The contribution of plasma sheet bubbles to storm ring current buildup and evolution of the energy composition

Anthony Sciola¹, Viacheslav G. Merkin¹, Kareem Sorathia¹, Matina Gkioulidou², Shanshan Bao³, Frank R. Toffoletto³, Kevin H Pham⁴, Dong Lin⁴, Adam Michael⁵, Michael Wiltberger⁶, and Aleksandr Ukhorskiy²

¹The Johns Hopkins University Applied Physics Laboratory ²JHU/APL ³Rice University ⁴National Center for Atmospheric Research ⁵The John Hopkins Applied Physics Laboratory ⁶National Center for Atmospheric Research (UCAR)

June 14, 2023

Abstract

The formation of the stormtime ring current is a result of the inward transport and energization of plasma sheet ions. Previous studies have demonstrated that a significant fraction of the total inward plasma sheet transport takes place in the form of bursty bulk flows (BBFs), known theoretically as flux tube entropy-depleted "bubbles.' However, it remains an open question to what extent bubbles contribute to the buildup of the stormtime ring current. Using the Multiscale Atmosphere Geospace Environment (MAGE) Model, we present a case study of the March 17, 2013 storm, including a quantitative analysis of the contribution of plasma transported by bubbles to the ring current. We show that bubbles are responsible for at least $50\$ % of the plasma energy enhancement within 6 R\$_E\$ during this strong geomagnetic storm. The bubbles that penetrate within 6 R\$_E\$ transport energy primarily in the form of enthalpy flux, followed by Poynting flux and relatively little as bulk kinetic flux. Return flows can transport outwards a significant fraction of the plasma energy being transported by inward flows, and therefore must be considered when quantifying the net contribution of bubbles to the energy buildup. Data-model comparison with proton intensities observed by the Van Allen Probes show that the model accurately reproduces both the bulk and spectral properties of the stormtime ring current. The evolution of the ring current energy spectra throughout the modeled storm is driven by both inward transport of an evolving plasma sheet population and by charge exchange with Earth's geocorona.

The contribution of plasma sheet bubbles to stormtime ring current buildup and evolution of the energy composition

A. Sciola¹, V.G. Merkin¹, K. Sorathia¹, M. Gkioulidou¹, S. Bao², F. Toffoletto², K. Pham³, D. Lin³, A. Michael¹, M. Wiltberger³, A. Ukhorskiy¹

6	¹ Johns Hopkins University Applied Physics Laboratory
7	-Rice University
8	³ NCAR High Altitude Observatory

• Key Points:

10	•	Global geospace model shows that bubbles contribute at least half of the total ring
11		current energy during the March 17, 2013 storm.
12	•	The model accurately reproduces the observed ring current intensity and spatial
13		distribution across a broad energy range (10-100 keV).
14	•	The evolution of the modeled ring current ion energy composition is due to both
15		an evolving source population and energy-dependent losses.

 $Corresponding \ author: \ Anthony \ Sciola, \ \texttt{anthony.sciola@jhuapl.edu}$

16 Abstract

The formation of the storm ime ring current is a result of the inward transport and 17 energization of plasma sheet ions. Previous studies have demonstrated that a significant 18 fraction of the total inward plasma sheet transport takes place in the form of bursty bulk 19 flows (BBFs), known theoretically as flux tube entropy-depleted "bubbles." However, it 20 remains an open question to what extent bubbles contribute to the buildup of the storm-21 time ring current. Using the Multiscale Atmosphere Geospace Environment (MAGE) 22 Model, we present a case study of the March 17, 2013 storm, including a quantitative 23 analysis of the contribution of plasma transported by bubbles to the ring current. We 24 show that bubbles are responsible for at least 50% of the plasma energy enhancement 25 within 6 R_E during this strong geomagnetic storm. The bubbles that penetrate within 26 $6 R_E$ transport energy primarily in the form of enthalpy flux, followed by Poynting flux 27 and relatively little as bulk kinetic flux. Return flows can transport outwards a signif-28 icant fraction of the plasma energy being transported by inward flows, and therefore must 29 be considered when quantifying the net contribution of bubbles to the energy buildup. 30 Data-model comparison with proton intensities observed by the Van Allen Probes show 31 that the model accurately reproduces both the bulk and spectral properties of the storm-32 time ring current. The evolution of the ring current energy spectra throughout the mod-33 eled storm is driven by both inward transport of an evolving plasma sheet population 34 and by charge exchange with Earth's geocorona. 35

³⁶ Plain Language Summary

The formation of the ring current is one of the defining features of the near-Earth 37 space response to solar storms. While it is known that the plasma that constitutes the 38 ring current originates from Earth's magnetic tail, the relative roles of different trans-39 port mechanisms remains unclear. In this study, we utilize numerical modeling to inves-40 tigate ring current buildup for a specific solar storm, and find that flows that are medium-41 scale relative to the system size and referred to as plasma "bubbles", are responsible for 42 at least half of the total buildup of ring current plasma. Our analysis also shows that 43 the bubbles displace some of the background plasma on their way Earthward, which is 44 important when calculating their net contribution to the ring current. The modeled ring 45 current energy spectrum is in good agreement with spacecraft observations, and the evo-46 lution of the energy spectrum is driven by both an evolving plasma population in the 47 tail and by energy-dependent charge exchange. The ability to accurately model the com-48 plex interactions between the ring current and Earth's geospace system is critical for un-49 derstanding the full impacts of solar storms. 50

⁵¹ 1 Introduction

The formation of the ring current is a defining characteristic of geomagnetic storms 52 (Chapman, 1962; Daglis et al., 1999; M. W. Chen et al., 1997; Jordanova et al., 2020). 53 The ring current is the result of the accumulation of substantial plasma pressure within the inner magnetosphere and as such it is one of the major energy sinks of the solar wind-55 magnetosphere interaction (Baker, 2008). This dominant stormtime magnetospheric cur-56 rent distorts the global magnetic field greatly, accounting for roughly half of the total 57 stormtime magnetic field disturbance at Earth's surface (Hamilton et al., 1988; Roeder 58 et al., 1996; N. E. Turner et al., 2001). The gradients of the pressure also drive the Re-59 gion 2 field-aligned current (FAC) system (Vasyliunas, 1970; Iijima & Potemra, 1976; 60 Ganushkina et al., 2018) which partly controls current closure and convection in the iono-61 sphere, including the shielding of lower latitudes from the high-latitude electric field (Gurnett, 62 1970; Jaggi & Wolf, 1973; Toffoletto et al., 2003). The energy spectrum of the ring cur-63 rent ions controls their charge exchange with the neutral geocorona (Smith & Bewtra, 64

⁶⁵ 1978) which in turn greatly impacts the recovery rate of the storm (Dessler & Parker,

⁶⁶ 1959; Kistler et al., 1989; Fok et al., 1993; Jordanova et al., 1998).

It is well-accepted that the ring current is created via inward transport of the plasma 67 sheet particles (Liemohn & Khazanov, 2005; Wing et al., 2014; Kistler, 2020). However, 68 to what extent nightside transport at different spatial and temporal scales contributes 69 to ring current buildup remains an outstanding question of magnetospheric physics. Trans-70 port by quasi-steady global-scale convection enforced by a dawn-to-dusk electric field that 71 becomes enhanced during storms was proposed originally (Axford, 1969). Erickson and 72 Wolf (1980), however, noted that steady, global convection through the tail would re-73 sult in unrealistically high pressures in the inner magnetosphere, and hypothesized that 74 time-dependent ejection of excess plasma in the form of substorms could provide a so-75 lution to this "pressure crisis." The model of time-variable but global-scale convection 76 has since been the most widely accepted explanation for stormtime ring current forma-77 tion (e.g., Daglis, 2006). 78

However, the existence of a storm enhancement in the global-scale cross-tail 79 electric field was challenged by statistical measurements of the electric field in the plasma 80 sheet. It was found from CRRES measurements between 7.5 and 8.5 R_E (Rowland & 81 Wygant, 1998) and Geotail measurements between 5 and 15 R_E (Hori et al., 2005) that 82 the large-scale field remained relatively weak during heightened activity. There were in-83 stead many instances of large-amplitude (several to tens of mV/m) electric fields highly 84 fluctuating on minutes-long timescales. Hori et al. (2005) noted that the azimuthal width 85 of the convection channels corresponding to the fluctuating field should be considered, as these enhancements may be caused by narrow-width bursty flows (Angelopoulos et 87 al., 1997). Such "bursty bulk flows" (BBFs; Angelopoulos et al., 1992; Baumjohann, 1990) 88 are indeed estimated to be responsible for a significant amount (>60%) of the total inward transport of magnetic flux and plasma mass and energy transport in the magne-90 totail (15-22 R_E; Angelopoulos et al., 1994). BBFs are observed as short-lived (~10 s), 91 high-speed (>400 km/s) Earthward flows that typically contain a significant enhance-92 ment in magnetic flux, referred to as a "dipolarizing flux bundle" (DFB; Liu et al., 2013). 93 and an enhancement of hot plasma, observed as an injection (Sergeev et al., 2005; Runov 94 et al., 2011; Gabrielse et al., 2012, 2014; Liu et al., 2016). With a cross-tail size of $\lesssim 3$ 95 R_E (Angelopoulos et al., 1997; Nakamura et al., 2004), they are often referred to as "mesoscale" 96 flows since their scale size is much smaller than the global magnetotail size yet much larger 97 than the kinetic scale. C. X. Chen and Wolf (1993) suggested that BBFs provide an al-98 ternative solution to the pressure crisis as described by Erickson and Wolf (1980) if they 99 account for at least 40-55% of the total inward plasma transport in the magnetotail, in-100 troducing the possibility that BBFs play a significant role in ring current buildup. 101

However, BBF transport within the plasma sheet does not directly correspond to 102 contribution to the ring current, since the majority of these flows do not penetrate to 103 within geosynchronous orbit (GEO; Ohtani et al., 2006; Takada et al., 2006). The best 104 predictor of BBF penetration depth is not the flow velocity or magnetic field strength 105 within the structure, but rather the flux tube entropy (FTE; Dubyagin et al., 2011), de-106 fined as $S = pV^{5/3}$, where p is the average plasma pressure along the flux tube and V = 107 $\int 1/B \, ds$ is the flux tube volume (Pontius & Wolf, 1990; Birn et al., 2009). Plasma sta-108 bility results in a distribution of magnetospheric flux tubes such that the FTE increases 109 with radial distance from the Earth. High-magnetic flux, low-entropy "bubbles" intro-110 duced in the magnetotail are interchange unstable and are transported inwards (where 111 they may be observed as BBFs) until they reach a location with comparable background 112 FTE (Pontius & Wolf, 1990; Wolf et al., 2009). 113

The question of the relative contribution of BBFs/bubbles to storm time ring current buildup has been notoriously difficult to answer conclusively because of the lack of multipoint measurements with sufficient coverage and resolution. Gkioulidou et al. (2014), using sub-GEO injections observed by the Van Allen Probes (RBSP), estimated that for

the 17 March 2013 storm BBFs transported around 30% of the total plasma energy to 118 the ring current. However, this result required assumptions about the azimuthal distri-119 bution of GEO-penetrating injections and the occurrence rate of injections throughout 120 the storm extrapolated from the number observed by RBSP alone. While observations 121 from multiple spacecraft somewhat reduce this uncertainty, studies that have utilized large 122 conjunctions of spacecraft still have difficulty determining whether spacecraft at differ-123 ing radial and azimuthal locations are observing the same BBF (e.g., Gabrielse et al., 124 2014; D. L. Turner et al., 2017). They also may not be capturing all BBFs that might 125 be traversing the plasma sheet across different MLTs at any given time. Hence, more com-126 plete in situ coverage is required to conclusively address the problem. Energetic neutral 127 atom (ENA) imaging has recently been used to detect temperature enhancements as-128 sociated with BBFs (Keesee et al., 2021) and has the prospect of helping to quantify plasma 129 energy transported by BBFs with the advantage of observing the entire tail at once. How-130 ever, due to low sensitivity of the ENA camera onboard the TWINS spacecraft (due to 131 a very small geometric factor and duty cycle; McComas et al., 2009), only limited en-132 ergies can be used (2–32 keV), assuming a Maxwellian distribution, to retrieve those tem-133 peratures. 134

Because of the current observational limitations, numerical modeling has been used 135 extensively to study inner magnetosphere transport and ring current formation, and has 136 increasingly found that bubbles play an important role in both cases. Inner magneto-137 sphere models that have an outer boundary around 6-9 R_E , and apply a global-scale elec-138 tric field there, have found that such convection can build up a ring current and repro-139 duce observed trends in Dst (e.g., M. W. Chen et al., 1993; Jordanova et al., 1996; Kozyra 140 et al., 1998; Ebihara & Ejiri, 2000; Jordanova et al., 2014; Fok et al., 2014). Using the 141 Rice Convection Model - Equilibrium (RCM-E) with a boundary at GEO, Yang et al. 142 (2016) showed that driving their simulation with an electric field both with and with-143 out the presence of bubbles produced similar ring currents. However, both Yang et al. 144 (2016) and Lemon et al. (2004) found that when the nightside boundary was instead placed 145 at 15 R_E , driving their simulation with a strong global-scale electric field produced a pres-146 sure enhancement outside of 6 R_E , which prevented further convection inwards and sub-147 sequent buildup of the ring current. In both studies, when entropy-depleted bubbles were 148 introduced along the 15 R_E boundary, a substantial ring current formed, indicating that 149 the presence of bubbles in the plasma sheet plays a role in ring current buildup. Cramer 150 et al. (2017), utilizing the Open Geospace General Circulation Model (OpenGGCM) mag-151 netohydrodynamic (MHD) code coupled with RCM, found that bubbles were responsible for 65-85% of the total inward plasma transport to below GEO, depending on storm 153 intensity. Sorathia et al. (2021), using the stand-alone version of the Grid Agnostic MHD 154 for Extended Research Application (GAMERA) global MHD model (Zhang et al., 2019; 155 Sorathia et al., 2020) and test particle tracing (Ukhorskiy et al., 2018; Sorathia et al., 2018), concluded that Earthward-propagating bubbles in the plasma sheet accounted for 157 roughly half of the total plasma energy transport while making up only 15% of the plasma 158 population. The studies by Cramer et al. (2017) and Sorathia et al. (2021) provided quan-159 titative evidence of the importance of bubbles in plasma mass and energy transport in 160 the magnetosphere. However, the contribution of bubbles to the ring current energy con-161 tent was not directly examined. 162

The study presented in this paper is the first to quantify the contribution of bub-163 bles to the stormtime ring current using a coupled global and inner magnetosphere model. 164 This work builds off of that of Yang et al. (2015), which investigated this question us-165 ing RCM-E and found that up to 60% of the total inner magnetosphere pressure came 166 from plasma introduced by bubbles along the 15 R_E nightside boundary. We expand on 167 this topic through use of GAMERA two-way coupled with RCM, which has the advan-168 tage of capturing the dynamics of the global system and generating bubbles more self-169 consistently. GAMERA, as well as its predecessor, the LFM global MHD model (Lyon 170 et al., 2004), has a history of accurately reproducing the statistical properties of BBFs 171

(Wiltberger et al., 2015; Sorathia et al., 2021), and with the addition of RCM coupling is overall well-suited to address this fundamental question of magnetospheric physics.

The goal of understanding ring current buildup must also consider the evolution 174 of its energy composition over time. Observations have found that during quiet times, 175 protons above ~ 100 keV are the dominant contributors to the ring current pressure, while 176 during storms the main contributors to the enhanced pressure are ions with energies be-177 tween several to tens of keV (e.g., Krimigis et al., 1985; Korth et al., 2000; Zhao et al., 178 2015; Keika et al., 2018; Gkioulidou et al., 2016). There have been a number of proposed 179 mechanisms for this energy evolution, including the penetration of different plasma sheet 180 populations throughout the storm (Keika et al., 2005; Lui, 1993), adiabatic effects due 181 to localized changes in the magnetic field strength (Lyons, 1977; Lyons & Williams, 1976). 182 radial diffusion (Lyons & Schulz, 1989; Sheldon & Hamilton, 1993; Jordanova & Miyoshi, 183 2005) and charge exchange (e.g., Kistler et al., 1989; Fok et al., 1993; Jordanova et al., 184 1998). However, similarly to investigations of bubble contribution to the ring current, 185 the nature of in situ observations makes it challenging to make conclusive statements about 186 which processes are ultimately responsible for the observed evolution. Reproducing this 187 behavior in first-principle geospace models is necessary in order to self-consistently model 188 the ring current's coupling with the ionosphere and exosphere, and as a result more ac-189 curately capture the recovery phase. In turn, such model capabilities help to inform to 190 what extent certain processes influence the evolution of the energy spectra during storms. 191

In this study, we present a comprehensive picture of the contribution of bubbles 192 to the buildup of the storm time ring current, investigate the evolution of the ring cur-193 rent energy spectra throughout the storm, and examine the contributors to this evolu-194 tion. This is done via a case study of the March 17th, 2013 geomagnetic storm simulated 195 with the Multiscale Atmosphere-Geospace Environment (MAGE) model, which includes 196 two-way coupling between GAMERA and RCM. Section 2 provides an overview of the 197 storm, the numerical model, and the data used for data-model comparisons. Section 3 198 presents our results, including a quantitative analysis of BBF/bubble contribution to the 199 inner magnetosphere energy content, data-model comparison of proton intensities, and 200 an analysis of the contributors to the evolving ring current energy spectra. In section 201 4, we discuss the findings and caveats of the study, and in section 5 we present our con-202 clusions. 203

²⁰⁴ 2 Methodology

205

2.1 Event Description

For this study we simulate the March 17th 2013 storm, one of the major storms 206 of the Van Allen Probes era. This storm was caused by a coronal mass ejection (CME), 207 and had the sudden storm commencement (SSC) at about 06:00 UT on 03/17/2013 and 208 a minimum Dst of approximately -140 nT. In this study we begin the simulation at 00:00 209 UT that day and, since we are focusing on ring current buildup, we only examine main 210 phase out to 19:00 UT, which saw a minimum Dst of about -100 nT (see the Sym-H panel 211 in Figure 1). Additional solar wind parameters are provided in Supplemental Figure 1. 212 This storm featured many injections observed by the Van Allen Probes within geosyn-213 chronous orbit (Gkioulidou et al., 2014), providing an ideal opportunity to study the role 214 of injections in the buildup of Earth's storm time ring current. This storm has been stud-215 ied extensively, including modeling (e.g., Yu et al., 2014, 2015; Raeder et al., 2016; Wilt-216 berger et al., 2017; M. W. Chen et al., 2019; Lin et al., 2021) and observational stud-217 ies (e.g., Gkioulidou et al., 2014; Lyons et al., 2016; Tang et al., 2016; Yue et al., 2016; 218 Menz et al., 2017; Dang et al., 2019). 219

Figure 1. 3D view of the simulation at 09:28 UT. The radial velocity is shown as red and blue color contours in the equatorial plane. On the same surface, ΔB_z is shown as colored contour lines in 5 nT intervals, and the open/closed field boundary is shown as a black line. Overplotted in the equatorial plane is the RCM pressure within the RCM active domain. Field lines, seeded along constant latitudes near Earth, are shown as translucent tubes, with a cross-section scaled by $|B|^{-1}$. The field lines terminate at the GAMERA inner boundary at 2 R_E. On the Earth's surface, downward and upward ionospheric field-aligned currents (FACs) are shown as purple and green color countours, respectively. Overlaid to the right of the Earth is another view of the northern ionosphere FACs from a perspective along SM-Z. Overlaid in the bottom left is a timeseries of the observed Sym-H, where the period of the storm that is simulated is shaded in orange, and the black vertical line is 09:28 UT, the time shown in the 3D view.

2.2 Data

220

The solar wind data source is primarily Modified High Resolution OMNI (HRO) data. For this time period, the HRO data is based on ACE observations, which contains a 45 minute data gap around the SSC. We fill any 5-minute or longer data gaps with the propagated and KP-despiked Wind dataset available on OMNIWeb. This method produces a significantly sharper SSC than interpolating across the 45-minute data gap.

Proton data from the RBSPICE instrument aboard Van Allen Probe B (RBSP-226 B) is used for comparison with our model. During this storm, the RBSPICE instrument 227 aboard Probe A was not fully operational and so its data is not used here. Because space-228 craft charging can lead to bad data below 10 keV (Menz et al., 2017), we choose this as 229 our lower energy limit. We choose an upper limit of 200 keV as this is about the max-230 imum energy in this simulation that our inner magnetosphere model (see section 2.3) cov-231 ers throughout the entirety of the RBSP-B orbit. This energy range is fully covered us-232 ing the combination of the Time-of-Flight by Pulse Height (TOFxPH) data product for 233 proton energies between 10-50 keV and the Time-of-flight by Energy (TOFxE) data product for 50 keV protons and upwards (Mitchell et al., 2013). The Level-3 omnidirectional 235 flux data product from both of these instruments was used. This data was retrieved from 236 cdaweb (https://cdaweb.gsfc.nasa.gov) via the cdasws python package (https://pypi.org/project/cdasws/). 237

238 2.3 Model Description

The Multiscale Atmosphere-Geospace Environment (MAGE) model, developed at 239 the NASA DRIVE Science Center for Geospace Storms, is a coupled geospace model de-240 signed to enable the investigation of multiscale phenomena, from the global magneto-241 sphere to the ionosphere and thermosphere, during geomagnetic storms. A visual overview 242 of the simulation at 09:28 UT on 03/17/2013 is given in Figure 1 which highlights the 243 components of MAGE used in this study. The primary physics module is the Grid Ag-244 nostic MHD for Extended Research Application (GAMERA) 3D global MHD model (Zhang 245 et al., 2019; Sorathia et al., 2020). GAMERA is a reinvention of the well-known LFM 246 model (Lyon et al., 2004), preserving the original high-order, non-diffusive numerics. Min-247 imizing numerical diffusion between the low-entropy bubble with the surrounding back-248 ground plasma is critical, as this enables better representation of the bubble penetra-240 tion depth. GAMERA is coupled with the REMIX ionospheric potential solver, which 250 is a rewrite of the Magnetosphere-Ionosphere Coupler/Solver (MIX) model (Merkin & 251 Lyon, 2010). GAMERA and REMIX are also two-way coupled with the Rice Convec-252 tion Model (RCM), a flux tube-averaged inner magnetosphere model that resolves energy-253 dependent gradient-curvature drifts (Toffoletto et al., 2003; Wolf et al., 2016). The GAM-254 ERA inner boundary for this simulation is at a radius of 2 R_E , where field-aligned cur-255 rents (FACs) and the ionospheric electric fields are mapped to/from the ionosphere us-256 ing a dipole field. Self-consistently calculated mono-energetic and diffuse electron pre-25 cipitation is included in the calculation of ionospheric conductance (Lin et al., 2021). 258

There is a "spin-up" phase, lasting several hours, where only GAMERA and REMIX 259 are advanced using the solar wind conditions at time T=0 (00:00 UT on 03/17/2013, in 260 this case), with the interplanetary magnetic field (IMF) set to zero, as a constant driver. 261 At T=0, the full solar wind time-series is used, and the RCM starter ring current is ini-262 tialized using an analytic pressure distribution described in Liemohn (2003), specifically 263 the L-dependent profile in the nominal case where the pressure peak is centered at L=4264 and $\Delta L=0.625$. The pressure distribution is scaled such that its total contribution to the 265 Dst, as calculated via the DPS-Dst relation, makes up the difference between the ob-266 served Dst and that calculated by GAMERA at T=0. An ad-hoc temperature of 30 keV 267 is used in combination with the pressure profile to calculate the density profile, assum-268 ing a Maxwellian distribution. Beyond 10 R_E , the plasma sheet is initialized using the 269 empirical model described in Tsyganenko and Mukai (2003). For the solar wind condi-270 tions preceding this storm, this resulted in an average plasma sheet temperature of around 271 10 keV. 272

The coupling between GAMERA and RCM enables the model to resolve energy-273 dependent drifts, precipitation, and charge exchange within the inner magnetosphere. 274 The high-level coupling procedure is similar to that implemented in LFM-RCM (Pembroke 275 et al., 2012), with several important improvements. In LFM-RCM, the active RCM do-276 main was not only confined to the region of closed field lines, but also first to an ellipse 277 that encompassed as much of the closed domain as possible, and was further confined 278 to regions where the plasma $\beta \leq 1$. This ensured the active domain was limited to re-279 gions that were magnetically dominated, consistent with the assumptions within RCM. 280 The plasma β limiter was introduced to exclude fast flows, which may break the valid-281 ity of the flux-tube averaged approximations. In GAMERA-RCM, the ellipse is more con-282 servatively confined to be no closer than 4 radial grid cells to the open/closed bound-283 ary, and is further confined to regions where the Alfven speed is sufficiently fast to com-284 municate information along the field line relative to its evolution time-scale, such that 285 the field-line averaged approximation is reasonably valid. We found this limiting of the 286 active RCM domain to be more effective in excluding fast flows. Its implications in the 287 context of the trapping/leaking of plasma from bubbles are discussed in section 4. For 288 this study, the MHD density and pressure are mapped to RCM energy invariant chan-289 nels along its outer boundary via a Kappa distribution, defined as in Eq. 3.12 of Livadiotis 290

and McComas (2013), with a kappa value of 6. This resulted in better agreement between 291 the simulated and observed proton intensities compared to mapping using a Maxwellian 292 distribution. A dynamic plasmasphere is also modeled via a zero-energy channel in RCM. 293 This channel is initialized using the Kp-dependent plasmasphere model given in Gallagher 294 et al. (2000) and evolves self-consistently using the combined electrostatic potential from 295 REMIX and corotation. Energy-dependent charge exchange losses are applied to the RCM 296 protons using the empirical geocorona density profile from Østgaard et al. (2003) and 297 cross-sections provided by Lindsay and Stebbings (2005). At each coupling time step (ev-298 ery 15s) the plasma moments from the RCM hot plasma and plasmasphere channels are 299 ingested by GAMERA as a single fluid. 300

301 3 Results

3.1 Simulation Overview

Figure 2. (a) Time-series of the observed Sym-H, the simulation Dst calculated using Biot-Savart evaluated at the center of Earth, and the DPS-*Dst* for all closed field lines within 6 R_E. Equatorial view of the inner magnetosphere pressure (row **b**), v_r (row **c**), and ΔB_z (row **d**) at four select times corresponding to the purple dashed lines in (a). The gray dashed circle with a radius of 6 R_E is included for reference.

303 304 305

306

307

Figure 2a shows, in addition to the observed and simulated Dst values, the Dessler-Parker-Sckopke Dst (DPS-Dst; Dessler and Parker (1959); Sckopke (1966)) evaluated for all closed field lines with an equatorial extent within 6 R_E. The DPS relation, assuming a dipole field, relates the total plasma energy within a defined volume (E) with the magnetic perturbation it causes at Earth's surface (ΔB_z), given by

$$\frac{\Delta B_z}{B_0} = -\frac{2E}{E_m} \tag{1}$$

where B_0 is Earth's surface magnetic field and E_m is the total energy of the magnetic 308 field external to the Earth. Thus, a decrease in the plotted DPS-Dst directly corresponds 309 to the increase in plasma energy within 6 R_E . It can be seen in Figure 2a that the DPS-310 Dst stays relatively constant through the SSC, then decreases at a fairly steady rate start-311 ing around 8:30 UT, and then levels off again around 9:30 UT and reaches its absolute 312 minimum around 10:30 UT. Therefore most of the ring current buildup in this simula-313 tion occurred within just two hours (08:30-10:30 UT). The DPS-Dst is roughly half the 314 value of the total simulated Dst, in agreement with the estimates of Hamilton et al. (1988) 315 and N. E. Turner et al. (2001). 316

The plots in Figure 2b show the plasma pressure within the inner magnetosphere 317 in the equatorial plane, as calculated by RCM, for 4 times between 8:00-10:08 UT. The 318 (c) and (d) rows show the radial velocity (V_r) and vertical component of the magnetic 319 field with the dipole subtracted out (ΔB_z) from GAMERA. Evident in the V_r panels are 320 highly localized inward flow bursts (FBs), which are accompanied by dipolarizations (DFBs, 321 visible in the ΔB_z panels) and particle flux enhancements (not shown). Per the coupling 322 algorithm described in section 2.3, the RCM domain does not include the region con-323 taining these structures until the fast flow has subsided, causing the finger-like incursions 324 of the outer boundary on the RCM active domain (row b). 325

The ring current pressure reaches a peak of 140 nPa around 9:15 UT and is located at a radial distance of just under 4 R_E . Over time, the pressure peak is smeared out azimuthally as plasmas of different energies gradient-curvature drift at varying velocities. However, the total plasma energy within the inner magnetosphere remains fairly constant, as indicated by the DPS-*Dst* curve in Figure 2a.

Within MHD, the change in total plasma energy within a volume enclosed by a surface is given by the enthalpy flux through that surface (Birn & Hesse, 2005). Figure 3 presents a keogram-like view of several quantities evaluated along a 180° arc across the nightside with a radius of 6 R_E from the origin at Earth. Figure 3a shows the radial component of the enthalpy flux (H) perpendicular to the magnetic field direction, defined as

$$(H_{\perp})_r = 5/2p \left(\mathbf{v}_{\perp}\right)_r \tag{2}$$

where p is the plasma pressure and $\mathbf{v}_{\perp,r}$ is the radial component of the bulk velocity per-337 pendicular to the magnetic field vector. We denote inward/Earthward flux as positive, 338 so that it corresponds to an increase in the plasma energy within 6 R_E . The structure 339 of the inward enthalpy flux is highly localized in MLT extent. Keeping in mind that at 340 $6 R_E$, an arc spanning 1 MLT is roughly 1.6 R_E in length, the azimuthal extent of these 341 flows are similar to the scale-size of BBFs observed further in the plasma sheet (15-19 R_{E} ; Nakamura et al., 2004). Nearly each instance of enhanced inward enthalpy flux is 343 accompanied by magnetic dipolarizations (Fig. 3b) and a depletion in flux tube entropy 344 (Fig. 3c), indicating that these flows are indeed bubbles penetrating below 6 R_E . There 345 are several notable exceptions in the 03-06 MLT range between 10:00 and 10:30 UT where the entropy instead appears to increase with the arrival of the enhanced enthalpy flux. 347 These features are indicators of bubbles that did not reach 6 R_E before reaching their 348 equilibrium position, but compressed the magnetic flux Earthward of them, increasing 349 the concentration of magnetic flux and pushing higher-entropy flux tubes to a lower L 350 shell. 351

The bubbles in Figure 3 originate from the middle to distant plasma sheet and propagate to below GEO. Indeed, Figure 4 visualizes the flows associated with several bubble features during the 09:27:00 - 09:31:30 UT period. The figure shows several spherical slices through the magnetotail, centered in Z on the equatorial plane, with the radial component of the bulk flow perpendicular to the magnetic field $(v_{\perp,r})$ displayed as color contours on each. The inner slice has a radius of 6 R_E, equal to that of the nightside arc shown in Figure 3. While not shown in the figure, field lines have been traced

Figure 3. Simulated quantities evaluated along a 180° arc across the nightside with a radius of 6 R_E , including: (a) The radial component of the enthalpy flux, (b) ΔB_z , and (c) flux tube entropy. In the enthalpy flux panel, positive values indicate radially inward flux, and negative values indicate radially outward flux. (d) Line-integral of the radial component of the enthalpy, Poynting, bulk kinetic, and total energy flux across the entire arc.

from each grid point at each point in time, so the magnetic topology of the domain is 359 known. Regions of each slice that are connected to non-closed field lines (i.e. open or IMF 360 lines) have been darkened to convey the 3D topology and help to visualize the stretch-361 ing of the tail. An animation of this figure is provided in Supplemental Video 1. Figure 362 4a shows a snapshot at 09:27 UT, where it can be seen on the furthest 2 slices, at 12 and 363 14 R_E , that the tail is stretched and that fast flows are emerging within the current sheet. 364 A large flow burst has an origin beyond 14 R_E and penetrates through the 6 R_E slice; 365 this corresponds to the bubble feature shown in Figure 3 at 20 MLT at the same time. 36 We note here that in this snapshot it may appear that there is a single large-scale in-367 ward flow spanning roughly 21-24 MLT at 12 R_E , however it is clearer in Supplemen-368 tal Video 1 that these are two distinct inward flows. Return flows can also be seen on 369 either side of the most duskward bubble, spanning at least 2 R_E in radial extent. In Fig-370 ure 4b, a flow burst that does not penetrate 6 R_E is highlighted. Figure 4c shows the 371 strongest flow/bubble captured by the simulation, which reached 6 R_E around 09:31 UT 372 and also generated strong return flows. The shaded regions behind the flow's origin sug-373 gest this bubble was initiated by reconnection inside of 14 R_E . This example demonstrates 374 that not all bubbles in the simulation propagate in from the more distant central plasma 375 sheet, and that they may not all be strictly BBFs by definition (Angelopoulos et al., 1992) 376 which observed them between 9-19 R_E), but this is a byproduct of the strong storm con-377 ditions limiting the closed tail region within relatively close distances to Earth. In or-378 379 der to avoid any confusion due to terminology, going forward we will refer to these structures simply as bubbles, with the understanding that they all possess an inward flow, 380

Figure 4. Spherical slices through the MHD solution of the dusk-to-midnight sector at three select times spanning 4.5 minutes. The slices span 6-14 R_E , spaced 2 R_E apart, and are centered in Z on the XY-plane. The color contours on the slices show the radial component of the bulk velocity perpendicular to the magnetic field $(v_{\perp,r})$. The darker regions on the slices denote regions that are on non-closed field lines (either open or fully IMF field). Each panel is marked to show flow paths through the slices. Flow vectors have been included in the animated version of this figure (see Supplemental Video 1). The Earth is also shown, with the inward/outward field-aligned currents shown in purple and green, respectively. The red line in the ionosphere marks the open-closed boundary determined via field line tracing.

transport of plasma mass and energy as well as dipolarizing flux, and have a lower flux
 tube entropy relative to the local background, as shown in Figure 3.

Tailward vortical flows are observed on either side of almost every Earthward flow. 383 Since the sign of the enthalpy flux is indicative of the flow direction, the return flows are 384 evident from the regions of negative flux shown in Figure 3a. Such tailward flows have 385 been identified previously in both numerical models (Birn et al., 2011; Merkin et al., 2019; 386 Yang et al., 2019) and observationally (Panov et al., 2010). These tailward flows clearly 387 transport a significant amount of plasma energy outwards and thus must be considered 388 when quantifying the net contribution of bubbles to the buildup of the ring current en-389 ergy, as is done in section 3.2. 390

Fig. 3d shows a time-series of the radial component of the enthalpy, Poynting and 391 kinetic flux, as well as their sum, integrated along the nightside arc. The Poynting flux 392 in this panel is defined as $\mu_0^{-1}(\mathbf{v}_{\perp} \times \mathbf{B}) \times \mathbf{B}$, and the kinetic flux as $1/2\rho v^2 \mathbf{v}_{\perp}$. It can 393 be qualitatively seen that enhancements in the total energy flux correlate well with the 394 timing of bubbles passing through the arc (a more quantitative analysis follows in sec-395 tion 3.2). The enhancements in enthalpy flux are always accompanied by enhancements 396 in the transported magnetic flux. However, the flows that reach 6 R_E transport energy 397 largely in the form of plasma energy rather than magnetic or bulk kinetic energy. 398

A prominent feature in the enthalpy flux panel is the standing structure of multiple inward/outward flows between 09:30 and 10:00 UT. The structure is initiated by the previously-examined strong flow that arrives at 22 MLT, which kicks off a standing vortical pattern across several MLT that slowly drifts westward. The vortices are localized to just a couple of R_E in the radial direction and do not contribute to continuous pumping of new energy from the tail. While this is an interesting feature, because it does not contribute to the net transport of plasma (seen more quantitatively later in Fig. 5), we do not investigate it further as a part of this study.

407

3.2 Quantification of Plasma Energy Transport to the Ring Current

In order to quantify the contribution of bubbles to the buildup of the ring current energy content, we first construct a simple method of systematically detecting them. We define the quantity ΔB_{τ} , which is calculated by subtracting the average B_z value for the preceding τ minutes from the instantaneous B_z value:

$$\Delta B_{\tau}(l,t) = B(l,t) - \frac{1}{\tau} \int_{t-\tau}^{t} B(l,t') dt'$$
(3)

where τ is a chosen time interval and l is the azumithal position along the nightside arc. 412 With a τ on the order of minutes, this metric effectively picks out rapid enhancements 413 of the magnetic field strength while filtering out longer timescale variations due to global 414 dipolarization events. At the same time, this method also performs better at identify-415 ing dipolarization fronts than selection via a dB_z/dt threshold, as the latter is more sus-416 ceptible to fluctuations in B_z that are not associated with bubbles. We find that the com-417 bined criteria of $\Delta B_{\tau} > 10$ nT with $\tau = 2$ minutes and $V_r < 0$ (i.e. inward radial ve-418 locity), similar to the criteria used by Runov et al. (2021) to identify many dipolariza-419 tion events within THEMIS observations, performs well in systematically selecting bub-420 bles along the 6 R_E arc within our simulation. For every point that meets this criteria, 421 we also flag all points within $l\pm 1 R_E$ arc-length of the point as being caused by bubbles 422 in order to account for the return flows brought on by the Earthward flow. Because we 423 are triggering off of enhancements in B_z , we also extend this flagged area out to 1 minute 424 before the time of the triggered feature in order to include any enthalpy flux enhance-425 ments due to compression ahead of the bubble. 426

The black boxed regions in Figure 5a mark the regions selected as being influenced by bubbles given the above criteria, overplotted on the enthalpy flux keogram identical

Figure 5. Time-series analysis of energy flux through a 180° arc across the nightside hemisphere at 6 R_E: (a) Radial component of the enthalpy flux through the nightside arc, the same as in Fig. 3a. Black boxes outline the regions determined to contain bubbles; (b) Line-integrated enthalpy flux from bubbles, outside of bubbles, and in total; (c) The instantaneous value (blue line) and time-derivative (orange line) of the total plasma energy contained on all closed flux tubes within 6 R_E.

to that in Figure 3a. This algorithm successfully picks out the most obvious instances 429 of bubbles and their accompanying return flows. It is also made clearer here that a bub-430 ble at 09:30 UT and 22 MLT initiated the standing vortical structure, and that the stand-431 ing structure is not a result of a continuous flow from the tail. In Figure 5b is the line 432 integral of the enthalpy flux within regions flagged as being caused by bubbles vs. those 433 that were not. Interestingly, while there are several bubbles throughout the initial pe-434 riod between 08:15-08:45 UT, inward plasma energy transport occurred mostly outside 435 of these flows. There is even a surge of large-scale transport starting at 8:44 UT that leads to the greatest enthalpy flux enhancement at 08:55 UT. At this point, however, several 437 bubbles arrive at 6 R_E simultaneously and are the major contributors to this enhance-438 ment. Beyond this period, there are many instances where net inward flux is dominated 439 by mesoscale flows rather than by global-scale convection. We also note here that trans-440 port outside of bubbles is not uniformly inward across the tail. 441

Fig. 5c shows the value (blue) and time derivative (orange) of the total plasma energy on all closed field lines within 6 R_E across all MLTs. The greatest peaks in the time derivative correlate well with the peaks in net enthalpy flux 5b), indicating that the flows through the nightside arc are the main contributors to the increase of plasma energy within 6 R_E , and thus the buildup of the ring current.

447 Separately summing up the net enthalpy flux within and outside of the boxed re-448 gions throughout the primary period of ring current buildup in the model (08:15-10:45 449 UT), we find that 50% of the net inward enthalpy flux through the 6 R_E arc is caused 450 by bubbles. We emphasize here that this is not the same as saying "bubbles contribute 50% of the total plasma energy to the ring current," as this analysis is only quantifying bubbles that penetrated as deeply as 6 R_E . Excluded from this calculation is the consideration of plasma that ultimately made it to below 6 R_E , but was only transported part of the way by bubbles. In other words, the 50% estimate serves as a lower bound on the total contribution of bubbles to the ring current energy for this simulated storm. This point is discussed in further detail in section 4.

This result is not directly comparable to, but complements, those in Cramer et al. 457 (2017). Firstly, Cramer et al. (2017) quantified the number density flux whereas we are 458 examining the transport of plasma energy, which is more directly linked to the ring cur-459 rent pressure. Secondly, Cramer et al. (2017) examined only the inward flux, and there-460 fore did not account for the net transport due to return flows. In the presented simu-461 lation, for all of the plasma energy transported inwards by BBFs through the nightside 462 arc, the return flows transported, on average, 40% of that amount outwards. Therefore 463 we also conclude that the effects of return flows must be accounted for when quantify-464 ing the net contribution of bubbles to ring current buildup. However, we emphasize that 465 this fraction was derived from this specific storm simulation, and should not be inter-466 preted as a statement about the effect of return flows in general. 467

468

3.3 Evolution of the Ring Current Energy Spectra

We have considered, above, the processes that contribute to the buildup of the ring 469 current through nightside transport. However, a deeper understanding of the stormtime 470 ring current requires also an understanding of the buildup and evolution of the constituent 471 particles across a broad range of energies. In this section we present an analysis of the 472 proton energy spectra within the ring current region, beginning with a data-model com-473 parison between the RCM proton intensities and that observed by RBSP-B, with the pur-474 pose of providing an in-depth understanding of which physical processes the model is ac-475 curately reproducing and those it is not. This is followed by an analysis of the evolution 476 of the simulated proton energy spectra and the drivers of this evolution, including con-477 tribution from the source population, localized adiabatic heating, and losses due to charge 478 exchange. 479

480

3.3.1 Data-Model Comparison: Proton Intensities

In this section, the proton intensities as observed by RBSP-B and calculated by 481 the model are compared along the satellite trajectory. This is presented in Figures 6 and 482 7. Figure 6 shows the comparison for ten energies between 10 and 100 keV, the energy 483 range that constitutes the majority of the ring current pressure (Smith & Hoffman, 1973; 484 Williams, 1985; Krimigis et al., 1985). Note that the range of the vertical axes of each panel are different in order to better resolve the comparison for each plot. A 5-minute 486 smoothing window has been applied to the RCM intensities to remove noise. The com-487 parison begins when RBSP-B is at apogee of the orbit during which the SSC occurs. We 488 refer to this orbit as Orbit 1, and the following orbits as Orbits 2 and 3. Included in Fig-489 ure 6 are annotations denoting the phase of the orbit and azimuthal location of the space-490 craft at that time. Figure 7a,b shows a comparison of the observed and simulated pro-491 ton intensities for the continuous energy spectra between 10 and 200 keV. Figure 7c is 492 a Dst plot equivalent to that in Figure 1a. Figure 7d shows the RCM pressure in the 493 equatorial plane, as well as the spacecraft trajectory over the duration of the simulation, 494 and its current location at 10:09 UT. Note that the trajectory is not a perfectly ellip-495 tic orbit; this is because the trajectory is represented by the spacecraft's 3D position mapped 106 to the equator along the field lines traced through the model magnetic field. Vertical lines 497 in the other panels correspond to the time shown in the top right corner of the Figure 498 7d. This figure is a snapshot of the animation provided as Supplemental Video 2. 499

Figure 6. Comparison of the proton intensities during the March 17, 2013 storm between the RBSP-B's RBSPICE instrument measurements (orange) and the MAGE simulation, as calculated by RCM (purple). The ten panels show a comparison, each at a fixed energy denoted in the top right corner of the corresponding panel, between 10 and 100 keV. The comparison begins at 4:00 UT and ends at 19:00 UT. The RCM intensities have been smoothed over 5 minutes.

Figure 7. Comparison between RBSPICE (a) and RCM (b) proton intensities for the full energy spectra between 10 and 200 keV. (c) Comparison between the Observed Sym-H (blue), that calculated from the simulation (orange), and the DPS-Dst evaluated in the model within 6 R_E (green), the same as in Figure 1. (d) RCM pressure and RBSP-B's full trajectory (orange line) and current position (white circle with orange border) mapped along field lines to the equatorial plane. The vertical lines in panels (a), (b), and (c), and pressure and spacecraft location in panel (d), all correspond to the time indicated in panel (d). The thin colored bar below panel (b) shows the RCM pressure at the spacecraft location for a given time, with the same colorbar as panel (d).

Starting with Orbit 1, we observe that while the initial RCM population is rela-500 tively similar to that measured by RBSP-B, there are significant differences. SSC occurs 501 during the inbound pass of this orbit (highlighted in Figure 7a). The intensity enhance-502 ment due to SSC compression is underestimated in the model, which can be attributed 503 to a number of factors, including the initial energy spectrum in the model (constructed 504 as described in section 2.3) being at a variance with the observed spectrum, limitations 505 in the solar wind reconstruction (section 2.1) at producing the SSC shock (Figure 7c), 506 and the uncertainty in the propagation of the upstream solar wind. As will be clear in 507 the following analysis of the evolution of the energy spectra (section 3.3.2), the pre-storm 508 plasma in this region contributed relatively little energy to the final ring current. How-509 ever, this initial population is still important because it influences the degree of stretch-510 ing in the tail which in turn affects where the initial reconnection will occur, and also 511 sets the background entropy profile that the initial bubbles must penetrate through. This 512 is discussed further in section 4. 513

As discussed above, the initial ring current buildup occurred between 08:15 and 10:45 514 UT. Figure 7b indicates that, for almost the entirety of this period, RBSP-B was in the 515 perigee phase of its orbit, where the spacecraft was below 3 R_E and RBSPICE was not 516 taking time-of-flight measurements due to the high voltage mode being turned off. High-517 lighted in Figure 7d are two Earthward penetrating bubbles that manifest in this plot 518 as two deformations of the RCM active domain due to their fast flow speeds (see the dis-519 cussion of the coupling algorithm in section 2.3). The radial velocity and magnetic field 520 dipolarization within these bubbles are visible in Figure 2c and Figure 2d, and the en-521 thalpy flux and depleted entropy components are visible in Figure 3a and Figure 3c. These 522 are the only bubbles during the initial buildup phase that the virtual spacecraft has a 523 chance of observing as an injection, however it occurs just as the spacecraft encounters 524 the inner edge of the ring current, masking their signatures. 525

However, throughout the outbound pass of Orbit 2 (between 10-14 UT as the space-526 craft passes from ~ 21 MLT to just past 00 MLT), the observed and simulated proton 527 intensities are in strong agreement. This is manifested in the timing of RCM and RBSP-528 B's observation of the ring current along the outbound pass and indicates that the model 529 is capturing the location of the peak ring current quite well for this storm. The inten-530 sities at this leading edge are in good agreement in general (Figure 6), though there is 531 an overestimate at 20 and 30 keV, and an underestimate above 80 keV. Throughout the 532 remainder of the Orbit 2 outbound pass, the intensities agree especially well between 30-533 70 keV, the best agreement being at 50 keV with a maximum ratio between the mod-534 eled and observed intensity of 5.2, and an average ratio of 1.3. Qualitatively, injection-535 like features in the observations are also present in the simulated spectra throughout the 10-14 UT period, although inspection of Supplemental Video 2 shows that not all of these 537 features are unambiguously caused by bubbles. Visible in the 60-90 keV range in Fig-538 ure 6 is a drop-out in intensity near Orbit 2 apogee. It is clearer in Figure 7 that there 539 is a general lack of a $\sim 5 \times 10^4 \ cm^{-2} sr^{-1} s^{-1} keV^{-1}$ intensity background above 50 keV as seen in the data. A number of factors may contribute to the model missing this pop-541 ulation, such as the initial plasma sheet being too cold, the model not including non-adiabatic 542 processes, or a "boundary shadowing" effect, whereby particles of the relevant energies 543 drift out of the RCM domain, which is located a few R_E inward of the magnetopause. 544 These particles are lost from the simulated ring current, whereas in reality they would 545 have stayed trapped within the inner magnetosphere. 546

⁵⁴⁷ While the intensities at individual energies are still in good agreement for the in-⁵⁴⁸ bound half of Orbit 2, there is a major change in the structure of the modeled energy ⁵⁴⁹ spectra starting just before 14:00 UT (highlighted in Figure 7b). At this time, reconnec-⁵⁵⁰ tion occurs close to -10 R_E across the tail in the simulation, restricting the active RCM ⁵⁵¹ domain to below 6 R_E (visible in Supplemental Video 2). As the RCM active domain ⁵⁵² moves back out, it re-populates its plasma population with a fresh Kappa distribution using the MHD moments at these locations (section 2.3), resulting in the smoothed energy spectra seen for most of the inbound pass.

At 16:00, there are two strong injection signatures in the data, whereas the model 555 shows two depletions in intensity at this time. It can be seen in Supplemental Video 556 2 that these depletion signatures are from the virtual spacecraft passing through the wake 557 of two bubbles that have already penetrated to a lower radial distance. There is also a 558 stripe-like feature in the modeled intensities around 60-150 keV near the end of Orbit 559 2. This is due to the injection related to the bubble that passed 6 R_E at 10:30 UT around 560 20 MLT (see Figure 3) that has become significantly dispersed, so much so that it has 561 wrapped around the Earth several times by 16:00 UT. In nature, this would not remain 562 as such a coherent structure, as drift shell splitting would separate the different pitch 563 angles over time (Roederer, 1967), whereas the isotropic approximation in RCM does 564 not capture this effect. 565

At the end of the inbound pass of Orbit 2, the spacecraft passes through the ring 566 current again around 3 MLT. (Figure 6) The model computes a greater local maximum 567 in intensity for 40-80 keV protons in the 15 to 17 UT range, but also a dropoff in inten-568 sity earlier in the orbit than is observed. This implies that the modeled ring current within 569 the post-midnight sector is stronger but also further from Earth than in reality. The proton population in this region is dependent on a number of interacting factors, including: 571 the location and energy of the source population of ring current protons; the competi-572 tion between Eastward $E \times B$ (i.e. convection and co-rotation) drifts and energy-dependent 573 Westward gradient-curvature drifts; and the properties of the ring current itself that con-574 tribute to the ionospheric potential through shielding via Region 2 currents and the con-575 ductance profile via electron precipitation. Because of these interdependent complexi-576 ties, the divergence of the model from observations in this region is not unexpected, but 577 the comparison yields key insights about the model's ability to capture these different 578 factors. 579

580

3.3.2 Energy Spectra Evolution

Having discussed the data-model comparisons, we now turn to a more detailed in-581 vestigation of the ring current energy spectra in the model. Figure 8 shows the cumu-582 lative pressure as a function of energy and time at three stationary points indicated in 583 panels (d-g). The first point (at 3.8 R_E and 21 MLT) marks the peak ring current pres-584 sure which occurred at 09:15 UT. The second and third points are located at 4.3 and 4.8 585 R_E at the same MLT in order to sample the outer extent of the ring current. The white 586 lines in Figure 8(a-c) denote the median and quartile energies of the cumulative pressure fraction, i.e. the proton energies lower than the 50% line collectively contribute half 588 of the total pressure at that point and time. For ease of reference, we refer to this en-589 ergy as the "median energy." The cumulative pressure value at the top of Figures 8(a-590 c) is the total pressure for each point in time. Figures 8(d-g) show the total RCM pressure in the equatorial plane for four select times throughout the plotted period indicated 592 by cyan vertical lines in Figures 8(a-c). 593

Preceding the main period of ring current buildup (before 9:00 UT, see Figure 5), 594 the median energy at 4.3 and 4.8 R_E drops from 60 and 30 keV, respectively, to 20 keV. 595 This is best explained by convection of the pre-existing plasma sheet (recall from Fig-596 ure 5 that prior to about 08:50 UT, inward transport was dominated by convection with 597 only several bubbles present). However, only at 09:00 UT, just after significant trans-598 port via bubbles commences, does new plasma reach the 3.8 R_E probe point, where the 599 drop to a median energy of 20 keV is accompanied by the greatest ring current pressure captured by the model. Over the course of many hours, the median energy increases to 601 70-85 keV, depending on the location, while the total pressure at each location decreases 602

Figure 8. (a-c) RCM cumulative pressure as a function of energy and time at three stationary radial distances, denoted in the top right in each panel, along 21 MLT. The white lines denote the median and quartile values of the cumulative pressure fraction. The cyan lines correspond to the four times shown in panels (d-g). (d-g) equatorial views of the RCM total pressure at four select times. The three dots denote the locations at which the pressure in panels (a-c) is evaluated.

Figure 9. (a) Time-series of the quantity $V^{-2/3}$. (b) Time-series of the net energy flux through the nightside 6 R_E arc, identical to Figure 3d but over a longer period of time. (c) Cumulative pressure as a function of energy and time, identical to that in Figure 8a. (d) Proton intensity as a function of energy and time. (e) Time-series of proton intensities at 10 and 50 keV. Cyan arrows denote instances of sharp increases in the median energy and/or the total pressure.

on average. However, the relatively constant DPS-Dst value throughout this time indicates that the total energy content within 6 R_E is not appreciably changing.

We now focus our attention on the evolution of the median energy from <20 to 85 605 keV between 09:00 and 19:00 UT at the 3.8 R_E probe location. This evolution may be 606 caused by a localized heating of the already-present plasma population via adiabatic energization (i.e. betatron acceleration due to magnetic field enhancements), the introduc-608 tion of hotter plasma from the tail later into the storm, and/or by energy-dependent loss 609 processes. Figure 9 examines each of these processes. Figure 9a shows a time-series of 610 the value $V^{-2/3}$, where V is the flux tube volume, evaluated at the 3.8 R_E probe location. Given the equation $W = \lambda V^{-2/3}$, where W is the kinetic energy and λ is the isotropic 612 energy invariant (Wolf et al., 2009), changes in $V^{-2/3}$ are directly proportional to en-613 ergization via localized adiabatic heating. Figure 9b shows the energy flux through the 614 nightside 6 R_E arc, identical to that in Figure 3d but extended in time. Figure 9d shows 615 the proton intensity as a function of time and energy, and 9e shows a time-series of the 616 proton intensity for the select energies of 10 and 50 keV, both evaluated at the 3.8 R_E 617 probe location. Note the log scale on the y axis. 618

After the initial ring current buildup, the value of $V^{-2/3}$ (Figure 9a) is fairly noisy 619 but gradually increases by less than 10%. Therefore it contributes minimally to ener-620 gization over time. The initial buildup of the ring current (cumulative pressure in Fig-621 ure 9c at 09:00 UT) expectedly correlates well with the period of enhanced inward plasma 622 transport examined in section 3.2. Just after 10:00 UT there is an enhancement in the 623 total pressure as well as a jump in the median energy from 20 to 35 keV, and at 10:30 UT there is another jump to 40 keV (denoted with cyan arrows in Figure 9c). There are 625 two other notable periods of enhanced transport. One is around 13:40 UT and is related 626 to the close-in reconnection event discussed in section 3.3.1, that results in an increase 627

in pressure but does not notably alter the energy spectra. The other, starting around 15:00 UT, results in a lesser increase in pressure but more appreciable increase to the median energy. These instances of enhancements to the median energy and/or pressure at the 3.8 R_E probe point all correlate well with periods of enhanced inward transport, implying that these changes in the energy spectra are related to transport of hotter plasma from the plasma sheet.

The intensity of the 50 keV protons (Figure 9d,e) remained relatively constant af-634 ter the initial buildup at 09:00 UT, whereas the 10 keV population steadily decreases over 635 time. Using the Østgaard et al. (2003) geocorona model and Lindsay and Stebbings (2005) 636 proton cross sections (as implemented in RCM, see section 2.3), 10 keV protons with a 637 45° pitch angle at 3.8 R_E have a decay timescale of roughly 1.6 hours. Thus, charge ex-638 change is capable of depleting the 10 keV protons by a factor of more than 250 over the 630 nine hour period after the initial ring current buildup, whereas the 50 keV protons are 640 expected to decay by a factor of 13 over the same period. According to Figure 9e, the 641 10 keV protons decreased by a factor of 200 and the 50 keV protons by a factor of 13 be-642 tween their max value near 09 UT and their minimum value after 18 UT, consistent with 643 the charge exchange decay rates. In total, the evolution of the median energy from 20 644 to 85 keV over the course of 9 hours is best explained by a combination of impulsive ad-645 justments due to the transport of hotter plasma from the plasma sheet and a steady in-646 crease in the median energy due to energy-dependent charge exchange with the exosphere 647 neutrals. 648

649 4 Discussion

While previous modeling studies have provided important insights in transport and 650 ring current buildup via bubbles (e.g., Yang et al., 2015; Cramer et al., 2017; Sorathia 651 et al., 2021), this paper is the first to target directly the quantification of the buildup 652 of the ring current plasma energy content via bubbles generated self-consistently within 653 a global geospace model. A major difference between the simulation in this study and 654 those of Yang et al. (2015) is that in RCM-E, bubbles are generated via a reduction in 655 pressure along a fixed outer boundary, with properties constrained by observations, whereas 656 in this study the bubbles' generation location, pressure, flux tube volume, and flow speed 657 are produced self-consistently by reconnection in the magnetotail (e.g. Wiltberger et al., 658 2015). Nevertheless, the 60% contribution from bubbles found by Yang et al. (2015) is 650 quite similar to the lower bound of 50% calculated in this study. We emphasize again 660 that the inclusion of the return flows in the calculation of the net transport via bubbles 661 is crucial, as they transport a considerable amount of plasma energy outwards. A caveat 662 to the results presented here is that the occurrence rate of highly-depleted bubbles is known to increase as grid resolution increases, up to a resolution higher than that used in this 664 study (2x finer resolution in each dimension; Sorathia et al., 2021). It is possible that 665 at a higher resolution, our estimate of a lower bound of 50% contribution from bubbles 666 would be even higher. Also, this estimate is derived for this specific storm, and how this estimate changes based on specific storm characteristics is a matter for future multi-event 668 study (c.f., Cramer et al., 2017). 669

Since fast flows are excluded from the RCM domain, and because GAMERA does 670 not include heat flux on its own, the flux tube entropy of bubbles remain constant while 671 they are being transported rapidly inwards. Particle tracing of ions (Ukhorskiy et al., 672 2018) and electrons (Gabrielse et al., 2017; Sorathia et al., 2018) within bubbles has demon-673 strated that their enhanced magnetic flux is capable of trapping relatively high-energy 674 particles via gradient-curvature drifts whereas lower-energy particles may drift in and 675 out of the bubble. This means that in reality the flux tube entropy is not a conserved quantity as the bubble is transported inwards. While the statistical properties of bub-677 bles produced in GAMERA are in good agreement with observations (Sorathia et al., 678 2021), the interaction between the bubble and plasma at different energies is currently 679

not captured by the model. In addition to this, the fairly conservative constraint on the 680 RCM active domain based on the distance to the open/closed field boundary also led to 681 the boundary incursion on the RBSP orbit, resetting the energy spectrum to a smooth 682 Kappa distribution (Figure 7b). While this did not greatly affect the intensities across 683 the spectrum (inbound pass of Orbit 2 in Figure 6), it is unclear what effects this removal 684 of structure may play on energy-dependent dynamics afterwards. These limitations arise 685 from the fact that inner magnetosphere models do not appropriately handle fast flows, 686 while the MHD model does not include gradient-curvature drifts in the bulk velocity. A 687 model that is capable of handling both of these simultaneously is needed in order to un-688 derstand how the inclusion of these effects might alter bubble penetration depth and its implications on particle injections. 690

The peak ring current in the simulation (at 3.8 R_E , Figure 8a) was composed of 691 protons with a median energy of about 20 keV, consistent with the median energy seen 692 earlier at 4.8 and 4.3 R_E , whose origin is primarily the pre-storm plasma sheet popu-693 lation that has been transported inwards. After the peak ring current around 09:15 UT 694 followed a series of impulsive increases to the median energy caused by injections of hotter plasma. A multi-phase evolution of the energy spectra has been observed for a num-696 ber of storms (e.g., Zhao et al., 2015; Goldstein et al., 2017; Keika et al., 2018). Keika 697 et al. (2018), in their analysis of the 17 March 2015 storm, similarly attributed the ini-698 tial storm time ring current population to the inward transport of the pre-storm plasma sheet, with the later increases in median energy being caused by the transport of a hot, 700 dense plasma sheet population. Given the importance of the pre-storm plasma sheet pop-701 ulation to the initial ring current energy spectra, it is clear that the proper "pre-conditioning" 702 of the simulation, i.e. setting the pre-storm magnetosphere state including the config-703 uration of the magnetotail and the population within the magnetosphere, is essential to 704 capturing observed stormtime dynamics. As briefly mentioned above, properly model-705 ing bubble penetration relies both on capturing the background entropy profile right and 706 on the bubble's entropy. The pre-conditioning method employed in this simulation has 707 performed well in reproducing the observed intensities in general, but the overestimate 708 in the 20-30 keV range and underestimate in the 80-100 keV range (Figure 6) suggests 709 that the method could be improved. This can be achieved e.g. by constraining with space-710 craft that traverse the outer plasma sheet such as THEMIS or by running the simula-711 tion for an even longer period before the storm onset to allow for a more self-consistent 712 plasma sheet population to form. The question of the origin of the hotter plasma that 713 was transported inwards at the later stage of the storm is beyond the scope of this pa-714 per but can be investigated with our model in the future (c.f., Keika et al., 2018, for the 715 March 2015 storm). The median energy was also strongly influenced by charge exchange 716 with the exosphere. This study used the Østgaard et al. (2003) geocorona model to cal-717 culate charge exchange rates. However, it is known that the decay rate is highly dependent on not only the choice of exosphere model (Ilie et al., 2013), but also on the vari-719 ation of the neutral density profile over the duration of geomagnetic storms (Cucho-Padin 720 & Waldrop, 2019). The relative role of the transport of an evolving plasma sheet ver-721 sus charge exchange on the evolution of the ring current energy distribution is highly de-722 pendent on these factors, and is likely to change on a storm-by-storm basis. 723

Using the HOPE and RBSPICE instruments aboard the Van Allen Probes, Menz 724 et al. (2017) found that during Orbit 2, O^+ contributed about 65% to the total ring cur-725 rent pressure in the L = 3-4 range, and decreased to a 50% contribution by L = 5. In-726 clusion of O+ in our simulation could affect both the buildup and decay of the ring cur-727 rent. For the latter, we would not expect the model without O+ to reproduce the ob-728 served recovery rate due to the much faster charge exchange rate of O^+ relative to H^+ 729 (Smith & Bewtra, 1978; Lindsay & Stebbings, 2005). It is less clear how O⁺ would in-730 fluence the relative contribution of bubbles to ring current buildup, which was the fo-731 cus of this study. The effect of O^+ outflow on ring current buildup has been studied pre-732 viously using global MHD models coupled to ionospheric O⁺ outflow and inner magne-733

tosphere models (e.g., Welling et al., 2011). However, Sorathia et al. (2021) used test-734 particle simulations to demonstrate that plasma sheet flows do not transport O^+ as ef-735 ficiently as they do lighter ions because of significant non-adiabatic effects for the heavy 736 species. This resulted in shallower penetration depths of O^+ than if these particles were 737 constrained to adiabatic, guiding-center motion. Because the study did not include feed-738 back from the test particles on the MHD solution, it remains unclear to what extent non-739 adiabatic O^+ may in turn affect transport by bubbles in general. Therefore the inter-740 action between O^+ and bubbles, and the resulting impact it has on ring current buildup 741 and evolution, would most appropriately be explored with a global magnetosphere model 742 that is not only coupled with an ionospheric outflow model (e.g., Glocer et al., 2009; Var-743 ney et al., 2016), but one that also includes feedback from non-adiabatic O^+ . 744

With the above caveats in mind, our answer to the question, "how much of the plasma 745 energy transport through 6 R_E is in the form of bubbles?" is $\sim 50\%$ for this simulation. 746 However, we note that this question is different from asking, "what is the relative con-747 tribution of bubbles to ring current buildup compared to large-scale convection?" In a 748 quantitative sense, it is up for interpretation how much a bubble "contributed" to ring 749 current buildup in the case where plasma ultimately makes it to the ring current but was 750 only transported part of the way by a bubble. Yang et al. (2015) seeded test particles 751 in the final state of each of their simulations, back-traced them to the boundary, and de-752 termined if it entered the simulation within a bubble or through the global-scale flow. In this analysis, a bubble was considered to have contributed to the ring current even 754 if it transported plasma only a short distance into the simulation domain, so long as the 755 plasma remained in the domain by the end of the simulation. In this study, we exam-756 ined the net enthalpy flux due to bubbles through 6 R_E , including the effects of com-757 pression ahead of the bubbles, which may have resulted in plasma at certain energies be-758 ing transported below their respective Alfven layer, where they otherwise would have re-759 mained outside of it in the absence of the bubble. Because the bubbles examined in this 760 study had a guaranteed and measurable contribution to the ring current energy content, 761 and because it did not include the complexities of bubble contribution outside of 6 R_E , 762 this analysis definitively calculates a lower bound to bubble contribution, in the context 763 of this specific simulation. The overall role of bubbles in ring current buildup remains 764 only partially understood, and further investigation requires not only more complex anal-765 ysis methods, such as fluid-element and particle tracing, but also a more deep understand-766 ing of the physics of particle transport from the plasma sheet to the ring current and the 767 development of the appropriate physics-based models. 768

769 5 Conclusion

Via a case study of the March 17, 2013 storm, we examined the contribution of BBFs/entropydepleted bubbles to the buildup of the stormtime ring current, and the evolution of the
ring current energy spectra throughout the main phase of the storm. The primary conclusions of this study are as follows:

- 1. Energy transport through 6 R_E in the simulation is primarily in the form of en-774 thalpy flux, followed by magnetic flux and finally by the bulk kinetic flux. In other 775 words, by 6 R_E the energy transported by bubbles is primarily in the form of plasma 776 energy. 777 2. At 6 R_E , 50% of the net inward enthalpy flux is contained within bubbles. This 778 serves as a lower bound to the total contribution of plasma transported by bub-779 bles to the buildup of the stormtime ring current, as it only considers bubbles that 780 have penetrated to below $6 R_E$, which constitutes a fraction of the total number 781 of bubbles produced by the model. 782 3. The return flows that accompany bubbles as a result of interchange transport out-783
- wards an average of 40% of the plasma energy transported through 6 R_E by the

785		bubbles, thus their effect must be considered when quantifying the net contribu-
786		tion of bubbles to inward energy transport.
787	4.	The data-model comparison shows that the model is accurately capturing both
788		the radial location and magnitude, as well as the spectral properties of the initial
789		ring current well, implying that the model is accurately reproducing the process
790		of ring current buildup. Possible explanations for discrepancies between the data
791		and model include inaccuracy in the initial plasma sheet conditions, boundary shad-
792		owing of higher-energy protons as a result of a conservatively constrained RCM
793		active domain, and the absence of O ⁺ outflow and its effects on plasma sheet com-
794		position and bubble penetration depth.
795	5.	The evolution of the ring current energy spectra is caused by a combination of im-
796		pulsive adjustments due to transport of a gradually hotter plasma sheet popula-
797		tion and a steady increase due to energy-dependent charge exchange.

The use of state-of-the-art geospace models in combination with in-situ data con-798 tinues to be a powerful tool in gaining a deeper understanding of the role of bubbles in 799 plasma and magnetic flux transport during periods of high geomagnetic activity. While 800 this study contributes to better understanding the drivers of stormtime ring current for-801 mation, there are many outstanding questions, such as how these results are altered de-802 pending on the solar wind driver, the more general relationship between mesoscale and global scale transport in the magnetotail, and the evolution of the plasma sheet source 804 throughout the storm and where and how heating occurs. Deep analysis of model results 805 enables more thorough validation via comparison to observations, and in turn increases 806 the physical insight that may be gained through modeling. 807

6 Open Research 808

The solar wind data source is primarily Modified High Resolution OMNI (HRO) 809 data (https://omniweb.gsfc.nasa.gov/form/omni min def.html). Data gaps were filled 810 with KP-despiked Wind data from OMNIWeb (https://omniweb.gsfc.nasa.gov). Proton 811 data from RBSPICE instrument aboard the Van Allen Probe B spacecraft was retrieved 812 from cdaweb (https://cdaweb.gsfc.nasa.gov) via the cdasws python package (https://pypi.org/project/cdasws/). 813 The model data was produced with the Multiscale Atmosphere Geospace Environment 814 (MAGE) model, under development by the NASA DRIVE Science Center for Geospace 815 Storms (https://cgs.jhuapl.edu). Figures 1 and 3 were made using the ParaView visu-816 alization software (https://www.paraview.org). All other figures were made using Mat-817 plotlib (https://matplotlib.org/). A subset of the model output data has been made avail-818 able (https://doi.org/10.5281/zenodo.7921979), which includes all information necessary 819 to generate all Figures, except for the 3D field line data in Figure 1. The repository also 820 includes a conda (https://docs.conda.io) requirements file which may be used to recre-821 ate the python environment used to make the Figures generated using Matplotlib, as well 822 as an example plotting script. 823

Acknowledgments 824

This work was supported by the NASA DRIVE Science Center for Geospace Storms (CGS) 825 under award 80NSSC22M0163, and by the NASA grant 80NSSC19K0241. V.G.M. ac-826 knowledges support from NASA grants 80NSSC19K0071 and 80NSSC19K0080. K.S. ac-827 knowledges support from NASA grant 80NSSC20K1833. We would like to acknowledge 828 the use of computational resources (doi:10.5065/D6RX99HX) at the NCAR-Wyoming 829

- Supercomputing Center provided by the National Science Foundation and the State of 830
- Wyoming, and supported by NCAR's Computational and Information Systems Labo-831
- ratory. 832

References

834	Angelopoulos, V., Baumjohann, W., Kennel, C. F., Coroniti, F. V., Kivelson,
835	M. G., Pellat, R., Paschmann, G. (1992). Bursty bulk flows in
836	the inner central plasma sheet. Journal of Geophysical Research: Space
837	<i>Physics</i> , 97(A4), 4027–4039. Retrieved 2022-10-11, from https://
838	onlinelibrary.wiley.com/doi/abs/10.1029/91JA02701 (_eprint:
839	https://onlinelibrary.wiley.com/doi/pdf/10.1029/91JA02701) doi: 10.1029/91JA02701)
840	91JA02701
841	Angelopoulos, V., Kennel, C. F., Coroniti, F. V., Pellat, R., Kivelson, M. G.,
842	Walker, R. J., Gosling, J. T. (1994). Statistical characteristics
843	of bursty bulk flow events. Journal of Geophysical Research: Space
844	<i>Physics</i> , 99(A11), 21257–21280. Retrieved 2022-12-07, from https://
845	onlinelibrary.wiley.com/doi/abs/10.1029/94JA01263 (_eprint:
846	https://onlinelibrary.wiley.com/doi/pdf/10.1029/94JA01263) doi: 10.1029/94JA01263)
847	94JA01263
848	Angelopoulos, V., Phan, T. D., Larson, D. E., Mozer, F. S., Lin, R. P., Tsu-
849	ruda, K., Yumoto, K. (1997). Magnetotail flow bursts: Associ-
850	ation to global magnetospheric circulation, relationship to ionospheric
851	activity and direct evidence for localization. Geophysical Research
852	Letters, 24(18), 2271–2274. Retrieved 2023-04-27, from https://
853	onlinelibrary.wiley.com/doi/abs/10.1029/97GL02355 (_eprint:
854	https://onlinelibrary.wiley.com/doi/pdf/10.1029/97GL02355) doi: 10.1029/
855	97GL02355
856	Axford, W. I. (1969). Magnetospheric convection. Reviews of Geo-
857	<i>physics</i> , 7(1-2), 421–459. Retrieved 2022-11-02, from https://
858	onlinelibrary.wiley.com/doi/abs/10.1029/RG00/1001p00421 (_eprint:
859	nttps://onineilbrary.wiley.com/dol/pdf/10.1029/RG007001p00421) doi: 10.1020/PC007001p00421
860	Baker D N (2008 May) Substerms in the earth's magnetosphere AIP Conference
861	Proceedings 1//(1) 184 Botrioved 2023 01 26 from https://ain.scitation
802	org/doi/abs/10 1063/1 35655 (Publisher: American Institute of Physic-
803	sAIP) doi: 10.1063/1.35655
965	Baumiohann W (1990) Characteristics of high-speed ion flows in the
866	plasma sheet Journal of Geophysical Research: Space Physics 95(A4)
867	3801–3809. Retrieved 2022-12-07. from https://onlinelibrary
868	.wilev.com/doi/abs/10.1029/JA095iA04p03801 (eprint:
869	https://onlinelibrary.wiley.com/doi/pdf/10.1029/JA095iA04p03801) doi:
870	10.1029/JA095iA04p03801
871	Birn, J., & Hesse, M. (2005, November). Energy release and conversion by re-
872	connection in the magnetotail. Annales Geophysicae, $23(10)$, $3365-3373$.
873	Retrieved 2022-04-14, from https://angeo.copernicus.org/articles/23/
874	3365/2005/angeo-23-3365-2005.html (Publisher: Copernicus GmbH) doi:
875	10.5194/ m angeo-23-3365-2005
876	Birn, J., Hesse, M., Schindler, K., & Zaharia, S. (2009). Role of en-
877	tropy in magnetotail dynamics. Journal of Geophysical Research:
878	Space Physics, 114(A9). Retrieved 2022-04-12, from https://
879	onlinelibrary.wiley.com/doi/abs/10.1029/2008JA014015 (_eprint:
880	https://onlinelibrary.wiley.com/doi/pdf/10.1029/2008JA014015) doi:
881	10.1029/2008JA014015
882	Birn, J., Nakamura, R., Panov, E. V., & Hesse, M. (2011). Bursty bulk flows
883	and dipolarization in MHD simulations of magnetotail reconnection. Jour-
884	nat of Geophysical Research: Space Physics, 116(A1). Retrieved 2022-11-28,
885	IFOIN nttps://onlinelibrary.wiley.com/dol/abs/10.1029/2010JA016083
886	(_eprint: https://oninenbrary.wney.com/doi/pdf/10.1029/2010JA016083) doi: 10.1020/2010JA016082
887	10.1029/2010JA010065

888	Chapman, S. (1962). Earth storms: Retrospect and prospect. Journal of the Physi-
889	cal Society of Japan, 17.
890	Chen, C. X., & Wolf, R. A. (1993). Interpretation of high-speed flows in
891	the plasma sheet. Journal of Geophysical Research: Space Physics,
892	98(A12), 21409–21419. Retrieved 2023-02-03, from https://
893	onlinelibrary.wiley.com/doi/abs/10.1029/93JA02080 (_eprint:
894	$\operatorname{nttps:}//\operatorname{onlineid} \operatorname{rary.wiley.com}/\operatorname{dol}/\operatorname{pdl}/\operatorname{10.1029}/\operatorname{93JA02080})$ doi: 10.1029/ 031A02080
895	Chen M W Lemon C I Healt I Segultin S Welf P A Pourd A
896	& Valek P (2019) Diffuse Auroral Electron and Ion Precipita-
808	tion Effects on RCM-E Comparisons With Satellite Data During the 17
899	March 2013 Storm. Journal of Geophysical Research: Space Physics.
900	124(6), 4194–4216. Retrieved 2020-07-06, from https://agupubs
901	.onlinelibrary.wiley.com/doi/abs/10.1029/2019JA026545 (eprint:
902	https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019JA026545) doi:
903	$10.1029/2019\mathrm{JA}026545$
904	Chen, M. W., Schulz, M., & Lyons, L. R. (1997). Modeling of Ring Cur-
905	rent Formation and Decay: A Review. In Magnetic Storms (pp. 173–
906	186). American Geophysical Union (AGU). Retrieved 2023-03-10, from
907	https://onlinelibrary.wiley.com/doi/abs/10.1029/GM098p0173
908	$(_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/GM098p0173)$
909	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
910	transport of ring current and radiation bolt ions
911	cal Research: Space Physics 98(A3) 3835–3849 Retrieved 2022-12-08
913	from https://onlinelibrary.wiley.com/doi/abs/10.1029/92JA02608
914	(eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/92JA02608) doi:
915	10.1029/92JA02608
916	Cramer, W. D., Raeder, J., Toffoletto, F. R., Gilson, M., & Hu, B. (2017).
916 917	Cramer, W. D., Raeder, J., Toffoletto, F. R., Gilson, M., & Hu, B. (2017). Plasma sheet injections into the inner magnetosphere: Two-way cou-
916 917 918	Cramer, W. D., Raeder, J., Toffoletto, F. R., Gilson, M., & Hu, B. (2017). Plasma sheet injections into the inner magnetosphere: Two-way cou- pled OpenGGCM-RCM model results. <i>Journal of Geophysical Re-</i>
916 917 918 919	Cramer, W. D., Raeder, J., Toffoletto, F. R., Gilson, M., & Hu, B. (2017). Plasma sheet injections into the inner magnetosphere: Two-way cou- pled OpenGGCM-RCM model results. <i>Journal of Geophysical Re-</i> <i>search: Space Physics</i> , 122(5), 5077–5091. Retrieved 2022-06-07, from
916 917 918 919 920	Cramer, W. D., Raeder, J., Toffoletto, F. R., Gilson, M., & Hu, B. (2017). Plasma sheet injections into the inner magnetosphere: Two-way cou- pled OpenGGCM-RCM model results. <i>Journal of Geophysical Re-</i> <i>search: Space Physics</i> , 122(5), 5077–5091. Retrieved 2022-06-07, from https://onlinelibrary.wiley.com/doi/abs/10.1002/2017JA024104
916 917 918 919 920 921	Cramer, W. D., Raeder, J., Toffoletto, F. R., Gilson, M., & Hu, B. (2017). Plasma sheet injections into the inner magnetosphere: Two-way cou- pled OpenGGCM-RCM model results. Journal of Geophysical Re- search: Space Physics, 122(5), 5077–5091. Retrieved 2022-06-07, from https://onlinelibrary.wiley.com/doi/abs/10.1002/2017JA024104 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2017JA024104) dzi: 10.1002/2017JA024104
916 917 918 919 920 921 922	Cramer, W. D., Raeder, J., Toffoletto, F. R., Gilson, M., & Hu, B. (2017). Plasma sheet injections into the inner magnetosphere: Two-way cou- pled OpenGGCM-RCM model results. <i>Journal of Geophysical Re-</i> <i>search: Space Physics</i> , 122(5), 5077–5091. Retrieved 2022-06-07, from https://onlinelibrary.wiley.com/doi/abs/10.1002/2017JA024104 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2017JA024104) doi: 10.1002/2017JA024104
916 917 918 919 920 921 922 923	Cramer, W. D., Raeder, J., Toffoletto, F. R., Gilson, M., & Hu, B. (2017). Plasma sheet injections into the inner magnetosphere: Two-way cou- pled OpenGGCM-RCM model results. Journal of Geophysical Re- search: Space Physics, 122(5), 5077–5091. Retrieved 2022-06-07, from https://onlinelibrary.wiley.com/doi/abs/10.1002/2017JA024104 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2017JA024104) doi: 10.1002/2017JA024104 Cucho-Padin, G., & Waldrop, L. (2019). Time-Dependent Response of the Terrestrial Exosphere to a Geomagnetic Storm Geophysical Research
916 917 918 919 920 921 922 922 923 924	 Cramer, W. D., Raeder, J., Toffoletto, F. R., Gilson, M., & Hu, B. (2017). Plasma sheet injections into the inner magnetosphere: Two-way coupled OpenGGCM-RCM model results. Journal of Geophysical Research: Space Physics, 122(5), 5077–5091. Retrieved 2022-06-07, from https://onlinelibrary.wiley.com/doi/abs/10.1002/2017JA024104 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2017JA024104) doi: 10.1002/2017JA024104 Cucho-Padin, G., & Waldrop, L. (2019). Time-Dependent Response of the Terrestrial Exosphere to a Geomagnetic Storm. Geophysical Research Letters 46(21) 11661–11670
916 917 918 919 920 921 922 923 924 925 926	 Cramer, W. D., Raeder, J., Toffoletto, F. R., Gilson, M., & Hu, B. (2017). Plasma sheet injections into the inner magnetosphere: Two-way coupled OpenGGCM-RCM model results. Journal of Geophysical Research: Space Physics, 122(5), 5077–5091. Retrieved 2022-06-07, from https://onlinelibrary.wiley.com/doi/abs/10.1002/2017JA024104 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2017JA024104) doi: 10.1002/2017JA024104 Cucho-Padin, G., & Waldrop, L. (2019). Time-Dependent Response of the Terrestrial Exosphere to a Geomagnetic Storm. Geophysical Research Letters, 46(21), 11661–11670. Retrieved 2023-03-09, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2019GL084327 (eprint:
916 917 918 919 920 921 922 923 924 925 926 927	 Cramer, W. D., Raeder, J., Toffoletto, F. R., Gilson, M., & Hu, B. (2017). Plasma sheet injections into the inner magnetosphere: Two-way coupled OpenGGCM-RCM model results. Journal of Geophysical Research: Space Physics, 122(5), 5077–5091. Retrieved 2022-06-07, from https://onlinelibrary.wiley.com/doi/abs/10.1002/2017JA024104 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2017JA024104) doi: 10.1002/2017JA024104 Cucho-Padin, G., & Waldrop, L. (2019). Time-Dependent Response of the Terrestrial Exosphere to a Geomagnetic Storm. Geophysical Research Letters, 46(21), 11661–11670. Retrieved 2023-03-09, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2019GL084327 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL084327) doi:
916 917 918 919 920 921 922 923 924 925 926 925 926 927 928	 Cramer, W. D., Raeder, J., Toffoletto, F. R., Gilson, M., & Hu, B. (2017). Plasma sheet injections into the inner magnetosphere: Two-way cou- pled OpenGGCM-RCM model results. Journal of Geophysical Re- search: Space Physics, 122(5), 5077–5091. Retrieved 2022-06-07, from https://onlinelibrary.wiley.com/doi/abs/10.1002/2017JA024104 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2017JA024104) doi: 10.1002/2017JA024104 Cucho-Padin, G., & Waldrop, L. (2019). Time-Dependent Response of the Terrestrial Exosphere to a Geomagnetic Storm. Geophysical Research Letters, 46(21), 11661–11670. Retrieved 2023-03-09, from https:// onlinelibrary.wiley.com/doi/abs/10.1029/2019GL084327 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL084327) doi: 10.1029/2019GL084327
916 917 918 920 921 922 923 924 925 926 926 927 928 929	 Cramer, W. D., Raeder, J., Toffoletto, F. R., Gilson, M., & Hu, B. (2017). Plasma sheet injections into the inner magnetosphere: Two-way coupled OpenGGCM-RCM model results. Journal of Geophysical Research: Space Physics, 122(5), 5077–5091. Retrieved 2022-06-07, from https://onlinelibrary.wiley.com/doi/abs/10.1002/2017JA024104 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2017JA024104) doi: 10.1002/2017JA024104 Cucho-Padin, G., & Waldrop, L. (2019). Time-Dependent Response of the Terrestrial Exosphere to a Geomagnetic Storm. Geophysical Research Letters, 46(21), 11661–11670. Retrieved 2023-03-09, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2019GL084327 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL084327) doi: 10.1029/2019GL084327 Daglis, I. A. (2006, June). Ring Current Dynamics. Space Science Reviews, 124(1),
916 917 918 920 921 922 923 924 925 926 927 928 929 930	 Cramer, W. D., Raeder, J., Toffoletto, F. R., Gilson, M., & Hu, B. (2017). Plasma sheet injections into the inner magnetosphere: Two-way coupled OpenGGCM-RCM model results. Journal of Geophysical Research: Space Physics, 122(5), 5077–5091. Retrieved 2022-06-07, from https://onlinelibrary.wiley.com/doi/abs/10.1002/2017JA024104 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2017JA024104) doi: 10.1002/2017JA024104 Cucho-Padin, G., & Waldrop, L. (2019). Time-Dependent Response of the Terrestrial Exosphere to a Geomagnetic Storm. Geophysical Research Letters, 46(21), 11661–11670. Retrieved 2023-03-09, from https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL084327 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL084327) doi: 10.1029/2019GL084327 Daglis, I. A. (2006, June). Ring Current Dynamics. Space Science Reviews, 124(1), 183–202. Retrieved 2022-07-18, from https://doi.org/10.1007/s11214-006
916 917 918 919 920 921 922 923 924 925 926 926 927 928 929 930 931	 Cramer, W. D., Raeder, J., Toffoletto, F. R., Gilson, M., & Hu, B. (2017). Plasma sheet injections into the inner magnetosphere: Two-way coupled OpenGGCM-RCM model results. Journal of Geophysical Research: Space Physics, 122(5), 5077–5091. Retrieved 2022-06-07, from https://onlinelibrary.wiley.com/doi/abs/10.1002/2017JA024104 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2017JA024104) doi: 10.1002/2017JA024104 Cucho-Padin, G., & Waldrop, L. (2019). Time-Dependent Response of the Terrestrial Exosphere to a Geomagnetic Storm. Geophysical Research Letters, 46(21), 11661–11670. Retrieved 2023-03-09, from https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL084327 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL084327) doi: 10.1029/2019GL084327 Daglis, I. A. (2006, June). Ring Current Dynamics. Space Science Reviews, 124(1), 183–202. Retrieved 2022-07-18, from https://doi.org/10.1007/s11214-006-9104-z
916 917 918 920 921 922 923 924 925 926 927 928 929 930 931	 Cramer, W. D., Raeder, J., Toffoletto, F. R., Gilson, M., & Hu, B. (2017). Plasma sheet injections into the inner magnetosphere: Two-way coupled OpenGGCM-RCM model results. Journal of Geophysical Research: Space Physics, 122(5), 5077–5091. Retrieved 2022-06-07, from https://onlinelibrary.wiley.com/doi/abs/10.1002/2017JA024104 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2017JA024104) doi: 10.1002/2017JA024104 Cucho-Padin, G., & Waldrop, L. (2019). Time-Dependent Response of the Terrestrial Exosphere to a Geomagnetic Storm. Geophysical Research Letters, 46(21), 11661–11670. Retrieved 2023-03-09, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2019GL084327 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL084327) doi: 10.1029/2019GL084327 Daglis, I. A. (2006, June). Ring Current Dynamics. Space Science Reviews, 124(1), 183–202. Retrieved 2022-07-18, from https://doi.org/10.1007/s11214-006-9104-z Daglis, I. A., Thorne, R. M., Baumjohann, W., & Orsini, S. (1999). The
916 917 918 920 921 922 923 924 925 926 926 926 927 928 929 930 931 932 933	 Cramer, W. D., Raeder, J., Toffoletto, F. R., Gilson, M., & Hu, B. (2017). Plasma sheet injections into the inner magnetosphere: Two-way coupled OpenGGCM-RCM model results. Journal of Geophysical Research: Space Physics, 122(5), 5077–5091. Retrieved 2022-06-07, from https://onlinelibrary.wiley.com/doi/abs/10.1002/2017JA024104 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2017JA024104) doi: 10.1002/2017JA024104 Cucho-Padin, G., & Waldrop, L. (2019). Time-Dependent Response of the Terrestrial Exosphere to a Geomagnetic Storm. Geophysical Research Letters, 46(21), 11661–11670. Retrieved 2023-03-09, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2019GL084327 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL084327) doi: 10.1029/2019GL084327 Daglis, I. A. (2006, June). Ring Current Dynamics. Space Science Reviews, 124(1), 183–202. Retrieved 2022-07-18, from https://doi.org/10.1007/s11214-006-9104-z Daglis, I. A., Thorne, R. M., Baumjohann, W., & Orsini, S. (1999). The terrestrial ring current: Origin, formation, and decay. Reviews of
916 917 918 920 921 922 923 924 925 926 927 928 929 930 931 932 933 933	 Cramer, W. D., Raeder, J., Toffoletto, F. R., Gilson, M., & Hu, B. (2017). Plasma sheet injections into the inner magnetosphere: Two-way coupled OpenGGCM-RCM model results. Journal of Geophysical Research: Space Physics, 122(5), 5077–5091. Retrieved 2022-06-07, from https://onlinelibrary.wiley.com/doi/abs/10.1002/2017JA024104 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2017JA024104) doi: 10.1002/2017JA024104 Cucho-Padin, G., & Waldrop, L. (2019). Time-Dependent Response of the Terrestrial Exosphere to a Geomagnetic Storm. Geophysical Research Letters, 46(21), 11661–11670. Retrieved 2023-03-09, from https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL084327 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL084327) doi: 10.1029/2019GL084327 Daglis, I. A. (2006, June). Ring Current Dynamics. Space Science Reviews, 124(1), 183–202. Retrieved 2022-07-18, from https://doi.org/10.1007/s11214-006-9104-z doi: 10.1007/s11214-006-9104-z Daglis, I. A., Thorne, R. M., Baumjohann, W., & Orsini, S. (1999). The terrestrial ring current: Origin, formation, and decay. Reviews of Geophysics, 37(4), 407–438. Retrieved 2023-03-08, from https://
916 917 918 920 921 922 923 924 925 926 925 926 927 928 930 931 932 933 934	 Cramer, W. D., Raeder, J., Toffoletto, F. R., Gilson, M., & Hu, B. (2017). Plasma sheet injections into the inner magnetosphere: Two-way coupled OpenGGCM-RCM model results. Journal of Geophysical Research: Space Physics, 122(5), 5077–5091. Retrieved 2022-06-07, from https://onlinelibrary.wiley.com/doi/abs/10.1002/2017JA024104 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2017JA024104) doi: 10.1002/2017JA024104 Cucho-Padin, G., & Waldrop, L. (2019). Time-Dependent Response of the Terrestrial Exosphere to a Geomagnetic Storm. Geophysical Research Letters, 46(21), 11661–11670. Retrieved 2023-03-09, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2019GL084327 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL084327) doi: 10.1029/2019GL084327 Daglis, I. A. (2006, June). Ring Current Dynamics. Space Science Reviews, 124(1), 183–202. Retrieved 2022-07-18, from https://doi.org/10.1007/s11214-006-9104-z doi: 10.1007/s11214-006-9104-z Daglis, I. A., Thorne, R. M., Baumjohann, W., & Orsini, S. (1999). The terrestrial ring current: Origin, formation, and decay. Reviews of Geophysics, 37(4), 407–438. Retrieved 2023-03-08, from https://onlinelibrary.wiley.com/doi/abs/10.1029/1999RG900009 (_eprint: https://onlinelibrary.wiley.com/doi/abs/10.1029/1999RG90009
916 917 918 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935	 Cramer, W. D., Raeder, J., Toffoletto, F. R., Gilson, M., & Hu, B. (2017). Plasma sheet injections into the inner magnetosphere: Two-way coupled OpenGGCM-RCM model results. Journal of Geophysical Research: Space Physics, 122(5), 5077–5091. Retrieved 2022-06-07, from https://onlinelibrary.wiley.com/doi/abs/10.1002/2017JA024104 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2017JA024104) doi: 10.1002/2017JA024104 Cucho-Padin, G., & Waldrop, L. (2019). Time-Dependent Response of the Terrestrial Exosphere to a Geomagnetic Storm. Geophysical Research Letters, 46(21), 11661–11670. Retrieved 2023-03-09, from https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL084327 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL084327) doi: 10.1029/2019GL084327 Daglis, I. A. (2006, June). Ring Current Dynamics. Space Science Reviews, 124(1), 183–202. Retrieved 2022-07-18, from https://doi.org/10.1007/s11214-006 -9104-z doi: 10.1007/s11214-006-9104-z Daglis, I. A., Thorne, R. M., Baumjohann, W., & Orsini, S. (1999). The terrestrial ring current: Origin, formation, and decay. Reviews of Geophysics, 37(4), 407–438. Retrieved 2023-03-08, from https://onlinelibrary.wiley.com/doi/abs/10.1029/1999RG900009 (_eprint: https://onlinelibrary.wiley.com/doi/abs/10.1029/1999RG900009 (_ep
916 917 918 920 921 922 923 924 925 926 926 927 928 929 930 931 932 933 933 934 935 936 937	 Cramer, W. D., Raeder, J., Toffoletto, F. R., Gilson, M., & Hu, B. (2017). Plasma sheet injections into the inner magnetosphere: Two-way coupled OpenGGCM-RCM model results. Journal of Geophysical Research: Space Physics, 122(5), 5077-5091. Retrieved 2022-06-07, from https://onlinelibrary.wiley.com/doi/abs/10.1002/2017JA024104 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2017JA024104 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2017JA024104 Cucho-Padin, G., & Waldrop, L. (2019). Time-Dependent Response of the Terrestrial Exosphere to a Geomagnetic Storm. Geophysical Research Letters, 46(21), 11661-11670. Retrieved 2023-03-09, from https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL084327 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL084327) doi: 10.1029/2019GL084327 Daglis, I. A. (2006, June). Ring Current Dynamics. Space Science Reviews, 124(1), 183-202. Retrieved 2022-07-18, from https://doi.org/10.1007/s11214-006-9104-z Daglis, I. A., Thorne, R. M., Baumjohann, W., & Orsini, S. (1999). The terrestrial ring current: Origin, formation, and decay. Reviews of Geophysics, 37(4), 407-438. Retrieved 2023-03-08, from https://onlinelibrary.wiley.com/doi/abs/10.1029/1999RG900009 (_eprint: https://onlinelibrary.wiley.com/doi/abs/10.1029/1999RG900009 (_eprint: https://onlinelibrary.wiley.com/doi/abs/10.1029/1999RG900009) doi: 10.1029/1999RG900009
916 917 918 920 921 922 923 924 925 926 927 928 929 930 931 932 933 933 934 935 936 937 938	 Cramer, W. D., Raeder, J., Toffoletto, F. R., Gilson, M., & Hu, B. (2017). Plasma sheet injections into the inner magnetosphere: Two-way coupled OpenGGCM-RCM model results. Journal of Geophysical Research: Space Physics, 122(5), 5077–5091. Retrieved 2022-06-07, from https://onlinelibrary.wiley.com/doi/abs/10.1002/2017JA024104 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2017JA024104 Cucho-Padin, G., & Waldrop, L. (2019). Time-Dependent Response of the Terrestrial Exosphere to a Geomagnetic Storm. Geophysical Research Letters, 46(21), 11661–11670. Retrieved 2023-03-09, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2019GL084327 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL084327) doi: 10.1029/2019GL084327 Daglis, I. A. (2006, June). Ring Current Dynamics. Space Science Reviews, 124(1), 183–202. Retrieved 2022-07-18, from https://doi.org/10.1007/s11214-006 -9104-z doi: 10.1007/s11214-006-9104-z Daglis, I. A., Thorne, R. M., Baumjohann, W., & Orsini, S. (1999). The terrestrial ring current: Origin, formation, and decay. Reviews of Geophysics, 37(4), 407–438. Retrieved 2023-03-08, from https:// onlinelibrary.wiley.com/doi/abs/10.1029/1999RG900009 (_eprint: https://onlinelibrary.wiley.com/doi/abs/10.1029/1999RG900009 (_eprint: https://onlinelibrary.wiley.com/doi/abs/10.1029/1999RG900009 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/1999RG900009 doi: 10.1029/1999RG900009
916 917 918 920 921 922 923 924 925 926 927 928 930 931 930 931 932 933 934 935 936 937 938 939 939	 Cramer, W. D., Raeder, J., Toffoletto, F. R., Gilson, M., & Hu, B. (2017). Plasma sheet injections into the inner magnetosphere: Two-way coupled OpenGGCM-RCM model results. Journal of Geophysical Research: Space Physics, 122(5), 5077–5091. Retrieved 2022-06-07, from https://onlinelibrary.wiley.com/doi/abs/10.1002/2017JA024104 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2017JA024104 Cucho-Padin, G., & Waldrop, L. (2019). Time-Dependent Response of the Terrestrial Exosphere to a Geomagnetic Storm. Geophysical Research Letters, 46(21), 11661–11670. Retrieved 2023-03-09, from https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL084327 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL084327) doi: 10.1029/2019GL084327 Daglis, I. A. (2006, June). Ring Current Dynamics. Space Science Reviews, 124(1), 183–202. Retrieved 2022-07-18, from https://doi.org/10.1007/s11214-006 -9104-z doi: 10.1007/s11214-006-9104-z Daglis, I. A., Thorne, R. M., Baumjohann, W., & Orsini, S. (1999). The terrestrial ring current: Origin, formation, and decay. Reviews of Geophysics, 37(4), 407–438. Retrieved 2023-03-08, from https:// onlinelibrary.wiley.com/doi/abs/10.1029/1999RG900009 (_eprint: https://onlinelibrary.wiley.com/doi/abs/10.1029/1999RG900009 (_eprint: https://onlinelibrary.wiley.com/doi/abs/10.1029/1999RG900009 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/1999RG900009 (_eprint: https://onlinelibrary.wiley.com/doi/abs/10.1029/1999RG900009 (_eprint: https://olinelibrary.wiley.com/doi/abs/10.1029/1999RG900009 (_eprint: https://olinelibrary.wiley.com/doi/abs/10.1029/1999RG900009 (_eprint: https://olinelibrary.wiley.com/doi/abs/10.1029/1999RG900009 doi: 10.1029/1999RG900009
916 917 918 920 921 922 923 924 925 926 926 927 928 930 931 932 933 931 932 933 934 935 936 937 938 939 940	 Cramer, W. D., Raeder, J., Toffoletto, F. R., Gilson, M., & Hu, B. (2017). Plasma sheet injections into the inner magnetosphere: Two-way coupled OpenGGCM-RCM model results. Journal of Geophysical Research: Space Physics, 122(5), 5077–5091. Retrieved 2022-06-07, from https://onlinelibrary.wiley.com/doi/abs/10.1002/2017JA024104 (_eprint: https://onlinelibrary.wiley.com/doi/abs/10.1002/2017JA024104 doi: 10.1002/2017JA024104 Cucho-Padin, G., & Waldrop, L. (2019). Time-Dependent Response of the Terrestrial Exosphere to a Geomagnetic Storm. Geophysical Research Letters, 46(21), 11661–11670. Retrieved 2023-03-09, from https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL084327 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019GL084327) doi: 10.1029/2019GL084327 Daglis, I. A. (2006, June). Ring Current Dynamics. Space Science Reviews, 124(1), 183–202. Retrieved 2022-07-18, from https://doi.org/10.1007/s11214-006-9104-z Daglis, I. A., Thorne, R. M., Baumjohann, W., & Orsini, S. (1999). The terrestrial ring current: Origin, formation, and decay. Reviews of Geophysics, 37(4), 407–438. Retrieved 2023-03-08, from https:// onlinelibrary.wiley.com/doi/abs/10.1029/1999RG900009 (_eprint: https://onlinelibrary.wiley.com/doi/abs/10.1029/1999RG900009 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/1999RG900009 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/1999RG900009 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/1999RG900009 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/1999RG900009 doi: 10.1029/1999RG900009 Dang, T., Lei, J., Wang, W., Wang, B., Zhang, B., Liu, J., Nishimura, Y. (2019). Formation of Double Tongues of Ionization During the 17 March 2013 Geomagnetic Storm. Journal of Geophysical Research: Space Physics, 124(12), 10619–10630. Retrieved 2023-03-01, from https://
916 917 918 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 932 933 934 935 936 937 938 939 940 941	 Cramer, W. D., Raeder, J., Toffoletto, F. R., Gilson, M., & Hu, B. (2017). Plasma sheet injections into the inner magnetosphere: Two-way coupled OpenGGCM-RCM model results. Journal of Geophysical Research: Space Physics, 122(5), 5077–5091. Retrieved 2022-06-07, from https://onlinelibrary.wiley.com/doi/abs/10.1002/2017JA024104 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2017JA024104) Cucho-Padin, G., & Waldrop, L. (2019). Time-Dependent Response of the Terrestrial Exosphere to a Geomagnetic Storm. Geophysical Research Letters, 46(21), 11661–11670. Retrieved 2023-03-09, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2019GL084327 (_eprint: https://onlinelibrary.wiley.com/doi/abs/10.1029/2019GL084327) doi: 10.1029/2019GL084327 Daglis, I. A. (2006, June). Ring Current Dynamics. Space Science Reviews, 124(1), 183–202. Retrieved 2022-07-18, from https://doi.org/10.1007/s11214-006-9104-z doi: 10.1007/s11214-006-9104-z Daglis, I. A., Thorne, R. M., Baumjohann, W., & Orsini, S. (1999). The terrestrial ring current: Origin, formation, and decay. Reviews of Geophysics, 37(4), 407–438. Retrieved 2023-03-08, from https:// onlinelibrary.wiley.com/doi/abs/10.1029/1999RG900009 (_eprint: https://onlinelibrary.wiley.com/doi/abs/10.1029/1999RG900009 (_eprint: https:// 011nelibrary.wiley.com/doi/abs/10.1029/1999RG900009 (_eprint: https:// 011nelibrar

943 944	https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019JA027268) doi: 10.1029/2019JA027268
945	Dessler, A. J., & Parker, F. N. (1959). Hydromagnetic theory of geomag-
946	netic storms. Journal of Geophysical Research (1896-1977), 64(12).
947	2239–2252. Retrieved 2022-12-06. from https://onlinelibrary
948	.wilev.com/doi/abs/10.1029/JZ064i012p02239 (eprint:
949	https://onlinelibrary.wiley.com/doi/pdf/10.1029/JZ064i012p02239) doi:
950	10.1029/JZ064j012p02239
051	Dubyagin S. Sergeev, V. Apatenkov, S. Angelopoulos, V. Runov, A. Nakamura
951	B Larson D (2011) Can flow bursts penetrate into the inner magneto-
952	sphere? Geophysical Research Letters 38(8) n/a-n/a Retrieved 2022-04-12
953	from https://www.academia.edu/17645753/Can_flow_hursts_penetrate
954	into the inner magnetosphere
955	Ebihara V k Eiiri M (2000) Simulation study on fundamental properties
950	of the storm-time ring current Iournal of Geophysical Research: Snace
957	Physics 105(A7) 15843–15859 Betrieved 2022-12-08 from https://
950	onlinelibrary wiley com/doi/abs/10 1029/1999 14900493 (eprint:
959	https://onlinelibrary.wiley.com/doi/pdf/10.1029/1090JA900493) doi:
961	10 1029/1999.JA900493
062	Exickson G M & Wolf B A (1980) Is steady convection possible
902	in the Earth's magnetotail? <i>Ceonhusical Research Letters</i> 7(11)
964	897–900 Retrieved 2022-12-07 from https://onlinelibrary
965	wiley $com/doi/abs/10.1029/GL007i011p00897$ (eprint:
966	https://onlinelibrary.wiley.com/doi/pdf/10.1029/GL007i011p00897) doi:
967	10.1029/GL007i011p00897
968	Fok, MC., Buzulukova, N. Y., Chen, SH., Glocer, A., Nagai, T., Valek, P.,
969	& Perez, J. D. (2014). The Comprehensive Inner Magnetosphere-
970	Ionosphere Model. Journal of Geophysical Research: Space Physics,
971	119(9), 7522–7540. Retrieved 2021-02-19, from https://agupubs
972	.onlinelibrary.wiley.com/doi/abs/10.1002/2014JA020239 (eprint:
973	https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2014JA020239) doi:
974	https://doi.org/10.1002/2014JA020239
975	Fok, M. C., Kozyra, J. U., Nagy, A. F., Rasmussen, C. E., & Khazanov,
976	G. V. (1993). Decay of equatorial ring current ions and associated
977	aeronomical consequences. Journal of Geophysical Research: Space
978	<i>Physics</i> , 98(A11), 19381–19393. Retrieved 2022-12-20, from https://
979	onlinelibrary.wiley.com/doi/abs/10.1029/93JA01848 (_eprint:
980	$https://onlinelibrary.wiley.com/doi/pdf/10.1029/93JA01848) \qquad doi: 10.1029/93JA01848)$
981	93JA01848
982	Gabrielse, C., Angelopoulos, V., Harris, C., Artemyev, A., Kepko, L., & Runov,
983	A. (2017). Extensive electron transport and energization via mul-
984	tiple, localized dipolarizing flux bundles. Journal of Geophysical Re-
985	search: Space Physics, 122(5), 5059–5076. Retrieved 2022-08-24, from
986	https://onlinelibrary.wiley.com/doi/abs/10.1002/2017JA023981
987	$(_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2017JA023981)$
988	doi: 10.1002/2017JA023981
989	Gabrielse, C., Angelopoulos, V., Runov, A., & Turner, D. L. (2012). The ef-
990	fects of transient, localized electric fields on equatorial electron acceler-
991	ation and transport toward the inner magnetosphere. Journal of Geo-
992	physical Research: Space Physics, 117(A10). Retrieved 2023-02-03, from
993	https://onlinelibrary.wiley.com/doi/abs/10.1029/2012JA017873
994	(_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2012JA017873)
995	doi: 10.1029/2012JA017873
996	Gabrielse, C., Angelopoulos, V., Runov, A., & Turner, D. L. (2014).

997 Statistical characteristics of particle injections throughout the

998	equatorial magnetotail. Journal of Geophysical Research: Space
999	<i>Physics</i> , 119(4), 2512–2535. Retrieved 2023-01-23, from https://
1000	onlinelibrary.wiley.com/doi/abs/10.1002/2013JA019638 (eprint:
1001	https://onlinelibrary.wiley.com/doi/pdf/10.1002/2013JA019638) doi:
1002	10.1002/2013JA019638
1003	Gallagher, D. L., Craven, P. D., & Comfort, R. H. (2000, August). Global core
1004	plasma model. Journal of Geophysical Research, 105, 18. Retrieved 2021-
1005	02-27, from http://adsabs.harvard.edu/abs/2000JGR10518819G doi: 10
1006	.1029/1999JA000241
1007	Ganushkina, N. Y., Liemohn, M. W., & Dubyagin, S. (2018). Cur-
1008	rent Systems in the Earth's Magnetosphere. Reviews of Geophysics.
1009	56(2), $309-332$. Retrieved $2021-03-29$, from https://agupubs
1010	.onlinelibrary.wilev.com/doi/abs/10.1002/2017RG000590 (eprint:
1011	https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017RG000590) doi:
1012	https://doi.org/10.1002/2017RG000590
1013	Gkioulidou, M., Ukhorskiy, A. Y., Mitchell, D. G., & Lanzerotti, L. J. (2016).
1014	Storm time dynamics of ring current protons: Implications for the long-
1015	term energy budget in the inner magnetosphere. Geophysical Research
1016	Letters, 43(10), 4736–4744. Retrieved 2021-09-16. from https://
1017	onlinelibrary.wiley.com/doi/abs/10.1002/2016GL068013 (eprint:
1018	https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2016GL068013) doi:
1019	10.1002/2016GL068013
1020	Gkioulidou, M., Ukhorskiy, A. Y., Mitchell, D. G., Sotirelis, T., Mauk, B. H.,
1021	& Lanzerotti, L. J. (2014). The role of small-scale ion injections in
1022	the buildup of Earth's ring current pressure: Van Allen Probes obser-
1023	vations of the 17 March 2013 storm. Journal of Geophysical Research:
1024	Space Physics, 119(9), 7327–7342. Retrieved 2021-09-24, from https://
1025	onlinelibrary.wiley.com/doi/abs/10.1002/2014JA020096 (eprint:
1026	https://onlinelibrary.wiley.com/doi/pdf/10.1002/2014JA020096) doi:
1027	10.1002/2014JA020096
1028	Glocer, A., Tóth, G., Gombosi, T., & Welling, D. (2009). Modeling jono-
1029	spheric outflows and their impact on the magnetosphere, initial re-
1030	sults. Journal of Geophysical Research: Space Physics, 114(A5).
1031	Retrieved 2021-04-22, from https://agupubs.onlinelibrary
1032	.wiley.com/doi/abs/10.1029/2009JA014053 (eprint:
1033	https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2009JA014053)
1034	doi: https://doi.org/10.1029/2009JA014053
1035	Goldstein, J., Angelopoulos, V., De Pascuale, S., Funsten, H. O., Kurth, W. S.,
1036	LLera, K., Wygant, J. R. (2017). Cross-scale observations of the 2015 St.
1037	Patrick's day storm: THEMIS, Van Allen Probes, and TWINS. Journal of
1038	Geophysical Research: Space Physics, 122(1), 368–392. Retrieved 2023-02-23,
1039	from https://onlinelibrary.wiley.com/doi/abs/10.1002/2016JA023173
1040	(_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2016JA023173) doi:
1041	$10.1002/2016\mathrm{JA023173}$
1042	Gurnett, D. A. (1970). Satellite Measurements of DC Electric Fields in the Iono-
1043	sphere. In B. M. McCormac (Ed.), Particles and Fields in the Magnetosphere
1044	(pp. 239–246). Dordrecht: Springer Netherlands. doi: 10.1007/978-94-010-3284
1045	-1 23
1046	Hamilton, D. C., Gloeckler, G., Ipavich, F. M., Stüdemann, W., Wilken, B., &
1047	Kremser, G. (1988). Ring current development during the great geomag-
1048	netic storm of February 1986. Journal of Geophysical Research: Space
1049	<i>Physics</i> , 93(A12), 14343–14355. Retrieved 2022-12-06, from https://
1050	onlinelibrary.wiley.com/doi/abs/10.1029/JA093iA12p14343 (eprint:
1051	https://onlinelibrary.wiley.com/doi/pdf/10.1029/JA093iA12p14343) doi:
	10, 1020 / IA002; A12 + 14242

1053	Hori, T., Lui, A. T. Y., Ohtani, S., C:son Brandt, P., Mauk, B. H., McEn-
1054	tire, R. W., Hayakawa, H. (2005). Storm-time convection elec-
1055	tric field in the near-Earth plasma sheet. Journal of Geophysical Re-
1056	search: Space Physics, 110(A4). Retrieved 2022-12-07, from https://
1057	onlinelibrary.wiley.com/doi/abs/10.1029/2004JA010449 (_eprint:
1058	https://onlinelibrary.wiley.com/doi/pdf/10.1029/2004JA010449) doi:
1059	$10.1029/2004 \mathrm{JA010449}$
1060	Iijima, T., & Potemra, T. A. (1976). The amplitude distribution of
1061	field-aligned currents at northern high latitudes observed by Triad.
1062	Journal of Geophysical Research (1896-1977), 81(13), 2165–2174.
1063	Retrieved 2021-03-31, from https://agupubs.onlinelibrary
1064	.wiley.com/doi/abs/10.1029/JA081i013p02165 (_eprint:
1065	https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/JA081i013p02165)
1066	doi: https://doi.org/10.1029/JA081i013p02165
1067	Ilie, R., Skoug, R. M., Funsten, H. O., Liemohn, M. W., Bailey, J. J., & Gruntman,
1068	M. (2013, July). The impact of geocoronal density on ring current devel-
1069	opment. Journal of Atmospheric and Solar-Terrestrial Physics, 99, 92–103.
1070	Retrieved 2023-03-09, from https://www.sciencedirect.com/science/
1071	article/pii/S1364682612000946 doi: 10.1016/j.jastp.2012.03.010
1072	Jaggi, R. K., & Wolf, R. A. (1973). Self-consistent calculation of the mo-
1073	tion of a sheet of ions in the magnetosphere. Journal of Geophysical
1074	Research (1896-1977), 78(16), 2852–2866. Retrieved 2023-03-10, from
1075	https://onlinelibrary.wiley.com/doi/abs/10.1029/JA078i016p02852
1076	(eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/JA078i016p02852)
1077	doi: $10.1029/JA078i016p02852$
1078	Jordanova, V. K., Farrugia, C. J., Janoo, L., Quinn, J. M., Torbert, R. B., Ogilvie,
1079	K. W., Belian, R. D. (1998). October 1995 magnetic cloud and ac-
1080	companying storm activity: Ring current evolution. Journal of Geophys-
1081	ical Research: Space Physics, 103(A1), 79–92. Retrieved 2022-12-20,
1082	from https://onlinelibrary.wiley.com/doi/abs/10.1029/97JA02367
1083	$(_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/97JA02367)$ doi:
1084	10.1029/97JA02367
1085	Jordanova, V. K., Ilie, R., & Chen, M. W. (2020, January). Chapter 1 - Introduc-
1086	tion and historical background. In V. K. Jordanova, R. Ilie, & M. W. Chen
1087	(Eds.), Ring Current Investigations (pp. 1–13). Elsevier. Retrieved 2023-
1088	04-11, from https://www.sciencedirect.com/science/article/pii/
1089	B9780128155714000019 doi: 10.1016/B978-0-12-815571-4.00001-9
1090	Jordanova, V. K., Kistler, L. M., Kozyra, J. U., Khazanov, G. V., & Nagy, A. F.
1091	(1996). Collisional losses of ring current ions. Journal of Geophysi-
1092	cal Research: Space Physics, 101(A1), 111–126. Retrieved 2023-01-24,
1093	<pre>from https://onlinelibrary.wiley.com/doi/abs/10.1029/95JA02000</pre>
1094	$(_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/95JA02000)$ doi:
1095	$10.1029/95 \mathrm{JA02000}$
1096	Jordanova, V. K., & Miyoshi, Y. (2005). Relativistic model of ring cur-
1097	rent and radiation belt ions and electrons: Initial results. Geophysi-
1098	cal Research Letters, 32(14). Retrieved 2023-04-14, from https://
1099	onlinelibrary.wiley.com/doi/abs/10.1029/2005GL023020 (_eprint:
1100	$https://onlinelibrary.wiley.com/doi/pdf/10.1029/2005 GL023020) \qquad \qquad doi:$
1101	$10.1029/2005 { m GL}023020$
1102	Jordanova, V. K., Yu, Y., Niehof, J. T., Skoug, R. M., Reeves, G. D., Klet-
1103	zing, C. A., Spence, H. E. (2014). Simulations of inner mag-
1104	netosphere dynamics with an expanded RAM-SCB model and com-
1105	parisons with Van Allen Probes observations. Geophysical Research
1106	Letters, 41(8), 2687–2694. Retrieved 2021-12-04, from https://
1107	onlinelibrary.wiley.com/doi/abs/10.1002/2014GL059533 (_eprint:

1108	https://onlinelibrary.wiley.com/doi/pdf/10.1002/2014GL059533) doi:
1109	10.1002/2014GL039333
1110	Keesee, A. M., Buzulukova, N., Mouikis, C., & Scime, E. E. (2021). Mesoscale Struc-
1111	tures in Earth's Magnetotali Observed Using Energetic Neutral Atom Imaging.
1112	Geophysical Research Letters, 48(5), e2020GL091407. Retrieved 2025-01-25,
1113	from https://onlinelibrary.wiley.com/doi/abs/10.1029/2020GL091467
1114	(-eprint: https://oninenbrary.wney.com/doi/pdi/10.1029/2020GL091407) doi: 10.1020/2020GL091467
1115	Koika K. Nacá M. Oktani S. Takabashi K. Christon S. D. & McEnting
1116	Relika, K., Nose, M., Ontani, S., Takanashi, K., Ohnston, S. F., & McEntile, $\mathbf{P} = \mathbf{W}$ (2005) Outflow of operative ions from the magneteephere and its
1117	R. W. (2005). Outflow of energetic form time magnetosphere and its
1118	f_{abc} f_{a
1119	https://onlinelibrary_wiley_com/doi/abs/10_1029/2004 14010970
1120	(eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2004JA010970)
1121	doi: 10.1029/2004JA010970
1122	Keika K. Seki K. Nosé M. Miyoshi V. Lanzerotti I. I. Mitchell D. C.
1123	Manweiler I W (2018) Three-Step Buildup of the 17 March
1124	2015 Storm Ring Current: Implication for the Cause of the Unex-
1126	pected Storm Intensification. Journal of Geophysical Research: Space
1127	Physics, 123(1), 414–428. Retrieved 2021-07-14, from https://agupubs
1128	.onlinelibrary.wiley.com/doi/abs/10.1002/2017JA024462 (eprint:
1129	https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017JA024462) doi:
1130	10.1002/2017JA024462
1131	Kistler, L. M. (2020). Ionospheric and Solar Wind Contributions to the
1132	Storm-Time Near-Earth Plasma Sheet. Geophysical Research Let-
1133	ters, 47(23), e2020GL090235. Retrieved 2023-01-09, from https://
1134	onlinelibrary.wiley.com/doi/abs/10.1029/2020GL090235 (eprint:
1135	https://onlinelibrary.wiley.com/doi/pdf/10.1029/2020GL090235) doi:
1136	$10.1029/2020 { m GL}090235$
1137	Kistler, L. M., Ipavich, F. M., Hamilton, D. C., Gloeckler, G., Wilken, B., Kremser,
1138	G., & Stüdemann, W. (1989). Energy spectra of the major ion species in
1139	the ring current during geomagnetic storms. Journal of Geophysical Re-
1140	search: Space Physics, $94(A4)$, 3579–3599. Retrieved 2022-12-20, from
1141	https://onlinelibrary.wiley.com/doi/abs/10.1029/JA094iA04p03579
1142	(_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/JA094iA04p03579)
1143	doi: 10.1029/JA094iA04p03579
1144	Korth, A., Friedel, R. H. W., Mouikis, C. G., Fennell, J. F., Wygant, J. R., & Korth,
1145	H. (2000). Comprehensive particle and field observations of magnetic storms
1146	at different local times from the CRRES spacecraft. Journal of Geophysi-
1147	cal Kesearch: Space Physics, 105 (A8), 18729–18740. Retrieved 2023-04-14,
1148	from https://onlinelibrary.wiley.com/doi/abs/10.1029/1999JA000430
1149	$(_eprint: nttps://onlinelibrary.wiley.com/doi/pdf/10.1029/1999JA000430) doi: 10.1020/1000 [A.000420]$
1150	10.1029/1999JA000450
1151	Kozyra, J. U., Jordanova, V. K., Borovsky, J. E., Thomsen, M. F., Knipp,
1152	D. J., Evans, D. S., Cayton, I. E. (1998). Effects of a high-
1153	bar 2, 6, 1003 magnetic storm
1154	Det 2-0, 1995, magnetic storm. Journal of Geophysical Research: Space $Physics = 103(\Delta 11) = 26285 = 26205$ Rotrioved 2022 12 08 from h++nc.//
1155	1 mysus, 100 (AII), 20209-20000. $1000 metheven 2022-12-00, 1000 methevs (oppint)$
1157	https://onlinelibrary.wiley.com/doi/pdf/10/1020/081A01964 (_epinit.
1152	98.IA01964
1150	Krimigis S. M. Gloeckler G. McEntire R. W. Potemra T. A. Scarf F. L. &
1160	Shelley, E. G. (1985). Magnetic storm of Sentember 4 1984. A synthesis
1161	of ring current spectra and energy densities measured with AMPTE/CCE
1162	Geophysical Research Letters, 12(5), 329–332. Retrieved 2023-03-06, from

1162	https://onlinelibrary_wiley_com/doi/abs/10_1029/GL012i005p00329
1164	(eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/GL012i005p00329)
1165	doi: 10.1029/GL012i005p00329
1166	Lemon, C., Wolf, R. A., Hill, T. W., Sazykin, S., Spiro, R. W., Toffoletto, F. R.,
1167	Hesse, M. (2004). Magnetic storm ring current injection modeled
1168	with the Rice Convection Model and a self-consistent magnetic field. Geo-
1169	physical Research Letters, 31(21). Retrieved 2022-12-08, from https://
1170	onlinelibrary.wiley.com/doi/abs/10.1029/2004GL020914 (_eprint:
1171	$https://onlinelibrary.wiley.com/doi/pdf/10.1029/2004GL020914) \qquad \qquad doi:$
1172	$10.1029/2004 { m GL}020914$
1173	Liemohn, M. W. (2003). Yet another caveat to using the Dessler-Parker-
1174	Sckopke relation. Journal of Geophysical Research: Space Physics,
1175	108(A6). Retrieved 2023-01-17, from https://onlinelibrary
1176	$w_{1}e_{y}.com/do1/abs/10.1029/2003JA009839$ (_eprint:
1177	10,1020/200310,000830 doi:
1178	Liomohn M W & Khazanov C V (2005) Decomposition of Ping
1179	Current Adiabatic Energization In Particle Acceleration in Astro-
1181	nhusical Plasmas: Geospace and Beyond (pp. 215–229)
1182	Geophysical Union (AGU). Retrieved 2022-12-06, from https://
1183	onlinelibrary.wiley.com/doi/abs/10.1029/156GM24 (eprint:
1184	https://onlinelibrary.wiley.com/doi/pdf/10.1029/156GM24) doi: 10.1029/
1185	156 GM24
1186	Lin, D., Sorathia, K., Wang, W., Merkin, V., Bao, S., Pham, K., Ander-
1187	son, B. (2021). The Role of Diffuse Electron Precipitation in the For-
1188	mation of Subauroral Polarization Streams. Journal of Geophysical Re-
1189	search: Space Physics, 126(12), e2021JA029792. Retrieved 2022-05-13,
1190	from https://onlinelibrary.wiley.com/doi/abs/10.1029/2021JA029792
1191	$(_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2021JA029792) doi: 10.1020/2021JA029792) doi:$
1192	10.1029/2021JA029792 Linders D. C. & Challing D. E. (2005) Change transfer man setting for
1193	anorgatic neutral atom data analysis Lieurnal of Combusical Research:
1194	Space Physics $110(A12)$ Betrieved $2021-03-30$ from https://agupubs
1195	onlinelibrary.wiley.com/doi/abs/10.1029/2005.JA011298 (eprint:
1197	https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2005JA011298) doi:
1198	https://doi.org/10.1029/2005JA011298
1199	Liu, J., Angelopoulos, V., Runov, A., & Zhou, XZ. (2013). On the cur-
1200	rent sheets surrounding dipolarizing flux bundles in the magneto-
1201	tail: The case for wedgelets. Journal of Geophysical Research: Space
1202	<i>Physics</i> , 118(5), 2000–2020. Retrieved 2023-01-23, from https://
1203	onlinelibrary.wiley.com/doi/abs/10.1002/jgra.50092 (_eprint:
1204	https://onlinelibrary.wiley.com/doi/pdf/10.1002/jgra.50092) doi: 10.1002/jgra.50092)
1205	Jgra.50092
1206	Liu, J., Angelopoulos, V., Zhang, XJ., Turner, D. L., Gabrielse, C., Runov,
1207	A., Spence, H. E. (2010). Dipolarizing flux buildies in the cis-
1208	energetic particle injections
1209	Physics, 121(2), 1362–1376 Retrieved 2023-02-03 from https://
1211	onlinelibrary.wiley.com/doi/abs/10.1002/2015JA021691 (enrint:
1212	https://onlinelibrary.wiley.com/doi/pdf/10.1002/2015JA021691) doi:
1213	10.1002/2015JA021691
1214	Livadiotis, G., & McComas, D. J. (2013, June). Understanding Kappa Distributions:
1215	A Toolbox for Space Science and Astrophysics. Space Science Reviews, 175(1),
1216	183-214. Retrieved 2023-01-26, from https://doi.org/10.1007/s11214-013
1217	-9982-9 doi: 10.1007/s11214-013-9982-9

1218 1219 1220 1221	Lui, A. T. Y. (1993). Radial transport of storm time ring current ions. Journal of Geophysical Research: Space Physics, 98(A1), 209–214. Retrieved 2023-04- 14, from https://onlinelibrary.wiley.com/doi/abs/10.1029/92JA02079 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/92JA02079) doi: 10.1020/02JA02070
1222	10.1029/92JA02079
1223	Lyon, J. G., Fedder, J. A., & Mobarry, C. M. (2004, October). The Lyon–Fedder–Mobarry (LFM) global MHD magnetospheric simulation code
1224	Lowned of Atmospheric and Solar Transetrial Physics 66(15) 1332–1350
1225	Botriousd 2021 02 17 from https://www.acioncodirect.com/acionco/
1226	article/pii/S1264682604001420 doi: 10.1016/j.jostp.2004.03.020
1227	$I = I = \frac{1077}{1077} = \frac{1111}{1077} = \frac{11111}{1077} = \frac{111111}{1077} = \frac{111111}{1077} = \frac{111111}{1077} = \frac{1111111}{1077} = \frac{111111111}{1077} = 11111111111111111111111111111111111$
1228	tributions, L. R. (1977). Adiabatic evolution of trapped particle pitch angle dis-
1229	(1806, 1077) $80(16)$ 2422 Detrieved $2022, 04, 14$ from https://
1230	(1090-1977), 02(10), 2420-2432. Retrieved 2023-04-14, from https://
1231	https://onlinelibrary.wiley.com/doi/abs/10.1029/JA0021010p02420 (_epinit.
1232	$10, 1020 / I \Delta 0.82; 0.16 \pm 0.29/28$
1233	I vong I P. Callarda Lacourt P. Zou S. Waygand I M. Nichimura V.
1234	Li W Nishitani N (2016) The 17 March 2013 storm: Sun
1235	ergy of observations related to electric field modes and their ionospheric
1230	and magnetospheric Effects
1237	$\frac{2}{2} \frac{1}{2} \frac{1}$
1230	(1) online library wiley com/doi/abs/10 1002/2016 IA023237 (enrint:
1239	https://onlinelibrary.wiley.com/doi/pdf/10.1002/2016JA023237) doi:
1240	10.1002/2016JA023237
1242	Lyons L B & Schulz M (1989) Access of energetic particles to storm time
1243	ring current through enhanced radial "diffusion". Journal of Geophysical
1244	Research: Space Physics, 94 (A5), 5491–5496. Retrieved 2023-04-14, from
1245	https://onlinelibrary.wiley.com/doi/abs/10.1029/JA094iA05p05491
1246	(eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/JA094iA05p05491)
1247	doi: 10.1029/JA094iA05p05491
1248	Lyons, L. R., & Williams, D. J. (1976). Storm-associated variations
1249	of equatorially mirroring ring current protons, 1–800 keV, at con-
1250	stant first adiabatic invariant. Journal of Geophysical Research
1251	(1896-1977), 81(1), 216-220. Retrieved 2023-04-14, from https://
1252	onlinelibrary.wiley.com/doi/abs/10.1029/JA081i001p00216 (_eprint:
1253	$https://onlinelibrary.wiley.com/doi/pdf/10.1029/JA081i001p00216) \qquad \qquad doi:$
1254	10.1029/JA081i001p00216
1255	McComas, D. J., Allegrini, F., Baldonado, J., Blake, B., Brandt, P. C., Burch, J.,
1256	Zoennchen, J. (2009, February). The Two Wide-angle Imaging Neutral-
1257	atom Spectrometers (TWINS) NASA Mission-of-Opportunity. Space Science
1258	Reviews, 142(1), 157-231. Retrieved 2023-05-01, from https://doi.org/
1259	10.1007/s11214-008-9467-4 doi: 10.1007/s11214-008-9467-4
1260	Menz, A. M., Kistler, L. M., Mouikis, C. G., Spence, H. E., Skoug, R. M., Funsten,
1261	H. O., Gkioulidou, M. (2017). The role of convection in the buildup of
1262	the ring current pressure during the 17 March 2013 storm. Journal of Geo-
1263	physical Research: Space Physics, 122(1), 475–492. Retrieved 2022-11-09,
1264	trom https://onlinelibrary.wiley.com/doi/abs/10.1002/2016JA023358
1265 1266	(_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2016JA023358) doi: 10.1002/2016JA023358
1267	Merkin, V. G., & Lyon, J. G. (2010). Effects of the low-latitude ionospheric bound-
1268	ary condition on the global magnetosphere. Journal of Geophysical Research:
1269	Space Physics, 115(A10). Retrieved 2020-03-30, from https://agupubs
1270	.onlinelibrary.wiley.com/doi/abs/10.1029/2010JA015461 (_eprint:
1271	https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2010JA015461) doi: 10.1029/2010JA015461 = 0.0000000000000000000000000000000000
1272	10.1029/2010JA015461

1273	Merkin, V. G., Panov, E. V., Sorathia, K. A., & Ukhorskiy, A. Y. (2019).
1274	Contribution of Bursty Bulk Flows to the Global Dipolarization of the
1275	Magnetotail During an Isolated Substorm. Journal of Geophysical Re-
1276	search: Space Physics, 124(11), 8647–8668. Retrieved 2022-04-13, from
1277	https://onlinelibrary.wiley.com/doi/abs/10.1029/2019JA026872
1278	(eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019JA026872)
1279	doi: 10.1029/2019JA026872
1280	Mitchell, D. G., Lanzerotti, L. J., Kim, C. K., Stokes, M., Ho, G., Cooper, S.,
1281	Kerem, S. (2013, November). Radiation Belt Storm Probes Ion Composition
1282	Experiment (RBSPICE). Space Science Reviews, $179(1)$, 263–308. Retrieved
1283	2022-05-13, from https://doi.org/10.1007/s11214-013-9965-x doi:
1284	10.1007/s11214-013-9965-x
1285	Nakamura, R., Baumjohann, W., Mouikis, C., Kistler, L. M., Runov,
1286	A., Volwerk, M., Balogh, A. (2004). Spatial scale of high-
1287	speed flows in the plasma sheet observed by Cluster. Geophysi-
1288	cal Research Letters, 31(9). Retrieved 2023-01-23, from https://
1289	onlinelibrary.wiley.com/doi/abs/10.1029/2004GL019558 (_eprint:
1290	https://onlinelibrary.wiley.com/doi/pdf/10.1029/2004GL019558) doi:
1291	$10.1029/2004 { m GL}019558$
1292	Ohtani, S., Singer, H. J., & Mukai, T. (2006). Effects of the fast plasma
1293	sheet flow on the geosynchronous magnetic configuration: Geotail
1294	and GOES coordinated study. Journal of Geophysical Research:
1295	Space Physics, 111(A1). Retrieved 2022-07-27, from https://
1296	onlinelibrary.wiley.com/doi/abs/10.1029/2005JA011383 (_eprint:
1297	https://onlinelibrary.wiley.com/doi/pdf/10.1029/2005JA011383) doi:
1298	10.1029/2005JA011383
1299	Panov, E. V., Nakamura, R., Baumjohann, W., Angelopoulos, V., Petrukovich,
1300	A. A., Retinò, A., Larson, D. (2010). Multiple overshoot and rebound of a
1301	bursty bulk flow. <i>Geophysical Research Letters</i> , 37(8). Retrieved 2022-11-28,
1301 1302	bursty bulk flow. <i>Geophysical Research Letters</i> , 37(8). Retrieved 2022-11-28, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2009GL041971
1301 1302 1303	bursty bulk flow. Geophysical Research Letters, 37(8). Retrieved 2022-11-28, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2009GL041971 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2009GL041971) doi:
1301 1302 1303 1304	bursty bulk flow. Geophysical Research Letters, 37(8). Retrieved 2022-11-28, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2009GL041971 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2009GL041971) doi: 10.1029/2009GL041971
1301 1302 1303 1304 1305	 bursty bulk flow. Geophysical Research Letters, 37(8). Retrieved 2022-11-28, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2009GL041971 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2009GL041971) doi: 10.1029/2009GL041971 Pembroke, A., Toffoletto, F., Sazykin, S., Wiltberger, M., Lyon, J., Merkin,
1301 1302 1303 1304 1305 1306	 bursty bulk flow. Geophysical Research Letters, 37(8). Retrieved 2022-11-28, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2009GL041971 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2009GL041971) doi: 10.1029/2009GL041971 Pembroke, A., Toffoletto, F., Sazykin, S., Wiltberger, M., Lyon, J., Merkin, V., & Schmitt, P. (2012). Initial results from a dynamic coupled
1301 1302 1303 1304 1305 1306 1307	 bursty bulk flow. Geophysical Research Letters, 37(8). Retrieved 2022-11-28, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2009GL041971 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2009GL041971) doi: 10.1029/2009GL041971 Pembroke, A., Toffoletto, F., Sazykin, S., Wiltberger, M., Lyon, J., Merkin, V., & Schmitt, P. (2012). Initial results from a dynamic coupled magnetosphere-ionosphere-ring current model. Journal of Geophysical Re-
1301 1302 1303 1304 1305 1306 1307 1308	 bursty bulk flow. Geophysical Research Letters, 37(8). Retrieved 2022-11-28, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2009GL041971 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2009GL041971) doi: 10.1029/2009GL041971 Pembroke, A., Toffoletto, F., Sazykin, S., Wiltberger, M., Lyon, J., Merkin, V., & Schmitt, P. (2012). Initial results from a dynamic coupled magnetosphere-ionosphere-ring current model. Journal of Geophysical Re- search: Space Physics, 117(A2). Retrieved 2021-12-21, from https://
1301 1302 1303 1304 1305 1306 1307 1308 1309	 bursty bulk flow. Geophysical Research Letters, 37(8). Retrieved 2022-11-28, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2009GL041971 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2009GL041971) doi: 10.1029/2009GL041971 Pembroke, A., Toffoletto, F., Sazykin, S., Wiltberger, M., Lyon, J., Merkin, V., & Schmitt, P. (2012). Initial results from a dynamic coupled magnetosphere-ionosphere-ring current model. Journal of Geophysical Re- search: Space Physics, 117(A2). Retrieved 2021-12-21, from https:// onlinelibrary.wiley.com/doi/abs/10.1029/2011JA016979 (_eprint:
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310	 bursty bulk flow. Geophysical Research Letters, 37(8). Retrieved 2022-11-28, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2009GL041971 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2009GL041971) doi: 10.1029/2009GL041971 Pembroke, A., Toffoletto, F., Sazykin, S., Wiltberger, M., Lyon, J., Merkin, V., & Schmitt, P. (2012). Initial results from a dynamic coupled magnetosphere-ionosphere-ring current model. Journal of Geophysical Re- search: Space Physics, 117(A2). Retrieved 2021-12-21, from https:// onlinelibrary.wiley.com/doi/abs/10.1029/2011JA016979 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2011JA016979) doi:
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311	 bursty bulk flow. Geophysical Research Letters, 37(8). Retrieved 2022-11-28, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2009GL041971 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2009GL041971) doi: 10.1029/2009GL041971 Pembroke, A., Toffoletto, F., Sazykin, S., Wiltberger, M., Lyon, J., Merkin, V., & Schmitt, P. (2012). Initial results from a dynamic coupled magnetosphere-ionosphere-ring current model. Journal of Geophysical Re- search: Space Physics, 117(A2). Retrieved 2021-12-21, from https:// onlinelibrary.wiley.com/doi/abs/10.1029/2011JA016979 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2011JA016979) doi: 10.1029/2011JA016979
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312	 bursty bulk flow. Geophysical Research Letters, 37(8). Retrieved 2022-11-28, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2009GL041971 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2009GL041971) doi: 10.1029/2009GL041971 Pembroke, A., Toffoletto, F., Sazykin, S., Wiltberger, M., Lyon, J., Merkin, V., & Schmitt, P. (2012). Initial results from a dynamic coupled magnetosphere-ionosphere-ring current model. Journal of Geophysical Re- search: Space Physics, 117(A2). Retrieved 2021-12-21, from https:// onlinelibrary.wiley.com/doi/abs/10.1029/2011JA016979 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2011JA016979) doi: 10.1029/2011JA016979 Pontius, D. H., & Wolf, R. A. (1990). Transient flux tubes in the
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313	 bursty bulk flow. Geophysical Research Letters, 37(8). Retrieved 2022-11-28, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2009GL041971 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2009GL041971) doi: 10.1029/2009GL041971 Pembroke, A., Toffoletto, F., Sazykin, S., Wiltberger, M., Lyon, J., Merkin, V., & Schmitt, P. (2012). Initial results from a dynamic coupled magnetosphere-ionosphere-ring current model. Journal of Geophysical Re- search: Space Physics, 117(A2). Retrieved 2021-12-21, from https:// onlinelibrary.wiley.com/doi/abs/10.1029/2011JA016979 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2011JA016979) doi: 10.1029/2011JA016979 Pontius, D. H., & Wolf, R. A. (1990). Transient flux tubes in the terrestrial magnetosphere. Geophysical Research Letters, 17(1),
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314	 bursty bulk flow. Geophysical Research Letters, 37(8). Retrieved 2022-11-28, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2009GL041971 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2009GL041971) doi: 10.1029/2009GL041971 Pembroke, A., Toffoletto, F., Sazykin, S., Wiltberger, M., Lyon, J., Merkin, V., & Schmitt, P. (2012). Initial results from a dynamic coupled magnetosphere-ionosphere-ring current model. Journal of Geophysical Re- search: Space Physics, 117(A2). Retrieved 2021-12-21, from https:// onlinelibrary.wiley.com/doi/abs/10.1029/2011JA016979 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2011JA016979) doi: 10.1029/2011JA016979 Pontius, D. H., & Wolf, R. A. (1990). Transient flux tubes in the terrestrial magnetosphere. Geophysical Research Letters, 17(1), 49-52. Retrieved 2022-09-15, from https://onlinelibrary
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315	 bursty bulk flow. Geophysical Research Letters, 37(8). Retrieved 2022-11-28, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2009GL041971 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2009GL041971) doi: 10.1029/2009GL041971 Pembroke, A., Toffoletto, F., Sazykin, S., Wiltberger, M., Lyon, J., Merkin, V., & Schmitt, P. (2012). Initial results from a dynamic coupled magnetosphere-ionosphere-ring current model. Journal of Geophysical Re- search: Space Physics, 117(A2). Retrieved 2021-12-21, from https:// onlinelibrary.wiley.com/doi/abs/10.1029/2011JA016979 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2011JA016979) doi: 10.1029/2011JA016979 Pontius, D. H., & Wolf, R. A. (1990). Transient flux tubes in the terrestrial magnetosphere. Geophysical Research Letters, 17(1), 49-52. Retrieved 2022-09-15, from https://onlinelibrary .wiley.com/doi/abs/10.1029/GL017i001p00049 (_eprint:
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1311 1312 1313 1314 1315 1316	 bursty bulk flow. Geophysical Research Letters, 37(8). Retrieved 2022-11-28, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2009GL041971 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2009GL041971) doi: 10.1029/2009GL041971 Pembroke, A., Toffoletto, F., Sazykin, S., Wiltberger, M., Lyon, J., Merkin, V., & Schmitt, P. (2012). Initial results from a dynamic coupled magnetosphere-ionosphere-ring current model. Journal of Geophysical Re- search: Space Physics, 117(A2). Retrieved 2021-12-21, from https:// onlinelibrary.wiley.com/doi/abs/10.1029/2011JA016979 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2011JA016979) doi: 10.1029/2011JA016979 Pontius, D. H., & Wolf, R. A. (1990). Transient flux tubes in the terrestrial magnetosphere. Geophysical Research Letters, 17(1), 49-52. Retrieved 2022-09-15, from https://onlinelibrary .wiley.com/doi/abs/10.1029/GL017i001p00049 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/GL017i001p00049) doi:
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317	 bursty bulk flow. Geophysical Research Letters, 37(8). Retrieved 2022-11-28, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2009GL041971 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2009GL041971) doi: 10.1029/2009GL041971 Pembroke, A., Toffoletto, F., Sazykin, S., Wiltberger, M., Lyon, J., Merkin, V., & Schmitt, P. (2012). Initial results from a dynamic coupled magnetosphere-ionosphere-ring current model. Journal of Geophysical Re- search: Space Physics, 117(A2). Retrieved 2021-12-21, from https:// onlinelibrary.wiley.com/doi/abs/10.1029/2011JA016979 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2011JA016979) doi: 10.1029/2011JA016979 Pontius, D. H., & Wolf, R. A. (1990). Transient flux tubes in the terrestrial magnetosphere. Geophysical Research Letters, 17(1), 49-52. Retrieved 2022-09-15, from https://onlinelibrary .wiley.com/doi/abs/10.1029/GL017i001p00049 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/GL017i001p00049) doi: 10.1029/GL017i001p00049
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318	 bursty bulk flow. Geophysical Research Letters, 37(8). Retrieved 2022-11-28, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2009GL041971 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2009GL041971) doi: 10.1029/2009GL041971 Pembroke, A., Toffoletto, F., Sazykin, S., Wiltberger, M., Lyon, J., Merkin, V., & Schmitt, P. (2012). Initial results from a dynamic coupled magnetosphere-ionosphere-ring current model. Journal of Geophysical Re- search: Space Physics, 117(A2). Retrieved 2021-12-21, from https:// onlinelibrary.wiley.com/doi/abs/10.1029/2011JA016979 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2011JA016979 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2011JA016979) doi: 10.1029/2011JA016979 Pontius, D. H., & Wolf, R. A. (1990). Transient flux tubes in the terrestrial magnetosphere. Geophysical Research Letters, 17(1), 49-52. Retrieved 2022-09-15, from https://onlinelibrary .wiley.com/doi/abs/10.1029/GL017i001p00049 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/GL017i001p00049) doi: 10.1029/GL017i001p00049 Raeder, J., Cramer, W. D., Jensen, J., Fuller-Rowell, T., Maruyama, N., Toffoletto,
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1316 1317 1318 1319	 bursty bulk flow. Geophysical Research Letters, 37(8). Retrieved 2022-11-28, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2009GL041971 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2009GL041971) doi: 10.1029/2009GL041971 Pembroke, A., Toffoletto, F., Sazykin, S., Wiltberger, M., Lyon, J., Merkin, V., & Schmitt, P. (2012). Initial results from a dynamic coupled magnetosphere-ionosphere-ring current model. Journal of Geophysical Re- search: Space Physics, 117(A2). Retrieved 2021-12-21, from https:// onlinelibrary.wiley.com/doi/abs/10.1029/2011JA016979 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2011JA016979) doi: 10.1029/2011JA016979 Pontius, D. H., & Wolf, R. A. (1990). Transient flux tubes in the terrestrial magnetosphere. Geophysical Research Letters, 17(1), 49-52. Retrieved 2022-09-15, from https://onlinelibrary .wiley.com/doi/abs/10.1029/GL017i001p00049 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/GL017i001p00049) doi: 10.1029/GL017i001p00049 Raeder, J., Cramer, W. D., Jensen, J., Fuller-Rowell, T., Maruyama, N., Toffoletto, F., & Vo, H. (2016, November). Sub-Auroral Polarization Streams: A complex
1301 1302 1303 1304 1306 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320	 bursty bulk flow. Geophysical Research Letters, 37(8). Retrieved 2022-11-28, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2009GL041971 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2009GL041971) doi: 10.1029/2009GL041971 Pembroke, A., Toffoletto, F., Sazykin, S., Wiltberger, M., Lyon, J., Merkin, V., & Schmitt, P. (2012). Initial results from a dynamic coupled magnetosphere-ionosphere-ring current model. Journal of Geophysical Re- search: Space Physics, 117(A2). Retrieved 2021-12-21, from https:// onlinelibrary.wiley.com/doi/abs/10.1029/2011JA016979 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2011JA016979) doi: 10.1029/2011JA016979 Pontius, D. H., & Wolf, R. A. (1990). Transient flux tubes in the terrestrial magnetosphere. Geophysical Research Letters, 17(1), 49-52. Retrieved 2022-09-15, from https://onlinelibrary .wiley.com/doi/abs/10.1029/GL017i001p00049 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/GL017i001p00049) doi: 10.1029/GL017i001p00049 Raeder, J., Cramer, W. D., Jensen, J., Fuller-Rowell, T., Maruyama, N., Toffoletto, F., & Vo, H. (2016, November). Sub-Auroral Polarization Streams: A complex interaction between the magnetosphere, ionosphere, and thermosphere. Journal
1301 1302 1303 1304 1306 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321	 bursty bulk flow. Geophysical Research Letters, 37(8). Retrieved 2022-11-28, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2009GL041971 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2009GL041971) doi: 10.1029/2009GL041971 Pembroke, A., Toffoletto, F., Sazykin, S., Wiltberger, M., Lyon, J., Merkin, V., & Schmitt, P. (2012). Initial results from a dynamic coupled magnetosphere-ionosphere-ring current model. Journal of Geophysical Re- search: Space Physics, 117(A2). Retrieved 2021-12-21, from https:// onlinelibrary.wiley.com/doi/abs/10.1029/2011JA016979 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2011JA016979 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2011JA016979) doi: 10.1029/2011JA016979 Pontius, D. H., & Wolf, R. A. (1990). Transient flux tubes in the terrestrial magnetosphere. Geophysical Research Letters, 17(1), 49-52. Retrieved 2022-09-15, from https://onlinelibrary .wiley.com/doi/abs/10.1029/GL017i001p00049 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/GL017i001p00049) doi: 10.1029/GL017i001p00049 Raeder, J., Cramer, W. D., Jensen, J., Fuller-Rowell, T., Maruyama, N., Toffoletto, F., & Vo, H. (2016, November). Sub-Auroral Polarization Streams: A complex interaction between the magnetosphere, ionosphere, and thermosphere. Journal of Physics: Conference Series, 767(1), 012021. Retrieved 2023-03-01, from
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321	 bursty bulk flow. Geophysical Research Letters, 37(8). Retrieved 2022-11-28, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2009GL041971 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2009GL041971) doi: 10.1029/2009GL041971 Pembroke, A., Toffoletto, F., Sazykin, S., Wiltberger, M., Lyon, J., Merkin, V., & Schmitt, P. (2012). Initial results from a dynamic coupled magnetosphere-ionosphere-ring current model. Journal of Geophysical Re- search: Space Physics, 117(A2). Retrieved 2021-12-21, from https:// onlinelibrary.wiley.com/doi/abs/10.1029/2011JA016979 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2011JA016979 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2011JA016979) doi: 10.1029/2011JA016979 Pontius, D. H., & Wolf, R. A. (1990). Transient flux tubes in the terrestrial magnetosphere. Geophysical Research Letters, 17(1), 49-52. Retrieved 2022-09-15, from https://onlinelibrary .wiley.com/doi/abs/10.1029/GL017i001p00049 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/GL017i001p00049) doi: 10.1029/GL017i001p00049 Raeder, J., Cramer, W. D., Jensen, J., Fuller-Rowell, T., Maruyama, N., Toffoletto, F., & Vo, H. (2016, November). Sub-Auroral Polarization Streams: A complex interaction between the magnetosphere, ionosphere, and thermosphere. Journal of Physics: Conference Series, 767(1), 012021. Retrieved 2023-03-01, from https://dx.doi.org/10.1088/1742-6596/767/1/012021 (Publisher: IOP
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1317 1318 1319 1320 1321 1322 1323	 bursty bulk flow. Geophysical Research Letters, 37(8). Retrieved 2022-11-28, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2009GL041971 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2009GL041971) doi: 10.1029/2009GL041971 Pembroke, A., Toffoletto, F., Sazykin, S., Wiltberger, M., Lyon, J., Merkin, V., & Schmitt, P. (2012). Initial results from a dynamic coupled magnetosphere-ionosphere-ring current model. Journal of Geophysical Re- search: Space Physics, 117(A2). Retrieved 2021-12-21, from https:// onlinelibrary.wiley.com/doi/abs/10.1029/2011JA016979 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2011JA016979 doi: 10.1029/2011JA016979 Pontius, D. H., & Wolf, R. A. (1990). Transient flux tubes in the terrestrial magnetosphere. Geophysical Research Letters, 17(1), 49-52. Retrieved 2022-09-15, from https://onlinelibrary .wiley.com/doi/abs/10.1029/GL017i001p00049 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/GL017i001p00049) doi: 10.1029/GL017i001p00049 Raeder, J., Cramer, W. D., Jensen, J., Fuller-Rowell, T., Maruyama, N., Toffoletto, F., & Vo, H. (2016, November). Sub-Auroral Polarization Streams: A complex interaction between the magnetosphere, ionosphere, and thermosphere. Journal of Physics: Conference Series, 767(1), 012021. Retrieved 2023-03-01, from https://dx.doi.org/10.1088/1742-6596/767/1/012021
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1310 1311 1312 1313 1314 1315 1316 1316 1317 1318 1319 1320 1321 1322 1323	 bursty bulk flow. Geophysical Research Letters, 37(8). Retrieved 2022-11-28, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2009GL041971 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2009GL041971) doi: 10.1029/2009GL041971 Pembroke, A., Toffoletto, F., Sazykin, S., Wiltberger, M., Lyon, J., Merkin, V., & Schmitt, P. (2012). Initial results from a dynamic coupled magnetosphere-ionosphere-ring current model. Journal of Geophysical Re- search: Space Physics, 117(A2). Retrieved 2021-12-21, from https:// onlinelibrary.wiley.com/doi/abs/10.1029/2011JA016979 (_eprint: https://onlinelibrary.wiley.com/doi/abs/10.1029/2011JA016979 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2011JA016979) doi: 10.1029/2011JA016979 Pontius, D. H., & Wolf, R. A. (1990). Transient flux tubes in the terrestrial magnetosphere. Geophysical Research Letters, 17(1), 49-52. Retrieved 2022-09-15, from https://onlinelibrary .wiley.com/doi/abs/10.1029/GL017i001p00049 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/GL017i001p00049) doi: 10.1029/GL017i001p00049 Raeder, J., Cramer, W. D., Jensen, J., Fuller-Rowell, T., Maruyama, N., Toffoletto, F., & Vo, H. (2016, November). Sub-Auroral Polarization Streams: A complex interaction between the magnetosphere, ionosphere, and thermosphere. Journal of Physics: Conference Series, 767(1), 012021. Retrieved 2023-03-01, from https://dx.doi.org/10.1088/1742-6596/767/1/012021 Roeder, J. L., Fennell, J. F., Chen, M. W., Schulz, M., Grande, M., & Livi, S. (1996,
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325	 bursty bulk flow. Geophysical Research Letters, 37(8). Retrieved 2022-11-28, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2009GL041971 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2009GL041971) doi: 10.1029/2009GL041971 Pembroke, A., Toffoletto, F., Sazykin, S., Wiltberger, M., Lyon, J., Merkin, V., & Schmitt, P. (2012). Initial results from a dynamic coupled magnetosphere-ionosphere-ring current model. Journal of Geophysical Re- search: Space Physics, 117(A2). Retrieved 2021-12-21, from https:// onlinelibrary.wiley.com/doi/abs/10.1029/2011JA016979 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2011JA016979) doi: 10.1029/2011JA016979 Pontius, D. H., & Wolf, R. A. (1990). Transient flux tubes in the terrestrial magnetosphere. Geophysical Research Letters, 17(1), 49-52. Retrieved 2022-09-15, from https://onlinelibrary .wiley.com/doi/abs/10.1029/GL017i001p00049 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/GL017i001p00049) doi: 10.1029/GL017i001p00049 Raeder, J., Cramer, W. D., Jensen, J., Fuller-Rowell, T., Maruyama, N., Toffoletto, F., & Vo, H. (2016, November). Sub-Auroral Polarization Streams: A complex interaction between the magnetosphere, ionosphere, and thermosphere. Journal of Physics: Conference Series, 767(1), 012021. Retrieved 2023-03-01, from https://dx.doi.org/10.1088/1742-6596/767/1/012021 Roeder, J. L., Fennell, J. F., Chen, M. W., Schulz, M., Grande, M., & Livi, S. (1996, January). CRRES observations of the composition of the ring-current ion
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1316 1317 1318 1319 1320 1321 1322 1322 1323 1324 1325	 bursty bulk flow. Geophysical Research Letters, 37(8). Retrieved 2022-11-28, from https://onlinelibrary.wiley.com/doi/abs/10.1029/2009GL041971 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2009GL041971) doi: 10.1029/2009GL041971 Pembroke, A., Toffoletto, F., Sazykin, S., Wiltberger, M., Lyon, J., Merkin, V., & Schmitt, P. (2012). Initial results from a dynamic coupled magnetosphere-ionosphere-ring current model. Journal of Geophysical Re- search: Space Physics, 117(A2). Retrieved 2021-12-21, from https:// onlinelibrary.wiley.com/doi/abs/10.1029/2011JA016979 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2011JA016979 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2011JA016979 doi: 10.1029/2011JA016979 Pontius, D. H., & Wolf, R. A. (1990). Transient flux tubes in the terrestrial magnetosphere. Geophysical Research Letters, 17(1), 49-52. Retrieved 2022-09-15, from https://onlinelibrary .wiley.com/doi/abs/10.1029/GL017i001p00049 (_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/GL017i001p00049) doi: 10.1029/GL017i001p00049 Raeder, J., Cramer, W. D., Jensen, J., Fuller-Rowell, T., Maruyama, N., Toffoletto, F., & Vo, H. (2016, November). Sub-Auroral Polarization Streams: A complex interaction between the magnetosphere, ionosphere, and thermosphere. Journal of Physics: Conference Series, 767(1), 012021. Retrieved 2023-03-01, from https://dx.doi.org/10.1088/1742-6596/76771/012021 Roeder, J. L., Fennell, J. F., Chen, M. W., Schulz, M., Grande, M., & Livi, S. (1996, January). CRRES observations of the composition of the ring-current ion populations. Advances in Space Research, 17(10), 17-24. Retrieved 2023-

1328	027311779500689C doi: 10.1016/0273-1177(95)00689-C					
1329	Roederer, J. G. (1967). On the adiabatic motion of energetic parti-					
1330	cles in a model magnetosphere. Journal of Geophysical Research					
1331	(1896-1977), 72(3), 981-992. Retrieved 2023-03-09, from https://					
1332	onlinelibrary.wiley.com/doi/abs/10.1029/JZ072i003p00981 (eprint:					
1333	https://onlinelibrary.wiley.com/doi/pdf/10.1029/JZ072i003p00981) doi:					
1334	10.1029/JZ072i003p00981					
1335	Rowland, D. E., & Wygant, J. R. (1998). Dependence of the large-scale, inner					
1336	magnetospheric electric field on geomagnetic activity. Journal of Geophysi-					
1337	cal Research: Space Physics, 103(A7), 14959–14964. Retrieved 2023-04-21,					
1338	from https://onlinelibrary.wiley.com/doi/abs/10.1029/97JA03524					
1339	(eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/97JA03524) doi:					
1340	10.1029/97JA03524					
1341	Runov, A., Angelopoulos, V., Henderson, M. G., Gabrielse, C., & Artemyev,					
1342	A. (2021). Magnetotail Dipolarizations and Ion Flux Variations Dur-					
1343	ing the Main Phase of Magnetic Storms. Journal of Geophysical Re-					
1344	search: Space Physics, 126(5), e2020JA028470. Retrieved 2022-08-24, from					
1345	https://onlinelibrary.wiley.com/doi/abs/10.1029/2020JA028470					
1346	(eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2020JA028470)					
1347	doi: 10.1029/2020JA028470					
1348	Runov, A., Angelopoulos, V., Zhou, XZ., Zhang, XJ., Li, S., Plaschke, F.,					
1349	& Bonnell, J. (2011). A THEMIS multicase study of dipolarization					
1350	fronts in the magnetotail plasma sheet. Journal of Geophysical Re-					
1351	search: Space Physics, 116(A5). Retrieved 2022-10-27, from https://					
1352	onlinelibrary.wiley.com/doi/abs/10.1029/2010JA016316 (eprint:					
1353	https://onlinelibrary.wiley.com/doi/pdf/10.1029/2010JA016316) doi:					
1354	10.1029/2010JA016316					
1355	Sciola, A., Merkin, V., Sorathia, K., Gkioulidou, M., Bao, S., Toffoletto, F.,					
1356	Ukhorskiy, A. (2023). The contribution of plasma sheet bubbles to stormtime					
1357	ring current buildup and evolution of the energy composition. Retrieved from					
1358	https://doi.org/10.5281/zenodo.7921979 doi: 10.5281/zenodo.7921979					
1359	Sckopke, N. (1966). A general relation between the energy of trapped par-					
1360	ticles and the disturbance field near the Earth. Journal of Geophysical					
1361	<i>Research (1896-1977)</i> , 71(13), 3125–3130. Retrieved 2022-09-15, from					
1362	https://onlinelibrary.wiley.com/doi/abs/10.1029/JZ071i013p03125					
1363	(_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/JZ071i013p03125)					
1364	doi: $10.1029/JZ071i013p03125$					
1365	Sergeev, V., Yahnin, D., Liou, K., Thomsen, M., & Reeves, G. (2005). Nar-					
1366	row Plasma Streams as a Candidate to Populate the Inner Magneto-					
1367	sphere. In The Inner Magnetosphere: Physics and Modeling (pp. 55–					
1368	60). American Geophysical Union (AGU). Retrieved 2023-02-03, from					
1369	https://onlinelibrary.wiley.com/doi/abs/10.1029/155GM07 (_eprint:					
1370	$https://onlinelibrary.wiley.com/doi/pdf/10.1029/155GM07) \qquad doi: 10.1029/10000000000000000000000000000000000$					
1371	$155 \mathrm{GM07}$					
1372	Sheldon, R. B., & Hamilton, D. C. (1993). Ion transport and loss in the Earth's					
1373	quiet ring current: 1. Data and standard model. Journal of Geophysi-					
1374	cal Research: Space Physics, 98(A8), 13491–13508. Retrieved 2023-04-14,					
1375	from https://onlinelibrary.wiley.com/doi/abs/10.1029/92JA02869					
1376	$(_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/92JA02869) doi:$					
1377	10.1029/92JA02869					
1378	Smith, P. H., & Bewtra, N. K. (1978, August). Charge exchange lifetimes for ring					
1379	current ions. Space Science Reviews, 22(3), 301–318. Retrieved 2022-12-20,					
1380	from https://doi.org/10.1007/BF00239804 doi: 10.1007/BF00239804					
1381	Smith, P. H., & Hoffman, R. A. (1973). Ring current particle distributions dur-					
1382	ing the magnetic storms of December 16–18, 1971. Journal of Geophysi-					

1383	cal Research (1896-1977), 78(22), 4731–4737. Retrieved 2023-03-06, from					
1384	https://onlinelibrary.wiley.com/doi/abs/10.1029/JA078i022p04731					
1385	(_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/JA078i022p04731)					
1386	doi: 10.1029/JA078i022p04731					
1387	Sorathia, K. A., Merkin, V. G., Panov, E. V., Zhang, B., Lyon, J. G., Garretson,					
1388	J., Wiltberger, M. (2020). Ballooning-Interchange Instability in the					
1389	Near-Earth Plasma Sheet and Auroral Beads: Global Magnetospheric Mod-					
1390	eling at the Limit of the MHD Approximation. Geophysical Research Let-					
1391	ters, 47(14), e2020GL088227. Retrieved 2021-01-12, from https://agupubs					
1392	.onlinelibrary.wiley.com/doi/abs/10.1029/2020GL088227 (_eprint:					
1393	$https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2020GL088227) doi: 10.1029/2020GL088227 \\ doi: 10.1029/20206U20000 \\ doi: 10.1029/20200000000000000000000000000000000$					
1394	https://doi.org/10.1029/2020GL088227					
1395	Sorathia, K. A., Michael, A., Merkin, V., Ukhorskiy, A., Turner, D. L., Lyon, J.,					
1396	Toffoletto, F. (2021). The Role of Mesoscale Plasma Sheet Dynamics in Ring					
1397	Current Formation. Frontiers in Astronomy and Space Sciences, 8.					
1398	Sorathia, K. A., Ukhorskiy, A. Y., Merkin, V. G., Fennell, J. F., & Claude-					
1399	pierre, S. G. (2018). Modeling the Depletion and Recovery of the					
1400	Outer Radiation Belt During a Geomagnetic Storm: Combined MHD					
1401	and Test Particle Simulations. Journal of Geophysical Research: Space					
1402	<i>Physics</i> , 123(7), 5590–5609. Retrieved 2023-03-09, from https://					
1403	onlinelibrary.wiley.com/doi/abs/10.1029/2018JA025506 (_eprint:					
1404	https://onlinelibrary.wiley.com/doi/pdf/10.1029/2018JA025506) doi:					
1405	$10.1029/2018\mathrm{JA}025506$					
1406	Takada, T., Nakamura, R., Baumjohann, W., Asano, Y., Volwerk, M., Zhang,					
1407	T. L., Carr, C. (2006). Do BBFs contribute to inner magnetosphere					
1408	dipolarizations: Concurrent Cluster and Double Star observations. Geo-					
1409	physical Research Letters, 33(21). Retrieved 2023-03-02, from https://					
1410	onlinelibrary.wiley.com/doi/abs/10.1029/2006GL027440 (_eprint:					
1411	$https://onlinelibrary.wiley.com/doi/pdf/10.1029/2006GL027440) \qquad \qquad doi:$					
1412	$10.1029/2006 { m GL}027440$					
1413	Tang, J., Yao, Y., Kong, J., & Zhang, L. (2016, July). Large-scale traveling iono-					
1414	spheric disturbances using ionospheric imaging at storm time: A case study					
1415	on 17 march 2013. Journal of Atmospheric and Solar-Terrestrial Physics,					
1416	145, 12-20. Retrieved 2023-03-01, from https://www.sciencedirect.com/					
1417	science/article/pii/S1364682616301006 doi: 10.1016/j.jastp.2016.04.006					
1418	Toffoletto, F., Sazykin, S., Spiro, R., & Wolf, R. (2003, April). Inner magneto-					
1419	spheric modeling with the Rice Convection Model. Space Science Reviews,					
1420	107(1), 175-196. Retrieved 2020-08-19, from https://doi.org/10.1023/A:					
1421	1025532008047 doi: $10.1023/A:1025532008047$					
1422	Tsyganenko, N. A., & Mukai, T. (2003). Tail plasma sheet models de-					
1423	rived from Geotail particle data. Journal of Geophysical Research:					
1424	Space Physics, 108(A3). Retrieved 2023-01-26, from https://					
1425	onlinelibrary.wiley.com/doi/abs/10.1029/2002JA009707 (_eprint:					
1426	https://onlinelibrary.wiley.com/doi/pdf/10.1029/2002JA009707) doi:					
1427	10.1029/2002JA009707					
1428	Turner, D. L., Fennell, J. F., Blake, J. B., Claudepierre, S. G., Clemmons, J. H.,					
1429	Jaynes, A. N., Reeves, G. D. (2017). Multipoint Observations of Ener-					
1430	getic Particle Injections and Substorm Activity During a Conjunction Between					
1431	Magnetospheric Multiscale (MMS) and Van Allen Probes. Journal of Geophys-					
1432	<i>ical Research: Space Physics</i> , 122(11), 11,481–11,504. Retrieved 2022-07-28,					
1433	trom https://onlinelibrary.wiley.com/doi/abs/10.1002/2017JA024554					
1434	(_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2017JA024554) doi: 10.1002/2017JA024554					
1435	10.1002/201(JA024554					
1436	Turner, N. E., Baker, D. N., Pulkkinen, T. I., Roeder, J. L., Fennell, J. F.,					
1437	& Jordanova, V. K. (2001). Energy content in the storm time					

1438	ring current. Journal of Geophysical Research: Space Physics,
1439	106(A9), 19149–19156. Retrieved 2022-12-01, from https://
1440	onlinelibrary.wiley.com/doi/abs/10.1029/2000JA003025 (_eprint:
1441	https://onlinelibrary.wiley.com/doi/pdf/10.1029/2000JA003025) doi:
1442	$10.1029/2000 \mathrm{JA003025}$
1443	Ukhorskiy, A. Y., Sorathia, K. A., Merkin, V. G., Sitnov, M. I., Mitchell, D. G.,
1444	& Gkioulidou, M. (2018). Ion Trapping and Acceleration at Dipolarization
1445	Fronts: High-Resolution MHD and Test-Particle Simulations. Journal of Geo-
1446	physical Research: Space Physics, 123(7), 5580–5589. Retrieved 2022-12-20,
1447	from https://onlinelibrary.wiley.com/doi/abs/10.1029/2018JA025370
1448	(eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2018JA025370) doi:
1449	10.1029/2018JA025370
1450	Varney, R. H., Wiltberger, M., Zhang, B., Lotko, W., & Lyon, J. (2016). Influ-
1451	ence of ion outflow in coupled geospace simulations: 1. Physics-based ion
1452	outflow model development and sensitivity study. Journal of Geophysical
1453	<i>Research: Space Physics</i> , 121(10), 9671–9687. Retrieved 2023-03-14, from
1454	https://onlinelibrary.wiley.com/doi/abs/10.1002/2016JA022777
1455	(_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2016JA022777)
1456	doi: 10.1002/2016JA022777
1457	Vasyliunas, V. M. (1970). Mathematical Models of Magnetospheric Convection and
1458	its Coupling to the Ionosphere. In B. M. McCormac (Ed.), Particles and Fields
1459	in the Magnetosphere (pp. 60–71). Dordrecht: Springer Netherlands. doi: 10
1460	$.1007/978-94-010-3284-1_6$
1461	Welling, D. T., Jordanova, V. K., Zaharia, S. G., Glocer, A., & Toth, G. (2011).
1462	The effects of dynamic ionospheric outflow on the ring current. Journal
1463	of Geophysical Research: Space Physics, 116(A2). Retrieved 2023-05-03,
1464	from https://onlinelibrary.wiley.com/doi/abs/10.1029/2010JA015642
1465	$(_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2010JA015642)$ doi:
1466	$10.1029/2010\mathrm{JA}015642$
1467	Williams, D. J. (1985, December). Dynamics of the earth's ring current: Theory and
1468	observation. Space Science Reviews, 42(3), 375–396. Retrieved 2023-02-15,
1469	from https://doi.org/10.1007/BF00214994 doi: 10.1007/BF00214994
1470	Wiltberger, M., Merkin, V., Lyon, J. G., & Ohtani, S. (2015). High-resolution
1471	global magnetohydrodynamic simulation of bursty bulk flows. Journal of Geo-
1472	physical Research: Space Physics, 120(6), 4555–4566. Retrieved 2022-08-01,
1473	<pre>from https://onlinelibrary.wiley.com/doi/abs/10.1002/2015JA021080</pre>
1474	$(_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2015JA021080) doi:$
1475	$10.1002/2015 \mathrm{JA021080}$
1476	Wiltberger, M., Merkin, V., Zhang, B., Toffoletto, F., Oppenheim, M.,
1477	Wang, W., Stephens, G. K. (2017). Effects of electrojet tur-
1478	bulence on a magnetosphere-ionosphere simulation of a geomag-
1479	netic storm. Journal of Geophysical Research: Space Physics,
1480	122(5), 5008-5027. Retrieved 2021-01-25, from https://agupubs
1481	.onlinelibrary.wiley.com/doi/abs/10.1002/2016JA023700 (_eprint:
1482	https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2016JA023700) doi:
1483	https://doi.org/10.1002/2016JA023700
1484	Wing, S., Johnson, J. R., Chaston, C. C., Echim, M., Escoubet, C. P., Lavraud, B.,
1485	Wang, CP. (2014, November). Review of Solar Wind Entry into and
1486	Transport Within the Plasma Sheet. Space Science Reviews, $184(1)$, 33–86.
1487	Retrieved 2023-03-11, from https://doi.org/10.1007/s11214-014-0108-9
1488	doi: 10.1007/s11214-014-0108-9
1489	Wolf, R. A., Spiro, R. W., Sazykin, S., Toffoletto, F. R., & Yang, J. (2016). Forty-
1490	Seven Years of the Rice Convection Model. In <i>Magnetosphere-Ionosphere</i>
1491	Coupling in the Solar System (pp. 215–225). American Geophysical Union
1492	(AGU). Retrieved 2020-09-17, from https://agupubs.onlinelibrary

1493	.wiley.com/doi/abs/10.1002/9781119066880.ch17 (Section: 17 eprint:				
1494	https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/9781119066880.ch17)				
1495	doi: 10.1002/9781119066880.ch17				
1496	Wolf, R. A., Wan, Y., Xing, X., Zhang, JC., & Sazykin, S. (2009). En-				
1497	tropy and plasma sheet transport. Journal of Geophysical Research:				
1498	Space Physics, 114 (A9). Retrieved 2022-10-26, from https://				
1499	onlinelibrary.wiley.com/doi/abs/10.1029/2009JA014044 (eprint:				
1500	https://onlinelibrary.wiley.com/doi/pdf/10.1029/2009JA014044) doi:				
1501	10.1029/2009JA014044				
1502	Yang, J., Toffoletto, F. R., & Wolf, R. A. (2016). Comparison study of ring cur-				
1503	rent simulations with and without bubble injections. Journal of Geophysi-				
1504	cal Research: Space Physics, 121(1), 374–379. Retrieved 2022-12-06, from				
1505	https://onlinelibrary.wiley.com/doi/abs/10.1002/2015JA021901				
1506	(eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2015JA021901)				
1507	doi: 10.1002/2015JA021901				
1508	Yang, J., Toffoletto, F. R., Wolf, R. A., & Sazykin, S. (2015). On the contribution				
1509	of plasma sheet bubbles to the storm time ring current. Journal of Geo-				
1510	physical Research: Space Physics, 120(9), 7416–7432. Retrieved 2022-09-28.				
1511	from https://onlinelibrary.wiley.com/doi/abs/10.1002/2015JA021398				
1512	(eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2015JA021398) doi:				
1513	10.1002/2015JA021398				
1514	Yang J Wolf B Toffoletto F Sazykin S Wang W & Cui J (2019)				
1515	The Inertialized Rice Convection Model Journal of Geophysical Re-				
1516	search: Space Physics, 12/(12), 10294–10317. Retrieved 2023-04-11, from				
1517	https://onlinelibrary.wiley.com/doi/abs/10.1029/2019JA026811				
1518	(eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019JA026811)				
1519	doi: 10.1029/2019JA026811				
1520	Yu, Y., Jordanova, V., Welling, D., Larsen, B., Claudepierre, S. G., & Kletzing,				
1521	C = (2014) The role of ring current particle injections: Global simulations				
1522	and Van Allen Probes observations during 17 March 2013 storm. Geo-				
1523	physical Research Letters, $41(4)$, 1126–1132. Retrieved 2023-03-01, from				
1524	https://onlinelibrary.wilev.com/doi/abs/10.1002/2014GL059322				
1525	(eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2014GL059322)				
1526	doi: 10.1002/2014GL059322				
1527	Yu, Y., Jordanova, V., Zou, S., Heelis, R., Ruohoniemi, M., & Wygant,				
1528	J. (2015). Modeling subauroral polarization streams during the				
1529	17 March 2013 storm. Journal of Geophysical Research: Space				
1530	<i>Physics</i> , 120(3), 1738–1750. Retrieved 2023-03-01, from https://				
1531	onlinelibrary.wiley.com/doi/abs/10.1002/2014JA020371 (eprint:				
1532	https://onlinelibrary.wiley.com/doi/pdf/10.1002/2014JA020371) doi:				
1533	10.1002/2014JA020371				
1534	Yue, X., Wan, W., Liu, L., Liu, J., Zhang, S., Schreiner, W. S., Hu, L. (2016).				
1535	Mapping the conjugate and corotating storm-enhanced density during 17				
1536	March 2013 storm through data assimilation. Journal of Geophysical Re-				
1537	search: Space Physics, 121(12), 12,202–12,210. Retrieved 2023-03-01, from				
1538	https://onlinelibrary.wiley.com/doi/abs/10.1002/2016JA023038				
1539	(eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2016JA023038)				
1540	doi: 10.1002/2016JA023038				
1541	Zhang, B., Sorathia, K. A., Lyon, J. G., Merkin, V. G., Garretson, J. S., & Wilt-				
1542	berger, M. (2019, September). GAMERA: A three-dimensional finite-				
1543	volume MHD solver for non-orthogonal curvilinear geometries. The As-				
1544	trophysical Journal Supplement Series, 244(1), 20. Retrieved 2020-03-				
1545	25, from http://arxiv.org/abs/1810.10861 (arXiv: 1810.10861) doi:				
1546	10.3847/1538-4365/ab3a4c				

1547 Zhao, H., Li, X., Baker, D. N., Fennell, J. F., Blake, J. B., Larsen, B. A., ...

1548	Rodriguez, J. V.	(2015).	The evolution of ring curre	nt ion energy		
1549	density and energy content during geomagnetic storms based on Van					
1550	Allen Probes measurements.		Journal of Geophysical Re	Journal of Geophysical Research: Space		
1551	Physics, 120(9), 7493-7511.		Retrieved 2021-10-18, fr	Retrieved 2021-10-18, from https://		
1552	onlinelibrary.wiley.com/doi/abs/10.1002/2015JA021533 (_eprint:					
1553	https://onlinelibrary.wiley.com/doi/pdf/10.1002/2015JA021533) doi:					
1554	10.1002/2015JA021533					
1555	Østgaard, N., Mende, S. B., Frey, H. U., Gladstone, G. R., & Lauche,					
1556	Н. (2003).	N	eutral hydrogen density profiles	derived from		
1557	geocoronal imaging.		Journal of Geophysical Re	search: Space		
1558	Physics, $108(A7)$.	F	Retrieved 2021-03-30, from http	s://agupubs		
1559	.onlinelibrary.wiley.com/doi/abs/10.1029/2002JA009749 (eprint:					
1560	https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2002JA009749) doi:					
1561	https://doi.org/10.1029/2002JA009749					

Figure 1.

Figure 2.

Figure 3.

Figure 4.

FB

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Journal of Geophysical Research: Space Physics

Supporting Information for

The contribution of plasma sheet bubbles to stormtime ring current buildup and evolution of the energy composition

A. Sciola¹, V.G. Merkin¹, K. Sorathia¹, M. Gkioulidou¹, S. Bao², F. Toffoletto², K. Pham³, D. Lin³, A. Michael¹, M. Wiltberger³, A. Ukhorskiy¹

¹Johns Hopkins Applied Physics Laboratory

²Rice University

³NCAR High Altitude Observatory

Contents of this file

Figure S1

Additional Supporting Information (Files uploaded separately)

Captions for Movies S1 and S2

Introduction

The Supporting Information includes a figure of the solar wind parameters used to drive the MHD simulation (Figure S1). Movie S1 shows an animation of Figure 4 in the main manuscript, visualizing bulk flows and field line topology in the dusk to post-midnight sector. Movie S2 shows an animation of Figure 7, visualizing the buildup and evolution of the pressure in the Rice Convection Model (RCM) alongside data-model comparisons of proton intensity and the perturbation magnetic field.

Figure S1. Solar wind boundary conditions used to drive the MHD simulation. The black line is drawn at 2013-03-17 09:28:00, corresponding to the time shown in Figure 1. The orange shaded region on the SYM/H panel indicates the simulated period of the storm.

Movie S1. Spherical slices through the MHD solution of the dusk to post-midnight sector. The slices span 6-14 R_E, spaced 2 R_E apart, and are centered in Z on the XY-plane. The color contours on the slices show the radial component of the bulk velocity perpendicular to the magnetic field $(v_{\perp})_r$. The darker regions on the slices denote regions that are on non-closed field lines (either open or fully IMF field). Semi-transparent vectors follow the 3D flow direction and magnitude and are colored by $(v_{\perp})_r$. The Earth is also shown, with the downward and upward field-aligned currents shown in purple and green, respectively. The red line in the ionosphere marks the open-closed boundary determined via field line tracing.

Movie S2. Comparison of proton intensities between **(a)** RBSPICE and **(b)** RCM for the full energy spectra between 10 and 200 keV. **(c)** Comparison between the Observed Sym-H (blue), that calculated from the simulation (orange), and the DPS-*Dst* evaluated in the model within 6 R_E (green), the same as in Figure 1. **(d)** RCM pressure and RBSP-B's full trajectory (orange line) and current position (white circle with orange border) mapped along field lines to the equatorial plane. The vertical lines in panels (a), (b), and (c), and pressure and spacecraft location in panel (d). The thin colored bar below panel (b) shows the RCM pressure at the spacecraft location for a given time, with the same colorbar as panel (d).