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Abstract

Upward lightning (UL) has become a major threat to the growing number of wind turbines producing renewable electricity.

It can be much more destructive than downward lightning due to the large charge transfer involved in the discharge process.

Ground-truth lightning current measurements indicate that less than 50% of UL could be detected by lightning location systems

(LLS). UL is expected to be the dominant lightning type during the cold season. However, current standards for assessing the

risk of lightning at wind turbines mainly consider summer lightning, which is derived from LLS. This study assesses the risk

of LLS-detectable and LLS-undetectable UL at wind turbines using direct UL measurements at instrumented towers. These

are linked to meteorological data using random forests. The meteorological drivers for the absence/occurrence of UL are found

from these models. In a second step, the results of the tower-trained models are extended to a larger study area (central and

northern Germany). The tower-trained models for LLS-detectable lightning are independently verified at wind turbine sites in

this area and found to reliably diagnose this type of UL. Risk maps based on cold season case study events show that high

diagnosed probabilities in the study area coincide with actual UL events. This lends credibility to the application of the model

to all UL types, increasing both risk and affected areas.
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Key Points:10

• Tower-trained random forests can diagnose the risk of upward lightning at wind11

turbines based on larger-scale meteorological conditions.12

• Convective precipitation, larger-scale vertical updraft and the presence of CAPE13

are most important for upward lightning.14

• Slightly elevated terrain and near-coastal conditions tend to increase the risk of15

upward lightning.16
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Abstract18

Upward lightning (UL) has become a major threat to the growing number of wind tur-19

bines producing renewable electricity. It can be much more destructive than downward20

lightning due to the large charge transfer involved in the discharge process. Ground-truth21

lightning current measurements indicate that less than 50 % of UL could be detected by22

lightning location systems (LLS). UL is expected to be the dominant lightning type dur-23

ing the cold season. However, current standards for assessing the risk of lightning at wind24

turbines mainly consider summer lightning, which is derived from LLS. This study as-25

sesses the risk of LLS-detectable and LLS-undetectable UL at wind turbines using di-26

rect UL measurements at instrumented towers. These are linked to meteorological data27

using random forests. The meteorological drivers for the absence/occurrence of UL are28

found from these models. In a second step, the results of the tower-trained models are29

extended to a larger study area (central and northern Germany). The tower-trained mod-30

els for LLS-detectable lightning are independently verified at wind turbine sites in this31

area and found to reliably diagnose this type of UL. Risk maps based on cold season case32

study events show that high diagnosed probabilities in the study area coincide with ac-33

tual UL events. This lends credibility to the application of the model to all UL types,34

increasing both risk and affected areas.35

Plain Language Summary36

The need to produce renewable energy has recently led to an increase not only in37

the number of wind turbines, but also in their size. The taller the man-made structure,38

the greater the likelihood of upward lightning (UL) to initiate from the wind turbine.39

Each UL event has an initial continuous current, making it ten times longer and much40

more destructive than a downward lightning event. As UL has become a major weather-41

related hazard to wind turbines, proper risk assessment has become essential. The prob-42

lem: Ground-truth current measurements at an instrumented tower in Austria show that43

less than 50 % of UL is actually detected by lightning location systems (LLS). This study44

shows that a new approach based on vertically resolved larger-scale meteorology and di-45

rect UL measurements from specially instrumented towers, combined with flexible ma-46

chine learning techniques, succeeds in diagnosing the risk of both LLS-detectable and47

LLS-undetectable UL at wind turbines in the colder season over a larger study area.48

1 Introduction49

The growing importance of renewable energy production has recently led to a sig-50

nificant increase in the number of wind turbines (e.g., Pineda et al., 2018). As these struc-51

tures are typically taller than 100 m, the initiation of upward lightning (UL) propagat-52

ing from the tall structure towards the clouds is facilitated (Berger, 1967). A tall struc-53

ture is more likely to experience UL because it is exposed to a stronger electric field com-54

pared to the ground. Structures shorter than 100 m mainly experience downward light-55

ning (DL) with leaders propagating from the clouds towards the earth’s surface (e.g., Rakov56

& Uman, 2003).57

As wind turbines become taller, UL is the main weather-related cause of severe dam-58

age to them (e.g., Rachidi et al., 2008; Montanyà et al., 2016; Pineda et al., 2018; Mat-59

sui et al., 2020; Zhang & Zhang, 2020). It can be much more destructive than DL be-60

cause its initial continuous current (ICC) lasts about ten times longer than the current61

flow of DL. Ground-truth lightning current measurements on the specially instrumented62

tower at the top of the Gaisberg mountain (Austria, Salzburg) show that more than 50 %63

of UL is not detected by conventional lightning location systems (LLS). The reason is64

that the LLS cannot detect a certain subtype of UL with only an ICC (Diendorfer et al.,65

2015; March et al., 2016). Although there are towers providing ground-truth lightning66

current data for LLS-detectable UL (UL-LLS), such as the Säntis Tower in Switzerland,67
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the Gaisberg Tower is the only instrumented tower in Europe providing full information68

on the occurrence of both UL-LLS and LLS-undetectable UL (UL-noLLS).69

Standards for lightning protection of wind turbines (IEC 61400-24, 2019) crucially70

underestimate the occurrence of UL at wind turbines as they currently rely on only three71

factors: The height of the wind turbine, the local annual flash density derived from LLS,72

and an environmental term that includes factors such as terrain complexity or altitude73

(Rachidi et al., 2008; Pineda et al., 2018; March, 2018; Becerra et al., 2018). Summer74

lightning activity clearly dominates the annual local flash density due to large amounts75

of DL caused by deep convection. However, UL is expected to be the dominant light-76

ning type at wind turbines with a tendency to be even more important in the colder sea-77

son (Diendorfer, 2020; Rachidi et al., 2008). Furthermore, the risk assessment standards78

cannot take into account UL-noLLS, but only UL-LLS if a tall structure is present.79

The main objective of this study is to assess the risk of UL-LLS and UL-noLLS on80

wind turbines over a larger area. Although LLS are available to analyze UL-LLS at tall81

structures, direct lightning current measurements show that a significant proportion is82

missed. Recognizing that conventional LLS cannot assess the full risk of UL at wind tur-83

bines, a new approach is used in this study.84

It uses machine learning techniques to link the occurrence of UL to the larger-scale85

meteorological environment. The occurrence of UL can only be provided by ground-truth86

lightning current measurements. These form the basis for building and training the sta-87

tistical models that will ultimately be used to assess the risk of UL over an entire study88

area. Specifically, this study uses conditional inference random forests (Hothorn & Zeileis,89

2015), which account for the highly non-linear and complex interactions between the in-90

cidence of UL on the tall structures and the atmosphere. Several steps are required to91

achieve the main goal.92

From direct lightning current measurement data at two instrumented towers in Aus-93

tria (Gaisberg Tower) and Switzerland (Säntis Tower), two models are constructed: One94

for UL-LLS and one for UL-LLS + UL-noLLS. The aim of these models is, firstly, to de-95

termine whether there is a relationship between larger-scale meteorological variables and96

the occurrence of UL and, secondly, to demonstrate how well larger-scale meteorology97

can serve as a diagnostic tool for inferring the occurrence of UL.98

The advantage of the availability of UL-LLS data helps to verify whether the re-99

sults from the instrumented towers are transferable. The idea is to extract wind turbine100

sites within the study area and identify all lightning strikes to them from the colder sea-101

son (ONDJFMA) using LLS data. Success in reliably diagnosing UL-LLS from larger-102

scale meteorology in combination with UL ground-truth lightning current measurements103

provides greater confidence in the results when, in a final step, the risk of UL-noLLS,104

which cannot be verified using LLS data, is assessed.105

The following sections are organized as follows. Section 2 introduces the two in-106

strumented towers that provide the necessary ground-truth data for this study. The first107

is the Gaisberg Tower, which provides both UL-LLS and UL-noLLS, and the second is108

the Säntis Tower, which provides only UL-LLS. Furthermore, this section presents the109

identification of lightning at wind turbines in the study area and the meteorological data110

used. Section 3 summarizes the procedures and main results from the two instrumented111

towers. Section 3.1 describes the basic principle of building a random forest model. Sec-112

tion 3.2 presents the performance of the models on the instrumented towers. Further-113

more, the most important larger-scale meteorological variables leading to a higher risk114

of UL are introduced (section 3.3). Then, section 4 presents the results of extending the115

models from the instrumented towers to the larger study area to find regions with a higher116

risk of experiencing UL. Section 4.1 diagnoses UL-LLS on wind turbines and presents117

case studies. Section 4.2 then illustrates and discusses the risk of UL-LLS and UL-LLS118
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+ UL-noLLS on wind turbines for the entire study period. Section 5 concludes and sum-119

marizes the most important findings.120

2 Data121

This study combines five different data sources: UL data measured directly at the122

Gaisberg Tower in Austria (Diendorfer et al., 2009) and at the Säntis Tower in Switzer-123

land (Romero et al., 2012); LLS data measured remotely by the European Cooperation124

for Lightning Detection (EUCLID, Schulz et al., 2016); larger-scale meteorological vari-125

ables from the reanalysis database ERA5 (Hersbach et al., 2020); wind turbine locations126

identified using the c© OpenStreetMap (OpenStreetMap contributors, 2020) database.127

2.1 Direct UL measurements at instrumented towers128

Figure 1 shows two of the very few instrumented towers for direct measurement129

of currents from UL. These are the Gaisberg Tower (1 288 m amsl, 47◦48′ N, 13◦60′ E)130

and the Säntis Tower (2 502 m amsl, 47◦14′ N, 9◦20′ E). Lightning at the instrumented131

towers is almost exclusively UL. Gaisberg Tower recorded a total of 819 UL events be-132

tween 2000 and 2015. Säntis Tower recorded 692 UL events between 2010 and 2017.133

A sensitive shunt type sensor at Gaisberg allows measurement of all types of up-134

ward flashes regardless of the current waveform, that is, UL-LLS and UL-noLLS. How-135

ever, the inductive sensors used by Säntis cannot measure upward flashes with only an136

ICC (about 50 %, Diendorfer et al., 2015).137

Direct UL current measurements are critical to the construction of the random for-138

est models, which are extended to the larger study area after training on the tower data.139

The combination of data from both towers provides a sufficiently large dataset and al-140

lows the construction of the two types of models to diagnose both UL-LLS and UL-LLS141

+ UL-noLLS.142

2.2 UL-LLS at wind turbines and study domain143

Remotely detected lightning data from the LLS EUCLID and wind turbine loca-144

tions derived from c© OpenStreetMap serve as verification of the statistical models as-145

sessing the risk of UL-LLS for the selected study area.146

Within the study area of 50◦N–54◦N and 6◦ E–16◦E, 27, 814 wind turbines have147

been installed by the end of 2020 (Fig. 1). After extracting the exact locations of these148

wind turbines, lightning strikes within a 0.003◦ circular area (approximately within 300 m149

radius) detected by EUCLID are identified and assumed to be UL. EUCLID measures150

DL with a high lightning detection efficiency of more than 90 % (Schulz et al., 2016). As151

mentioned above, UL may be detected less efficiently (< 50 % Diendorfer et al., 2015).152

Due to its destructive potential and its severe underestimation in current lightning153

protection standards, UL, and in particular the risk of UL at wind turbines, shall be ex-154

plicitly considered in this study. The tower-trained models are based on UL data through-155

out the year. However, since UL is expected to be dominant in the colder season com-156

pared to DL, only the months from October to April, starting from October 2018 to De-157

cember 2020, are considered in the verification part of the study. Furthermore, since DL158

is dominant in the warmer season, the extraction of lightning strikes to wind turbines159

would possibly lead to ambiguity in the identification of DL or UL when considering the160

whole year.161
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Figure 1. Geographic overview of the instrumented tower locations (Gaisberg and Säntis) as

well as the study domain (box). Green dots are manually identified wind turbine locations based

on c© OpenStreetMap 2020. Right: topographic map of study domain showing altitude above

mean sea level. Data taken from Shuttle Radar Topography Mission (Farr & Kobrick, 2000).

2.3 Meteorological data162

ERA5 provides an hourly reanalysis of the state of the atmosphere. It has a res-163

olution of 31 km horizontally (grid cell size of 0.25 x 0.25 ) and 137 levels vertically. This164

study uses 35 directly available and derived surface, model level, and vertically integrated165

variables. These reflect variables relevant to cloud electrification, lightning, and thun-166

derstorms (Morgenstern et al., 2022). A complete list of variables can be found in the167

supporting information file. The data are spatially and temporally bilinearly interpo-168

lated to each Gaisberg and Säntis Tower UL observation as well as to each grid cell within169

the study domain in the verification part of this study.170

3 Methodological procedures and findings from the instrumented tow-171

ers172

This section provides the necessary background information on the basic methods173

as well as important results from the analysis of the instrumented Gaisberg Tower and174

Säntis Tower. Three different aspects will be covered: First, the principle of how the ba-175

sic model, a random forest, is constructed and verified. Second, the performance of the176

models and third, which variables are most important to identify favorable conditions177

for UL to occur or not.178

3.1 Construction and verification of the tower-trained random forests179

A machine learning technique that has recently been widely applied in various sci-180

entific fields is used to link larger-scale meteorology and the occurrence of UL at the in-181

strumented towers. Random forests Breiman1984 are highly flexible and able to handle182

nonlinear effects, capturing complex interactions with respect to the stated modeling prob-183

lem (Strobl et al., 2009).184
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The occurrence versus non-occurrence of UL is a binary classification problem, which185

is tackled using 35 larger-scale meteorological variables (predictors). Each meteorolog-186

ical predictor is linked to a situation with or without UL at Gaisberg or Säntis Tower187

using a random forest. A random forest combines predictions from multiple decision trees188

trained on randomly selected subsamples of the input data.189

Specifically, the trees in the random forest are constructed by capturing the asso-190

ciation between the binary response and each of the predictor variables using permuta-191

tion tests (also known as conditional inference, see Strasser and Weber (1999)). The idea192

is that at each step in the recursive tree construction, the one predictor variable that has193

the highest (most significant) association with the response variable is selected. Then,194

the data set is split with respect to this predictor variable in order to separate the dif-195

ferent response classes as well as possible. The splitting is repeated recursively in each196

of the subsets of the data until some stopping criterion (e.g., regarding significance or197

subsample size) is met. The forest combines 500 of such trees, where each tree is learned198

on randomly subsampled two-thirds of the full data set, and only six randomly selected199

predictors are considered in each split. Finally, the random forest averages the predic-200

tions from the ensemble of trees, which stabilizes and improves the prediction performance.201

See Hothorn et al. (2006) and Hothorn and Zeileis (2015) for more details on the algo-202

rithm and implementation.203

To validate the resulting models, the input data is split into training and test data204

samples. The training data is used to train the models, and the unseen test data is used205

to evaluate the diagnostic capability. Leave-one-out cross-validation is used to validate206

the models for UL-LLS and UL-LLS + UL-noLLS. The first model for UL-LLS uses both207

Säntis data and Gaisberg data to increase the size of the training data. The particular208

flash type that cannot be detected by the Säntis Tower is omitted from the Gaisberg data209

during training to ensure consistency. The second model for UL-LLS + UL-noLLS uses210

only Gaisberg data because only the Gaisberg Tower provides complete information on211

all subtypes of UL.212

Between 2000 and 2015, the Gaisberg Tower experienced 247 unique days with UL213

events. Between 2010 and 2017, the Säntis Tower experienced 186 unique days. Com-214

bining the UL days from both towers yields 406 unique days with UL. Each training in-215

put data set omits one of the 247 (406) days with UL to use it as test data. This is re-216

peated until each of the 247 (406) days is omitted once for training the random forest217

models. This results in 247 (406) different models trained on situations with and with-218

out UL.219

The input model response (that is, did UL occur or not) is sampled so that the two220

classes are balanced, that is, situations with and without UL are present in equal pro-221

portions. To evaluate the performance of the models, the models diagnose the conditional222

probability on data not considered in the training of the models, that is, on the omit-223

ted day. We call the probability conditional because of the balanced model response setup.224

In order to diagnose the conditional probability of UL also on days without UL, days with-225

out UL are randomly sampled from each season between 2000 and 2017. A high diag-226

nostic ability refers to high probabilities when UL occurred at Gaisberg or Säntis in the227

particular situation (that is, a high true positive rate) and low probabilities when no UL228

occurred (that is, a low false positive rate).229

3.2 Performance of the tower-trained random forests230

The tower-trained random forest models can reliably diagnose both UL-LLS and231

UL-LLS + UL-noLLS when validated on unseen withheld data from the towers. Figure232

2 summarizes the cross-validated diagnostic ability according to the random forests for233

UL-LLS + UL-noLLS (Gaisberg) and UL-LLS (Gaisberg + Säntis). Both model ensem-234

bles show similar good diagnostic performance. The diagnosed median conditional prob-235
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Figure 2. Distributions of diagnosed conditional probabilities in situations with or without

UL events. Left: conditional UL probability given that UL was observed in the particular minute

(true positive) based on Gaisberg data including all subtypes of UL. Center: conditional UL

probability given that UL was observed in the particular minute based on Gaisberg and Säntis

data combined. Right: conditional UL probability on randomly sampled days without UL events

(false positive).
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abilities are about 0.8 that UL was observed in the respective situation (minute). This236

indicates a high true positive rate. Similarly, for situations without lightning (right), the237

conditional probabilities are low, indicating a low false positive rate.238

The fact that the random forest including UL-noLLS has the highest diagnostic abil-239

ity shows that the fraction not detected by conventional LLS can indeed be reliably di-240

agnosed by larger-scale meteorology alone. This supports the idea to also investigate the241

risk of undetectable UL-noLLS and not only UL-LLS.242

3.3 Meteorological drivers for UL-LLS at the instrumented towers243

Random forests allow to assess the influence of individual variables on the diag-244

nostic performance of the models. This is done by calculating the so-called permutation245

variable importance. The idea is to break the relationship between the response variable246

and a predictor variable by neglecting its information when assessing the diagnostic per-247

formance of the models. Neglecting the information of a predictor variable is done by248

permutation, that is, randomly shuffling its values and then assessing how much the di-249

agnostic performance decreases. Figure 3 visualizes the calculated median permutation250

variable importance according to 100 different random forest models for UL-LLS. Each251

of the 100 models is based on a balanced proportion of situations with UL and randomly252

selected situations without UL. The results for the UL-LLS and UL-LLS + UL-noLLS253

models are very similar.254

Convective precipitation has the largest influence on the occurrence of UL accord-255

ing to the random forests based on direct observations from Gaisberg and Säntis Tower256

(Fig. 3). Neglecting the information of this driver variable reduces the diagnostic per-257

formance the most. The second and third most important variables are the maximum258

updraft velocity and the convective available potential energy (CAPE). A statistical sum-259

mary of the three most important variables shows that the CAPE at both the Säntis Tower260

and the Gaisberg Tower is rather low when UL occurs (median value of 68 J kg−1). Con-261

vective precipitation comes with a median of 3.8 mm and maximum vertical updraft ve-262

locity with a median of − 1.5 m s−1. All values are larger in magnitude than the ”av-263

erage” when looking at every single hour in the time range considered. However, the or-264

der of magnitude is not exceptionally high, as can be observed for deep convection, where265

especially the CAPE values are often higher than 500 J kg−1. An important reason for266

this may be that at the instrumented towers, UL occurs approximately evenly through-267

out the year, whereas intense thunderstorms with deep convection and high CAPE val-268

ues occur mainly in the summer season. Further, this may suggest that the occurrence269

of UL requires a combination of many different processes that interact to create favor-270

able conditions for UL, which may be even more complex than creating favorable con-271

ditions for deep convection.272

Other important variables are the maximum precipitation rate, the vertical size of273

the thundercloud, the amount of ice crystals and solid hydrometeors, and the 2 m dew274

point temperature.275

4 UL at wind turbines276

Extraction of wind turbine locations and identification of lightning strikes to them277

within 300 m in the cold season (ONDJFMA) shows that there are regions within the278

study area that experience UL more frequently than others (see Fig. 4). Interestingly,279

the regions that experience UL more frequently (panel (b), dark pink) coincide with re-280

gions with many wind turbines. In general, however, it can be observed that regions with281

a high number of wind turbines (panel (a), dark green) do not necessarily coincide with282

a high number of ULs, as can be seen for example in the northeastern parts of the study283

area. The following sections present and discuss the results of extending the results from284

–8–



manuscript submitted to JGR: Atmospheres

Solid hydrometeors 
(total column)

Ice crystals 
(−20 °C to −40 °C)

Solid hydrometeors 
(−20 °C to −40 °C)

2 m dewpoint

Ice crystals 
(total column)

Cloud size

Max. precipitation 
rate

CAPE

Maximum updraft

Convective precipitation

0.0 0.1 0.2 0.3

Variable importance

Figure 3. Median permutation variable importance according to 100 different random forests

based on balanced proportions of situations with and without UL at the Gaisberg and Säntis

Tower.

the instrumented towers to the study area by extracting the locations of wind turbines285

and analyzing the lightning activity to them.286

4.1 Diagnosing UL-LLS at wind turbines from larger-scale meteorolog-287

ical conditions288

The random forest models for UL-LLS and UL-LLS + UL-noLLS, based on data289

from the two instrumented towers, identified larger-scale meteorological variables that290

are the most important discriminators between situations with and without UL. The tower-291

trained random forest models are now applied to the larger study area to assess the risk292

of UL at wind turbines. Lightning measurements from LLS data will verify the results293

at identified wind turbine sites.294

The following results are based on a similar procedure as described in Sect. 3.2, ex-295

cept that each grid cell ( 31 km x 31 km ) of the study domain is used as test data in-296

stead of the cross-validated data from the instrumented towers.297

To increase the robustness of the results, again 100 different random forest mod-298

els based on observations from the Gaisberg and the Säntis Tower are used to diagnose299

the conditional probability of UL on the selected case studies over the study domain. The300

results in this section visualize the median conditional probabilities diagnosed by the ran-301

dom forest models.302

Case studies: UL-LLS at wind turbines303

To illustrate the diagnostic ability of the tower-trained random forests for UL-LLS304

on days with UL events, three different case study days are selected from the colder sea-305

sons between 2018 and 2020 in the study area.306
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Figure 4. Panel (a): number of wind turbines per grid cell derived from c© OpenStreetMap

2020 data. Panel (b): number of hours per grid cell with lightning at wind turbines derived from

EUCLID data.
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Figure 5. Larger-scale meteorological setting on the 4th March 2019 over the study domain.

Left column illustrates the setting at 13 UTC, right column at 14 UTC. From upper to lower:

spatial distributions of isolines of the 850 hPa temperature (in intervals of 1 K), convective pre-

cipitation, the maximum large-scale updraft velocity (negative values is upward motion) and

CAPE. Darker colors indicates higher magnitude. Dark gray dots in all figures are flashes within

the considered hour and ERA5 grid cell derived from LLS EUCLID data.
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Figure 6. Median diagnosed conditional probability of UL according to 100 random forest

models based on Gaisberg and Säntis Tower data (red areas). Yellow symbols are flashes within

the considered hour derived from EUCLID data. Gray shaded areas are grid cells without wind

turbines.
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The selected case study days are characterized by typical weather situations for the307

colder seasons in the mid-latitudes. The atmosphere in the transitional seasons and in308

winter tends to be highly variable and influenced by the succession of cyclones and an-309

ticyclones that determine the meteorological setting (Perry, 1987). In particular, the de-310

velopment and progression of mid-latitude cyclones provide favorable conditions for so-311

called wind field thunderstorms (Morgenstern et al., 2022). This type of thunderstorm312

is associated with, among other things, strong updrafts, high precipitation amounts, and313

low but present CAPE.314

The first case study is considered in more detail with respect to the drivers iden-315

tified at the instrumented towers (Fig. 3). Figure 5 illustrates the larger-scale isotherm316

locations, spatial distribution of convective precipitation, maximum updraft velocity, and317

CAPE on 4 March 2019 at 13 UTC and 14 UTC. LLS detected lightning events at the318

identified wind turbines within the respective hour are indicated as dark gray dots.319

The meteorological setting is determined by the passage of a cold front ahead of320

a trough around noon. Densely packed isotherms at 850 hPa crossing northern and cen-321

tral Germany from west to east indicate the approximate location of the cold front in322

panels (a) and (b). The cold front implies locally increased amounts of convective pre-323

cipitation in (c) and (d), strong updrafts indicated by large negative values in (e) and324

(f), and slightly increased but generally low CAPE in (g) and (h) compared to deep con-325

vection in summer. All three variables show maximally increased values in slightly dif-326

ferent areas within the study area induced by the cold front. Convective precipitation327

shows increased values along the cold front, while the other two variables have locally328

more concentrated areas with maximum values (e.g. maximum updraft velocity in North/Central329

Germany).330

Figure 6 visualizes the diagnosed conditional probability by the random forest mod-331

els in red colors for all three case study days. Panels (a) and (b) show the results for the332

particular case study discussed in Fig. 5. The diagnosed pattern is a result of combin-333

ing the influence of the three driver variables. This suggests that no single variable can334

be responsible for the resulting probability map, but rather an interaction of different335

influencing variables resulting in areas of increased risk of experiencing UL.336

The yellow symbols again show lightning strikes over the hour considered. Iden-337

tified lightning events in yellow require a wind turbine within a maximum distance of338

300 m as described in Sect. 2. All other tall structures that may have experienced UL339

are not considered in this figure. Since the diagnosed probabilities do not depend on wind340

turbine locations, high probabilities may be diagnosed even though there is no wind tur-341

bine installed. Grid cells without wind turbines are shaded gray.342

All three case study days in Fig. 6 show that areas with increased diagnosed prob-343

ability of UL coincide well with identified lightning events in that hour over the study344

area. In all three case studies, there is a clear separation between areas with very low345

diagnosed risk and areas with very high diagnosed risk of experiencing UL.346

On 11 February 2020, shown in panels (c) and (d) of Fig. 6, the study domain is347

again in a strong westerly flow associated with locally enhanced convective precipitation,348

CAPE, and strong updrafts (not shown here). On February 17, 2020, the study area is349

crossed by a cold front at higher altitudes (above 500 hPa). Despite the different me-350

teorological situation, the conditions are similar to the other case studies, showing el-351

evated values in the three driver variables that strongly influence the diagnosed condi-352

tional probability.353
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4.2 Risk assessment of UL at wind turbines354

Identifying areas of increased UL risk due to larger-scale meteorological conditions355

is a valuable step in assessing the risk of lightning at wind turbines. The case studies clearly356

show that the observed lightning events at wind turbines coincide with the areas of in-357

creased probability diagnosed by the random forest models. The following analysis con-358

siders all events within the considered time period in which lightning was detected at359

wind turbines. Not only the models for UL-LLS shall provide a risk assessment, but now360

the random forests for UL-LLS + UL-noLLS are additionally applied to the study area361

and the considered time period.362

The considered study period including the transition seasons and winter from 2018363

to 2020 counts a total of 185 event days with 1 027 single flash hours and 18 602 single364

flash events. These numbers are intended as a measure to verify the resulting diagnos-365

tic probabilities from the random forest models. Note that these numbers are the lower366

bound of the number of flashes that actually occurred. Taking into account the uncer-367

tainty of manual identification of flashes at wind turbines as well as the uncertainty of368

UL detection by the LLS, a significantly higher number of actual lightning events at wind369

turbines can be expected. Furthermore, this verification approach only considers light-370

ning at wind turbines and neglects all other tall structures such as radio towers in the371

study area that could be affected by UL. In the following, all days within the considered372

study period are taken as new data for the random forest models to diagnose the con-373

ditional probabilities on an hourly basis.374

The goal is to identify regions that, according to the random forest models, have375

a higher risk of UL compared to other regions. This is done by counting the number of376

hours in each ERA5 grid cell ( 0.25 x 0.25 ) that exceed the conditional probability thresh-377

old of 0.5.378

Risk assessment of UL-LLS at wind turbines379

Figure 7a illustrates that there are regions in the study area that have a higher risk380

of experiencing UL-LLS more frequently than other regions. The western and southwest-381

ern parts of the study area have a significantly higher probability of UL-LLS. This is also382

consistent with panel (b) in Fig. 4, which shows the actually observed hours in which383

at least one lightning event occurred to a wind turbine within the respective grid cell.384

Interestingly, areas with higher UL-LLS probabilities in Fig. 7 roughly coincide with re-385

gions of elevated topography in the southern third of the domain (cf. Fig. 1). Possible386

explanations are an increased lightning-effective height (e.g., Shindo, 2018) of the tur-387

bines and increased chances for thunderstorm formation due to orographic uplift and ther-388

mally induced breezes (Kirshbaum et al., 2018). Sea breezes may also explain the higher389

probabilities in the northwesternmost, ocean-covered part of the domain.390

The successful transfer of the UL-LLS model trained with meteorological data from391

direct tower measurements to a larger region and its independent verification on wind392

turbines shows the potential of our approach to produce regionally varying risk maps,393

which in turn could lead to regionally varying (voluntary or enforced) lightning protec-394

tion standards for wind turbines.395

Risk assessment of UL-LLS + UL-noLLS at wind turbines396

The successful transfer of the tower-trained and verified UL-LLS model to a larger397

domain lends credence to taking the same step with the tower-trained model for all up-398

ward lightning (UL-LLS and UL-noLLS), although no data are available for independent399

verification.400
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Figure 7. Panels (a) and (b): potential maps for UL in the colder season (ONDJFMA) from

2018 to 2020. Orange colors are median of hours per grid cell exceeding conditional probabilities

of 0.5 according to 100 random forest models. Panel (a) shows results according to models based

on Gaisberg and Säntis data combined. Panel (b) shows results according to models based on

Gaisberg data also including the UL-noLLS. Relative proportion of in total 12480 hours are given

as reference.

Panel (b) in Fig. 7 shows that more flashes are expected when the LLS-undetectable401

UL flash type is added. The pattern of areas with increased risk of experiencing UL is402

similar, although some of the more frequently affected areas are enlarged. This suggests403

that there are similar mechanisms resulting from larger-scale meteorology that lead to404

the UL-LLS or UL-noLLS flash types. The risk is most pronounced in regions with el-405

evated topography in the southern part of the domain and in the northwesternmost coastal406

region.407

5 Conclusions408

Upward (UL) lightning that strikes tall structures such as wind turbines is much409

more destructive than downward (DL) lightning. Each UL flash begins with an initial410

continuous current (ICC) that lasts about ten times longer than DL, transferring much411

more charge to the tall structure. Furthermore, direct measurements of upward light-412

ning suggest that less than 50 % of UL events can be detected by most lightning loca-413

tion systems (LLS) because they are unable to detect UL with only an ICC.414

Current lightning protection standards are based on the annual flash density de-415

rived from LLS data, which is clearly dominated by DL in the warm season. UL that416

is not detectable by LLS (UL-noLLS) is completely neglected and UL in the cold sea-417

son is severely underestimated. The basic knowledge about the occurrence of UL is still418

incomplete, which hinders a proper risk assessment of UL at wind turbines.419

The lack of consideration of UL-noLLS and the importance of the cold season for420

UL will therefore significantly underestimate the risk of UL to wind turbines. This study421
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uses rare direct UL measurements with larger-scale meteorological data in a machine learn-422

ing model to estimate the risk of all UL, including UL-noLLS, on wind turbines.423

This study’s first step is to train and validate two different random forest models424

based on long-term observations from two specially instrumented towers. One model con-425

siders only LLS-detectable UL (UL-LLS) and one model considers UL-LLS + UL-noLLS.426

The model input data are direct UL measurements from the Gaisberg Tower (Austria,427

2000-2015) and the Säntis Tower (Switzerland, 2010-2017). While the sensor at the Gais-428

berg Tower also measures UL-noLLS, the sensor at the Säntis Tower misses most of them.429

In a second step, the random forest models are extended to a larger study area (50◦N–430

54◦N and 6◦ E–16◦E) to identify areas with increased risk of UL in the colder season (OND-431

JFMA). As a verification, all lightning strikes from LLS data on wind turbines extracted432

from c© OpenStreetMap data are compared to the diagnosed probabilities by the ran-433

dom forests.434

The results show that UL can be reliably diagnosed by the tower-trained random435

forest models at the Gaisberg and Säntis towers. The larger-scale meteorological drivers436

are large amounts of (convective) precipitation, strong vertical updraft velocities, and437

slightly elevated CAPE. Furthermore, the vertical extent of the clouds and the amount438

of ice crystals and solid hydrometeors are important variables.439

Extending the random forests to a larger domain shows that the probability maps440

match the observed lightning strikes at wind turbines. The extension of the models trained441

at the Gaisberg Tower to include UL-noLLS flashes shows that areas with an increased442

risk of experiencing UL are expected to experience UL even more frequently. The west-443

ern and southern part of the domain in northwestern Germany with elevated topogra-444

phy and the coastal region in the northwesternmost part are most at risk for UL at wind445

turbines.446

This study demonstrates that direct UL measurements at an instrumented tower447

can be reliably modeled from larger-scale meteorological conditions in a machine learn-448

ing model (random forest). The study also proposes a novel way to justify the transfer449

of this model to a larger region using UL-LLS data at wind turbine sites. As a result,450

regionally detailed risk maps of UL at wind turbines can be produced.451
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Key Points:10

• Tower-trained random forests can diagnose the risk of upward lightning at wind11

turbines based on larger-scale meteorological conditions.12

• Convective precipitation, larger-scale vertical updraft and the presence of CAPE13

are most important for upward lightning.14

• Slightly elevated terrain and near-coastal conditions tend to increase the risk of15

upward lightning.16
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Abstract18

Upward lightning (UL) has become a major threat to the growing number of wind tur-19

bines producing renewable electricity. It can be much more destructive than downward20

lightning due to the large charge transfer involved in the discharge process. Ground-truth21

lightning current measurements indicate that less than 50 % of UL could be detected by22

lightning location systems (LLS). UL is expected to be the dominant lightning type dur-23

ing the cold season. However, current standards for assessing the risk of lightning at wind24

turbines mainly consider summer lightning, which is derived from LLS. This study as-25

sesses the risk of LLS-detectable and LLS-undetectable UL at wind turbines using di-26

rect UL measurements at instrumented towers. These are linked to meteorological data27

using random forests. The meteorological drivers for the absence/occurrence of UL are28

found from these models. In a second step, the results of the tower-trained models are29

extended to a larger study area (central and northern Germany). The tower-trained mod-30

els for LLS-detectable lightning are independently verified at wind turbine sites in this31

area and found to reliably diagnose this type of UL. Risk maps based on cold season case32

study events show that high diagnosed probabilities in the study area coincide with ac-33

tual UL events. This lends credibility to the application of the model to all UL types,34

increasing both risk and affected areas.35

Plain Language Summary36

The need to produce renewable energy has recently led to an increase not only in37

the number of wind turbines, but also in their size. The taller the man-made structure,38

the greater the likelihood of upward lightning (UL) to initiate from the wind turbine.39

Each UL event has an initial continuous current, making it ten times longer and much40

more destructive than a downward lightning event. As UL has become a major weather-41

related hazard to wind turbines, proper risk assessment has become essential. The prob-42

lem: Ground-truth current measurements at an instrumented tower in Austria show that43

less than 50 % of UL is actually detected by lightning location systems (LLS). This study44

shows that a new approach based on vertically resolved larger-scale meteorology and di-45

rect UL measurements from specially instrumented towers, combined with flexible ma-46

chine learning techniques, succeeds in diagnosing the risk of both LLS-detectable and47

LLS-undetectable UL at wind turbines in the colder season over a larger study area.48

1 Introduction49

The growing importance of renewable energy production has recently led to a sig-50

nificant increase in the number of wind turbines (e.g., Pineda et al., 2018). As these struc-51

tures are typically taller than 100 m, the initiation of upward lightning (UL) propagat-52

ing from the tall structure towards the clouds is facilitated (Berger, 1967). A tall struc-53

ture is more likely to experience UL because it is exposed to a stronger electric field com-54

pared to the ground. Structures shorter than 100 m mainly experience downward light-55

ning (DL) with leaders propagating from the clouds towards the earth’s surface (e.g., Rakov56

& Uman, 2003).57

As wind turbines become taller, UL is the main weather-related cause of severe dam-58

age to them (e.g., Rachidi et al., 2008; Montanyà et al., 2016; Pineda et al., 2018; Mat-59

sui et al., 2020; Zhang & Zhang, 2020). It can be much more destructive than DL be-60

cause its initial continuous current (ICC) lasts about ten times longer than the current61

flow of DL. Ground-truth lightning current measurements on the specially instrumented62

tower at the top of the Gaisberg mountain (Austria, Salzburg) show that more than 50 %63

of UL is not detected by conventional lightning location systems (LLS). The reason is64

that the LLS cannot detect a certain subtype of UL with only an ICC (Diendorfer et al.,65

2015; March et al., 2016). Although there are towers providing ground-truth lightning66

current data for LLS-detectable UL (UL-LLS), such as the Säntis Tower in Switzerland,67
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the Gaisberg Tower is the only instrumented tower in Europe providing full information68

on the occurrence of both UL-LLS and LLS-undetectable UL (UL-noLLS).69

Standards for lightning protection of wind turbines (IEC 61400-24, 2019) crucially70

underestimate the occurrence of UL at wind turbines as they currently rely on only three71

factors: The height of the wind turbine, the local annual flash density derived from LLS,72

and an environmental term that includes factors such as terrain complexity or altitude73

(Rachidi et al., 2008; Pineda et al., 2018; March, 2018; Becerra et al., 2018). Summer74

lightning activity clearly dominates the annual local flash density due to large amounts75

of DL caused by deep convection. However, UL is expected to be the dominant light-76

ning type at wind turbines with a tendency to be even more important in the colder sea-77

son (Diendorfer, 2020; Rachidi et al., 2008). Furthermore, the risk assessment standards78

cannot take into account UL-noLLS, but only UL-LLS if a tall structure is present.79

The main objective of this study is to assess the risk of UL-LLS and UL-noLLS on80

wind turbines over a larger area. Although LLS are available to analyze UL-LLS at tall81

structures, direct lightning current measurements show that a significant proportion is82

missed. Recognizing that conventional LLS cannot assess the full risk of UL at wind tur-83

bines, a new approach is used in this study.84

It uses machine learning techniques to link the occurrence of UL to the larger-scale85

meteorological environment. The occurrence of UL can only be provided by ground-truth86

lightning current measurements. These form the basis for building and training the sta-87

tistical models that will ultimately be used to assess the risk of UL over an entire study88

area. Specifically, this study uses conditional inference random forests (Hothorn & Zeileis,89

2015), which account for the highly non-linear and complex interactions between the in-90

cidence of UL on the tall structures and the atmosphere. Several steps are required to91

achieve the main goal.92

From direct lightning current measurement data at two instrumented towers in Aus-93

tria (Gaisberg Tower) and Switzerland (Säntis Tower), two models are constructed: One94

for UL-LLS and one for UL-LLS + UL-noLLS. The aim of these models is, firstly, to de-95

termine whether there is a relationship between larger-scale meteorological variables and96

the occurrence of UL and, secondly, to demonstrate how well larger-scale meteorology97

can serve as a diagnostic tool for inferring the occurrence of UL.98

The advantage of the availability of UL-LLS data helps to verify whether the re-99

sults from the instrumented towers are transferable. The idea is to extract wind turbine100

sites within the study area and identify all lightning strikes to them from the colder sea-101

son (ONDJFMA) using LLS data. Success in reliably diagnosing UL-LLS from larger-102

scale meteorology in combination with UL ground-truth lightning current measurements103

provides greater confidence in the results when, in a final step, the risk of UL-noLLS,104

which cannot be verified using LLS data, is assessed.105

The following sections are organized as follows. Section 2 introduces the two in-106

strumented towers that provide the necessary ground-truth data for this study. The first107

is the Gaisberg Tower, which provides both UL-LLS and UL-noLLS, and the second is108

the Säntis Tower, which provides only UL-LLS. Furthermore, this section presents the109

identification of lightning at wind turbines in the study area and the meteorological data110

used. Section 3 summarizes the procedures and main results from the two instrumented111

towers. Section 3.1 describes the basic principle of building a random forest model. Sec-112

tion 3.2 presents the performance of the models on the instrumented towers. Further-113

more, the most important larger-scale meteorological variables leading to a higher risk114

of UL are introduced (section 3.3). Then, section 4 presents the results of extending the115

models from the instrumented towers to the larger study area to find regions with a higher116

risk of experiencing UL. Section 4.1 diagnoses UL-LLS on wind turbines and presents117

case studies. Section 4.2 then illustrates and discusses the risk of UL-LLS and UL-LLS118
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+ UL-noLLS on wind turbines for the entire study period. Section 5 concludes and sum-119

marizes the most important findings.120

2 Data121

This study combines five different data sources: UL data measured directly at the122

Gaisberg Tower in Austria (Diendorfer et al., 2009) and at the Säntis Tower in Switzer-123

land (Romero et al., 2012); LLS data measured remotely by the European Cooperation124

for Lightning Detection (EUCLID, Schulz et al., 2016); larger-scale meteorological vari-125

ables from the reanalysis database ERA5 (Hersbach et al., 2020); wind turbine locations126

identified using the c© OpenStreetMap (OpenStreetMap contributors, 2020) database.127

2.1 Direct UL measurements at instrumented towers128

Figure 1 shows two of the very few instrumented towers for direct measurement129

of currents from UL. These are the Gaisberg Tower (1 288 m amsl, 47◦48′ N, 13◦60′ E)130

and the Säntis Tower (2 502 m amsl, 47◦14′ N, 9◦20′ E). Lightning at the instrumented131

towers is almost exclusively UL. Gaisberg Tower recorded a total of 819 UL events be-132

tween 2000 and 2015. Säntis Tower recorded 692 UL events between 2010 and 2017.133

A sensitive shunt type sensor at Gaisberg allows measurement of all types of up-134

ward flashes regardless of the current waveform, that is, UL-LLS and UL-noLLS. How-135

ever, the inductive sensors used by Säntis cannot measure upward flashes with only an136

ICC (about 50 %, Diendorfer et al., 2015).137

Direct UL current measurements are critical to the construction of the random for-138

est models, which are extended to the larger study area after training on the tower data.139

The combination of data from both towers provides a sufficiently large dataset and al-140

lows the construction of the two types of models to diagnose both UL-LLS and UL-LLS141

+ UL-noLLS.142

2.2 UL-LLS at wind turbines and study domain143

Remotely detected lightning data from the LLS EUCLID and wind turbine loca-144

tions derived from c© OpenStreetMap serve as verification of the statistical models as-145

sessing the risk of UL-LLS for the selected study area.146

Within the study area of 50◦N–54◦N and 6◦ E–16◦E, 27, 814 wind turbines have147

been installed by the end of 2020 (Fig. 1). After extracting the exact locations of these148

wind turbines, lightning strikes within a 0.003◦ circular area (approximately within 300 m149

radius) detected by EUCLID are identified and assumed to be UL. EUCLID measures150

DL with a high lightning detection efficiency of more than 90 % (Schulz et al., 2016). As151

mentioned above, UL may be detected less efficiently (< 50 % Diendorfer et al., 2015).152

Due to its destructive potential and its severe underestimation in current lightning153

protection standards, UL, and in particular the risk of UL at wind turbines, shall be ex-154

plicitly considered in this study. The tower-trained models are based on UL data through-155

out the year. However, since UL is expected to be dominant in the colder season com-156

pared to DL, only the months from October to April, starting from October 2018 to De-157

cember 2020, are considered in the verification part of the study. Furthermore, since DL158

is dominant in the warmer season, the extraction of lightning strikes to wind turbines159

would possibly lead to ambiguity in the identification of DL or UL when considering the160

whole year.161
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Figure 1. Geographic overview of the instrumented tower locations (Gaisberg and Säntis) as

well as the study domain (box). Green dots are manually identified wind turbine locations based

on c© OpenStreetMap 2020. Right: topographic map of study domain showing altitude above

mean sea level. Data taken from Shuttle Radar Topography Mission (Farr & Kobrick, 2000).

2.3 Meteorological data162

ERA5 provides an hourly reanalysis of the state of the atmosphere. It has a res-163

olution of 31 km horizontally (grid cell size of 0.25 x 0.25 ) and 137 levels vertically. This164

study uses 35 directly available and derived surface, model level, and vertically integrated165

variables. These reflect variables relevant to cloud electrification, lightning, and thun-166

derstorms (Morgenstern et al., 2022). A complete list of variables can be found in the167

supporting information file. The data are spatially and temporally bilinearly interpo-168

lated to each Gaisberg and Säntis Tower UL observation as well as to each grid cell within169

the study domain in the verification part of this study.170

3 Methodological procedures and findings from the instrumented tow-171

ers172

This section provides the necessary background information on the basic methods173

as well as important results from the analysis of the instrumented Gaisberg Tower and174

Säntis Tower. Three different aspects will be covered: First, the principle of how the ba-175

sic model, a random forest, is constructed and verified. Second, the performance of the176

models and third, which variables are most important to identify favorable conditions177

for UL to occur or not.178

3.1 Construction and verification of the tower-trained random forests179

A machine learning technique that has recently been widely applied in various sci-180

entific fields is used to link larger-scale meteorology and the occurrence of UL at the in-181

strumented towers. Random forests Breiman1984 are highly flexible and able to handle182

nonlinear effects, capturing complex interactions with respect to the stated modeling prob-183

lem (Strobl et al., 2009).184
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The occurrence versus non-occurrence of UL is a binary classification problem, which185

is tackled using 35 larger-scale meteorological variables (predictors). Each meteorolog-186

ical predictor is linked to a situation with or without UL at Gaisberg or Säntis Tower187

using a random forest. A random forest combines predictions from multiple decision trees188

trained on randomly selected subsamples of the input data.189

Specifically, the trees in the random forest are constructed by capturing the asso-190

ciation between the binary response and each of the predictor variables using permuta-191

tion tests (also known as conditional inference, see Strasser and Weber (1999)). The idea192

is that at each step in the recursive tree construction, the one predictor variable that has193

the highest (most significant) association with the response variable is selected. Then,194

the data set is split with respect to this predictor variable in order to separate the dif-195

ferent response classes as well as possible. The splitting is repeated recursively in each196

of the subsets of the data until some stopping criterion (e.g., regarding significance or197

subsample size) is met. The forest combines 500 of such trees, where each tree is learned198

on randomly subsampled two-thirds of the full data set, and only six randomly selected199

predictors are considered in each split. Finally, the random forest averages the predic-200

tions from the ensemble of trees, which stabilizes and improves the prediction performance.201

See Hothorn et al. (2006) and Hothorn and Zeileis (2015) for more details on the algo-202

rithm and implementation.203

To validate the resulting models, the input data is split into training and test data204

samples. The training data is used to train the models, and the unseen test data is used205

to evaluate the diagnostic capability. Leave-one-out cross-validation is used to validate206

the models for UL-LLS and UL-LLS + UL-noLLS. The first model for UL-LLS uses both207

Säntis data and Gaisberg data to increase the size of the training data. The particular208

flash type that cannot be detected by the Säntis Tower is omitted from the Gaisberg data209

during training to ensure consistency. The second model for UL-LLS + UL-noLLS uses210

only Gaisberg data because only the Gaisberg Tower provides complete information on211

all subtypes of UL.212

Between 2000 and 2015, the Gaisberg Tower experienced 247 unique days with UL213

events. Between 2010 and 2017, the Säntis Tower experienced 186 unique days. Com-214

bining the UL days from both towers yields 406 unique days with UL. Each training in-215

put data set omits one of the 247 (406) days with UL to use it as test data. This is re-216

peated until each of the 247 (406) days is omitted once for training the random forest217

models. This results in 247 (406) different models trained on situations with and with-218

out UL.219

The input model response (that is, did UL occur or not) is sampled so that the two220

classes are balanced, that is, situations with and without UL are present in equal pro-221

portions. To evaluate the performance of the models, the models diagnose the conditional222

probability on data not considered in the training of the models, that is, on the omit-223

ted day. We call the probability conditional because of the balanced model response setup.224

In order to diagnose the conditional probability of UL also on days without UL, days with-225

out UL are randomly sampled from each season between 2000 and 2017. A high diag-226

nostic ability refers to high probabilities when UL occurred at Gaisberg or Säntis in the227

particular situation (that is, a high true positive rate) and low probabilities when no UL228

occurred (that is, a low false positive rate).229

3.2 Performance of the tower-trained random forests230

The tower-trained random forest models can reliably diagnose both UL-LLS and231

UL-LLS + UL-noLLS when validated on unseen withheld data from the towers. Figure232

2 summarizes the cross-validated diagnostic ability according to the random forests for233

UL-LLS + UL-noLLS (Gaisberg) and UL-LLS (Gaisberg + Säntis). Both model ensem-234

bles show similar good diagnostic performance. The diagnosed median conditional prob-235
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Figure 2. Distributions of diagnosed conditional probabilities in situations with or without

UL events. Left: conditional UL probability given that UL was observed in the particular minute

(true positive) based on Gaisberg data including all subtypes of UL. Center: conditional UL

probability given that UL was observed in the particular minute based on Gaisberg and Säntis

data combined. Right: conditional UL probability on randomly sampled days without UL events

(false positive).
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abilities are about 0.8 that UL was observed in the respective situation (minute). This236

indicates a high true positive rate. Similarly, for situations without lightning (right), the237

conditional probabilities are low, indicating a low false positive rate.238

The fact that the random forest including UL-noLLS has the highest diagnostic abil-239

ity shows that the fraction not detected by conventional LLS can indeed be reliably di-240

agnosed by larger-scale meteorology alone. This supports the idea to also investigate the241

risk of undetectable UL-noLLS and not only UL-LLS.242

3.3 Meteorological drivers for UL-LLS at the instrumented towers243

Random forests allow to assess the influence of individual variables on the diag-244

nostic performance of the models. This is done by calculating the so-called permutation245

variable importance. The idea is to break the relationship between the response variable246

and a predictor variable by neglecting its information when assessing the diagnostic per-247

formance of the models. Neglecting the information of a predictor variable is done by248

permutation, that is, randomly shuffling its values and then assessing how much the di-249

agnostic performance decreases. Figure 3 visualizes the calculated median permutation250

variable importance according to 100 different random forest models for UL-LLS. Each251

of the 100 models is based on a balanced proportion of situations with UL and randomly252

selected situations without UL. The results for the UL-LLS and UL-LLS + UL-noLLS253

models are very similar.254

Convective precipitation has the largest influence on the occurrence of UL accord-255

ing to the random forests based on direct observations from Gaisberg and Säntis Tower256

(Fig. 3). Neglecting the information of this driver variable reduces the diagnostic per-257

formance the most. The second and third most important variables are the maximum258

updraft velocity and the convective available potential energy (CAPE). A statistical sum-259

mary of the three most important variables shows that the CAPE at both the Säntis Tower260

and the Gaisberg Tower is rather low when UL occurs (median value of 68 J kg−1). Con-261

vective precipitation comes with a median of 3.8 mm and maximum vertical updraft ve-262

locity with a median of − 1.5 m s−1. All values are larger in magnitude than the ”av-263

erage” when looking at every single hour in the time range considered. However, the or-264

der of magnitude is not exceptionally high, as can be observed for deep convection, where265

especially the CAPE values are often higher than 500 J kg−1. An important reason for266

this may be that at the instrumented towers, UL occurs approximately evenly through-267

out the year, whereas intense thunderstorms with deep convection and high CAPE val-268

ues occur mainly in the summer season. Further, this may suggest that the occurrence269

of UL requires a combination of many different processes that interact to create favor-270

able conditions for UL, which may be even more complex than creating favorable con-271

ditions for deep convection.272

Other important variables are the maximum precipitation rate, the vertical size of273

the thundercloud, the amount of ice crystals and solid hydrometeors, and the 2 m dew274

point temperature.275

4 UL at wind turbines276

Extraction of wind turbine locations and identification of lightning strikes to them277

within 300 m in the cold season (ONDJFMA) shows that there are regions within the278

study area that experience UL more frequently than others (see Fig. 4). Interestingly,279

the regions that experience UL more frequently (panel (b), dark pink) coincide with re-280

gions with many wind turbines. In general, however, it can be observed that regions with281

a high number of wind turbines (panel (a), dark green) do not necessarily coincide with282

a high number of ULs, as can be seen for example in the northeastern parts of the study283

area. The following sections present and discuss the results of extending the results from284
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Figure 3. Median permutation variable importance according to 100 different random forests

based on balanced proportions of situations with and without UL at the Gaisberg and Säntis

Tower.

the instrumented towers to the study area by extracting the locations of wind turbines285

and analyzing the lightning activity to them.286

4.1 Diagnosing UL-LLS at wind turbines from larger-scale meteorolog-287

ical conditions288

The random forest models for UL-LLS and UL-LLS + UL-noLLS, based on data289

from the two instrumented towers, identified larger-scale meteorological variables that290

are the most important discriminators between situations with and without UL. The tower-291

trained random forest models are now applied to the larger study area to assess the risk292

of UL at wind turbines. Lightning measurements from LLS data will verify the results293

at identified wind turbine sites.294

The following results are based on a similar procedure as described in Sect. 3.2, ex-295

cept that each grid cell ( 31 km x 31 km ) of the study domain is used as test data in-296

stead of the cross-validated data from the instrumented towers.297

To increase the robustness of the results, again 100 different random forest mod-298

els based on observations from the Gaisberg and the Säntis Tower are used to diagnose299

the conditional probability of UL on the selected case studies over the study domain. The300

results in this section visualize the median conditional probabilities diagnosed by the ran-301

dom forest models.302

Case studies: UL-LLS at wind turbines303

To illustrate the diagnostic ability of the tower-trained random forests for UL-LLS304

on days with UL events, three different case study days are selected from the colder sea-305

sons between 2018 and 2020 in the study area.306
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Figure 4. Panel (a): number of wind turbines per grid cell derived from c© OpenStreetMap

2020 data. Panel (b): number of hours per grid cell with lightning at wind turbines derived from

EUCLID data.
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Figure 5. Larger-scale meteorological setting on the 4th March 2019 over the study domain.

Left column illustrates the setting at 13 UTC, right column at 14 UTC. From upper to lower:

spatial distributions of isolines of the 850 hPa temperature (in intervals of 1 K), convective pre-

cipitation, the maximum large-scale updraft velocity (negative values is upward motion) and

CAPE. Darker colors indicates higher magnitude. Dark gray dots in all figures are flashes within

the considered hour and ERA5 grid cell derived from LLS EUCLID data.
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Figure 6. Median diagnosed conditional probability of UL according to 100 random forest

models based on Gaisberg and Säntis Tower data (red areas). Yellow symbols are flashes within

the considered hour derived from EUCLID data. Gray shaded areas are grid cells without wind

turbines.
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The selected case study days are characterized by typical weather situations for the307

colder seasons in the mid-latitudes. The atmosphere in the transitional seasons and in308

winter tends to be highly variable and influenced by the succession of cyclones and an-309

ticyclones that determine the meteorological setting (Perry, 1987). In particular, the de-310

velopment and progression of mid-latitude cyclones provide favorable conditions for so-311

called wind field thunderstorms (Morgenstern et al., 2022). This type of thunderstorm312

is associated with, among other things, strong updrafts, high precipitation amounts, and313

low but present CAPE.314

The first case study is considered in more detail with respect to the drivers iden-315

tified at the instrumented towers (Fig. 3). Figure 5 illustrates the larger-scale isotherm316

locations, spatial distribution of convective precipitation, maximum updraft velocity, and317

CAPE on 4 March 2019 at 13 UTC and 14 UTC. LLS detected lightning events at the318

identified wind turbines within the respective hour are indicated as dark gray dots.319

The meteorological setting is determined by the passage of a cold front ahead of320

a trough around noon. Densely packed isotherms at 850 hPa crossing northern and cen-321

tral Germany from west to east indicate the approximate location of the cold front in322

panels (a) and (b). The cold front implies locally increased amounts of convective pre-323

cipitation in (c) and (d), strong updrafts indicated by large negative values in (e) and324

(f), and slightly increased but generally low CAPE in (g) and (h) compared to deep con-325

vection in summer. All three variables show maximally increased values in slightly dif-326

ferent areas within the study area induced by the cold front. Convective precipitation327

shows increased values along the cold front, while the other two variables have locally328

more concentrated areas with maximum values (e.g. maximum updraft velocity in North/Central329

Germany).330

Figure 6 visualizes the diagnosed conditional probability by the random forest mod-331

els in red colors for all three case study days. Panels (a) and (b) show the results for the332

particular case study discussed in Fig. 5. The diagnosed pattern is a result of combin-333

ing the influence of the three driver variables. This suggests that no single variable can334

be responsible for the resulting probability map, but rather an interaction of different335

influencing variables resulting in areas of increased risk of experiencing UL.336

The yellow symbols again show lightning strikes over the hour considered. Iden-337

tified lightning events in yellow require a wind turbine within a maximum distance of338

300 m as described in Sect. 2. All other tall structures that may have experienced UL339

are not considered in this figure. Since the diagnosed probabilities do not depend on wind340

turbine locations, high probabilities may be diagnosed even though there is no wind tur-341

bine installed. Grid cells without wind turbines are shaded gray.342

All three case study days in Fig. 6 show that areas with increased diagnosed prob-343

ability of UL coincide well with identified lightning events in that hour over the study344

area. In all three case studies, there is a clear separation between areas with very low345

diagnosed risk and areas with very high diagnosed risk of experiencing UL.346

On 11 February 2020, shown in panels (c) and (d) of Fig. 6, the study domain is347

again in a strong westerly flow associated with locally enhanced convective precipitation,348

CAPE, and strong updrafts (not shown here). On February 17, 2020, the study area is349

crossed by a cold front at higher altitudes (above 500 hPa). Despite the different me-350

teorological situation, the conditions are similar to the other case studies, showing el-351

evated values in the three driver variables that strongly influence the diagnosed condi-352

tional probability.353
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4.2 Risk assessment of UL at wind turbines354

Identifying areas of increased UL risk due to larger-scale meteorological conditions355

is a valuable step in assessing the risk of lightning at wind turbines. The case studies clearly356

show that the observed lightning events at wind turbines coincide with the areas of in-357

creased probability diagnosed by the random forest models. The following analysis con-358

siders all events within the considered time period in which lightning was detected at359

wind turbines. Not only the models for UL-LLS shall provide a risk assessment, but now360

the random forests for UL-LLS + UL-noLLS are additionally applied to the study area361

and the considered time period.362

The considered study period including the transition seasons and winter from 2018363

to 2020 counts a total of 185 event days with 1 027 single flash hours and 18 602 single364

flash events. These numbers are intended as a measure to verify the resulting diagnos-365

tic probabilities from the random forest models. Note that these numbers are the lower366

bound of the number of flashes that actually occurred. Taking into account the uncer-367

tainty of manual identification of flashes at wind turbines as well as the uncertainty of368

UL detection by the LLS, a significantly higher number of actual lightning events at wind369

turbines can be expected. Furthermore, this verification approach only considers light-370

ning at wind turbines and neglects all other tall structures such as radio towers in the371

study area that could be affected by UL. In the following, all days within the considered372

study period are taken as new data for the random forest models to diagnose the con-373

ditional probabilities on an hourly basis.374

The goal is to identify regions that, according to the random forest models, have375

a higher risk of UL compared to other regions. This is done by counting the number of376

hours in each ERA5 grid cell ( 0.25 x 0.25 ) that exceed the conditional probability thresh-377

old of 0.5.378

Risk assessment of UL-LLS at wind turbines379

Figure 7a illustrates that there are regions in the study area that have a higher risk380

of experiencing UL-LLS more frequently than other regions. The western and southwest-381

ern parts of the study area have a significantly higher probability of UL-LLS. This is also382

consistent with panel (b) in Fig. 4, which shows the actually observed hours in which383

at least one lightning event occurred to a wind turbine within the respective grid cell.384

Interestingly, areas with higher UL-LLS probabilities in Fig. 7 roughly coincide with re-385

gions of elevated topography in the southern third of the domain (cf. Fig. 1). Possible386

explanations are an increased lightning-effective height (e.g., Shindo, 2018) of the tur-387

bines and increased chances for thunderstorm formation due to orographic uplift and ther-388

mally induced breezes (Kirshbaum et al., 2018). Sea breezes may also explain the higher389

probabilities in the northwesternmost, ocean-covered part of the domain.390

The successful transfer of the UL-LLS model trained with meteorological data from391

direct tower measurements to a larger region and its independent verification on wind392

turbines shows the potential of our approach to produce regionally varying risk maps,393

which in turn could lead to regionally varying (voluntary or enforced) lightning protec-394

tion standards for wind turbines.395

Risk assessment of UL-LLS + UL-noLLS at wind turbines396

The successful transfer of the tower-trained and verified UL-LLS model to a larger397

domain lends credence to taking the same step with the tower-trained model for all up-398

ward lightning (UL-LLS and UL-noLLS), although no data are available for independent399

verification.400
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Figure 7. Panels (a) and (b): potential maps for UL in the colder season (ONDJFMA) from

2018 to 2020. Orange colors are median of hours per grid cell exceeding conditional probabilities

of 0.5 according to 100 random forest models. Panel (a) shows results according to models based

on Gaisberg and Säntis data combined. Panel (b) shows results according to models based on

Gaisberg data also including the UL-noLLS. Relative proportion of in total 12480 hours are given

as reference.

Panel (b) in Fig. 7 shows that more flashes are expected when the LLS-undetectable401

UL flash type is added. The pattern of areas with increased risk of experiencing UL is402

similar, although some of the more frequently affected areas are enlarged. This suggests403

that there are similar mechanisms resulting from larger-scale meteorology that lead to404

the UL-LLS or UL-noLLS flash types. The risk is most pronounced in regions with el-405

evated topography in the southern part of the domain and in the northwesternmost coastal406

region.407

5 Conclusions408

Upward (UL) lightning that strikes tall structures such as wind turbines is much409

more destructive than downward (DL) lightning. Each UL flash begins with an initial410

continuous current (ICC) that lasts about ten times longer than DL, transferring much411

more charge to the tall structure. Furthermore, direct measurements of upward light-412

ning suggest that less than 50 % of UL events can be detected by most lightning loca-413

tion systems (LLS) because they are unable to detect UL with only an ICC.414

Current lightning protection standards are based on the annual flash density de-415

rived from LLS data, which is clearly dominated by DL in the warm season. UL that416

is not detectable by LLS (UL-noLLS) is completely neglected and UL in the cold sea-417

son is severely underestimated. The basic knowledge about the occurrence of UL is still418

incomplete, which hinders a proper risk assessment of UL at wind turbines.419

The lack of consideration of UL-noLLS and the importance of the cold season for420

UL will therefore significantly underestimate the risk of UL to wind turbines. This study421

–15–



manuscript submitted to JGR: Atmospheres

uses rare direct UL measurements with larger-scale meteorological data in a machine learn-422

ing model to estimate the risk of all UL, including UL-noLLS, on wind turbines.423

This study’s first step is to train and validate two different random forest models424

based on long-term observations from two specially instrumented towers. One model con-425

siders only LLS-detectable UL (UL-LLS) and one model considers UL-LLS + UL-noLLS.426

The model input data are direct UL measurements from the Gaisberg Tower (Austria,427

2000-2015) and the Säntis Tower (Switzerland, 2010-2017). While the sensor at the Gais-428

berg Tower also measures UL-noLLS, the sensor at the Säntis Tower misses most of them.429

In a second step, the random forest models are extended to a larger study area (50◦N–430

54◦N and 6◦ E–16◦E) to identify areas with increased risk of UL in the colder season (OND-431

JFMA). As a verification, all lightning strikes from LLS data on wind turbines extracted432

from c© OpenStreetMap data are compared to the diagnosed probabilities by the ran-433

dom forests.434

The results show that UL can be reliably diagnosed by the tower-trained random435

forest models at the Gaisberg and Säntis towers. The larger-scale meteorological drivers436

are large amounts of (convective) precipitation, strong vertical updraft velocities, and437

slightly elevated CAPE. Furthermore, the vertical extent of the clouds and the amount438

of ice crystals and solid hydrometeors are important variables.439

Extending the random forests to a larger domain shows that the probability maps440

match the observed lightning strikes at wind turbines. The extension of the models trained441

at the Gaisberg Tower to include UL-noLLS flashes shows that areas with an increased442

risk of experiencing UL are expected to experience UL even more frequently. The west-443

ern and southern part of the domain in northwestern Germany with elevated topogra-444

phy and the coastal region in the northwesternmost part are most at risk for UL at wind445

turbines.446

This study demonstrates that direct UL measurements at an instrumented tower447

can be reliably modeled from larger-scale meteorological conditions in a machine learn-448

ing model (random forest). The study also proposes a novel way to justify the transfer449

of this model to a larger region using UL-LLS data at wind turbine sites. As a result,450

regionally detailed risk maps of UL at wind turbines can be produced.451
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the results on this additional analysis. The table lists the larger-scale meteorological15

variables used in this study. These are directly taken or derived from the ERA5 database.16

0.1. Risk assessment of UL at wind turbines using a higher probability

threshold

In Sect. 4.2 the model results for the risk assessment of UL-LLS and UL-LLS + UL-17

noLLS are presented in the way that hours are counted exceeding a conditional probability18

of 0.5. Figure S1 illustrates the risk assessment using a higher probability threshold,19

namely 0.8. The number of hours exceeding this threshold is lower by about a factor of20

two in comparison to a probability threshold of 0.5. However, the regional pattern is still21

similar with maxima West/South-West of the study domain.22
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Figure S1. Panels (a) and (b): maps for the potential of UL in the colder season (OND-

JFMA) from 2018 to 2020. Orange colors are median of hours per grid cell exceeding conditional

probabilities of 0.8 according to 100 random forest models. Panel (a) shows results according

to models based on Gaisberg and Säntis data combined. Panel (b) shows results according to

models based on Gaisberg data also including the UL-noLLS. Relative proportions of in total

12480 hours are given as reference.
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Table S1. Table of large-scale variables taken from ERA5 and variables derived from ERA5.

The derived variables (indicated in italics) are suggested to be potentially important in the

charging process of a thundercloud or for the development of convection.

Large-scale variables Unit

cloud base height above ground m agl

convective precipitation
(rain + snow) m

large scale precipitation m

cloud size m

maximum precipitation rate
(rain + snow) kg m−2 s−1

ice crystals (total column, tciw) kg m−2

Solid hydrometeors (total column, tcsw) kg m−2

supercooled liquid water
(total column, tcslw) kg m−2

water vapor (total column) kg m−2

vertical integral of divergence
of cloud frozen water flux kg m−2 s−1

vertical transport of liquids
around −10 C kg Pa s−1

ice crystals
(−10 C - −20 C) kg m−2

ice crystals
(−20 C - −40 C) kg m−2
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cloud water droplets
(−10 C - −20 C) kg m−2

solid hydrometeors
(−10 C - −20 C) kg m−2

solid hydrometeors
(−20 C - −40 C) kg m−2

solids (cswc + ciwc)
around −10 C kg m−2

liquids (clwc + crwc)
around −10 C kg m−2

2 m dew point temperature K

mean vertically integrated
moisture convergence kg m−2 s−1

water vapor
(−10 C - −20 C) kg m−2

boundary layer height m

surface latent heat flux J m−2

surface sensible heat flux J m−2

downward surface solar radiation J m−2

convective available
potential energy J kg−1

convective inhibition present binary

mean sea level pressure Pa

height of −10 C isotherm m agl

boundary layer dissipation J m−2

Maximum vertical updraft velocity Pa s−1

total cloud shear m s−1

wind speed at 10 m m s−1

wind direction at 10 m ◦

shear between 10 m and cloud base m s−1
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