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Abstract

Africa’s continental crust hosts a variety of geologic terrains and is crucial for understanding the evolution of its longest-lived

cratons. However, few of its seismic models are yet to incorporate the largest continent-wide noise dispersion datasets collected

on the continent. Here, we report on new insights into Africa’s crustal architecture obtained using a new dataset and model

assessment product, ADAMA, which comprises a large ensemble of short period surface wave dispersion measurements. We

construct a continent-wide model of Africa’s Crust Evaluated with ADAMA’s Rayleigh Phase maps (ACE-ADAMA-RP).

Phase and group dispersion maps are obtained with a probabilistic inverse modeling approach allowing us to provide constraints

on uncertainty. Error statistics suggest Rayleigh phase maps are better resolved and a perturbational inverse approach based

on Rayleigh waves is the basis of our update of Africa’s crustal shear velocity. This model update reveals new insights into the

architecture of Africa’s crust not previously imaged: (1) the fastest velocities confined to the edges of the Congo craton, the

west-African cratons and the Sahara Metacraton, and (2) sharp spatial gradients along craton edges, mobile belts, and within

rifted margins. While most of the reported features are robust, probabilistic modeling suggests caution in interpreting features

where illumination is compromised by low-quality measurements, sparse coverage or both. Future extension of our approach to

other complementary seismic and geophysical datasets - e.g, multimode earthquake dispersion, receiver functions, gravity and

mineral physics, will enable continent-wide lithospheric modeling that extends resolution to the upper mantle.
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Key Points:9

• A continent-wide s-velocity model of Africa’s crust is constructed using the largest10

catalog of dispersion measurements11

• The model of Africa’s crust is derived from dispersion maps and error statistics ob-12

tained from a probabilistic inverse approach13

• Error statistics provide insights into the resolution and statistical significance of the14

final model update.15
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Abstract16

Africa’s continental crust hosts a variety of geologic terrains and is crucial for understanding17

the evolution of its longest-lived cratons. However, few of its seismic models are yet to incor-18

porate the largest continent-wide noise dispersion datasets collected on the continent. Here,19

we report on new insights into Africa’s crustal architecture obtained using a new dataset and20

model assessment product, ADAMA, which comprises a large ensemble of short period sur-21

face wave dispersion measurements. We construct a continent-wide model of Africa’s Crust22

Evaluated with ADAMA’s Rayleigh Phase maps (ACE-ADAMA-RP). Phase and group dis-23

persion maps are obtained with a probabilistic inverse modeling approach allowing us to24

provide constraints on uncertainty. Error statistics suggest Rayleigh phase maps are better25

resolved and a perturbational inverse approach based on Rayleigh waves is the basis of our26

update of Africa’s crustal shear velocity. This model update reveals new insights into the27

architecture of Africa’s crust not previously imaged: (1) the fastest velocities confined to the28

edges of the Congo craton, the west-African cratons and the Sahara Metacraton, and (2)29

sharp spatial gradients along craton edges, mobile belts, and within rifted margins. While30

most of the reported features are robust, probabilistic modeling suggests caution in inter-31

preting features where illumination is compromised by low-quality measurements, sparse32

coverage or both. Future extension of our approach to other complementary seismic and33

geophysical datasets - e.g, multimode earthquake dispersion, receiver functions, gravity and34

mineral physics, will enable continent-wide lithospheric modeling that extends resolution to35

the upper mantle.36

Plain Language Summary37

The rocks that constitute Africa’s crust record the history of different geological periods.38

We produce a map, for the entire continent, of how fast shear waves travel within these39

rocks. We obtain this map from ambient noise surface wave vibrations. The ambient noise40

surface waves are generated from ocean and atmospheric waves that couple with the solid41

Earth. There are two types: Rayleigh and Love waves and they travel at different speeds42

for different wavelengths. This property is called dispersion and it is used to tell how fast43

the shear wave speeds travel within the subsurface rocks. Constructing the final map from44

ambient noise surface waves requires the solution of a computational imaging problem. We45

solve the most challenging computational task with a probabilistic approach – using random46

sampling – and this enables us to also construct associated error maps. The new maps of47

Africa’s crust show new features that have important implications for subsurface geology of48

the continent.49

1 Introduction50

The African continent possesses many geological terrains and tectonic features of great51

interest, including multiple cratons spanning billions of years in age (Begg et al., 2009; Jessell52

et al., 2016), a long-wavelength superswell topography in the south (Lithgow-Bertelloni &53

Silver, 1998; Fishwick & Bastow, 2011), active and failed continental rifts (Chorowicz, 2005;54

Min & Hou, 2019), hotspots and active volcanoes and multiple second-order basins and55

swells (Doucouré & de Wit, 2003; Burke & Gunnell, 2008)(Figure 1a). One approach to56

studying the diverse and spatially undersampled regions of Africa’s bulk crust is to turn57

to seismic velocity models (Adams & Nyblade, 2011; Pasyanos et al., 2014; Emry et al.,58

2019). These models provide useful constraints on the composition of the crust (Hacker59

et al., 2012; Rudnick & Gao, 2014; Sammon et al., 2021), the identification of structural60

boundaries within and across different tectonic domains (Buehler & Shearer, 2017) and61

how rheology (Shinevar et al., 2015, 2018) and density (Molinari & Morelli, 2011; Haas62

et al., 2020, 2021) influence continental rifting, isostatic and dynamic uplift, long-term63

deformation, and seismicity within the African plate (Behn et al., 2002; Lowry & Pérez-64
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Gussinyé, 2011; Schmandt et al., 2015; Borrego et al., 2018; Schutt et al., 2018; Fadel et al.,65

2020; White-Gaynor et al., 2021).66

Insight into Africa’s crust is provided by global (Laske et al., 2013; Pasyanos et al.,67

2014), as well as continent-wide velocity models (Li & Burke, 2006; Nair et al., 2006; Yang68

et al., 2008; Begg et al., 2009; Adams & Nyblade, 2011; Fishwick & Bastow, 2011; Fadel69

et al., 2020). A selection of the continent-wide seismic velocity models published in the70

last decade include Litho1.0 ((Laske et al., 2013; Pasyanos et al., 2014), Africa.ANT.Emry-71

etal.2018 (Trabant et al., 2012; Emry et al., 2019), AF2019 (Celli, Lebedev, Schaeffer, &72

Gaina, 2020), and SA2019 (Celli, Lebedev, Schaeffer, Ravenna, & Gaina, 2020). All of these73

models are replicas of CRUST1.0 (Laske et al., 2013; Pasyanos et al., 2014) in the shallowest74

crust, except for Litho1.0, a heavily cited global velocity model, which updates CRUST1.075

by incorporating earthquake-derived surface wave dispersion measurements, independent76

constraints sensitive to elastic properties in the lithosphere (Laske et al., 2013; Pasyanos77

et al., 2014). Taken together, these models incorporate both active and passive source78

datasets, but are yet to fully integrate comprehensive ambient noise data on the continent79

(T. Olugboji & Xue, 2022).80

As a result, these models are limited in their resolution of Africa’s crust in two key81

respects. First, because they do not include shortest period measurements, they lack sen-82

sitivity to absolute velocity in the shallowest crust (Roux et al., 2005; Yang et al., 2008).83

Second, because the continent-wide models do not include all seismic data acquisition span-84

ning the past decade (2013-2023), (Accardo et al., 2017; Borrego et al., 2018; Emry et85

al., 2019; Wang et al., 2019; Fadel et al., 2020; Celli, Lebedev, Schaeffer, & Gaina, 2020;86

White-Gaynor et al., 2021), they lack spatial resolution across key tectonic domains. Here,87

we address this and other key issues necessary for building an updated model of Africa’s88

crust using the ambient noise dataset and model assessment product (ADAMA), provided89

by (T. Olugboji & Xue, 2022). We use these measurements to construct continent-wide90

Love and Rayleigh wave dispersion maps using a probabilistic approach. The inclusion of91

short-period surface wave measurements provides improved constraints on short-wavelength92

features, especially at the shortest periods (Lebedev et al., 2013). This allows us to provide93

greater resolution of the shallowest crust (Figure 1b & 2a).94

In constructing new dispersion maps, we adopt a probabilistic Bayesian approach that95

solves for an image of surface wave speeds in the presence of irregular ray path coverage and96

variable measurement quality (Bodin et al., 2009; Bodin, Sambridge, Tkalčić, et al., 2012;97

Bodin & Sambridge, 2009; Bodin, Sambridge, Rawlinson, & Arroucau, 2012; T. M. Olugboji98

et al., 2017). This technique is well suited to the dataset obtained from Africa. Furthermore,99

it also provides information on statistical significance - that is, associated maps that quantify100

uncertainties in the final reported dispersion maps (Bodin, Sambridge, Tkalčić, et al., 2012;101

T. M. Olugboji et al., 2017). The dispersion maps with associated uncertainties are a useful102

data product since they span the entire continent and can be used to assess (T. M. Olugboji103

et al., 2017) and update existing models during linear and non-linear inversions for elastic104

properties in the crust (Shen & Ritzwoller, 2016; Shen et al., 2016).105

In the rest of our paper we describe, in detail, the construction of our new maps, high-106

lighting key benefits of adopting a probabilistic Bayesian approach. We present details, not107

yet seen before, with illumination made possible by the comprehensive ADAMA dataset. We108

investigate the statistics and resolution present in the maps using the ensemble results ob-109

tained from sampling the posterior distribution, comparing our results to existing published110

results at similar periods. We provide an assessment of one of the global velocity models,111

Litho1.0, by inverting the phase maps for depth dependent shear-wave velocity structure in112

Africa’s crust. We discuss implications of our model for unanswered questions in Africa’s113

tectonics and basement geology.114
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Figure 1. A broad view of Africa’s geology overlaid on topography (a) The key geological

tectonic features are: cratons and metacratons (gray outline), basins (low topography), hotspots

(red dots). Craton outlines are from (Globig et al. 2016; Afonso et al. 2022). Abbreviations are:

AF = Afar; AS = Angolan Shield; BB = Bengweulu Block; BKS = Bomu-Kibalan Shield; BP

= Biu Plateau; CdB = Chad Basin; CgB = Congo Basin; CVL = Cameroon Volcanic Line; DB

= Damara Belt; DD = Darfur Dome; GA = Gulf of Aden; GKS = Gabon-Kamerun Shield; HP

= Hoggar Plateau; JP = Jos Plateau; KC = Kalahari Craton; KpC = Kaapvaal Craton; KS =

Kasai Shield; LB = Lurio Block; MOB = Mozambique Orogenic Belt; MER = Main Ethiopian

Rift; MLS = Man-Leo Shield; MR = Malawi Rift; MwR = Mweru Rift; NB = Niassa Block; OB =

Oubanguides Belt; OR = Okavango Rift; Rgs = Reguibat Shield; RS = Red Sea; RVP = Rungwe

Volcanic Province; SS = South Sudan; TC = Tanzania Craton; TD = Turkana Depression; TP

= Tibesti Plateau; UC = Uganda Craton; VVP = Virunga Volcanic Province; ZC = Zimbabwe

Craton. (b: Inset): Station distribution (red dots) used to obtain ADAMA dispersion dataset (T.

Olugboji Xue 2022). Transect passing through the Congo craton and Ethiopian highlands is used

to produce a 2-D vertical slice of the final crustal shear-wave velocity model after ADAMA update

(see Figures 7 & 9) .
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Figure 2. Shear wave sensitivity to Spatial coverage and Rayleigh wave for the ADAMA dataset.

(a & b) Raypath density for the ADAMA dataset compared to a global model published in 2014

(Pasyanos et al. 2014). (c) Improved depth-sensitivity of ADAMA compared to the global Litho1.0

model showing improvements from short-period measurements.

2 Continent-wide Ambient Noise Dataset from ADAMA115

The dataset used in this study - ADAMA - is from the recently published catalog116

of continent-wide inter-station dispersion measurements provided by (T. Olugboji & Xue,117

2022). This is a large catalog of Love and Rayleigh wave phase and group dispersion mea-118

surements. The dispersion measurements are extracted from cross-spectra of continuous119

recordings of ambient noise ground vibrations, collected over four decades, since the com-120

mencement of digital seismometry on the continent. The inter-station cross-spectra are121

calculated from seismograms downloaded from 1,372 stations, spanning 62 networks in and122

across Africa (e.g., southern Europe, and the Middle East). The dataset spans a large collec-123

tion of inter-station ray paths that provide improved spatial coverage and depth resolution124

of the entire continent (Figure 1b & 2a).125

2.1 Love and Rayleigh Waves Dispersion with Uncertainties126

For each station pair, phase and group velocities of Love and Rayleigh waves between127

5 and 40 seconds are reported. Measurement uncertainty is also reported using a non-128

linear waveform fitting of the ambient noise cross-spectra, providing necessary regularization129

information during probabilistic inversion of our maps (Hawkins & Sambridge, 2019). For130

a detailed description of the dataset catalog, we refer the reader to (T. Olugboji & Xue,131

2022). Here, we describe how improved spatial coverage and short-period measurements132

provide improved resolution of the crust. We also show how the entire catalog of inter-133

station dispersion measurements are used to obtain dispersion maps, uncertainties and shear-134

velocity in the entire crust.135

–5–
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2.2 Ray Coverage and Depth Sensitivity to Crustal Structure136

The ADAMA dataset improves on global and regional surface wave dispersion catalogs137

in two regards: the first is increased ray-path density with better spatial sampling across138

the entire continent and second is that it extends the surface wave dispersion measurements139

to very short periods ( < 25 seconds). At the shortest periods, and with rays sampling the140

entire continent, good resolution of the crust across the entire continent is possible (Figure141

2). The new dataset reflects three orders of magnitude more measurements than the most142

recent continent-wide study (Emry et al., 2019).143

3 Methods144

3.1 Auto Adaptive & Probabilistic Noise Maps for Model Update of Africa’s145

Crust146

We construct dispersion maps by employing a probabilistic inverse approach. This147

approach solves for the spatial distribution of phase and group speeds, with associated148

uncertainties, while imposing minimal restrictions on parameterization and regularization.149

In Africa, where spatial sampling is highly irregular, and crustal structure is irregular, an150

optimal parameterization along with modeling uncertainties can still be recovered during151

tomographic inversion. The technique is known as transdimensional hierarchical Bayesian152

inversion (THBI), and has been widely used by many authors to construct surface wave153

dispersion maps (see (Zulfakriza et al., 2014; Galetti et al., 2016; Rawlinson et al., 2016;154

Crowder et al., 2019; Pilia et al., 2020). A comprehensive discussion of THBI can be found155

in (Bodin et al., 2009; Bodin, Sambridge, Rawlinson, & Arroucau, 2012; Bodin, Sambridge,156

Tkalčić, et al., 2012). Here we provide a brief overview of the approach, show how we apply157

it to the ADAMA dataset, and describe how we use the maps themselves for model assess-158

ment and update of the African crust, following the statistical approach of (T. M. Olugboji159

et al., 2017). We do this by demonstrating that our new maps, constructed with THBI, con-160

tain information across multiple scales not yet incorporated into the continent-wide models161

(Pasyanos et al., 2014; Wipperfurth et al., 2020; Sammon et al., 2021). We compare model162

predictions of dispersion with our new probabilistic maps. Tests of statistical significance163

and evaluation of improved resolution are estimated using ensemble statistics. In regions of164

improved spatial coverage and where model predictions are different from data (dispersion165

maps), updates to crustal structure are obtained. We report updates, in these regions, using166

a perturbational inversion of our new dispersion dataset (Haney & Tsai, 2017, 2020).167

3.2 Noise Maps with Transdimension Hierarchical Bayesian Inversion168

The transdimensional and hierarchical Bayesian inverse approach is a class of sampling169

methods that seeks not just a single optimal model (dispersion maps), but rather searches170

the parameter space for all possible model solutions that best satisfy the observational171

constraints (interstation dispersion measurements). The interpretation of the ensemble of172

model solutions is then used to evaluate formal uncertainty. In this approach Bayesian173

statistics is applied to the twin challenges of model regularization and non-uniqueness. In174

the first part of the inversion, the transdimensional inference recognizes that the initial step175

of image reconstruction requires the parameterization of a 2-D surface velocity field, V(r)176

and this is specified by a variable number of basis (descriptor) functions and values, which177

are unknowns to be specified as part of the inverse solution:178

V(r) =

Ni∑
i

viIi (1)

Where the Ni velocity values, vi, sampled at points ri are allowed to vary across the179

2-D surface, thus ensuring that the velocity field is adaptively parametrized. In our imple-180
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mentation, we use a nearest-neighbor Voronoi tessellation (Figure 3a) as the basis function181

Ii (Sambridge et al., 1995). This function tessellates the velocity field, V(r), and is widely182

used in transdimensional inversion (Bodin et al., 2009; Bodin, Sambridge, Rawlinson, &183

Arroucau, 2012); although we note here that other forms of tessellations have recently been184

advocated (Belhadj et al., 2018; Hawkins et al., 2019) with beneficial properties like smooth-185

ness.186

In the second part of the inversion, the hierarchical inference recognizes that all inverse187

problems are fraught with uncertainty. That is, given the data vector of observations, d ,188

and the model parameters m=
{
vi,ri,Ni

}
representing our 2-D image of the earth, errors189

are expected:190

g(m) = d+ ϵ (2)

The errors, ϵ = ϵdata+ϵtheory+ϵ+. . ., can either be due to: (1) simplifying assumptions191

posed by our forward modeling operator g(m) (e.g., in our case using ray theory (Shen &192

Ritzwoller, 2016) instead of eikonal tomography (Lin et al., 2009; Zhou et al., 2012)), (2)193

observational noise which cannot be modeled even in the case of a true model g(mtrue), or194

(3) sampling and discretization errors introduced from an approximate parameterization as195

described in Equation 1 above. Within the Bayesian framework, the likelihood of a particular196

set of model predictions, are those that minimizes the probability on the prediction error197

term, and by definition maximizes the gaussian likelihood:198

p(d|m) =
1∏

j

√
2πσj

exp

−
∑
j

(g(m)j − dj)
2

2σ2
j

 (3)

The standard deviation term, σ, is the hierarchical parameter, and is an additional199

model parameter to be solved for in the hierarchical Bayes (Malinverno & Briggs, 2004)200

inversion. But note that it is defined in a way so as to represent all of the sources of201

error present in modeling and observation, so: σi = σi,data + σtheory. Admittedly this is202

a rather simplistic model, since we do not investigate covariation in measurement errors.203

Nonetheless, by solving for a single scaling parameter for each period, we can accommodate204

for this, so that:205

σi = λσi,data (4)

In summary, a transdimensional and hierarchical Bayesian inverse solution of our noise206

dispersion measurements produces dispersion maps that involves sampling the posterior207

probability distribution for a collection of extended set of model parameters:208

X = {m, λ} = {vi, ri, Ni, λ} (5)

P (X|dj = tc,uj ) ∝ P (dj = tc,uj |X)p(X)( (6)

Where p(X) and P (dj = tc,uj |X) are the prior and likelihood on the extended set of209

model parameters X (actual model parameterization, m, and hierarchical uncertainties λ),210

dj is the data (dispersion measurements), Nj is the number of inter-station travel time211

measurements, for station separation, rj , using either the interstation phase velocity, cj or212

group velocity, uj : t
c
j = cj/rj ; t

u
j = uj/rj . The prior distribution is a uniform distribution,213
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Figure 3. A snapshot through the Transdimensional Hierarchical Bayesian Inversion algorithm.

(a) A single snapshot of model,m, showing the irregular Voronoi tessellation used to parameterize

the Love wave 2-D phase velocity map at 35 seconds. The velocity values are constant within each

cell and the node centers are irregularly located in the domain (black dots). (b) The posterior

distribution of the phase velocity map (blue) and after discarding the first 10% or 50% or the

samples (c) A time-series tracking the total number of Voronoi cells across all parallel chains in the

Monte Carlo random walk. (d) A similar statistical analysis but showing the Voronoi cell density

(number of cells per pixel) across all the chains.
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Table 1. A list of variables and definitions used in describing the transdimensional and hierar-

chical Bayesian inverse formulation

p(X) = 1
β−α , on the set of model parameters, X (in Equation 5) and is specified by identi-214

fying the lower and upper limits (α, β). For a summary of the most relevant parameters in215

the THBI process see Table 1.216

The solution to X is found by sampling the posterior distribution in Equation 6 using217

a reversible-jump Markov chain Monte Carlo (rj-McMC) algorithm (Green 1995). The218

algorithm proceeds through a random walk by perturbing an initial model X to give X′ on219

every step, adding X′ to a collection of likely models and setting X′ back to X if the model is220

accepted. Accepting (or rejecting) a proposed model is governed by acceptance probabilities221

that are defined in order to allow efficient sampling of the posterior distribution, and include222

models that, in the long run, increase the likelihood ratio of new proposed models. In this223
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Figure 4. Statistical estimators of the posterior distribution on the 30s-Love wave phase map.

(a) The mean dispersion map. (b) The sensitivity of Love waves to shear-wave velocity. (c) The

standard deviation of the phase map provides an estimate of uncertainty in the phase map shown in

(a) as reconstructed during the sampling of the posterior distribution. (d) A second estimator of the

statistics of the posterior distribution, the skewness (second-moment) of the probability distribution

showing deviation from non-gaussian statistics.

description, we leave the details of acceptance probabilities to the following papers for a224

complete discussion (Bodin et al., 2009; Hawkins et al., 2019). We point out that in the225

reversible jump transdimensional step, the number of model parameters, that is the set226

m = {vi, ri, Ni}, is allowed to grow or shrink on every rjMcMC step. These steps are227

often referred to as the birth and death steps. They represent two of the four perturbation228

states when going from X to X′ (Figures 3b-d). The other two perturbation states involve229

changing the velocity values, vi or the hierarchical noise parameter, λ. Therefore, given a230

collection of Nk steps, sampled over Nc parallel chains, we obtain a final average phase or231

group velocity map by using the entire ensemble in Xk (Figure 4a):232

V̄ p,g(ωl, r) =

∫
m

mP (m)dm ≈ 1

NT

k=Nk×Nc∑
k=b+∆k

vp,gik Ii(rik) (7)

Where the equations represents ensemble averaging using the nearest-neighbor tessella-233

tion of the Voronoi cells centered at longitude and latitude node coordinates rik = (θik, ϕik).234

Whether a phase or group velocity node is implied: vpik, v
g
ik, is dependent on which dataset is235

used, dj = tc,uj (see Equation 6). During ensemble averaging, we use a total of NT samples,236

discarding b burnin steps, and downsampling each chain using a thinning parameter ∆k:237

NT = Nc ×
(
Nk − b

∆k

)
(8)

We also use the ensemble and its average to compute statistical estimators of the disper-238

sion maps’ posterior distribution: that is standard deviation or second moments (skewness)239

(Figure 4b-c), providing a quantitative measure of statistical significance on each solution240
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(Bodin et al., 2009; Bodin & Sambridge, 2009; Bodin, Sambridge, Rawlinson, & Arroucau,241

2012; T. M. Olugboji et al., 2017):242

ξp,g(ωl, r) =

∫
m

(m− m̄)2P (m)dm ≈ 1√
NT

k=Nk×Nc∑
k=b+∆k

[
vp,gik Ii(rik)− V̄ p,g

]2
(9)

In one sense, the average dispersion maps are model solutions of an inverse transfor-243

mation g−1 obtained through Monte Carlo Markov chain (McMC) sampling. The McMC244

sampling transforms the inter-station travel-time observations, Nj data vectors, into NR245

dispersion curves: [dj = t]
g−1≈P (X)−−−−−−−→ [dR = V p,g]. The dispersion curve at each point on246

the African continent can then be used to solve for an earth model, mβ,α,ρ(z):247

f(mβ,α,ρ(z)) = dR (10)

Where, f is a non-linear forward model that maps a local 1D earth model into our data248

of dispersion curves dR and α,β are the compressional and shear velocities and ρ is the249

density, all varying with depth, z. We discuss, next, our approach to obtaining this earth250

model251

3.3 Shear-Velocity Model Assessment and Update using a Perturbation252

Method253

We use the dispersion curves obtained from the phase velocity maps to invert for an254

updated earth model using a perturbational approach (Haney & Tsai, 2017). We focus255

on assessing the shear velocity models of the global lithospheric model of (Pasyanos et al.,256

2014) using the Rayleigh wave dispersion measurements alone, thus highlighting regions257

with large data misfits. The perturbational approach uses dispersion data obtained from258

Bayesian inversion to generate an updated model from a starting shear velocity model (e.g.,259

Litho1.0), and uses an iterative gradient descent method to solve the nonlinear forward260

model (Equation 10) using a modified augmented system of equations:261

[
C

−1/2
d G

C
−1/2
m I

]
∆mβ

k =

[
C

−1/2
d ∆dk

0

]
(11a)

Fk∆mβ
k = Dk (11b)

b.1: Iterative solution starts with mβ
0 : ∆dk = dR − f(mβ

k)262

b.2: Solving: ∆mβ
k = [FT

kFk]
−1

FT
kDk263

b.3: Updating: mβ
k+1 = mβ

k +∆mβ
k264

b.4: Repeating until: χ2 =
DT

k Dk

F 1 + ϵ265

Where mβ
0 and ∆mβ

k are the shear wave velocity and its k-th update and dR and ∆dk266

are the observed dispersion curves and the prediction error for each iteration (Equation 10).267

The stopping criterion is reached (Equation 11b.4) when the dispersion measurements are268

matched by the predicted data for a given number of measurements, F = l and ϵ = 0.5.269

The augmented system (Equation 11a) requires computing the sensitivity kernel G, and the270

data and model covariance matrices, Cd and Cm :271
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Cd = ξ2(ω)I (12a)

Cm = γξ2(ω) exp(
−|zi − zj |

d
) (12b)

Data covariance is diagonal and prescribed from measurement uncertainties obtained272

from Bayesian inversion (Equation 9), while the full matrix representing the covariance273

of model parameters at depth nodes zi and zj is prescribed by two user-supplied factors:274

a smoothing distance or correlation length, d, and a scaling factor γ. These parameters275

prescribe some type of regularization to the model solution and weight the degree of data.276

In model assessment, we constrain shear-wave velocity by assuming (1) that the Poisson277

ratio and densities of the Litho1.0 model are fixed or (2) compressional velocity and density278

can be estimated from shear velocity, using scaling relationships derived from empirical279

measurements of rock elasticities (Brocher, 2005). We then use the Rayleigh wave phase280

dispersion results, that is the data and uncertainties, as the constraints in producing an281

updated model of Africa’s Crust Evaluated with ADAMA Rayleigh Phase maps (ACE-282

ADAMA-RP) following the iterative scheme of Equation 11. We point out that this is just283

one way to use the new ADAMA dataset. In principle, we could produce a new model not284

tied to any apriori reference model and use all the Surface Wave dispersion maps - Love285

dispersion as well as Rayleigh and group velocity as well as phase velocities (ACE-ADAMA-286

SW). Additionally, we could adopt a similar probabilistic approach to jointly invert the287

surface wave dispersion datasets with other body-wave seismic measurements like receiver288

functions (Bodin, Sambridge, Tkalčić, et al., 2012). We defer this to future work. Here, we289

focus on producing a model update (ACE-ADAMA-RP) based on a reference global model290

(Litho1.0), so that our new dispersion maps can be benchmarked and the updated models291

can be evaluated in the context of statistics generated from the computationally expensive292

THBI algorithm.293

4 Results294

We summarize the THBI solutions using representative Rayleigh and Love wave phase295

dispersion maps discretely sampled at four periods (8, 15, 20 and 35). The full solution is296

archived as a digital open source model (see data acknowledgement) and represents a finer297

sampling at l = 11 periods and represents one map each for Love and Rayleigh phase and298

group dispersion maps for a total of forty-four maps 2×2×11 = 44 .We present a summary299

of the ensemble statistics for the entire solution in Tables 2 & 3. This summary provides300

a synthesis of the posterior distribution for the entire set of dispersion maps, providing301

insights into which regions in Africa are best resolved; that is, which regions captured by302

all the dispersion maps are constrained with high precision and are not biased towards303

unreasonably large or small velocities. Finally, we produce illustrative examples of the new304

model of Africa’s crustal shear-velocity model using ADAMA’s Rayleigh wave phase maps305

and uncertainties as constraints (ACE-ADAMA-RP).306

4.1 THBI Solutions: Exemplary Phase Maps with Errors307

The rj-McMC algorithm is run on ∼ 20 parallel chains for a total of 1 million iterations.308

For each Markov chain, accepted model ensembles are downsampled every 100 steps, and309

the final average and standard deviation are computed to produce final maps of Love and310

Rayleigh wave dispersion maps. We downsample, or “thin”, the model ensemble to avoid311

potential biases from interdependence (Bodin et al., 2009; T. M. Olugboji et al., 2017). We312

show exemplary maps at four distinct periods, from the shortest to longest periods (Figures313

5 & 6). Dispersion maps display spatial heterogeneity that depends on wavelength: more314

heterogeneity at shorter periods than long periods.315
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Table 2. Phase Velocities.

At the shortest periods (< 12 second) we observe faster velocities in west and central316

Africa than in east and southern Africa (Figures a1-d1). Similar patterns of heterogeneity317

are observed for Love as well as Rayleigh dispersion except that Love waves travel faster318

than Rayleigh waves and are more sensitive to shallow structure (compare Figures 4b to319

Figures 2c). This explains why the Love wave maps are more heterogeneous and more320

uncertain than the corresponding Rayleigh maps (compare Figures 6b1 & 5b1 and Figures321

6b2 & 5b2).322

In general, the error maps show that the standard deviations are lowest at the longest323

periods (long wavelength image > 20 secs) and when data coverage is the highest (south324
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Table 3. Group Velocities.

east vs. west and central Africa). This pattern of high uncertainties is replicated with our325

synthetic tests (Figure S1). We observe that the uncertainties are highest for checkerboard326

models and when data coverage is poor, compared to long-wavelength toy models with327

good data coverage. These results suggest that the THBI algorithm can appropriately328

model uncertainties inherent in the measurement errors as well as those inherent in the329

reconstruction process. Although the synthetic tests show that the greatest uncertainties330

should be expected where the station coverage is sparse, a few more statistically significant331

patterns are distinguishable in our results, even for poor data coverage regions e.g., along332

the Congo craton (compares Figures 5 & 6 with Figures 2a). We use the full statistics of333

the posterior distributions to explore these patterns and describe regions of our maps that334

are resolved with high-precision. This is important for judging final crustal model updates.335

4.2 Ensemble Statistics of Noise Maps: Convergence & Posterior Distribu-336

tions337

As we’ve pointed out, the spatial distribution of the standard-deviation (error maps) is338

fundamentally governed by measurement error, as well as raypath sampling. As a result, we339

observe that the Rayleigh maps are better resolved than the Love maps, with the noisiest340

maps being observed at the shortest periods. This is not surprising, since horizontally341

polarized waves are noisier at this period. We also observe that the most problematic maps342

are the 6 and 10 second maps . We summarize the statistical property of the maps across343

different periods by classifying each pixel in Africa based on: (1) its standard deviations344

and (2) the amplitude of the absolute velocity relative to a 1-D reference model (ak135).345

At each location, the dispersion maps are either precise or biased depending on these two346

measures. For example, a phase dispersion at a particular pixel location is recovered with347

high precision and low bias when no more than two discrete periods have standard deviations348

that exceed 0.4 km/s and the phase velocity values are not biased towards unreasonably349

high values ( > 40% of the reference value). Based on this scheme, we classify our entire350

domain into four categories: (1) High precision, (2) Low precision, (3) Biased, (4) Unbiased,351
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Figure 5. Rayleigh-wave phase maps and associated uncertainties at four discrete periods con-

structed using THBI. (a1,b1,c1,d1) Average maps constructed using the posterior distributions.

(a2,b2,c2,d2) the standard deviation maps constructed using a method similar to Figure 4c. For

Rayleigh wave group velocity maps see Figure S2.
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Figure S3.
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Figure 7. The quality of Rayleigh and Love dispersion models derived based on ensemble

statistics. (a) The spatial statistics of Rayleigh phase dispersion is color-coded by precision and bias:

high precision and unbiased (green), low precision and unbiased (blue) high-precision and biased

(red), low precision and biased (brown). We identify four locations (A-B-C-D) that exemplify these

four classes (b) The spatial statistics of Love phase dispersion (c) The spatial statistics of Rayleigh

group dispersion (d) The spatial statistics of Love group dispersion. Model update and assessment

using Rayleigh phase dispersion curves and associated uncertainties are shown at the four locations

(Figure 8) and on a transect X’X crossing south-west to North-east (Figure 9).

each reflecting broad statistics (Figure 7). This is a comprehensive way to summarize the352

uncertainty inherent in our THBI solutions and how they are propagated onwards into the353

model update of Africa’s crust.354

We observe only a slight difference in Rayleigh and Love phase dispersion precision and355

bias: 64.4%, by area, for Rayleigh and 63.3%, by area, for Love. In particular, regions like356

Madagascar, the Sahara metacraton, the cratons of southern, central, and eastern Africa357

and the atlas mountains of North Africa are recovered with high precision and low bias358

(green dots of Figures 7a & 7b). While these regions are recovered with a high precision,359

some portions are highly biased. For example, the west-end of the Congo craton and the360

eastern edge of the Sahara meta craton. Within this large sea of ‘high precision-low-bias’361

regions are regions on the east with low-precision-low-bias: the Horn of Africa and the362

western African craton (blue dots of Figures 7a & 7b). The western African craton also has363

the most regions with very highly biased dispersion curves (red dots of Figure 7). Again,364

these broad patterns are well explained by comparison with the spatial patterns of raypath365

coverage. Regions with the lowest precision and that are highly biased often intersect with366

regions of very low ray path coverage – for example, the western Africa craton, the Horn of367

Africa, and the eastern edge of the Congo craton (see Figure 2a).368
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Compared to the phase dispersion maps, the group dispersion maps have larger un-369

certainties, with only 25.3% and 13.5% by area of Rayleigh, and Love, being recovered370

with high precision, with large portions being recovered with very low precision and high371

bias (Figure 7c & 7d). While this makes it difficult to use the group dispersion results for372

continent-wide model assessment or update, we observe improvements in precision at some373

specific regions, made possible by short-aperture, country-wide seismic array deployments in374

Morocco, Cameroon, Ethiopia, Tanzania, and Southern Africa (T. Olugboji & Xue, 2022).375

For example, the cratons in the east and south of Africa are the best resolved as well as the376

highlands of Ethiopia, Morocco and the volcanic regions of Cameroon (compare 7c & 7d377

with Figure 1b). Next, the group dispersion maps for Congo craton and Sahara metacra-378

ton are moderately well resolved with only a few regions with highly biased values with379

low-precision (the western edge of the Congo craton, and a few regions in the Sahara meta380

craton). Finally, we observe the worst resolution for the west African craton and the mobile381

belts between the west african and sahara metacraton. While the group dispersion maps382

are not currently used in the model update, other authors may elect to use it as a constraint383

for investigating targeted regional crustal structure especially in highly resolved regions.384

For completeness, we report the entire dataset and provide the digital maps as a reference.385

In general, the spatial statistics of our dispersion maps shows that continent-wide model386

updates, using Rayleigh wave phase dispersion, are statistically significant, with room for387

improvement in low-resolution regions (blue and red dots of Figure 7a).388

4.3 Africa’s Crustal Structure: Model Update and Assessment of Shear-389

wave Velocity390

To complete our analysis, we present a new continent-wide, shear-wave crustal velocity391

model of the entire African continent using the Rayleigh wave phase dispersion maps and392

uncertainties as a data constraint. The decision to use this dispersion dataset is predicated393

upon the error statistics presented in the previous section (Figure 7). An attempt to use394

both phase and group dispersion would lead to a final crustal model that inherits a larger set395

of biased and unreliable dispersion curves (Figures 7c & 7d). The new model is constructed396

using the Litho1.0 model as a reference starting model, therefore, we consider it both a model397

update as well as a model assessment product of the crust within Africa. An inversion at398

each grid point produces an updated 1-D model (Figure 8) that is interpolated into a quasi-399

3D shear velocity model which we visualize by taking 2-D vertical and horizontal projections400

at selected transects and depth-slices across the entire model domain. We show a few such401

examples selected to highlight geographic regions and crustal depths where we expect to see402

improvements in resolution based on better ray-path coverage and improved resolution from403

our short-period ADAMA catalog (Figure 2b). The 2-D projections include: (1) a vertical404

slice defined by a transect that runs from the western edge of the Congo craton on towards.405

Ethiopia (Figures. 7a & 9) and (2) four horizontal slices spaced at 10-km intervals406

starting at the topmost crust and terminating around the Moho which is at 40 km for407

most of Africa (Figure 10). The vertical slice through our updated crustal model illustrates408

the utility of ensemble statistics. The shear-velocities are typically left unchanged when409

ADAMA’s Rayleigh dispersion curves do not statistically differ significantly from that of410

the starting reference model. Significant model updates are observed within the topmost411

crust (Figure 9a) informed by improved resolution at the shortest periods (Figure 2c). The412

updated crustal velocity model also includes uncertainties that have been forward propa-413

gated from the McMC ensemble (Figure S4b). This shows that not all regions of our model414

update are equally well resolved. For example, along transect X’X, the shallow crust under-415

neath the Angolan and Bomu-Kibalan shields are the least resolved with higher standard416

deviations and highly biased velocities (compare Figure 7a and Figure S4b). This point is417

further elaborated by the four horizontal slices across the model update, ACE-ADAMA-418

RP, and compared with the Litho1.0 starting reference model (Figure 10). We observe the419

largest differences between Litho1.0 and ACE-ADAMA-RP within the top and middle crust420

(¡ 20 km) especially along craton edges, with our new model tending to have higher shear421
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Figure 8. Illustrative examples showing model assessment and update of Litho1.0’s shear-wave

velocity using ADAMA’s Rayleigh wave phase dispersion curve and uncertainties. Model assess-

ment and update for: (a) a high precision and unbiased dispersion curve, starting phase velocity

from Litho1.0 model (blue curve), final dispersion curve after the perturbational inversion scheme

described in section 3.3 (red line) (b) a low precision and unbiased dispersion data (c) a biased

and low precision data (d) a biased and high precision data. For a plot of the other predictions see

Figure S2. The locations of the examples in a-d above are shown in the right map.
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velocities compared to Litho1.0. Within the interiors of the Congo Craton and the Sahara422

Meta Craton new features are recovered that are absent in Litho1.0. For example, the high-423

velocity domains in the eastern edge of the Congo craton and within the North and eastern424

end of the Sahara Meta Craton (Figure 10a-10c).425

While some of these features are recovered from the least resolved dispersion curves426

(high-velocity western boundaries of the western African and Congo craton), they cannot427

be entirely explained by poor measurements since they are spatially coherent across the428

entire crust and can be seen at the longest periods in both the Rayleigh and Love dispersion429

measurements, which are recovered with better resolution (compare for example Figure 7430

with Figures 4-6). The spatial extent and the reliability of these features may require further431

tests as improvements in station coverage and data quality lead to improvements in spatial432

resolution and lead to more precise dispersion maps.433

5 Discussion and Interpretation434

We have constructed a continent-wide shear velocity model of the entire African con-435

tinent and Madagascar using a probabilistic and perturbational inversion of the most com-436

prehensive ambient noise dispersion measurements to date (T. Olugboji & Xue, 2022). This437

work, in Africa, is similar to other continent-wide studies that produce crustal seismic mod-438

els based on short period passive source ambient noise seismic data (Saygin & Kennett, 2012;439

Shen et al., 2012; Lu et al., 2018). However, in our study, we have applied the probabilistic440

approach to constructing the ambient noise dispersion maps (Zulfakriza et al., 2014; Galetti441

et al., 2016; Yuan & Bodin, 2018; Eshetu et al., 2021). The statistical inference facilitated by442

a probabilistic approach has allowed us to pose, and answer, fundamental questions about443

the statistical significance of our new dispersion results and how they inform model updates444

of Africa’s crust (T. M. Olugboji et al., 2017): (1) at which periods are the dispersion maps445

best resolved? (2) which regions of Africa need significant updates, and which do not? (3)446

In the regions with improved resolution, and requiring significant model updates, to what447

degree do existing reference models differ from current model updates based on the most448

precise dispersion measurements i.e., Rayleigh wave phase dispersion data? Our current449

update of Africa’s Crust (ACE-ADAMA-RP) answers all these questions, and extends our450

understanding of Africa’s crustal architecture compared to existing ambient-noise crustal451

models (Pasyanos et al., 2014; Emry et al., 2019; Ojo et al., 2020).452

We reiterate that the model we have constructed here is informed primarily by the453

vertically polarized ambient noise dispersion maps alone, and future work will explore other454

passive source datasets like receiver functions, earthquake surface wave tomography, and455

other seismic observables that extend resolution in the lithosphere from the crust into the456

upper mantle (Shen et al., 2012, 2018; Gao et al., 2022; Han et al., 2022). We anticipate that457

such future model updates will extend lateral resolution only if new datasets are collected458

primarily in regions with the poor spatial resolution, e.g. western Africa craton (Figure459

7). When incorporating other passive source datasets, the improved depth resolution of460

other elastic-properties like compressional wave speed, poisson ratio, are expected only461

when new seismic deployments overlap with low-resolution regions. For seismic methods,462

like receiver functions, that improve sensitivity right underneath the seismic station then463

depth resolution of crust and mantle discontinuities will only be possible when stations are464

co-located with regions with high resolution from surface wave studies. In what follows, we465

review the current state of seismic models of the crust (Begg et al., 2009; Crosby et al.,466

2010; Raveloson et al., 2015; Finger et al., 2022), we contrast this with Moho models based467

on joint inversion with other geophysical methods of obtain thermo-compositional models468

of the African lithosphere (Globig et al., 2016; Raveloson et al., 2021; Haas et al., 2021;469

Afonso et al., 2022).470
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Figure 9. A vertical slice through, ACE-ADAMA-RP, the updated shear-velocity model of

Africa’s Crust based on ADAMA’s Rayleigh wave phase dispersion curves. (a) The shear velocity

model through transect X’X starts from the western edge of the Congo craton on towards Ethiopia

(see Figure 7a). The depth to the crust-mantle boundary is shown for reference and taken from

(Globig et al., 2016). (b) The difference between the final model and the starting model. (Top

of 9a & 9b) Topography running through transect X’X with abbreviations same as in Figure 1a

and statistical properties of each region (colored circles) same as in Figure 7a. (c) The geology

surrounding transect X’X showing domains within the Congo craton, continental shield domains, the

congo basin, and surrounding areas. The outline of the Congo basin is taken from (Andriamiranto

Raveloson et al. 2015; A. Raveloson et al. 2021). For a view of the starting model used for the

update and standard deviation of the final shear-velocity model see Figure S4a & S4b
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Figure 10. Horizontal slices through the updated shear-velocity model of Africa’s crust. Recov-

ered shear velocity at (a) Crustal depth of 10-km compared to Litho1.0 (b) Crustal depth of 20-km

and compared to Litho1.0 (c) Crustal depth of 30-km (d) Moho and Sub-crustal depth of 40 km.

All horizontal slices through the starting model of Litho1.0 are taken at the same depth as the new

updated model. The transect X’X is included for reference.
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5.1 Comparing ADAMA to other Ambient Noise Models of Africa’s Crust471

A few previous studies have used ambient noise measurements to construct regional472

and continent-wide seismic velocity models on the continent (Yang et al., 2008; Kim et473

al., 2012; Pasyanos et al., 2014; Accardo et al., 2017; Borrego et al., 2018; Emry et al.,474

2019; Fadel et al., 2020; White-Gaynor et al., 2021). Only two of these extend across the475

continent providing complete crustal imaging of Africa (Pasyanos et al., 2014; Emry et al.,476

2019). Both studies use fewer stations and calculate dispersion measurements at periods477

>30 secs, therefore limiting their spatial resolution to long-wavelength features and their478

depth resolution to the lowermost crust and sub-moho depths (>33 km). By comparison,479

our work extends the resolution of crustal structure both laterally and at depth, since we480

extend these use a large catalog of shortest periods: 25 - 5 secs (Figure 2b) (T. Olugboji &481

Xue, 2022). Similar regional models (Kim et al., 2012; Borrego et al., 2018; Chambers et al.,482

2019; Wang et al., 2019; Fadel et al., 2020; Eshetu et al., 2021; White-Gaynor et al., 2021;483

Malory et al., 2022) do a similar job at providing improved depth and spatial resolution,484

but they do not allow a complete view of the continent-scale features. Unlike all the other485

models, however, the probabilistic approach makes it possible to use the large-ensemble486

statistics to judge resolvability of various features on the continent.487

We point out that not all the features in our crustal model are well resolved. This488

is because of the uncertainties inherited from the dispersion measurements. While this489

might at first be discouraging, we note that we are able to identify and quantify the total490

area of the entire continent that is not well resolved (Figure 7). All in all, this provides491

users of our new velocity models with a quantitative judgment of how much confidence to492

place in the various parts of our new model update and which regions are highest priorities493

for continued updates as new seismic measurements are assimilated. As an example, it is494

clear that major updates are still required for the western African craton since only a few495

dispersion measurements have been made in that region of the African continent. Also,496

compared to the phase dispersion, the group dispersion measurements are still only useful497

for regional updates of the African continental crust (cf Figure 7b & 7c). We expect that498

future targets will include constraining radial anisotropy (Lin et al., 2010; Moschetti et499

al., 2010a, 2010b; Ojo et al., 2017) along regions where both Rayleigh and Love dispersion500

measurements are highly resolved with high precision, e.g., eastern and Southernmost Africa.501

5.2 ACE-ADAMA compared to other Geophysical Constraints on Africa’s502

Crustal Structure503

Compared to other regions or the world, Africa is sparsely instrumented and therefore504

earlier seismic models based on combined active and passive source seismics have required505

extensive spatial averaging (Mooney, 2010; Fishwick & Bastow, 2011; Stolk et al., 2013;506

Globig et al., 2016). These are heavily spatially aliased models of the bulk velocity in the507

crust or it’s thickness (Moho depth) and have been conducted using several techniques that508

can be broadly categorized into three categories: (1) passive source seismics with sensitivity509

to the crust, e.g., receiver functions, ambient noise, or SS reflectivity (Pasyanos & Nyblade,510

2007; Rychert & Shearer, 2010; Tugume et al., 2013; Globig et al., 2016) (2) regionalized511

earthquake body wave tomography models with only marginal sensitivity to the crust, (Celli,512

Lebedev, Schaeffer, & Gaina, 2020; Boyce et al., 2021), and (3) joint gravity and seismic513

models (Haas et al., 2021; Finger et al., 2021, 2022). Compared to these techniques, we514

provide the best resolution on the bulk shear velocity in the crust. This is because our515

dataset includes an extensive measurement comprising small aperture regional networks516

(Nyblade, 2015; Fadel et al., 2018; Yu et al., 2020; T. Olugboji & Xue, 2022) and the517

adaptive probabilistic tomography approach based on these high-resolution ambient noise518

surface wave data improves resolution of the bulk velocities without imposing strict limiting519

assumptions on spatial averaging or smoothness (Bodin, Sambridge, Rawlinson, & Arroucau,520

2012; Sambridge et al., 2013; Belhadj et al., 2018).521
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|∇Vs|

ADAMA (25km)(a)

(b)

Figure 11. A view of the shear-wave velocity and its lateral gradients through the lowermost

crust of Africa and Madagascar as seen by the ACE-ADAMA-RP model update. (a) The continent-

wide shear wave velocities at 25 km in Africa and Madagascar. (b) The spatial gradient of the

velocity field shown in (a) highlighting the regions with greatest lateral changes in shear velocities:

continental margins, craton edges, and the mobile belts between WAC and SMC
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5.3 Newly Resolved Features & Future Application of new Continent-wide522

Model523

As an illustrative example of some of the newly resolved features in our new shear524

velocity model, we show a horizontal depth at 25 km (Figure 11). This portion of our model525

is constrained by highly precise Rayleigh wave dispersion measurements between 20 seconds526

and 35 seconds (Figures 2b, 5c2, and 4d2) and therefore the newly resolved features can527

be interpreted with better confidence. Compared with the reference model, Litho1.0, the528

shear-wave velocities are faster within the exposed Archean shields, along the continental529

margins, and especially for a few of the craton edges (compare Figure 10b2 with Figure 11).530

In particular the outlines of the Archean shields in the west African craton and the Congo531

craton are much more prominent and almost follow outlines predicted by the surface geology532

(Begg et al., 2009). The spatial homogeneity of some of these features are clearly seen in533

the image of the lateral gradient were the velocities hardly vary except at the edges of the534

shields, at the continental margins and in the highly mobile belts of between the west African535

craton and the sahara Meta Craton. While these are some preliminary interpretations of the536

connections between the surface geology and crustal architecture revealed by our new model,537

we expect that future work will explore application to other geological and geophysical538

problems, e.g., improving constraining crustal composition (Hacker et al., 2012; Sammon et539

al., 2021; Sammon & McDonough, 2021; Afonso et al., 2022), lithospheric stress modeling540

(Zoback & Mooney, 2003; Stamps et al., 2010; Craig et al., 2011), and connection to long-541

term deformation and seismicity on the African continent (Schmandt et al., 2015; Fadel et542

al., 2020).543

6 Conclusion544

We construct a new shear-wave velocity model of Africa’s crustal architecture using a545

probabilistic and perturbational inversion of ambient noise surface wave measurements. The546

probabilistic inversion solves for phase and group dispersion maps using a transdimensional547

and hierarchical Bayesian inversion of a large catalog of interstation dispersion data. The548

dispersion map solutions are large ensemble models of a posterior distribution and provide549

estimates of statistical significance. An evaluation of the error statistics suggests that the550

phase dispersion is better constrained than group dispersion, with Rayleigh wave phase551

dispersion maps possessing the best resolution. Informed by these error statistics, we use552

a perturbational approach to construct the updated model of Africa’s crustal architecture553

evaluated using the Rayleigh phase maps and starting from a reference global model (Litho554

1.0). The model recovers new features not present in existing maps, with important impli-555

cations for crustal structure and geological architecture of Archean cratons, exposed shields556

and mobile belts within Africa.557

7 Data Availability Statement558
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