect the climate impacts introduced by the controller’s lagged 142 
response. Therefore, to analyze the impacts of the lagged response on GMST variance given a 143 
certain ENSO frequency, 𝑇#$%& in the SSM is simplified to be an idealized monthly time series 144 
with a specified variation frequency: 𝑇#$%& = 𝐴 ∗ 𝑠𝑖𝑛(⍵𝑡 + 𝜑), where 𝐴 (the magnitude of 145 
ENSO-driven GMST) is obtained based on the linear regression between ONI and detrended 146 
GMST in the SSP2-4.5 simulation. The variation frequency and the initial condition of 𝑇#$%& are 147 
specified by changing the value of ⍵ and 𝜑, respectively. A sample 𝑇#$%& with a 3-year 148 
frequency is shown in Fig. S2a.  149 

In response to SAI, the SSM has linear sensitivity to the sulfate injection amount, which 150 
is calculated based on the linear regression between the total sulfate injection amount in ARISE-151 
SAI and the difference in GMST between SSP2-4.5 and ARISE-SAI (referred to as the “avoided 152 
global warming”; Fig. S2b). We use the same controller algorithm in the SSM as is used in 153 
ARISE-SAI. Since the SSM only considers GMST and has no spatial information, T1 and T2 are 154 
fixed to the target values so that the controller does not respond to these two criteria. It is worth 155 
noting that ENSO activity could also influence the sulfate injection locations by changing T1 and 156 
T2. However, since our focus here is only on the total sulfate injection amount (which is 157 
dominated by the GMST changes), it is reasonable to ignore these two indices in the SSM for 158 
now. 159 

3 Results 160 

3.1 Effects of ENSO on the SO2 injection amount 161 

In addition to significant long-term warming induced by increases in GHG 162 
concentrations, ENSO variations can also strongly influence GMST on interannual timescales. 163 
This holds true in the ARISE-SAI simulations. Shown in Fig. 1 is the annual mean time series of 164 
ONI, GMST anomalies above the pre-industrial level, as well as ΔSO2 from all ten ensemble 165 
members of ARISE-SAI. The average correlation between ONI and GMST is around 0.71, 166 
which reveals that approximately 50% of the year-to-year variability of GMST in ARISE-SAI 167 
can be attributed to variations of ENSO.  168 

In addition, ΔSO2 also shows significant year-to-year variation above the steadily 169 
increasing injection amount that is required to counter increasing GHG forcing with time (orange 170 
lines in Fig. 1). After the ramp-up period (first five years), when the controller initializes the 171 
deployment with a mild increase in injection amounts to required values, the variability of ΔSO2 172 
is similar to that of GMST and ONI, and this is especially during strong ENSO events. Overall, 173 
the correlation between ONI and ΔSO2 is around 0.53. Since the controller determines the 174 
injection amounts based on the annual mean GMST from the preceding year, it is clear that 175 
ENSO strongly influences the controller’s decision. In particular, compared to the total injection 176 
amount (Fig. S1b), the year-to-year variation of ΔSO2 accounts for about 5% to 10% of the total 177 
injection amount in any given year, indicating that the controller’s response to ENSO should be 178 
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large enough to detect even during the later period of ARISE-SAI (when the required injection 179 
amount is far greater in order to counter the larger GHG forcing). 180 

Although year-to-year variations of ΔSO2 are highly correlated with ENSO, some large 181 
values of ΔSO2 are unrelated to ENSO-driven GMST changes (e.g., the first few years in 182 
member 10; Fig. 1). Since only about 50% of the GMST variance is linearly associated with 183 
ENSO, it is possible that other sources of internal variability may be affecting the variation of 184 
ΔSO2, a topic that is outside of the scope of this paper but is likely worthy of further exploration.  185 

To further investigate inter-annual fluctuations of ΔSO2, Fig. 2a shows the composite 186 
map of surface air temperature (SAT) for times when the standardized ΔSO2 time series is above 187 
0.5 minus when it is below -0.5. The resulting composite pattern looks remarkably El Niño-like 188 
(Cane & Zebiak, 1985). In particular, consistent with the high correlation between ENSO and 189 
ΔSO2 shown in Fig. 1, a strong El Niño (La Niña) event corresponds to a positive (negative) 190 
ΔSO2 , indicating the controller is changing its injection rates to offset the warm or cool anomaly 191 
in GMST.  192 

To quantify how much the composite map of ΔSO2 can be explained by ENSO, a linear 193 
regression between ΔSO2 and ONI was constructed as: 𝛥𝑆𝑂' = 𝛽 ∗ 𝑂𝑁𝐼	 + 	𝑟, where 𝛽 ∗ 𝑂𝑁𝐼 is 194 
the ENSO-driven ΔSO2, and the residual (𝑟) represents the non-ENSO driven changes in ΔSO2. 195 
About 72% (with a global pattern correlation between Fig. 2a and 2c of 0.85) of the SAT spatial 196 
pattern driven by ΔSO2 can be explained by the ENSO activity, which again emphasizes that 197 
interannual variability of the total sulfate injection in ARISE-SAI are dominated by ENSO, an 198 
aspect that yet to be documented. 199 

After removing the linear effects of ENSO, the residual pattern of SAT (Fig. 2d) shows 200 
warm anomalies over the middle-to-high latitudes of the Northern Hemisphere as well as over 201 
tropical regions outside of the western tropical Pacific, reminiscent of a weak El Nino pattern. 202 
This suggests that other modes of internal variability (e.g., the North Atlantic Oscillation or the 203 
Pacific Decadal Oscillation) might also be important in affecting year-to-year variations of 204 
ΔSO2. 205 

3.2 Lagged response of the controller and increased GMST variance 206 

At the end of each simulated year, the ARISE-SAI controller calculates the injection 207 
amounts needed for the next year based on the preceding year’s annual mean temperature indices 208 
(GMST, T1, and T2). However, since ENSO can change phases quickly within a single year, the 209 
temperature indices, especially GMST (T0), might also change quickly in response to this ENSO 210 
variability. In this situation, the previously determined injection amount may not adequately 211 
satisfy the injection needs of the coming year, or, it may even exacerbate temperature 212 
fluctuations.  213 

The schematic diagram in Fig. 3a shows an idealized case of ENSO quickly transitioning 214 
from a warm event in year one to a cold event in year two. By the end of the first year, the 215 
controller would detect an ENSO-driven global warming anomaly and increase the injection 216 
amount in the second year to offset not only the incremental GHG warming but also the warming 217 
driven by El Niño. However, if a cold event (La Niña) occurs naturally in year two, the 218 
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controller’s decision would lead to an even greater global cooling than would have otherwise 219 
occurred without the controller. Similarly, in the case of ENSO quickly transitioning from a cold 220 
event (La Niña) to a warm event (El Niño), the controller would decrease the injection amount 221 
by too much and not adequately offset the GHG warming. It follows from this basic example that 222 
the year-to-year variability of GMST might ultimately be larger than expected due to the 223 
controller responding to ENSO variability. Fast ENSO transitions are apparent in both the 224 
ARISE-SAI simulations (e.g., 2056–2057 in Member 004, and 2051–2052 in Member 005; Fig. 225 
1) and in observations (e.g., 2010-2011; not shown).  226 

To further examine how the controller’s response to ENSO affects the variance of 227 
GMST, we developed a simplified statistical model based on the ARISE-SAI and SSP2-4.5 228 
simulations, in which the idealized “ENSO” signal has only one specific variation frequency (see 229 
Section 2.3). When the variation frequency of ENSO is twice the controller’s detection 230 
frequency (i.e., two years, shown in Fig. 3b), the controller’s decision follows the mechanism 231 
described in Fig. 3a and leads to a 34% increase in the variance of GMST. However, this is an 232 
extreme case, since ENSO typically varies from two to seven years. 233 

We thus further explore the controller’s decisions for different ENSO frequencies (Fig. 234 
S3). The results show that the controller algorithm always introduces increased variance in 235 
GMST, but the magnitudes of this additional variance depend strongly on the hypothetical ENSO 236 
frequency. Specifically, when ENSO varies at relatively high frequencies (e.g., panels a and c in 237 
Fig. S3), the GMST variance increases by more than 20%. At lower frequencies (such as seven 238 
years in Fig. S3d), the controller can adequately account for most ENSO-induced GMST 239 
changes, and it only introduces a small increase in the variance of GMST. In other words, the 240 
lagged response of the controller is strongly impacted by the frequency of ENSO variability.  241 

Considering the potential issue introduced by the lagged response of the controller, we 242 
further test how the variance of GMST would change if the controller made injection decisions 243 
on timescales other than annual. For instance, if the controller changed injection amounts every 244 
two years (Fig. 4b), the variance of GMST would significantly increase, and GMST would still 245 
slowly increase despite the continuous sulfate injection. More extreme cases occur when the 246 
controller injects even less often, such as every five years (Fig. 4c). In this case, the controller 247 
fails to offset the GHG warming because the injection amount is always behind the increasing 248 
GHG concentrations.  249 

A more intuitive way to prevent introducing spurious variance due to the controller’s 250 
lagged response would be to detect temperature indices more frequently than once-per-year. 251 
Results from the SSM for a controller that changes injection amounts monthly are shown in Fig. 252 
4d. In this case, the variance of GMST is decreased by about 30%, which means the controller 253 
mutes part of the ENSO-driven GMST variation. However, muting ENSO-driven GMST 254 
variability to such an extent might also introduce unexpected climate impacts both globally and 255 
locally.  256 

Comparing the GMST variance between the SSP2-4.5 and ARISE-SAI ensemble 257 
simulations (Fig. 5a), it is clear that the averaged GMST variance in ARISE-SAI is greater than 258 
that in SSP2-4.5 in both early and late periods (2040–2054 and 2055–2069), consistent with the 259 
results from the SSM. Despite largely maintaining the mean values of temperature indices, 260 
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ARISE-SAI introduces significantly greater GMST variance compared to the climate of the 261 
target period (2020–2034 in SSP2-4.5). The SSP2-4.5 simulations show a decrease in the GMST 262 
variance because of GHG warming; however, variances across individual simulations exhibit a 263 
large spread. Thus, due to the limited ensemble sizes (10 members in both the SSP2-4.5 and 264 
ARISE-SAI cases), the variance comparison here contains large uncertainties. The results in Fig 265 
5, therefore, are intriguing but are inconclusive on their own. Additional ensemble members 266 
would be required to more confidently state that the lagged response of the controller is driving 267 
the differences in GMST variance evident between the SSP2-4.5 and ARISE-SAI simulations. 268 

4 Conclusions and Discussion 269 

The controller algorithm in the ARISE-SAI simulations greatly accomplishes its primary 270 
goal; that is, to offset GHG warming by maintaining GMST and meridional temperature 271 
gradients at the target values. However, we have shown that the controller is also strongly 272 
impacted by ENSO activity, and its lagged response to the temperature targets can introduce a 273 
mismatch between injection amounts and ENSO-driven temperature variation, and thus, lead to 274 
increases in GMST variance. This is especially true for the case when ENSO varies on similar 275 
timescales to the controller’s detection frequency (set at one year in the ARISE-SAI 276 
simulations). Given these two factors, it may therefore be worthwhile to focus efforts on 277 
distinguishing and removing GMST variations driven by ENSO from the algorithm, a topic of 278 
ongoing work. 279 

In addition, the residual map of the composite analysis in Fig. 2d suggests that other 280 
modes of internal climate variability may also disturb the controller, although with smaller 281 
magnitudes than that due to ENSO. Additional analyses involving the hemispheric temperature 282 
gradient and the equator-to-pole gradient (T1 and T2) could be beneficial to further understand 283 
the controller’s behavior in response to such modes.  284 

Lastly, we have focused on the global mean temperature in this study. Additional analysis 285 
is warranted to determine whether the controller’s response to ENSO introduces detectable 286 
regional climate impacts. 287 
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Open Research 295 

The CESM2-WACCM6-SSP2-4.5 (https://doi.org/10.26024/0cs0-ev98) and CESM2-296 

WACCM6-ARISE-SAI-1.5 (https://doi.org/10.5065/9kcn-9y79) simulations applied in this study 297 

are produced and maintained by the National Center for Atmospheric Research (NCAR), both of 298 

which are publicly available from: https://www.cesm.ucar.edu/community-projects/arise-sai. All 299 

Python codes related to this study are available at https://github.com/C-R-300 

Diao/ARISE_Controller_ENSO. At the time of publication, the codes will be converted to a 301 

permanent repository on Zenodo.  302 
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 365 

Figure 1. The annual-mean time series of (upper) Oceanic Niño Index (ONI), (middle) GMST 366 
anomalies above the pre-industrial level, and (lower) ΔSO2 for each realization in ARISE-SAI 367 
simulation. The annual ONI anomalies are calculated based on the average of monthly ONI; 368 
years with ONI anomalies greater than 0.5 ºC (less than -0.5ºC) are marked with red (blue) bars. 369 
The first five years (1935–1939, shown as dashed lines in ΔSO2 panels) are the ramp-up periods 370 
according to the controller algorithm. 371 
  372 
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 373 
Figure 2. (a) The composite map of surface air temperature (SAT) anomalies in ARISE-SAI 374 
when ΔSO2 (standardized) is greater than 0.5 compared to when ΔSO2 is less than -0.5. 375 
Composite samples are picked from all ensemble members. (b) Linear regression between 376 
standardized ONI and ΔSO2 based on all ten realizations from ARISE-SAI. (c) Same as panel (a) 377 
but for ENSO-driven ΔSO2 calculated from the linear regression in panel (b). (d) The residual 378 
map of (a) - (c) 379 

  380 
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 381 

Figure 3. (a) Schematic of intensified cooling during an ENSO quick transitioning case. (b) The 382 
results of climate intervention in the simplified statistical model (SSM; see Section 2.3) with 383 
idealized “ENSO” at a fixed frequency of 2 years. The red line represents the GMST without 384 
climate intervention (SSM-SSP), whereas the blue line represents the GMST with climate 385 
intervention (SSM-ARISE). The orange line indicates the detrended GMST without climate 386 
intervention (SSM-SSP detrended), which is driven by the idealized ENSO in the SSM. See the 387 
Method section for a detailed description of the SSM. 388 
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 390 

Figure 4. Similar to Fig 4b, but shows the climate intervention results based on the SSM with 391 
different controller detection frequencies ranging from 1 month to 5 years. The frequency of the 392 
idealized ENSO is fixed at three years in all four cases. 393 

  394 
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 395 

Figure 5. The variance of (a) annual global mean surface temperature (GMST) and (b) the 396 
annual Arctic surface temperature (T_Arctic) in SSP2-4.5 (red) and ARISE-SAI (blue) 397 
simulations for the period of (left) 2040–2054 and (right) 2055–2069. Cross marks represent the 398 
results of each individual ensemble member (10 in each simulation), whereas the circle marks 399 
represent the median. The plus marks indicate the variance of concatenated long-term GMST and 400 
T_Arctic. The grey shading and dashed line represent the variance spread of GMST for the target 401 
period of 2020-2035 from SSP2-4.5 and the variance of concatenated GMST, correspondingly.   402 
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Figure S1. (a) Simulated global mean surface temperature (GMST) above the Pre-
industrial (PI) level in SSP2-4.5 (red) and ARISE-SAI (blue) simulations. The thicker lines 
represent the ensemble-average results, while the thin lines indicate the results from 
each ensemble member. The black dash line indicates the GMST target (around 1.5 ºC 
above PI level) set in ARISE-SAI runs; (b) The total sulfate injection amount (Tg) in ARISE-
SAI simulations. The thicker lines represent the ensemble-average results, while the thin 
lines indicate the results from each ensemble member. 
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Figure S2. (a) The simplified GMST in SSM. The solid line represents the GMST in the 
SSM; the straight dashed line represents the GHG warming calculated based on the 
linear fit of GHG warming in the SSP2-4.5 simulation; the dashed curve represents the 
simplified ENSO-driven GMST variation; (b) Climate sensitivity to SAI in 
CESM2(WACCM6) (blue) and the linear fit of the sensitivity (orange) based on the 
ensemble-averaged result from ARISE-SAI and SSP2-4.5 simulations. The avoided global 
warming is defined as the difference of GMST between SSP2-4.5 and ARISE-SAI. The 
linear fit of climate sensitivity is applied in the SSM as its simplified climate sensitivity to 
SAI. 
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Figure S3. The results of climate intervention in the SSM when the idealized “ENSO” 
varies at different variation frequencies. The controller’s detection frequency is set to the 
default value (one year). The red line represents the GMST without climate intervention 
(SSM-SSP), whereas the blue line represents the GMST with climate intervention (SSM-
ARISE). The orange line indicates the detrended GMST without climate intervention 
(SSM-SSP detrended), driven by the idealized ENSO in the SSM. 


