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Abstract

Teleseismic shear-wave splitting analyses are typically performed by reversing the splitting process through the application

of frequency- or time-domain operations minimizing transverse-component waveforms. These operations yield two splitting

parameters, φ (fast-axis orientation) and δt (delay time). In this study, we investigate the applicability of a recurrent neural

network, SWSNet, for determining the splitting parameters from pre-selected waveform windows. Due to the scarcity of

sufficiently labelled real waveform data, we generate our own synthetic training dataset. The model is capable of determining

φ and δt with a root mean squared error (RMSE) of 9.58* and 0.143 s for noisy synthetic test data. The application to real

data involves a deconvolution step to homogenize the waveforms. When applied to data from the USArray dataset, the results

exhibit similar patterns to those found in previous studies with mean absolute differences of 11.12* and 0.25 s in the calculation

of φ and δt, respectively.
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Key Points:

• We present a novel deep learning-based approach to identify splitting parameters
from waveforms, which is faster than grid-search.

• The model is trained on synthetic data which is made to mimic real data using
a series of deconvolution operations.

• When tested on real waveforms from the USArray dataset, a seismic anisotropy
pattern comparable to previous studies is obtained.
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Abstract
Teleseismic shear-wave splitting analyses are typically performed by reversing the split-
ting process through the application of frequency- or time-domain operations minimiz-
ing transverse-component waveforms. These operations yield two splitting parameters,
ϕ (fast-axis orientation) and δt (delay time). In this study, we investigate the applica-
bility of a recurrent neural network, SWSNet, for determining the splitting parameters
from pre-selected waveform windows. Due to the scarcity of sufficiently labelled real wave-
form data, we generate our own synthetic training dataset. The model is capable of de-
termining ϕ and δt with a root mean squared error (RMSE) of 9.58◦ and 0.143 s for noisy
synthetic test data. The application to real data involves a deconvolution step to homog-
enize the waveforms. When applied to data from the USArray dataset, the results ex-
hibit similar patterns to those found in previous studies with mean absolute differences
of 11.12◦ and 0.25 s in the calculation of ϕ and δt, respectively.

Plain Language Summary

In this study, we explore the use of a deep learning model called SWSNet to an-
alyze seismic wave data. This method helps determine the properties of the Earth’s man-
tle that affect how seismic waves travel. Typically, researchers use complex calculations
to analyze seismic data, but our approach uses a deep learning model trained to recog-
nize patterns in the data. Since there is not enough labelled data available for training,
we create our own synthetic data for this purpose. Our model can accurately determine
important characteristics of the subsurface layer, and when applied to real-world data,
it produces results similar to previous studies. This work shows that SWSNet is a promis-
ing tool for analyzing seismic data and understanding Earth’s interior.

1 Introduction

The analysis of seismic anisotropy serves as a unique tool for investigating the elu-
sive dynamic processes occurring within the Earth’s mantle. Inferring vertically and lat-
erally varying anisotropic structures from surface-recorded seismic waveforms can pro-
vide vital constraints for geodynamic models of mantle deformation and flow. The study
of teleseismic shear-wave splitting, a technique in use for over three decades, provides
key insights about seismic anisotropy, aiding in the analysis of the dynamic processes within
Earth’s interior (Long & Silver, 2009; Reiss & Rümpker, 2017; Savage, 1999; Silver &
Chan, 1991).

Two primary mechanisms contribute to the development of seismic anisotropy in
the Earth’s mantle: strain-induced lattice preferred orientation (LPO) of upper mantle
minerals such as olivine (resulting from differential motion between the lithosphere and
asthenosphere, and mantle flow) (Silver & Chan, 1991) and shape preferred orientation
due to the presence of vertically aligned fluid-filled fractures, cracks, and microcracks (Holtzman
& Kendall, 2010).

When a shear wave enters an anisotropic medium, it is split into two orthogonally
polarized components that propagate at different speeds. This phenomenon can be de-
scribed by two splitting parameters: the fast axis orientation (the polarization direction
of the faster wave) ϕ, and the time delay between the two components δt. While ϕ rep-
resents the orientation of the anisotropic materials, δt measures the strength of anisotropy
and the extent of the anisotropic material. Teleseismic phases are typically employed to
investigate the anisotropic properties of the Earth. The most frequently used phases in-
clude SKS, SKKS, and PKS, and are collectively referred to as XKS phases. The con-
version of these waves at the core-mantle boundary results in polarization in the direc-
tion of the back-azimuth (Jia et al., 2021; Liu & Gao, 2013; Reiss & Rümpker, 2017).

–2–



manuscript submitted to Geophysical Research Letters

Several software codes have been developed to determine the splitting parameters
ϕ and δt through grid search or correlation approaches. Examples of such codes can be
found in the works of Silver and Chan (1991) such as Liu and Gao (2013); Savage et al.
(2010); Teanby et al. (2004); Wüstefeld et al. (2008); Wuestefeld et al. (2010). (Semi-
)automatic approaches were recently suggested by Reiss and Rümpker (2017) and Link
et al. (2022).

In this paper, we present a novel Deep Learning-based approach for the analysis
of shear-wave splitting. In a recent study, Zhang and Gao (2022) utilized an Convolu-
tional Neural Network (CNN) for waveform classification to automatically select reliable
SWS measurements. However, a comprehensive analysis to infer anisotropic splitting pa-
rameters has not yet been presented. Here, we introduce a Neural Network called SWS-
Net (Shear-Wave Splitting Network) to determine the splitting parameters from pre-selected
waveform windows. Due to the lack of sufficient labelled data, the model is trained on
synthetic data, simulated under the assumption of a single anisotropic layer. A series of
deconvolution and reconvolution steps are applied to real data to ensure maximum re-
semblance. We demonstrate that SWSNet can produce results comparable to those of
previous studies such as Liu et al. (2014) when applied to real data from the USArray
and obtain mean absolute differences of 11.12◦ and 0.25 s in the calculation of ϕ and δt,
respectively.

2 Methods and Results

For our study we use a supervised learning approach, which is a machine learning
paradigm that relies on labelled data for training a model. The Deep Learning model
we use learns to map the waveforms to the corresponding labels (in our case ϕ and δt)
by minimising the difference between the true and predicted labels defined by the loss
function.

In principle, labelled waveform data from shear-wave splitting analyses is available
from publications and data archives (see, e.g., Barruol et al. (2009)). However, for our
purposes, the amount of available data is limited, and the labelling may not be as uni-
form, as it would be required for efficient training. In order to overcome this limitation,
we will use synthetic data as an alternative. Ideally, the generated synthetic waveforms
will mimic the properties and characteristics of real data.

2.1 Modeling shear-wave splitting

In our approach, we consider waveform effects due to a single anisotropic layer, which
is characterized by a horizontal symmetry axis (referred to as the “fast axis” and ori-
ented at an angle ϕ with respect to North). A vertically incident shear wave, splits into
horizontally polarized fast and slow components, where the fast component aligns par-
allel to the symmetry axis, while the slow component is oriented perpendicular to it. Gen-
erally, these two quasi-shear waves propagate at different speeds, resulting in a separa-
tion by the delay time, δt, as they travel through the layer. A graphical representation
of the coordinate systems used is given in Figure S1.

The equations to describe shear-wave splitting in layered structures have recently
been summarized by Rümpker et al. (2023). In the frequency domain, the radial and trans-
verse displacement components, after passing through the layer, can be expressed as(

u
(r)
1

u
(t)
1

)
=

(
cos θ + i sin θ cos 2α i sin θ sin 2α

i sin θ sin 2α cos θ − i sin θ cos 2α

)(
u
(r)
0

u
(t)
0

)
(1)

where θ = ωδt/2, α = β − ϕ is the angular difference between back-azimuth and fast
axis, and index 0 denotes waveforms before passing through the anisotropic layer. For
XKS phases in a radially symmetric Earth, we can assume that u

(t)
0 = 0 upon enter-
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ing the (first) anisotropic layer on the receiver-side leg of the ray path, such that

u
(r)
1 = (cos θ + i sin θ cos 2α)u

(r)
0 (2)

u
(t)
1 = i sin θ sin 2αu

(r)
0 (3)

Note, that for relatively long periods, T ≫ δt (to first order in θ), this simplifies to

u
(r)
1 ≃ (1 + iω

δt

2
cos 2α)u

(r)
0 (4)

u
(t)
1 ≃ iω

δt

2
sin 2αu

(r)
0 (5)

where the factor iω yields a derivative of the radial-component waveform and the am-
plitude is modulated by sin 2α. We will use this formulation in the development of our
deconvolution approach, as described below.

2.2 Neural Network Analysis - Synthetic Data

We use synthetic data to train our model. The radial and transverse waveforms are
generated with a sampling frequency of 50Hz for back-azimuths between 0−360◦ and
fast axis ϕ ranging between 0−180◦. Consequently α can vary between 0−180◦, since
ϕ and ϕ+180◦ represent the same fast axis orientation. Possible values for δt are be-
tween 0.2-2.0 seconds. Note that δt characterizes the anisotropy within the layer and is
not equal to an “apparent” delay time which could be much larger (e.g. Silver and Sav-
age, 1994).

Combinations of δt and ϕ are chosen from uniform random distributions for the
ranges described above. We experiment with Convolutional layers (Kiranyaz et al., 2015),
Bi-directional Long Short-Term Memory (Bi-LSTM) (Hochreiter & Schmidhuber, 1997)
layers and a combination of both. The model hyperparameters are chosen by experiment-
ing to maximise the model performance on validation data. Each 1D convolutional layer
used has a Rectified Linear Unit (ReLU) activation function (Agarap, 2018). The model
outputs three values corresponding to the probability of the measurement being non-null
and the normalised predictions for δt and ϕ. Here, any measurement with α < 2, 88 <
α < 92 and α > 178 is considered a null measurement. A ReLU activation function
is used for layers predicting α and δt while a sigmoid function is used to output the prob-
ability corresponding the measurement being non-null. A schematic example of such an
architecture is shown in Figure 1.

The model is trained using the Adam Optimiser (Kingma & Ba, 2014). Mean squared
error and binary cross-entropy are used as loss functions for regression and classification
respectively. Apart from using Maxpooling layers in the model architecture, early stop-
ping (Prechelt, 2012) is used to further prevent overfitting, whereby training stops if val-
idation loss does not decrease for 8 consecutive epochs. We find a Convolutional Neu-
ral Network to be working best on this dataset.

2.2.1 Results - Synthetic Data

We train the Neural Network on two types of dataset– one is noise-free and the other
has 10-30% noise applied independently to the fast and slow components. Some exam-
ples for these datasets can be found in Figures S2 and S3 in the Supplementary Infor-
mation. Figure 2 shows the results when these models are applied to a noisy synthetic
test data. As can be seen from Figure 2, the Neural Network has RMSE 62.46◦ and 0.59
s in the predictions of α and δt respectively when trained on noise-free synthetic data.
However when trained on noisy data, the RMSE in the prediction of α and δt decrease
to 9.47◦ and 0.06 s thus demonstrating that the training of the neural network on noise-
free synthetic data fails to appropriately mitigate the effects of noise. Since noise is bound
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Figure 1. The architecture of SWSNet. The model takes as input the (deconvolved) trans-

verse component and comprises of two blocks of 1D convolution and Maxpooling operations,

followed by two bi-directional LSTM layers. The final outputs are the normalised values of α

(αnorm) and δt (δtnorm) and the probability of the measurement being non-null.

to be present in the real data, we train our model on noisy data for the subsequent anal-
ysis. The results of this analysis on the noise-free test data are comparable and can be
seen in Figure S4 in the Supporting Information.

2.3 Application to real data

2.3.1 Direct application of the Neural Network

When the Neural Network trained on the synthetic data is directly applied to the
real data (radial and transverse components), it performs unsatisfactorily when predict-
ing δt. A plot between the true and predicted δt in this case can be seen in the Supple-
mentary Information (Figure S5). This happens as real waveforms look significantly dif-
ferent from the synthetic data. Thus a direct application of the trained Neural Network
to the real waveforms renders unusable results. This necessitates an intermediate step
to bridge the gap between the synthetic and real waveforms.

2.3.2 Deconvolution approach

Observed real waveforms are not only affected by anisotropic layering but may vary
significantly due to different source mechanisms (and path effects). This poses a chal-
lenge to the training of the deep learning model, as it becomes impossible to include all
waveform variations that may arise from different source mechanisms and complexities
of the medium. Here, we choose a deconvolution approach to mitigate source effects and
“homogenize” the waveforms. This method is similar to the one utilized in receiver-function
processing, for instance Langston (1979); Owens et al. (1984); Ammon (1991).

We deconvolve both the radial and transverse component by the radial component.
In the frequency-domain, in view of eq. (5), the procedure applied to real data can be
described as follows:

u
(r)
∗ = u

(r)
1 /u

(r)
1 = 1 (6)

u
(t)
∗ = iω

δt

2
sin 2αu

(r)
0 /u

(r)
1 ≃ iω

δt

2
sin 2α (7)
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Figure 2. (a)-(b) Ground truth vs predicted values of α and δt for model trained on noise-free

synthetic data. (c)-(d) Ground truth vs predicted values of α and δt for model trained on noisy

synthetic data. In both cases the input data used for testing is afflicted with noise.

Note that we assumed u
(r)
0 /u

(r)
1 ≃ 1 in the derivation of eq. (7). This implies that the

radial-component waveform is a sufficient representation of the incoming waveform (be-
fore it enters the anisotropic layer), which further limits the applicability to waveforms
of relatively long periods. The value of 1 for the radial component in the frequency do-
main corresponds to a δ-function in the time domain. For the transverse component, the
factor iω causes a time-domain derivative (of the unsplit waveform) with amplitude mod-
ulated by sin 2α. In a second step, the deconvolved components can now be convolved
with a reference waveform, such as the normalised derivative of an exponential function
(Figure S6, radial component as shown in Figure 3), to yield a standard radial compo-
nent, and uniform transverse component that depends on the two splitting parameters.
Figure S7 shows the appearance of the transverse component for different α and δt pairs.

For real data, first the waveform within the selected time windows are resampled
at 50Hz and then the mean is removed. For both the real and synthetic data the follow-
ing steps are applied:

• A Hanning window is applied to smoothen the transition to zero amplitude at the
boundaries of the time window.

• The data is zero padded to have a uniform total of 2000 time samples correspond-
ing to a 40 s time window.

• A butterworth lowpass filter with corner frequency of 1 Hz is applied to suppress
higher-frequency noise.

• The radial component is deconvolved from both the radial and transverse com-
ponents as per equations 6 and 7.

–6–
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Table 1. A comparison between splitting parameters for individual waveforms shown in Figure

3, calculated by Link et al. (2022) and SWSNet. A more detailed comparison between grid search

results, results from Link et al. (2022) and SWSNet can be found in table S1 in the Supplemen-

tary Information.

Event ID ϕ(◦) ϕ(◦) δt (s) δt (s)

(Link et al., 2022) (SWSNet) (Link et al., 2022) (SWSNet)

U14A2007-07-27T15:10:07SKS 48.00 50.64 1.44 1.62

G27K2019-03-10T08:33:53SKS 83.00 84.95 1.03 0.90

J48A2013-04-09T12:17:01SKS 75.00 72.89 0.82 0.90

E59A2015-05-30T11:45:14SKS 82.00 84.99 1.13 1.10

• The clean waveform shown in Figure S7 (radial component in Figure 3) is con-
volved with both the deconvolved waveforms (radial and transverse components).

• A Hanning window is applied to reduce the effect of possible sinusoidal “ringing”
on the transverse component of the reconvolved data.

• The waveform is cropped to the central 10 seconds.
• Another Hanning window is applied followed by the normalisation of the data such
that the absolute maximum amplitude in the transverse component is 1.

With this approach it is only the transverse component that carries meaningful in-
formation about the splitting parameters. Therefore we retrain our model on the trans-
verse component of the de/reconvolved synthetic waveforms. Once again we experiment
with different model architectures find out that the combination of Convolutional and
Bi-LSTM layers, as shown in Figure 1, works best. This model will henceforth be called
the SWSNet. A detailed description of the hyperparameters used can be seen in Figure
S8. As the input data structure is relatively simple a deeper network does not improve
the results and simpler network is sufficient. Please note that the labels corresponding
to α and δt are always scaled to be in the range 0-1 as this is known to benefit learn-
ing. A training data size of 50,000 waveforms is experimentally found to be optimum (Fig-
ure S9). The performance of SWSNet on a synthetic test dataset is summarised in Fig-
ure S10.

2.4 Application to USArray

We apply our model to pre-selected waveforms from the USArray dataset and com-
pare our results with Liu et al. (2014) and those calculated by the automatic Splitracer
toolbox proposed by Link et al. (2022). To make sure that only meaningful results are
used in the calculation of station averages we perform a quality check on the estimations
made by the neural network on given waveforms. We perform splitting inversion using
the splitting parameters predicted by the neural network and check the percentage re-
duction in the transverse component energy (sum of squared amplitudes) as proposed
by Silver and Chan (1991). An experimentally chosen threshold of 60% reduction in trans-
verse component of energy is used to select the waveforms to be used for calculating sta-
tion averages. Some examples are shown in Figure 3. It is observed that the performance
of SWSNet is comparable to that of SplitRacer. Figure 4 shows a visual representation
of the station-averages of the splitting parameters calculated by SWSNet and Liu et al.
(2014). Unlike Link et al. (2022), Liu et al. (2014) does not employ a joint splitting anal-
ysis, allowing for a more direct comparison with our approach, as it is also based on av-
eraging results from individual split phases at a given station. The corresponding com-
parison between SWSNet and Link et al. (2022) can be seen in Figure S11.
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Figure 3. Examples of application of SWSNet to deconvolved real waveforms from USAr-

ray Dataset. The middle and rightmost panels show a comparison between the deconvolved real

waveforms shown on the corresponding left panel and synthetic transverse components simu-

lated using the splitting parameters predicted by SWSNet. The middle panel shows the radial

component while the right panel shows the transverse components. The similarity between the

transverse components is observable. The corresponding splitting parameters can be found in

Table 1.

3 Discussion and Conclusion

We explore the different factors that affect the station-averaged results, and find
that the predominant factor is the number of acceptable measurements for a given sta-
tion, whereby the difference between the station averaged splitting parameters calculated
by SWSNet and those from Liu et al. (2014) diminishes with an increased number of ac-
ceptable measurements corresponding to a station (Figure S12).

For the deconvolution approach, as applied to real data, we find errors to be much
lower when the neural network is trained and tested on noise-free synthetic data as com-
pared when it is trained and tested on noisy synthetic data. This makes sense, as the
deconvolution homogenizes the waveforms, even if noise is present. However, there is a
certain degree of discrepancy between the ground truth and the predicted splitting pa-
rameters for individual waveforms.

We also compare our method against a simple grid search algorithm that, like pre-
vious studies, finds the splitting parameters for which (upon waveform inversion) the en-
ergy in the transverse component is the lowest. We plot the energy distributions for dif-
ferent combinations of α and δt for five randomly chosen events from five different sta-
tions, and find the parameters to calculated by SWSNet to be quite close to those found
by grid search and what is calculated by Link et al. (2022) (Figure S13). We further ob-

–8–



manuscript submitted to Geophysical Research Letters

Figure 4. (a) Splitting parameters calculated by SWSNet (b) Splitting parameters calculated

by Liu et al. (2014). The orientation of the straight lines is representative of the fast axis orienta-

tion while the length represents delay time. Similar general pattern is observed in both cases. (c)

Station-wise comparison between ϕ calculated by SWSNet and Liu et al. (2014) (d) Station-wise

comparison between δt calculated by SWSNet and Liu et al. (2014)

serve that grid search on an average takes 3-6 times the amount of time taken by SWS-
Net to calculate splitting parameters for a single waveform.

In this study we introduce a deep learning model SWSNet that has the potential
to replace grid search methods used by previous studies to find splitting parameters for
a waveform. Due to the dearth of labelled real data we train the model on synthetic data.
We demonstrate that a direct application of model trained on the synthetic waveforms
to real waveforms does not work well, the real waveform being affected by source mech-
anisms and path effects. This is resolved by using a deconvolution approach to minimise
the difference between real and synthetic data. We retrain the model on transverse com-
ponents of deconvolved synthetic waveforms contaminated by random noise, and show
that the model learns to perform reasonably well in identifying the splitting parameters
for such waveforms. We then apply our model to pre-selected waveforms from the US-
Array dataset and show that the station averages calculated using SWSNet follow the
same general trends as previous studies. We observe that the robustness of the proposed
method increases with increased number of measurements for a given station. The cur-
rent version of the model is trained entirely on synthetic data, but in future versions real
data can be added to the training set for improved representation.

–9–
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4 Open Research

The raw seismic waveforms used in this study are open for download from the IRIS
Data Management Center under the network code TA (IRIS Transportable Array, 2003).
The event selection and corresponding labels used for training of SWSNet are available
in the supplementary data alongside Link et al. (2022).
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Figure S1. Co-ordinate system for reference.
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Figure S2. Examples of noise-free synthetic data for different α and δt pairs. The

olive line represents the radial component while the purple line represents the transverse

component.
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Figure S3. Examples of noisy synthetic data for different α and δt pairs. The olive line

represents the radial component while the purple line represents the transverse component.
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Figure S4. (a)-(b) Ground truth vs predicted values of α and δt for model trained on

noise-free synthetic data. (c)-(d) Ground truth vs predicted values of α and δt for model

trained on noisy synthetic data. In both cases the input data used for testing is noise-free.
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Figure S5. Relation between true and predicted δt when the trained neural network is

directly applied to real data.

Figure S6. The normalized derivative of an exponential function.
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Figure S7. Pre-processed transverse components for different combinations of α and δt
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Figure S8. A detailed overview of the SWSNet architecture.
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Figure S9. Variation of (a) RMSE for α (b) RMSE for δt and (c) Recall for the

prediction of non-null measurements with the size of the dataset used to train the model
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Figure S10. (a) Ground truth vs predicted values of α (b) Ground truth vs predicted

values of δt for model trained on deconvolved transverse component of synthetic data.
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Figure S11. (a) A visual representation of the splitting parameters calculated by

SWSNet (b) A visual representation of the splitting parameters calculated by Link et al.

(2022) The orientation of the straight lines is representative of the fast axis orientation

while the length represents delay time. Similar general pattern is observed in both cases.

(c) Station-wise comparison between ϕ calculated by SWSNet and Link et al. (2022) (d)

Station-wise comparison between δt calculated by SWSNet and Link et al. (2022)
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Figure S12. Variation of absolute difference between station-averaged splitting param-

eters calculated by SWSNet and those calculated by Liu et al. (2014), with the number

of acceptable measurements for a given station. The difference decreases with increasing

number of measurements
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Figure S13. The distribution of transverse component energy upon inverse splitting

analysis for different combinations splitting parameters for five different waveforms from

five different stations.
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