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Abstract

NOAA Climate Prediction Center (CPC) has generated a 100-member ensemble of Atmospheric Model Intercomparison Project
(AMIP) simulations from 1979 to present using the GFSv15 with FV3 dynamical core. The intent of this study is to document
a development in an infrastructure capability with a focus to demonstrate the quality of these new simulations is on par with
the previous GFSv2 AMIP simulations. These simulations are part of CPC’s efforts to attribute observed seasonal climate
variability to SST forcings and get updated once a month by available observed SST.

The performance of these simulations in replicating observed climate variability and trends, together with an assessment of

climate predictability and the attribution of some climate events is documented. A particular focus of the analysis is on the US

climate trend, Northern Hemisphere winter height variability, US climate response to three strong El Niño events, the analysis

of signal to noise ratio (SNR), the anomaly correlation for seasonal climate anomalies, and the South Asian flooding of 2022

summer, and thereby samples wide aspects that are important for attributing climate variability. Results indicate that the new

model can realistically reproduce observed climate variability and trends as well as extreme events, better capturing the US

climate response to extreme El Niño events and the 2022 summer South Asian record-breaking flooding than GFSv2. The new

model also shows an improvement in the wintertime simulation skill of US surface climate, mainly confined in the Northern

and Southeastern US for precipitation and in the east for temperature.
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Abstract 22 

NOAA Climate Prediction Center (CPC) has generated a 100-member ensemble of Atmospheric 23 

Model Intercomparison Project (AMIP) simulations from 1979 to present using the GFSv15 with 24 

FV3 dynamical core. The intent of this study is to document a development in an infrastructure 25 

capability with a focus to demonstrate the quality of these new simulations is on par with the 26 

previous GFSv2 AMIP simulations. These simulations are part of CPC’s efforts to attribute 27 

observed seasonal climate variability to SST forcings and get updated once a month by available 28 

observed SST. 29 

The performance of these simulations in replicating observed climate variability and trends, 30 

together with an assessment of climate predictability and the attribution of some climate events is 31 

documented. A particular focus of the analysis is on the US climate trend, Northern Hemisphere 32 

winter height variability, US climate response to three strong El Niño events, the analysis of signal 33 

to noise ratio (SNR), the anomaly correlation for seasonal climate anomalies, and the South Asian 34 

flooding of 2022 summer, and thereby samples wide aspects that are important for attributing 35 

climate variability. Results indicate that the new model can realistically reproduce observed 36 

climate variability and trends as well as extreme events, better capturing the US climate response 37 

to extreme El Niño events and the 2022 summer South Asian record-breaking flooding than GFSv2. 38 

The new model also shows an improvement in the wintertime simulation skill of US surface 39 

climate, mainly confined in the Northern and Southeastern US for precipitation and in the east for 40 

temperature. 41 

  42 

  43 
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Key points 44 

• A large AMIP ensemble based on NOAA’s GFSv15 with FV3 dynamical core is created to 45 

support attribution of observed climate anomalies at CPC. 46 

• The new simulations can replicate the observed climate variability and trends as well as extreme 47 

seasonal events. 48 

• There are some improvements in simulating the extreme events in the new model compared to 49 

the older version. 50 

Plain Language Summary 51 

To correctly account for extreme weather and climate events such as heatwaves, floods and 52 

droughts that have devastating effects on the US economy and human lives, climate model 53 

experiments have become a key tool to disentangle numerous responsible factors. A recent 54 

development of an updated modeling framework at the National Centers for Environmental 55 

Prediction (NCEP) to support the attribution of observed seasonal anomalies is reported in this 56 

study. We have generated a 100-member ensemble of simulations in which each member has 57 

identical SST forcing but differs only by the initial atmospheric condition. These simulations are 58 

updated once a month when the observed SST data becomes available. We use the ensemble mean 59 

of these simulations to describe the responses to SST (referred to as the potentially predictable 60 

component of observed anomalies) and use the departure of individual members from the ensemble 61 

mean to assess the unpredictable component in the atmospheric variability. We document the 62 

performance of these simulations in replicating the observed climate variability, trends and 63 

extreme events, and find that the new model can realistically reproduce the observed key features 64 

and has a better simulation of extreme seasonal events compared to the previous version. 65 

  66 
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 1. Introduction 67 

Needs for understanding climate variability and predictability, understanding of long-lasting 68 

climate anomalies, and reasons for success and failures for long-range predictions, can be well 69 

served by ensembles of AMIP-style simulations, that is, atmosphere-only simulations that are 70 

constrained by the evolution of realistic SSTs and sea ice (Gates et al. 1998). The AMIP approach 71 

allows for the isolation of the atmospheric sensitivity to observed and specified evolution of SSTs, 72 

though it cannot explain the origin for the SSTs themselves. The ensemble mean of AMIP 73 

simulations documents the response to SSTs, often referred to as the potentially predictable (or 74 

attributable) component of the observed anomalies, or potential for predictions well beyond the 75 

limits of when initial atmosphere conditions constrain weather. The contribution of the 76 

unpredictable component in the atmospheric variability can also be assessed from the analysis of 77 

the departure of individual AMIP model simulations from the ensemble mean anomalies. In 78 

addition, the analysis of individual simulations can evaluate the role of noise in the level of 79 

discrepancy of the observed anomalies from the predictable (attributable) component because of 80 

the correspondence between observed anomalies and a realization of a single model run (Kumar 81 

et al. 2013). 82 

 83 

AMIP simulations are well suited to understand causes for extreme weather and climate events 84 

including floods, droughts, and heat waves that are known to have devastating effects on human 85 

lives and the economy of the United States (Changnon 1999; Seager et al. 2015; NOAA 2017; 86 

Philip et al. 2021). For example, southern states and California were plagued by storms attributed 87 

to El Niño 1997-98. In addition to the losses of 189 lives, the estimated economic losses nationally 88 

were about $4 billion (Changnon 1999). The California drought of 2014 cost California $2.2 89 
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billion in damages and 17000 agricultural jobs (Howitt et al. 2014; Seager et al. 2015). The recent 90 

heatwave of June 2021, whose temperature records were historically highest in some cities in the 91 

Pacific northwest of the U.S. and Canada, caused a sharp increase in sudden deaths and hospital 92 

visitations for heat-related illnesses and emergencies (Philip et al. 2021). The key for predicting 93 

these events depends strongly on understanding their causal relationship with external drivers (an 94 

exercise often referred to as attribution), for example, slowly evolving SST anomalies, decadal 95 

variability, and long-term trends. However, as causal relationships seldom explain a large fraction 96 

of total variability and are superimposed on the internal variability (e.g., Kumar et al. 2013; Zhang 97 

et al. 2018), observations, due to their limited sample, alone are inadequate to fully establish such 98 

relationships, particularly on an individual event basis. For this purpose, climate model 99 

experiments, for example, the aforementioned AMIP simulations, have become an indispensable 100 

tool to disentangle the various factors accounting for extreme weather and climate variability on 101 

different time scales (Murray et al. 2020; Barsugli et al. 2022). In this paper, a recent development 102 

of such a modeling framework at NCEP in support of the attribution of observed climate anomalies 103 

is reported.  104 

 105 

Climate attribution is a scientific process for establishing the principal causes or physical 106 

explanation for observed climate conditions and phenomena. To date, the attribution efforts at CPC 107 

have relied on the current operational seasonal prediction system - the Climate Forecast System 108 

v2 (CFSv2) (https://www.cpc.ncep.noaa.gov/products/people/mchen/AttributionAnalysis/). To 109 

provide a historical perspective, the first Climate Forecast System (CFS), called CFSv1, was 110 

implemented into operations at the NCEP in August 2004 and was the first fully coupled 111 

atmosphere–ocean–land model used at NCEP for seasonal prediction (Saha et al. 2006). 112 
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Subsequently, the CFSv2 was made operational in March 2011 (Saha et al. 2014), with upgrades 113 

to all aspects of the data assimilation and forecast model components. CFSv2 generates a set of 9-114 

month retrospective forecasts with forecasts initialized using the analysis from the corresponding 115 

Climate Forecast System Reanalysis (CFSR) (Saha et al. 2014). 116 

  117 

 In addition to the initialized CFSv2 forecasts, at CPC a large ensemble of AMIP simulations based 118 

on GFSv2, the atmospheric component of the CFSv2, updated in real-time, has also been 119 

maintained to attribute causes for the observed real-time seasonal climate anomalies by identifying 120 

the impacts of anomalous boundary forcing (particularly due to SSTs). The ensemble of AMIP 121 

simulations with GFSv2 has been used to diagnose the forced response to observed SSTs, such as 122 

the forced atmospheric teleconnections during 1979-2014 (Hartmann 2015; Zhang et al. 2016), the 123 

causality of California rains (Seager et al. 2015; Zhang et al. 2018), and US surface climate 124 

response associated with El Niño flavors (Zhang et al. 2020). 125 

 126 

Despite continued improvements in spatial resolution, energy conservation, and computational 127 

efficiency, the hydrostatic spectral dynamical core of the NCEP Global Forecast System (GFS) 128 

[Global Spectral Model (GSM)] has not been upgraded since the 1980s. In 2016, the Finite-129 

Volume Cubed-Sphere Dynamical Core (FV3), developed at the NOAA/Geophysical Fluid 130 

Dynamics Laboratory (GFDL), was selected as the dynamical core of NOAA Next Generation 131 

Global Prediction System (NGGPS) project as an upgrade for the GSM. The advantage of FV3 132 

includes its high efficiency and scalability, run-time switchable nonhydrostatic solver allowing for 133 

convective-scale simulation, exact mass and approximate energy conservation, skillful forecasts 134 
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and adaptability to the present GFS physics and data assimilation system and its robust kinetic 135 

energy spectrum (Zhou et al. 2019). 136 

 137 

In recent years, a new global model coupling the FV3 with GFS physical parameterizations, called 138 

the finite-volume Global Forecast System, or FV3/GFS (Zhou et al. 2019), has been developed. 139 

The FV3 GFS was implemented into the operational Global Forecast System as version 15 140 

(GFSv15) in 2019 (https://www.emc.ncep.noaa.gov/users/meg/fv3gfs/).  141 

  142 

To continue supporting requirements for the attribution of seasonal climate anomalies and to assess 143 

the reasons for the success and failures of operational seasonal forecasts, CPC also upgraded AMIP 144 

simulations from the GSM based atmospheric model to one based on FV3GFS. As part of this 145 

effort, a large 100-member ensemble of AMIP simulations from 1979 to present using the GFSv15 146 

with FV3 dynamical core has been generated.  147 

The goal of present analysis is to introduce this data set that can be used for understanding various 148 

aspects of climate variability, document the performance of these simulations in replicating 149 

observed climate variability and trends, development in an infrastructure capability by comparing 150 

the quality of FV3 GFS model simulations with those of GFSv2, and give some examples of the 151 

assessment of climate predictability and attribution of some climate events. The focus of this study 152 

is on the evaluation of the performance of FV3 GFS AMIP simulations relative to GFSv2 in 153 

replicating observed climate variability and trends for the period of 1979-2021. 154 

 155 

This paper is organized as follows: We introduce the observational and model datasets as well as 156 

analysis methods in section 2. Section 3 first presents an assessment of the climatology in the 157 
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model, and then the simulation of observed trend and northern hemisphere winter height variability. 158 

Finally, the simulation of US climate response to ENSO, the assessment of climate predictability 159 

and simulation of extreme seasonal events are also presented. Conclusions and discussions are 160 

given in section 4. 161 

 2. Datasets and methods 162 

a. Observed and model data 163 

 164 

The characteristics of observed estimates for land surface climate conditions are based on analysis 165 

of the Global Historical Climatology Network/Climate Anomaly Monitoring System 166 

(GHCN/CAMS) 2-meter temperature (T2m) (Fan and van den Dool 2008) and gauge-based 167 

gridded monthly Global Precipitation Climatology Centre (GPCC) data sets (Schneider et al. 2014), 168 

available at 1o-by-1o resolution. Same as the data used in Zhang et al. (2006), observed estimates 169 

of the upper-level circulation pattern are based on 200-hPa geopotential height fields using the 170 

National Centers for Environmental Prediction –National Center for Atmospheric Research 171 

reanalysis (Kalnay et al. 1996). To explore the possible tropical drivers for land surface climate 172 

conditions and upper-level circulation patterns, we also analyzed global teleconnection associated 173 

with the tropical SST and precipitation variability. The observed SST data, on a 1o-by-1o grid, are 174 

from the Hurrell data set (Hurrell et al. 2008), which is a combined version of the Hadley Centre's 175 

SST version 1.1 (HADISST1) and the NOAA Optimal Interpolation (OI) SST version 2 (OISSTv2) 176 

from November 1981 onward. Global precipitation fields are from the CPC Merged Analysis of 177 

Precipitation (CMAP; Xie and Arkin 1997) and are available at 2.5o-by-2.5o resolution. 178 

  179 
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We utilize an atmospheric model simulation [also referred to as AMIP experiments] based on 180 

NOAA’s GFSv15 model with the Finite-Volume (FV3) dynamical core (Putman and Lin, 2007) 181 

on a cubed-sphere grid (https://www.emc.ncep.noaa.gov/users/meg/fv3gfs/). The GFSv15 uses the 182 

Rapid Radiative Transfer Method for General Circulation Models (RRTMG) scheme for 183 

shortwave and longwave radiation (Iacono et al. 2008), hybrid eddy-diffusivity mass flux 184 

turbulence scheme (Han et al. 2016), GFDL microphysics (Zhou et al. 2019), and scale-aware 185 

mass flux convection scheme (Han and Pan 2011). The GFSv15 physics also includes Noah land 186 

surface model and a revised bare-soil evaporation scheme. A three-layer thermodynamic sea ice 187 

model (Winton 2000) has been coupled to the GFSv15 and it predicts sea ice thickness. Detailed 188 

description of parameterization schemes, with associated references, can be found at 189 

https://dtcenter.ucar.edu/GMTB/v3.0/sci_doc/GFS_v15_page.html.  190 

 191 

A version of this atmospheric model is currently the operational global weather prediction system 192 

at NCEP. The FV3 GFS model used in our simulations is run at C96 horizontal resolution with 64 193 

vertical levels and forced with specified observed monthly varying SSTs, sea ice (Hurrell et al. 194 

2008), and carbon dioxide concentrations from the World Data Centre for Greenhouse Gases 195 

(WDCGG) operated by the Japan Meteorological Agency (JMA) for 1979–2021. Climatological 196 

values are specified for other greenhouse gases, aerosols, solar, and volcanic aerosols. A 100-197 

member ensemble of AMIP simulations is maintained at NOAA’s CPC. Each member in the 198 

ensemble has identical external forcing but differs only by its initial atmospheric condition. The 199 

forced response to external forcings is derived from the statistics of 100-member simulations, e.g., 200 

ensemble average. 201 

      202 
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To assess the robustness of key features in replicating observed climate variability and trends by 203 

FV3 GFS, we also diagnose the AMIP simulations from a 30-member ensemble of the GFSv2 204 

model that spans the same period. As the atmospheric component of the NCEP CFSv2 (Saha et al. 205 

2014), the GFSv2 model is the previous version of CPC AMIP simulations and is run at spectral 206 

T126 horizontal resolution with 64 vertical levels. 207 

  208 

b. Methods 209 

In the present study, we follow the methodology of Zhang et al. (2016) to obtain the observed 210 

leading structures of the Northern Hemisphere (NH) wintertime circulation variability by applying 211 

empirical orthogonal function (EOF) analysis to DJF seasonally averaged 200-hPa heights for the 212 

42 years of data during 1979-2021 period. The EOF analysis is based on the covariance matrix for 213 

20oN-90oN latitude band and the EOF patterns are presented as regressions against the principal 214 

component (PC) time series. Note that unrotated EOFs utilized here are constructed to be both 215 

spatially and temporally uncorrelated with each other.  216 

 217 

Leading EOF modes of observational variability have contributions both from the atmospheric 218 

internal and forced variability. We complement this analysis with the EOF mode analysis of 219 

ensemble mean AMIP data to isolate the forced signals. We then provide a comparison of the first 220 

three leading modes of variability of the observed and FV3 GFS simulated DJF 200-hPa 221 

geopotential heights from the individual members of AMIP simulations, which demonstrates that 222 

the model can well capture the observed three leading modes of interannual variability. 223 

 224 
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Based on a 100-member ensemble of FV3 GFS AMIP simulations, probability density function 225 

(PDF) is analyzed to reveal the statistics of US climate trends by examining the frequency 226 

distributions of surface climate conditions over two different periods. We also plot the PDF of 227 

California rainfall from the large ensemble of FV3 GFS to explore the possible cause of observed 228 

failed California rains during the strong 2016 El Niño winter. 229 

 230 

Finally, climate predictability in our analysis is further assessed by examining the signal-to-noise 231 

ratio (SNR) which quantifies predictable (signal) and unpredictable (noise) components. The 232 

signal component in the SNR is the variance of ensemble mean while the noise component is the 233 

variance of departure in the individual members from the ensemble mean (Kumar and Hoerling 234 

1995). Higher SNR values indicate larger predictability. The anomaly correlation (AC), defined 235 

as the correlation of anomalies between AMIP ensemble means and observations, is calculated to 236 

complement SNR analysis. It is expected that larger SNR would correspond to larger AC (Kumar 237 

and Hoerling 2000). Anomalies are computed relative to a 1991-2020 reference period for AMIP 238 

simulations and observations. 239 

 240 

 3. Results 241 

a. Assessment of the climatology 242 

Instead of a direct comparison of the climatology between model and observations, we focus on 243 

the assessment of the seasonal cycle of climatology because observed estimates of quantities like 244 

surface air temperature and rainfall can be problematic (Fan and van den Dool 2008; Xie and Arkin 245 

1997).  246 

 247 
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Figure 1 shows the difference in climatology between JJA and DJF (JJA minus DJF) for 248 

observations (left panel) and FV3 GFS AMIP ensemble mean (right panel). The largest difference 249 

in eddy (zonal mean removed) 200-hPa height is in the Northern Hemisphere (NH) middle latitude. 250 

The observed positive centers over the Asia and North American Continent and negative centers 251 

over the North Pacific and North Atlantic are well captured in the model, with a high pattern 252 

correlation of 0.94. 253 

  254 

Observed precipitation difference shows that there is increased precipitation in the north of the 255 

equator and decreased precipitation in the south of the equator. This feature is realistically 256 

reproduced in the model. Surface air temperature difference pattern is also similar between model 257 

and observation, with warming in the northern hemisphere land and cooling in the southern 258 

hemisphere land. The pattern correlation is 0.98. 259 

 260 

The global mean values of the differences in climatology between summer and winter for eddy 261 

200-hPa, precipitation and surface air temperature are also comparable in the model and 262 

observations (see the first value in the titles of maps). The results suggest that FV3 GFS can 263 

realistically capture the observed seasonal cycle of climatology. Table 1 lists the global mean 264 

values of the difference in climatology (JJA minus DJF) for GFSv2 and FV3 GFS and the 265 

respective global pattern correlations with observations. For eddy 200-hPa, the global mean values 266 

of climatology differences in two models and the pattern correlations with observations are 267 

comparable. Compared to GFSv2, the pattern correlation with observations for precipitation and 268 

the global mean value for surface air temperature are improved in FV3 GFS model to some extent.  269 

 270 
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We further use Taylor diagram (Taylor 2001) to provide a summary of the relative skill with which 271 

two models simulate the spatial pattern of annual mean precipitation and surface air temperature 272 

over different regions (Figure 2). Two models generally demonstrated a similar ability to simulate 273 

the annual mean surface air temperature and precipitation, featuring the largest pattern correlation 274 

(greater than 0.98) and the lowest normalized root-mean-square (RMS) error (less than 0.2) for 275 

global temperature, and the smallest pattern correlation (about 0.81) and largest RMS error (about 276 

0.65) for tropical precipitation. The standard deviation of global and tropical precipitation is 277 

somewhat overestimated, and the standard deviation of tropical temperature is slightly 278 

underestimated in the models. Over the contiguous US, the pattern correlations for both 279 

temperature and precipitation are greater than 0.90 in two models, while the standard deviations 280 

of these two fields are closer to observations in FV3 GFS relative to GFSv2. The simulation of 281 

observed trends and climate variability are discussed in the following sections. 282 

  283 

b. Simulation of observed trends 284 

Human activities, especially emissions of greenhouse gases, are extremely likely to be the 285 

dominant cause of the observed warming trends of global land temperature since the mid-20th 286 

century (Wuebbles et al. 2017). A large fraction of these changes is communicated to the 287 

atmosphere via the indirect influence of trends in SSTs (Hoerling et al. 2006; Compo and 288 

Sardeshmukh 2009; Fahad and Burls 2022). Because the oceans also continuously interact with 289 

the atmosphere, SSTs can have considerable effects on global climate variability on different time 290 

scales. In addition to the effect of warming oceans on continental temperature trends, increases in 291 

SST have also led to an increase in the amount of atmospheric water vapor over the oceans (Yang 292 

and Tung 1998). The increased water vapor can enhance the amplitude of climate feedback in 293 
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response to anthropogenic activities through positive feedback (Held and Soden 2000; Soden et al. 294 

2005).  295 

 296 

Because trends contribute to seasonal anomalies especially for temperature-related variables, 297 

attribution analysis includes the influence of anthropogenic forcings (either through their direct 298 

influence via the radiative forcing or indirect influence via changes in SST that are specified in the 299 

AMIP simulations). We therefore document the ability of the AMIP runs to simulate observed 300 

trends, particularly in temperature where the influence is most prominent. 301 

 302 

Figure 3 shows the time series of DJF (top) and JJA (bottom) surface air temperature anomalies 303 

averaged over global land for 1979-2021. The red line indicates observations, and the blue line 304 

and black line show the ensemble means of GFSv2 and FV3 GFS AMIP runs, respectively. To 305 

compare observations against the individual runs, and to see if the observed variability is within 306 

the envelope of model solutions, the time-series of land temperature in the 100 individual runs 307 

from FV3 GFS are also shown (gray lines). It is clear that observations have an upward trend of 308 

about 1o C since 1979 for both winter and summer. The FV3 GFS model ensemble mean agrees 309 

well with the observed trends. In most cases, the observed value is within the envelope of ensemble 310 

spread (gray lines) (that, as expected, has larger variability during winter compared to summer). 311 

The previous version GFSv2 ensemble mean has a similar temporal correlation with observed 312 

trend as FV3 GFS for winter, but the correlation is somewhat smaller in GFSv2 for summer. 313 

  314 

To explore whether FV3 GFS model can capture the observed trends, Figure 4 shows the frequency 315 

distributions [also called probability density functions (PDF)] of wintertime surface air 316 



15 
 

temperature (top left) and precipitation (top right) from AMIP runs for the first 5-yr period (blue 317 

curve) and last 5-yr period (red curve) of the simulations over the contiguous United States. These 318 

two curves, which are significantly different according to the Kolmogorov-Smirnov test, are based 319 

on 1500 (100 members multiply by 15 months for 5-yr period) model samples. Short tick marks 320 

across the bottom indicate 15 observed values during the corresponding 5-yr period. 321 

  322 

 For the two periods the observed values are located within the spread of model samples for both 323 

wintertime temperature and precipitation. A feature to note is that the red curve is shifted toward 324 

warmer and drier conditions compared to the blue curve. This indicates that the latter period is 325 

warmer and drier than the earlier period for spatial average over the contiguous US. In other words, 326 

there is a US warming and drying trend during the winter (Weaver et al. 2014). 327 

  328 

The results for summer shown in Figure 4 bottom are similar to those for winter, and two curves 329 

are also significantly different through the Kolmogorov-Smirnov test, confirming a US warming 330 

and drying trend during the summer as well. Also, as expected, the variability is smaller in summer 331 

compared to winter, which is a common feature both in the model and the observation. The US 332 

warming trend is also found for both DJF and JJA seasons based on GFSv2 AMIP 30-member 333 

ensemble. However, there is no consensus on the precipitation trend for these two seasons in 334 

GFSv2 (Fig. S1 in the supplementary material). 335 

 336 

c. Simulation of Northern Hemisphere wintertime height variability 337 

The long-lasting climate anomalies are usually related to the leading modes of climate variability 338 

(e.g., Hartmann 2015; Zhang et al. 2016). Atmospheric teleconnections associated with ENSO are 339 
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known to be the underpinnings for North American seasonal climate predictability (Horel and 340 

Wallace 1981; Trenberth et al. 1998). Further, understanding the atmospheric response patterns 341 

beyond the canonical response to ENSO is also an outstanding problem in quantifying the sources 342 

of predictability and attribution of climate variations, and further, may result in improvements in 343 

our understanding of seasonal predictability (Hoerling and Kumar 2002; Barnston et al. 2005; 344 

Kumar et al. 2005; Zhang et al. 2016). It is thus important to assess the capability of FV3 GFS in 345 

reproducing the leading modes of climate variability. 346 

  347 

Figure 5 shows wintertime (DJF) 200-hPa height structures based on the leading three EOFs of 348 

the reanalysis data, which explain a combined 56.6% of the height variability poleward of 20oN. 349 

Contours in the left panels and shaded values in the right panels are the observed 200-hPa heights 350 

and SSTs regressed against each eigenvector’s PC time series shown in the middle panels for 1979-351 

2021, respectively. 352 

      353 

The structure of the first leading mode of the observed variability consists of positive height 354 

anomalies in the NH middle latitudes and negative anomalies in the polar regions while the time 355 

series for this mode is uncorrelated  (the value is -0.026) with Niño-3.4 SST variability. This 356 

pattern explains 26.1% of extratropical NH wintertime height variability. Zhang et al. (2016) found 357 

a similar mode of observed height variability, though ranked second in its EOF decomposition and 358 

explaining a somewhat small fraction of height variance for 1979-2014 period. They further noted 359 

that this mode can also be reproduced in a climate simulation having no interannual variability in 360 

boundary SSTs or external radiative forcing. It is clear that the observed first mode, therefore, is 361 

mainly due to internal atmospheric variability. SST regression map (top right) confirms that this 362 
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mode, resembling Arctic Oscillation (AO) pattern (Thompson and Wallace 1998), is not related to 363 

tropical SST forcing. 364 

 365 

Explaining 17.1% of the NH extratropical height variability, the observed second EOF pattern 366 

consists of a prominent wave train over the Pacific-North American (PNA) region, resembling the 367 

tropical/Northern Hemisphere (TNH) pattern (Mo and Livezey 1986). The time series for the 368 

second mode has a moderate correlation (0.58) with Niño-3.4 SST variability. The corresponding 369 

SST regression map (middle right) reveals a feature of El Niño SST warming pattern, indicating 370 

that the second mode describes the canonical atmospheric teleconnection response associated with 371 

ENSO. 372 

 373 

The third EOF of the observed variability explains 13.4% of the variance in height variability, 374 

whose pattern, temporal variability and the corresponding SST regression (bottom panels) suggest 375 

a possible connection with global warming. The EOF3 pattern largely features a same sign 376 

hemisphere-wide pattern and the PC3 times series has a distinct upward trend associated with a 377 

dominance of SST warming over the global oceans, suggesting a tendency for NH heights 378 

(corresponding to a tropospheric warming) to rise since 1979. This observed EOF3 is very similar 379 

to the dominant EOF mode in a large ensemble of CMIP simulations in which the only forcing is 380 

anthropogenic greenhouse gases (Zhang et al. 2016), supporting the argument that this mode is 381 

related to the anthropogenically forced climate change. 382 

  383 

We evaluate the model’s ability to replicate the leading modes of observed variability. For model 384 

simulations, however, the leading EOFs can be computed for each of the 100 individual members. 385 
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Further, because of sampling, the spatial pattern and the corresponding PC time series has 386 

variations from one ensemble member to another. To quantify the fidelity of leading modes of 387 

model variability against observations, one approach is to compute pattern correlations between 388 

model and observed EOFs and repeat this process for all 100 individual members. These 389 

correlations are shown in Fig. 6 (right panels). 390 

 391 

The EOF1 pattern correlation between individual members of the AMIP simulations and 392 

observations based on 42 winters ranges from 0.038 to 0.80, and the EOF2 pattern correlation 393 

ranges from 0.0076 to 0.72. The corresponding mean value of EOF1 pattern correlations with 394 

observation from 100 individual AMIP members is 0.61, much larger than the mean value (0.28) 395 

of 100 EOF2 pattern correlations. The range of EOF3 pattern correlation is more scattered, with 396 

values ranging from 0.0035 to 0.86, and the corresponding mean value of 0.47. In general, due to 397 

sampling variability, there is large uncertainty in the spatial details of EOF structures from one 398 

ensemble member to another leading to a similar variability in spatial correlations, especially for 399 

the last two modes. 400 

  401 

 FV3 GFS can reproduce the pattern of observed first three leading modes with moderate to high 402 

correlations (see figure captions for correlation values), as is evident from the results of a single 403 

member (Figure 6 left) for which the mean correlation for the first three modes with observations 404 

is largest. The explained variance for each mode from this run is also very close to observed values. 405 

But the correlation of the PC1 time series from this member with the observed PC1 time series is 406 

0.21, much smaller than the PC2 counterpart (0.55). The correlation of PC3 time series between 407 

this member and observations (0.44) is roughly double the corresponding value for PC1. We note 408 



19 
 

that the amplitude of these correlations depends on to what extent these modes are a result of 409 

atmospheric internal variability and to what extent they are constrained by the evolution of SSTs. 410 

If a mode is dominated by the atmospheric internal variability, then even though the spatial pattern 411 

of the EOF between observations and model simulation may be the similar, the corresponding 412 

time-series could still be uncorrelated.  413 

 414 

Since one of the applications of AMIP simulations is to understand the forced response to SSTs, 415 

our analysis further explores the forced atmospheric variability during 1979-2021 by using the 416 

100-member ensemble mean of AMIP simulations (Figure 7). The three leading EOFs of the 417 

ensemble mean AMIP simulations together explain 84.8% of the total boundary forced ensemble 418 

mean height variance. 419 

  420 

The height pattern associated with the first mode of forced AMIP response describes a prominent 421 

wave train over the PNA region that resembles the TNH pattern. The time series for this leading 422 

mode shows a high correlation (0.93) with Niño-3.4 SST variability, featuring positive polarity 423 

during warm events (e.g. 1982/83, 1991/92, 1997/98, 2002/03, 2009/10, 2015/16) and negative 424 

polarity during cold events (e.g. 1988/89, 1998/99, 1999/2000, 2007/08, 2011/12, 2020/21). The 425 

corresponding SST regression against PC1 time series confirms that this mode is clearly related to 426 

ENSO, similar to the observed second mode shown in the middle of Figure 5. This forced pattern 427 

alone explains 41.5% of the total boundary forced component of extratropical NH wintertime 428 

model simulated ensemble mean height response. 429 

  430 
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Associated with a ubiquitous warming over the global oceans, the second mode of forced AMIP 431 

solutions is characterized by a hemisphere-wide increase in heights. This forced mode resembles 432 

the observed third mode shown in the bottom of Figure 5 that is strongly related to climate change 433 

discussed earlier. The explained variance by this forced mode is 28.0%. 434 

  435 

Explaining 15.3% of the total boundary forced height variability over the NH extratropics, the 436 

height pattern associated with the third mode of forced AMIP response describes a wave train 437 

resembling the classic PNA pattern. Its action centers are in spatial quadrature with the leading 438 

forced solution, similar to the second EOF pattern in Zhang et al. (2016). The larger amplitudes in 439 

the corresponding PC3 time series tend to occur during ENSO events (e.g. 1982/83, 1997/98, 440 

2015/16 warm events, and 1988/89, 1998/99, 1999/2000, 2007/08, 2011/12 cold events), large 441 

projections also occur during several ENSO-neutral years (e.g. 1985/86, 1996/97, 2013/14). Zhang 442 

et al. (2016) found that there is a high correlation between PC time series for this forced mode and 443 

trans-Niño (TNI) SST index, which measures the evolution of ENSO during its transition phase 444 

(Trenberth and Stepaniak 2001). The SST regression map (Figure 7 bottom right) is very close to 445 

the SST asymmetry between El Niño and La Niña events (Zhang et al. 2016). Stronger El Niños 446 

have larger SST magnitudes in the eastern equatorial Pacific while stronger La Niñas have larger 447 

magnitudes in the western equatorial Pacific, causing a positive skew in the Niño-3 index 448 

indicative of nonlinearity in SST forcings (Burgers and Stephenson 1999; An and Jin 2004; Zhang 449 

et al. 2009; Zhang and Sun 2014). Therefore, the positive phase of the forced third mode is linked 450 

to the asymmetry in ENSO teleconnections between their extreme opposite warm and cold phases. 451 

Zhang et al. (2016) also argued that for the negative phase of this mode, the SST pattern is 452 

analogous to a pattern that is the precursor to El Niño development (e.g., Penland and Sardeshmukh, 453 
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1995), featuring warmth in the far western Pacific and coolness in the far eastern Pacific. This may 454 

indicate that the negative phase of third mode is shown to be an expression of atmospheric response 455 

to a tropical precursor SST for ENSO development that occurs mostly during ENSO-neutral 456 

winters. 457 

 458 

To assess the robustness of key features of the forced atmospheric variability, we repeat the 459 

analysis of Figure 7 by using the 30-member ensemble mean of GFSv2 AMIP simulations (Fig. 460 

S2 in the supplementary material). The results are found to be similar, including the EOF ranking 461 

and explained variance of three leading forced modes. 462 

 463 

The observed leading mode, i.e., the AO pattern is absent among the first three leading modes of 464 

AMIP forced solutions. The results lend further support to the previous argument that the observed 465 

first mode is very likely attributed to unforced variability. 466 

   467 

d. Simulation of US climate response to ENSO 468 

ENSO is the largest source of atmospheric predictability and an important aspect of climate 469 

attribution (e.g., Kumar and Hoerling 1998; Goddard and Dilley 2005; Quan et al. 2006), and 470 

therefore, it is essential to quantify the fidelity of ENSO response in AMIP simulations. 471 

  472 

Figure 8 compares the spatial pattern of the regressions of wintertime 200-hPa height, precipitation 473 

and surface air temperature anomalies on the observed Niño-3.4 SST index between FV3 GFS 474 

AMIP simulations (right panel) and observations (left panel). The regressions for the model are 475 
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obtained by first calculating the regressions for individual runs and then averaging 100 regression 476 

estimates.  477 

 478 

In response to El Niño warming, the observed upper-tropospheric circulation anomaly shows the 479 

classic El Niño-related teleconnection pattern consisting of anomalous tropical anticyclones, 480 

cyclonic anomalies over the North Pacific and anticyclonic anomalies over the North American 481 

continent. The observed precipitation is characterized by reduced convection over the tropical 482 

western Pacific and enhanced convection over the tropical Indian Ocean and tropical central and 483 

eastern Pacific. The temperature response reveals warming (cooling) over the northern (southern) 484 

United States, similar to the observed surface temperature composite during Eastern Pacific (EP) 485 

El Niño (Zhang et al. 2020). Appreciable warmth is also observed over Eurasia in the middle 486 

latitude. 487 

 488 

FV3 GFS AMIP results reproduce the observed key features associated with ENSO. The 489 

magnitude of the negative surface temperature anomalies, however, is overestimated over the 490 

Southern United States, where the simulated cyclonic anomalies are also stronger. We also note 491 

that the magnitude of observed warmth is somewhat underestimated over Eurasia, South Africa, 492 

and Australia and overestimated over the Northern South American continent. It should be noted 493 

that while the ENSO response in the model simulations is the average of 100 estimates, and 494 

therefore, has a higher statistical significance, the observed estimate could be influenced by 495 

sampling variability. 496 

  497 
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Next, we compare the seasonal climate variability for extreme El Niño events, and further, discuss 498 

the role of internal variability in shaping the observed anomalies. We also evaluate how well the 499 

FV3 GFS model simulates the US climate response to ENSO compared to the previous GFSv2 500 

model that has been used for attribution studies. 501 

  502 

Figure 9 shows the wintertime surface air temperature anomalies for three strong El Niño events 503 

from observations (left), GFSv2 simulated ensemble mean (middle) and FV3 GFS simulated 504 

ensemble mean (right). During the 1982/83 El Niño, maximum warm temperature anomalies are 505 

located over the northern United States, but the surface temperature is colder than normal over the 506 

southern United States. The above normal anomalies shift gradually from north to south in recent 507 

two strong El Niño (1997/98 and 2015/16) events. 508 

   509 

Similar to observations, there is a clear southward shift of warm anomalies from 1982/83 El Niño 510 

to 2015/16 El Niño for two model ensemble mean results. This is consistent with the US warming 511 

trends documented using PDFs (Fig. 4). The models have a moderate (0.4~0.5) pattern correlation 512 

with observations in 1982/83 El Niño and a higher pattern correlation (above 0.7) with 513 

observations in recent two strong El Niño events. Despite the comparable pattern correlations with 514 

observation for two models, there is an improvement in FV3 GFS model relative to GFSv2 in the 515 

south-eastern coastal regions of the U.S. where the GFSv2 has too strong cold anomalies but the 516 

simulations from FV3 GFS are closer to observations. 517 

  518 

Figure 10 shows the corresponding precipitation anomalies for three strong El Niño events from 519 

observations and simulations from two models. The observed precipitation patterns for both 520 
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1982/83 and 1997/98 are very similar, with wetter anomalies in the west and central US and 521 

southern coast. However, negative rainfall anomalies over southern California are observed for 522 

2015/16 winter. It can be seen that the 1997/98 El Niño has the largest wetness in the southwest. 523 

  524 

In contrast to the observed anomalies, the ensemble mean precipitation response in two models 525 

has a very similar pattern for all three strong El Niño events, characterized by a wetness across the 526 

west, central US and southern coast that resembles the observed precipitation responses to 1982/83 527 

and 1997/98 El Niño events. Further, opposite to the observed dryness in Southern California, the 528 

model ensemble mean response shows that the Southern California has wet conditions in 2015/16 529 

El Niño, consistent with previous studies (e.g., Chen and Kumar 2018; Zhang et al. 2018). 530 

Compared to GFSv2, FV3 GFS model has an increased (more than double) precipitation pattern 531 

correlation (0.32 vs. 0.14) with observation during 2015/16 El Niño. Generally, the precipitation 532 

response in the models has a high pattern correlation with observations during 1997/98 El Niño. 533 

These results indicate that during 2015/16 the observed rainfall anomalies may have been 534 

influenced by the atmospheric internal variability.  535 

  536 

To explore the role of internal variability in determining the seasonal mean rainfall over California, 537 

Figure 11 shows probability density functions (PDFs, estimated as nonparametric fits to the 538 

histograms of the raw data) of California winter precipitation during three strong El Niño events 539 

based on FV3 GFS AMIP simulations. The long tick marks indicate the corresponding observed 540 

values for the three winters. The black PDF, drawn from 100-member ensemble FV3 GFS AMIP 541 

simulations of 2015/16, is statistically indistinguishable from the blue PDF drawn from 100-542 

member ensemble FV3 GFS AMIP simulations of 1982/83, and for both, the mean of the PDF is 543 
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shifted to the right. The results indicate that the most likely California winter precipitation 544 

condition is one for wetness in the presence of strong El Niño, with a statistical mode of +42% in 545 

2015/16 runs and +52% in 1982/83 runs. The PDFs also illustrate the fact that even during strong 546 

El Niño events, there is also an appreciable probability for California seasonal mean rainfall to be 547 

negative. Further, for each PDF since all model simulations that went into its estimation have the 548 

same SST forcing, the spread in the PDF is due to atmospheric internal variability. The PDF of 549 

California winter precipitation for 1997/98 runs is significantly different from the PDFs for 550 

2015/16 and 1982/83 runs, with a statistical mode of +70%. This is consistent with the observations 551 

for which the strongest California rains are for the 1997/98 winter among three extreme El Niño 552 

events. The observed California 2015/16 dryness was almost certainly an articulation of unforced 553 

variability and is supported by the fact that the observed condition resides within the dry tail of the 554 

forced PDF (black curve). 555 

  556 

To further understand the cause for observed Southern California failed rains, we calculate the 557 

2015/16 winter precipitation pattern correlation with observation from 100 individual members 558 

and make composites for the four runs that had the best or the worst correlation among the sample 559 

of 100 (Figure 12). The analysis approach follows that of Kumar et al. (2013). 560 

  561 

The analysis based on individual model simulations indicates that on an individual run basis the 562 

observed dryness over Southern California can be replicated. This is evident from the composite 563 

of best four runs for which the anomaly correlation is the largest positive (left panels). For the 564 

composite of four runs that have the largest negative anomaly correlation, the simulated rainfall 565 

anomaly is opposite to the observed rainfall over California, and further, the wet condition over 566 
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Southern California is similar to that in SST forced signal in ensemble mean results (top right 567 

panel). Thus, the internal atmospheric variability, rather than a boundary-forced signal, was the 568 

likely cause for the failed Southern California rains in 2016 even in the presence of one of the 569 

largest El Niño. In summary, the FV3 GFS model can realistically capture the observed US climate 570 

variability associated with ENSO. 571 

 572 

e. Assessment of climate predictability 573 

Predictability of seasonal atmospheric climate variability depends on the fraction of total 574 

variability that is related to boundary conditions (referred to as the external, or potentially 575 

predictable variability) and the fraction of variability unrelated to external forcings (referred to as 576 

the internal, or unpredictable variability). Extensive efforts have been made in the past several 577 

decades to quantify potential predictability of seasonal mean climate variability by using either 578 

AMIP simulations or initialized coupled forecast systems (Kumar and Hoerling 1995; Kumar et 579 

al. 2007; Jha et al. 2019). The purpose of the analysis in this section is to assess the climate 580 

predictability based on a large ensemble FV3 GFS AMIP simulations and to quantify how the 581 

predictability measured by signal-to-noise ratio (SNR) is changing as the modeling systems are 582 

being improved. 583 

  584 

 We start our analysis by comparing the total variance of observed and FV3 GFS simulated DJF 585 

200-hPa height anomalies over 1979-2021 period (Figure 13 right panel). It is evident that the 586 

model can realistically reproduce the observed total variance of upper-tropospheric circulation 587 

anomaly during winter that is characterized by the small variability in the tropical regions and a 588 

larger variability in the extratropical regions. The observed maximum centers of variability over 589 
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Aleutian and Greenland in the northern hemisphere and those over the southern higher latitude are 590 

also well captured in the model.  591 

 592 

Shown in the left panel of Figure 13 is the two components of the simulated total variance, 593 

predictable (top) and unpredictable (bottom), which are derived from the variance of ensemble 594 

mean and the variance of departure in the individual members from the ensemble mean, 595 

respectively (Kumar and Hoerling 1995). The external variance for DJF 200-hPa height simulated 596 

by FV3 GFS is mainly located in the tropical eastern Pacific, the North Pacific and North American 597 

continent, similar to previous findings based on different periods (Kumar et al. 2007; Jha et al. 598 

2019). This is to be expected since the ensemble mean variance is dominated by SST-forced 599 

atmospheric variability and its spatial structure is in agreement with the atmospheric response to 600 

ENSO (Trenberth et al. 1998; see also Fig. 7 and associated discussion). The simulated internal 601 

variance is largest in the middle and high latitudes, especially in the North American continent and 602 

the northern Asia and is similar to the best estimate of the internal variance of observed winter 603 

200-hPa height using multiple models as noted in previous studies (Kumar et al. 2007; Jha et al. 604 

2019). 605 

 606 

 Next, we calculate the ratio of the external and the internal variance in dimensionless units as 607 

signal-to-noise ratio to assess potential predictability, the results of which is given in Figure 14 608 

that shows FV3 GFS simulated winter (left) and summer (right) SNR pattern for 200-hPa height 609 

(top), precipitation (middle) and surface air temperature (bottom). It is found that the largest SNR 610 

values for DJF 200-hPa height reside in the tropics and decrease gradually polewards due to an 611 

increase in atmospheric internal variability from tropics to extratropics (Figure 13), consistent with 612 
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the previous findings that the predictability is larger in the tropics than the extratropics (e.g., Quan 613 

et al. 2004). The summer SNR pattern is very similar to the winter pattern, while the SNR values 614 

of heights are somewhat stronger in the tropical Atlantic. This difference is likely associated with 615 

the stronger height trend in the model over the tropical Atlantic for the summer compared to the 616 

winter. The analysis of previous GFSv2 AMIP runs also indicates that there is a somewhat larger 617 

height trend over the tropical Atlantic during summer relative to winter (not shown).  618 

 619 

It should be noted that there is little consensus in the scientific community on the difference of 620 

seasonal predictability of 200-hPa height between winter and summer. Based on the NMME 621 

coupled forecast system, Jha et al. (2019) showed that SNR values for summer are lower than SNR 622 

for winter because of the weaker SST forcing during summer. However, Kumar et al. (2003) 623 

argued that due to a reduction in the internal variability, the magnitude of seasonal predictability 624 

for winter and summer are quite similar by using two atmospheric general circulation model 625 

(AGCM) simulations. A close examination of their results also reveals that the seasonal 626 

predictability is slightly stronger over the tropical Atlantic for summer than for winter, consistent 627 

with our findings. 628 

  629 

SNR pattern for precipitation is also quite similar for two seasons, with larger values located in 630 

the tropical oceans. By comparing the results with those in the coupled forecast system (Jha et al. 631 

2019), we notice that the improvement of seasonal predictability of precipitation is evident in the 632 

tropical Indian Ocean and tropical Atlantic. Similar to the spatial structure of SNR for 200-hPa 633 

height, the precipitation SNR also shows a large decline from the tropics to the extratropics and 634 

the relatively larger values over the tropical Atlantic in summer than in winter. 635 
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 636 

Consistent with SNR for 200-hPa height and precipitation, SNR of surface air temperature is also 637 

confined within the tropical land for both seasons, having larger values over North Africa, the 638 

Middle East, Asia, Northern Mexico and South America. Except for Northern Mexico, SNR values 639 

are larger over other regions in summer than in winter. The larger SNR value for winter over 640 

Northern Mexico could be related to the amplitude of ENSO SST variability. Consistent with 641 

increased SNR for precipitation over the northern Indian Ocean, SNR for surface air temperature 642 

is higher over North Africa, the Middle East, and Asia in summer compared to winter. 643 

  644 

If the SNR estimates based on the AMIP simulations are correct estimates of corresponding 645 

predictability in observations, then generally larger SNR values imply a higher skill for seasonal 646 

prediction (Kumar and Hoerling 2000). To assess this, the corresponding maps of anomaly 647 

correlation (AC) (Figure 15), the value of which at each grid point is computed between AMIP 648 

ensemble mean and observed anomaly over the analysis period, confirms this relationship and is 649 

consistent with the theoretical analysis and model results in previous studies (Kumar et al. 2007; 650 

Jha et al. 2019). The stronger AC values for 200-hPa height over the tropical Atlantic extend 651 

northward in summer compared to winter, in agreement with larger SNR values there. The increase 652 

in AC values for surface air temperature over the Middle East and Asia in summer relative to 653 

winter is also in line with the increase of AC for precipitation over the Northern Indian Ocean. 654 

  655 

A close look of the wintertime US prediction skill reveals that the stronger AC values for 656 

precipitation in FV3 GFS are located in the northwest, western coast and southern coast, where 657 

the 200-hPa AC values are higher (Figure 16 left). The surface air temperature AC pattern is 658 
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characterized by maximum values in the west and the east and minimum values in the central US, 659 

largely consistent with the 200-hPa AC distribution. 660 

 661 

We also calculated the AC values in GFSv2 and made the difference in the AC for two models to 662 

examine the changes in prediction skill. Some US regions experience an increase of prediction 663 

skill, as indicated by the shaded regions shown in Figure 16 right. Compared to GFSv2, FV3 GFS 664 

shows an increase of precipitation AC values over the north and the southeast, where the increase 665 

of 200-hPa AC values is also visible. The obvious improvement of surface air temperature 666 

prediction skill is located in the east, consistent with the improvement of surface air temperature 667 

response to three strong El Niño events over these regions as seen in Figure 9. 668 

 669 

f. Simulation of extreme events—2022 summer South Asia flooding 670 

In this section, we will evaluate the model’s capability in simulating the extreme events by 671 

considering a case study for a specific extreme event in 2022. Most regions of Pakistan experienced 672 

record-breaking monsoonal rainfall from mid-June until the end of August 2022 that resulted in 673 

considerable losses of human lives and the economy of Pakistan 674 

(https://www.worldweatherattribution.org/analysis/rainfall/). Observed SST anomaly for 2022 675 

summer had a La Niña condition in tropical Pacific and warm condition in the eastern Indian Ocean 676 

and coastal regions (not shown). How well does the FV3 GFS model simulate the observed South 677 

Asia flooding for 2022 summer compared to previous GFSv2 model? 678 

  679 

Figure 17 shows the spatial map of precipitation anomalies for JJA 2022 from observations (top), 680 

FV3 GFS (middle) and GFSv2 (bottom) ensemble mean AMIP simulations. Observations show a 681 
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large increase in south Asia flooding shown in black box region which includes Pakistan and 682 

northwest India. The ensemble mean results from FV3 GFS can reproduce the observed wet 683 

condition in South Asia, but the magnitude is somewhat weaker. This is to be expected when 684 

comparing ensemble mean anomalies with observations that are equivalent to a single model 685 

realization. Opposite to observations and FV3 GFS simulations, the previous version GFSv2 did 686 

not replicate the observed wet condition but indicates dry conditions. It is clear that the FV3 GFS 687 

model has a better simulation of South Asian flooding compared to old version GFSv2. 688 

  689 

We also examined the FV3 GFS individual members to better understand the ensemble mean 690 

results. The top panel of Figure 18 shows the precipitation anomaly averaged over the box region 691 

from 100 individual members. The black line is the observed value, and the green line is the model 692 

ensemble mean value. Among 100 members, only 5 members produce the dry condition. This 693 

suggests that the observed SSTs specified as the forcing favor wet conditions over South Asia for 694 

2022 summer. It can be seen from the bar plot that the magnitude of a single member (member 695 

100) is very close to observations. Examining the spatial map of this member (bottom right panel) 696 

confirms that the model is capable of realistically simulating both the magnitude and spatial 697 

structure of observed wet conditions over South Asia for 2022 summer (bottom left panel). The 698 

results suggest that the FV3 GFS model can serve as a suitable tool to examine the causality of the 699 

extreme events. 700 

 701 

4. Summary and discussion 702 

The intent of this paper is to document an update in infrastructure of AMIP simulations that are 703 

used for real-time attribution of seasonal climate anomalies at CPC, i.e., based on the FV3 GFS. 704 



32 
 

These simulations are updated in real-time as SST observations become available. We evaluated 705 

the performance of these simulations in reproducing observed climate trends and variability and 706 

assessed climate predictability and the model’s capability in capturing the extreme events. 707 

  708 

We demonstrated that the FV3 GFS model can realistically capture the observed temperature trend 709 

over global land that has an upward trend of about 1o C since 1979 for both winter and summer. 710 

Associated with the warming trend over the global land, there is also a US warming and drying 711 

climate trend for DJF and JJA seasons as demonstrated by the frequency distributions of a large 712 

ensemble of model samples. The observed feature of the larger variability during winter compared 713 

to summer is also replicated in the model. 714 

  715 

Observed three leading modes of variability for the period of 1979-2021 were identified based on 716 

the EOF analysis of wintertime extratropical Northern Hemisphere 200-hPa heights. The observed 717 

leading mode describes the extratropical atmospheric circulation pattern associated with Arctic 718 

Oscillation (AO) variability and is found to be independent of tropical SST variability. The 719 

observed second mode describes the canonical atmospheric teleconnection associated with ENSO 720 

resembling the tropical/Northern Hemisphere (TNH) pattern and the third mode features a 721 

hemisphere-scale increasing trend in heights associated with global warming. The FV3 GFS model 722 

is able to replicate the three primary modes of observed variability but there is an appreciable 723 

variability in the detailed EOF structures among individual members associated with sampling 724 

resulting in a large scatter in the spatial correlation with observations, especially for the last two 725 

modes.  726 

 727 
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Forced atmospheric teleconnections during 1979-2021 were examined using the 100-member 728 

ensemble mean of AMIP simulations. The leading mode of the forced variability is similar to the 729 

observed second mode that describes the TNH pattern associated with ENSO. The second forced 730 

mode resembles the observed third mode which is related to anthropogenically forced climate 731 

change. The forced third mode describes a wave train resembling the PNA pattern resulting from 732 

atmospheric sensitivity to ENSO asymmetry and from sensitivity to a tropical precursor SST for 733 

ENSO development. Our results are similar to the three primary forced modes of Zhang et al. 734 

(2016) except for a different EOF ranking for the latter two modes, implying that the forced 735 

primary modes do not depend on the selection of a particular model but are more determined by 736 

the nature of boundary forcing used. 737 

 738 

FV3 GFS AMIP simulations realistically captured the observed key features including US climate 739 

variability associated with ENSO. Consistent with the US warming trend, a gradual southward 740 

shift of stronger warm anomalies from early strong El Niño (1982/83) to recent strong El Niño 741 

(2015/16) was evident in both observations and model ensemble mean results. There was an 742 

improvement in FV3 GFS relative to previous GFSv2 in simulating the surface temperature 743 

response to extreme El Niño events over the US southeastern coastal regions. The observed US 744 

precipitation pattern featured wetness in the west and central US and southern coast for both 745 

1982/83 and 1997/98 El Niño events but had dry conditions over Southern California for 2015/16 746 

winter. The ensemble mean precipitation response in the model was similar for three strong El 747 

Niño events, having a wetness across the west and central US and southern coast. We explored the 748 

role of internal variability in determining the seasonal mean rainfall in California based on a large 749 

ensemble of FV3 GFS AMIP simulations. The results indicate that the observed California 750 
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2015/16 dryness was likely an articulation of unforced variability (the internal atmospheric noise), 751 

rather than a boundary-forced signal, in agreement with previous findings (Zhang et al. 2018; 752 

Kumar and Chen 2020). 753 

  754 

The climate predictability measured by SNR was also assessed based on FV3 GFS AMIP 755 

simulations. The SNR pattern, in general, was similar to each other between winter and summer, 756 

with largest values in the tropical regions and a decrease in the SNR towards high latitudes. The 757 

SNR values for 200-hPa heights and precipitation over the tropical Atlantic and those for surface 758 

air temperature over North Africa, the Middle East, Asia and South America were larger in summer 759 

than in winter. It is noted that there was an improvement of seasonal predictability of precipitation 760 

over the tropical Indian Ocean and tropical Atlantic, compared to the results in the initialized 761 

forecast system (Jha et al. 2019). The seasonal prediction skill measured by AC generally follows 762 

the SNR pattern, supporting previous theoretical analysis and model results (Kumar et al. 2007; 763 

Jha et al. 2019). The comparison of the wintertime AC pattern of US surface climate between FV3 764 

GFS and GFSv2 reveals that the prediction skill of precipitation over the Northern and 765 

Southeastern US, and that of surface air temperature over the eastern US are somewhat improved 766 

in the new model relative to the old version. 767 

 768 

The model’s capability in simulating the extreme events was evaluated for a case study for the 769 

2022 summer South Asia record-breaking flooding. The ensemble mean results from FV3 GFS 770 

reproduced the observed wet conditions but those from previous GFSv2 indicated dry conditions 771 

in South Asia, suggesting a better simulation of extreme events in the new model relative to the 772 

old model. Analysis of FV3 GFS individual runs further confirmed that the model could replicate 773 
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the magnitude and spatial pattern of South Asian flooding and indicates that the 2022 summer 774 

flooding over that region could have been driven by the observed SST forcing. 775 

  776 

In summary, the FV3 GFS model can realistically replicate the observed climate variability and 777 

trends as well as extreme events. We also plan to use the same infrastructure for other sensitivity 778 

studies to understand various aspects of climate variability, e.g., atmospheric responses to Central 779 

Pacific (CP) vs. Eastern Pacific (EP) events, role of SST anomalies in different ocean basins etc. 780 

In future, counterfactual simulations in which an estimate of the observed long-term changes in 781 

the SST due to anthropogenic forcing is removed will also be conducted in parallel with the current 782 

AMIP simulations to understand the influence of climate change on extreme events. 783 
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 970 
Table 1. The global mean values of the difference in climatology between JJA and DJF (JJA minus 971 
DJF) for eddy 200-hPa height (m), precipitation (mm/day) and land surface air temperature (oC) 972 
from observation, GFSv2 and FV3 GFS ensemble mean AMIP simulations, and the global pattern 973 
correlations between models and observation for the corresponding climatology difference. 974 
 975 
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Table 1. The global mean values of the difference in climatology between JJA and DJF (JJA minus 
DJF) for eddy 200-hPa height (m), precipitation (mm/day)  and land surface air temperature (oC) 
from observation, GFSv2 and FV3 GFS ensemble mean AMIP simulations, and the global pattern 
correlations between models and observation for the corresponding climatology difference. 
 

 
Variables 

 

Global mean values 
 

Global pattern correlations 
with observation 

Observation 
 

GFSv2 FV3GFS GFSv2 FV3GFS 

Eddy Z200 
  

0.17 
 

0.079 0.056 0.96 0.94 

Precip 
  

0.076 
 

0.11 0.17 0.72 0.82 

T2m 
  

12.95 
 

10.73 12.09 0.98 0.98 
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Figure 1. Differences in climatology between JJA and DJF (JJA minus DJF) for (top) eddy 
200-hPa height, (middle) precipitation and (bottom) surface air temperature from (left) 
observations and (right) FV3 GFS simulated 100-member AMIP ensemble mean results. The 
observed and simulated global mean values (the first number) and the pattern correlation 
values (the second number) are listed in the titles of the plots. 
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Figure 2. Taylor diagram displaying changes in normalized pattern statistics between 
GFSv2 and FV3 GFS model estimates for the (red dots) global, (brown dots) tropical, 
and (blue dots) contiguous US pattern of annual mean climatology of precipitation and 
land surface air temperature. The standard deviations have been normalized by the 
observed standard deviation of each field. 
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Figure 3. Time series of surface air temperature anomalies for (top) DJF and (bottom) 
JJA averaged over global land regions from (red line) observations, (blue line) GFSv2 
simulated 30-member ensemble mean and (black line) FV3 GFS simulated 100-member 
ensemble mean of AMIP simulations. The gray lines show the spread of individual 
members of FV3 GFS model. The temporal correlations of the global mean land surface 
air temperature anomalies between model ensemble mean and observations are listed in 
the plot. 
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Figure 4. PDFs of contiguous U.S. (top) DJF and (bottom) JJA (left) surface air temperature 
anomalies (oC) and (right) precipitation anomalies (percent departure) for the first (blue curves) 
and last (red curves) 5-yr periods of 1979-2021. Results are based on 100-member FV3 GFS 
AMIP simulations. Large tick marks at the bottom show observed values for 15 months of the 
first (blue) and last (red) 5-yr periods of 1979-2021. 
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Figure 5: (left) The spatial pattern and (middle) standardized PC time series of the leading 
three EOFs of DJF 200-hPa heights from observations. (right) Regressions of observed 
DJF SST on the PC time series of the leading three EOFs of observed DJF 200-hPa 
heights. The EOF analysis is computed over the 20o–90oN domain for 1979/80–2020/21. 
The EOF patterns are shown as the regressions of the heights onto the standardized PC 
time series and drawn at the interval of 5m for a 1 standardized departure of PC index. 
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Figure 6: (left) The spatial pattern and (middle) standardized PC time series of the leading 
three EOFs of DJF 200-hPa heights from a single member (member 26) of FV3 GFS 
AMIP simulations. (right) The respective EOF pattern correlation values of the leading 
three EOFs of DJF 200-hPa heights with observations from 100 individual members of 
FV3 GFS AMIP simulations. This single member is selected among members that 
resemble observations, subject to the largest mean value of three leading EOF pattern 
correlations of DJF 200-hPa heights with observations, with EOF1 pattern correlation of 
0.79, EOF2 pattern correlation of 0.61, and EOF3 pattern correlation of 0.78. The EOF 
analysis is computed over the 20o–90oN domain for 1979/80–2020/21. The EOF patterns 
are shown as the regressions of the heights onto the standardized PC time series and 
drawn at the interval of 5m for a 1 standardized departure of PC index. 
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Figure 7: (left) The spatial pattern and (middle) standardized PC time series of the leading 
three EOFs of FV3 GFS simulated 100-member ensemble mean DJF 200-hPa heights. 
(right) Regressions of observed DJF SST on the PC time series of the leading three EOFs 
of FV3 GFS simulated 100-member ensemble mean DJF 200-hPa heights. The EOF 
analysis is computed over the 20o–90oN domain for 1979/80–2020/21. The EOF patterns 
are shown as the regressions of the heights onto the standardized PC time series and drawn 
at the interval of 5m for a 1 standardized departure of PC index. 
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Figure 8: The spatial pattern of regressions of DJF (top) 200-hPa height, (middle) 
precipitation and (bottom) surface air temperature anomalies on the observed Niño3.4 
SST index from (left) observations and (right) FV3 GFS AMIP simulations. We first 
calculate the regressions from individual runs and then average 100 regression estimates 
as the regressions for the model. 
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Figure 9. Surface air temperature anomalies for (top) 1982/83 DJF, (middle) 1997/98 DJF 
and (bottom) 2015/16 DJF from (left) observations, (middle) GFSv2 simulated 30-member 
ensemble mean, and (right) FV3 GFS simulated 100-member ensemble mean. The pattern 
correlations between models and observations are listed in the titles of the plots. 
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Figure 10. Precipitation anomalies (percent departures) for (top) 1982/83 DJF, (middle) 
1997/98 DJF and (bottom) 2015/16 DJF from (left) observations, (middle) GFSv2 
simulated 30-member ensemble mean, and (right) FV3 GFS simulated 100-member 
ensemble mean. The pattern correlations between models and observations are listed in 
the titles of the plots. 
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Figure 11. PDFs of California state precipitation anomalies (percent departure) for 1982/83 
DJF (blue curve), 1997/98 DJF (red curve) and 2015/16 DJF (black curve). Results are based 
on 100-member FV3 GFS AMIP simulations. Large tick marks at the bottom show 
corresponding observed values. 
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Figure 12. Precipitation anomalies (percent departures) for 2015/16 DJF from (top left) 
observations, (top right) FV3 GFS simulated 100-member ensemble mean, (bottom left) the 
composite of 4 best runs, and (bottom right) the composite of 4 worst runs among 100-member 
FV3 GFS AMIP simulations. The pattern correlations between the model and observation are 
listed in the titles of the plots. 
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Figure 13: The spatial pattern of FV3 GFS simulated (top left) external variance, (bottom 
left) internal variance, (top right) observed total variance and (bottom right) FV3 GFS 
simulated total variance of DJF 200-hPa height anomaly. Model results are based on 100-
member FV3 GFS AMIP simulations. 
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Figure 14: The spatial pattern of (left) DJF and (right) JJA signal-to-noise ratio (SNR) 
estimate of (top) 200-hPa height, (middle) precipitation and (bottom) surface air 
temperature anomalies computed as the ratio of external-to-internal variance in 100-
member FV3 GFS AMIP simulations. 



59 
 

 1236 

 1237 
 1238 
 1239 
 1240 
 1241 
 1242 
 1243 
 1244 
 1245 
 1246 
 1247 
 1248 
 1249 
 1250 
 1251 
 1252 
 1253 

Figure 15: The spatial pattern of (left) DJF and (right) JJA anomaly correlation of (top) 
200-hPa height, (middle) precipitation and (bottom) surface air temperature between 
observations and FV3 GFS simulated 100-member ensemble mean. 
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Figure 16: The spatial pattern of DJF anomaly correlation with observations of (top) 200-
hPa height, (middle) precipitation and (bottom) surface air temperature from (left) FV3 
GFS AMIP ensemble mean and (right) the difference in anomaly correlation with 
observations between FV3 GFS and GFSv2 AMIP ensemble mean. 
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Figure 17. Precipitation anomalies for 2022 JJA from (top) observations, (middle) 
FV3 GFS simulated 100-member ensemble mean, and (bottom) GFSv2 simulated 
30-member ensemble mean. The outlined box shows the South Asia region 
bounded by 58o-80oE, 20o-38oN. 
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Figure 18. (top) precipitation anomalies for 2022 JJA averaged over the South Asia region 
(58o-80oE, 20o-38oN) from observations (black line), FV3 GFS simulated 100 individual 
members (red and blue bars) and 100-member ensemble mean (green line), and (bottom) the 
comparison of the spatial pattern of precipitation anomalies for 2022 JJA between (left) 
observations and (right) a single member (100th member) from FV3 GFS AMIP simulations. 
The outlined box shows the South Asia region bounded by 58o-80oE, 20o-38oN. 
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Abstract 22 

NOAA Climate Prediction Center (CPC) has generated a 100-member ensemble of Atmospheric 23 

Model Intercomparison Project (AMIP) simulations from 1979 to present using the GFSv15 with 24 

FV3 dynamical core. The intent of this study is to document a development in an infrastructure 25 

capability with a focus to demonstrate the quality of these new simulations is on par with the 26 

previous GFSv2 AMIP simulations. These simulations are part of CPC’s efforts to attribute 27 

observed seasonal climate variability to SST forcings and get updated once a month by available 28 

observed SST. 29 

The performance of these simulations in replicating observed climate variability and trends, 30 

together with an assessment of climate predictability and the attribution of some climate events is 31 

documented. A particular focus of the analysis is on the US climate trend, Northern Hemisphere 32 

winter height variability, US climate response to three strong El Niño events, the analysis of signal 33 

to noise ratio (SNR), the anomaly correlation for seasonal climate anomalies, and the South Asian 34 

flooding of 2022 summer, and thereby samples wide aspects that are important for attributing 35 

climate variability. Results indicate that the new model can realistically reproduce observed 36 

climate variability and trends as well as extreme events, better capturing the US climate response 37 

to extreme El Niño events and the 2022 summer South Asian record-breaking flooding than GFSv2. 38 

The new model also shows an improvement in the wintertime simulation skill of US surface 39 

climate, mainly confined in the Northern and Southeastern US for precipitation and in the east for 40 

temperature. 41 

  42 

  43 
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Key points 44 

• A large AMIP ensemble based on NOAA’s GFSv15 with FV3 dynamical core is created to 45 

support attribution of observed climate anomalies at CPC. 46 

• The new simulations can replicate the observed climate variability and trends as well as extreme 47 

seasonal events. 48 

• There are some improvements in simulating the extreme events in the new model compared to 49 

the older version. 50 

Plain Language Summary 51 

To correctly account for extreme weather and climate events such as heatwaves, floods and 52 

droughts that have devastating effects on the US economy and human lives, climate model 53 

experiments have become a key tool to disentangle numerous responsible factors. A recent 54 

development of an updated modeling framework at the National Centers for Environmental 55 

Prediction (NCEP) to support the attribution of observed seasonal anomalies is reported in this 56 

study. We have generated a 100-member ensemble of simulations in which each member has 57 

identical SST forcing but differs only by the initial atmospheric condition. These simulations are 58 

updated once a month when the observed SST data becomes available. We use the ensemble mean 59 

of these simulations to describe the responses to SST (referred to as the potentially predictable 60 

component of observed anomalies) and use the departure of individual members from the ensemble 61 

mean to assess the unpredictable component in the atmospheric variability. We document the 62 

performance of these simulations in replicating the observed climate variability, trends and 63 

extreme events, and find that the new model can realistically reproduce the observed key features 64 

and has a better simulation of extreme seasonal events compared to the previous version. 65 

  66 
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 1. Introduction 67 

Needs for understanding climate variability and predictability, understanding of long-lasting 68 

climate anomalies, and reasons for success and failures for long-range predictions, can be well 69 

served by ensembles of AMIP-style simulations, that is, atmosphere-only simulations that are 70 

constrained by the evolution of realistic SSTs and sea ice (Gates et al. 1998). The AMIP approach 71 

allows for the isolation of the atmospheric sensitivity to observed and specified evolution of SSTs, 72 

though it cannot explain the origin for the SSTs themselves. The ensemble mean of AMIP 73 

simulations documents the response to SSTs, often referred to as the potentially predictable (or 74 

attributable) component of the observed anomalies, or potential for predictions well beyond the 75 

limits of when initial atmosphere conditions constrain weather. The contribution of the 76 

unpredictable component in the atmospheric variability can also be assessed from the analysis of 77 

the departure of individual AMIP model simulations from the ensemble mean anomalies. In 78 

addition, the analysis of individual simulations can evaluate the role of noise in the level of 79 

discrepancy of the observed anomalies from the predictable (attributable) component because of 80 

the correspondence between observed anomalies and a realization of a single model run (Kumar 81 

et al. 2013). 82 

 83 

AMIP simulations are well suited to understand causes for extreme weather and climate events 84 

including floods, droughts, and heat waves that are known to have devastating effects on human 85 

lives and the economy of the United States (Changnon 1999; Seager et al. 2015; NOAA 2017; 86 

Philip et al. 2021). For example, southern states and California were plagued by storms attributed 87 

to El Niño 1997-98. In addition to the losses of 189 lives, the estimated economic losses nationally 88 

were about $4 billion (Changnon 1999). The California drought of 2014 cost California $2.2 89 
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billion in damages and 17000 agricultural jobs (Howitt et al. 2014; Seager et al. 2015). The recent 90 

heatwave of June 2021, whose temperature records were historically highest in some cities in the 91 

Pacific northwest of the U.S. and Canada, caused a sharp increase in sudden deaths and hospital 92 

visitations for heat-related illnesses and emergencies (Philip et al. 2021). The key for predicting 93 

these events depends strongly on understanding their causal relationship with external drivers (an 94 

exercise often referred to as attribution), for example, slowly evolving SST anomalies, decadal 95 

variability, and long-term trends. However, as causal relationships seldom explain a large fraction 96 

of total variability and are superimposed on the internal variability (e.g., Kumar et al. 2013; Zhang 97 

et al. 2018), observations, due to their limited sample, alone are inadequate to fully establish such 98 

relationships, particularly on an individual event basis. For this purpose, climate model 99 

experiments, for example, the aforementioned AMIP simulations, have become an indispensable 100 

tool to disentangle the various factors accounting for extreme weather and climate variability on 101 

different time scales (Murray et al. 2020; Barsugli et al. 2022). In this paper, a recent development 102 

of such a modeling framework at NCEP in support of the attribution of observed climate anomalies 103 

is reported.  104 

 105 

Climate attribution is a scientific process for establishing the principal causes or physical 106 

explanation for observed climate conditions and phenomena. To date, the attribution efforts at CPC 107 

have relied on the current operational seasonal prediction system - the Climate Forecast System 108 

v2 (CFSv2) (https://www.cpc.ncep.noaa.gov/products/people/mchen/AttributionAnalysis/). To 109 

provide a historical perspective, the first Climate Forecast System (CFS), called CFSv1, was 110 

implemented into operations at the NCEP in August 2004 and was the first fully coupled 111 

atmosphere–ocean–land model used at NCEP for seasonal prediction (Saha et al. 2006). 112 
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Subsequently, the CFSv2 was made operational in March 2011 (Saha et al. 2014), with upgrades 113 

to all aspects of the data assimilation and forecast model components. CFSv2 generates a set of 9-114 

month retrospective forecasts with forecasts initialized using the analysis from the corresponding 115 

Climate Forecast System Reanalysis (CFSR) (Saha et al. 2014). 116 

  117 

 In addition to the initialized CFSv2 forecasts, at CPC a large ensemble of AMIP simulations based 118 

on GFSv2, the atmospheric component of the CFSv2, updated in real-time, has also been 119 

maintained to attribute causes for the observed real-time seasonal climate anomalies by identifying 120 

the impacts of anomalous boundary forcing (particularly due to SSTs). The ensemble of AMIP 121 

simulations with GFSv2 has been used to diagnose the forced response to observed SSTs, such as 122 

the forced atmospheric teleconnections during 1979-2014 (Hartmann 2015; Zhang et al. 2016), the 123 

causality of California rains (Seager et al. 2015; Zhang et al. 2018), and US surface climate 124 

response associated with El Niño flavors (Zhang et al. 2020). 125 

 126 

Despite continued improvements in spatial resolution, energy conservation, and computational 127 

efficiency, the hydrostatic spectral dynamical core of the NCEP Global Forecast System (GFS) 128 

[Global Spectral Model (GSM)] has not been upgraded since the 1980s. In 2016, the Finite-129 

Volume Cubed-Sphere Dynamical Core (FV3), developed at the NOAA/Geophysical Fluid 130 

Dynamics Laboratory (GFDL), was selected as the dynamical core of NOAA Next Generation 131 

Global Prediction System (NGGPS) project as an upgrade for the GSM. The advantage of FV3 132 

includes its high efficiency and scalability, run-time switchable nonhydrostatic solver allowing for 133 

convective-scale simulation, exact mass and approximate energy conservation, skillful forecasts 134 
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and adaptability to the present GFS physics and data assimilation system and its robust kinetic 135 

energy spectrum (Zhou et al. 2019). 136 

 137 

In recent years, a new global model coupling the FV3 with GFS physical parameterizations, called 138 

the finite-volume Global Forecast System, or FV3/GFS (Zhou et al. 2019), has been developed. 139 

The FV3 GFS was implemented into the operational Global Forecast System as version 15 140 

(GFSv15) in 2019 (https://www.emc.ncep.noaa.gov/users/meg/fv3gfs/).  141 

  142 

To continue supporting requirements for the attribution of seasonal climate anomalies and to assess 143 

the reasons for the success and failures of operational seasonal forecasts, CPC also upgraded AMIP 144 

simulations from the GSM based atmospheric model to one based on FV3GFS. As part of this 145 

effort, a large 100-member ensemble of AMIP simulations from 1979 to present using the GFSv15 146 

with FV3 dynamical core has been generated.  147 

The goal of present analysis is to introduce this data set that can be used for understanding various 148 

aspects of climate variability, document the performance of these simulations in replicating 149 

observed climate variability and trends, development in an infrastructure capability by comparing 150 

the quality of FV3 GFS model simulations with those of GFSv2, and give some examples of the 151 

assessment of climate predictability and attribution of some climate events. The focus of this study 152 

is on the evaluation of the performance of FV3 GFS AMIP simulations relative to GFSv2 in 153 

replicating observed climate variability and trends for the period of 1979-2021. 154 

 155 

This paper is organized as follows: We introduce the observational and model datasets as well as 156 

analysis methods in section 2. Section 3 first presents an assessment of the climatology in the 157 
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model, and then the simulation of observed trend and northern hemisphere winter height variability. 158 

Finally, the simulation of US climate response to ENSO, the assessment of climate predictability 159 

and simulation of extreme seasonal events are also presented. Conclusions and discussions are 160 

given in section 4. 161 

 2. Datasets and methods 162 

a. Observed and model data 163 

 164 

The characteristics of observed estimates for land surface climate conditions are based on analysis 165 

of the Global Historical Climatology Network/Climate Anomaly Monitoring System 166 

(GHCN/CAMS) 2-meter temperature (T2m) (Fan and van den Dool 2008) and gauge-based 167 

gridded monthly Global Precipitation Climatology Centre (GPCC) data sets (Schneider et al. 2014), 168 

available at 1o-by-1o resolution. Same as the data used in Zhang et al. (2006), observed estimates 169 

of the upper-level circulation pattern are based on 200-hPa geopotential height fields using the 170 

National Centers for Environmental Prediction –National Center for Atmospheric Research 171 

reanalysis (Kalnay et al. 1996). To explore the possible tropical drivers for land surface climate 172 

conditions and upper-level circulation patterns, we also analyzed global teleconnection associated 173 

with the tropical SST and precipitation variability. The observed SST data, on a 1o-by-1o grid, are 174 

from the Hurrell data set (Hurrell et al. 2008), which is a combined version of the Hadley Centre's 175 

SST version 1.1 (HADISST1) and the NOAA Optimal Interpolation (OI) SST version 2 (OISSTv2) 176 

from November 1981 onward. Global precipitation fields are from the CPC Merged Analysis of 177 

Precipitation (CMAP; Xie and Arkin 1997) and are available at 2.5o-by-2.5o resolution. 178 

  179 
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We utilize an atmospheric model simulation [also referred to as AMIP experiments] based on 180 

NOAA’s GFSv15 model with the Finite-Volume (FV3) dynamical core (Putman and Lin, 2007) 181 

on a cubed-sphere grid (https://www.emc.ncep.noaa.gov/users/meg/fv3gfs/). The GFSv15 uses the 182 

Rapid Radiative Transfer Method for General Circulation Models (RRTMG) scheme for 183 

shortwave and longwave radiation (Iacono et al. 2008), hybrid eddy-diffusivity mass flux 184 

turbulence scheme (Han et al. 2016), GFDL microphysics (Zhou et al. 2019), and scale-aware 185 

mass flux convection scheme (Han and Pan 2011). The GFSv15 physics also includes Noah land 186 

surface model and a revised bare-soil evaporation scheme. A three-layer thermodynamic sea ice 187 

model (Winton 2000) has been coupled to the GFSv15 and it predicts sea ice thickness. Detailed 188 

description of parameterization schemes, with associated references, can be found at 189 

https://dtcenter.ucar.edu/GMTB/v3.0/sci_doc/GFS_v15_page.html.  190 

 191 

A version of this atmospheric model is currently the operational global weather prediction system 192 

at NCEP. The FV3 GFS model used in our simulations is run at C96 horizontal resolution with 64 193 

vertical levels and forced with specified observed monthly varying SSTs, sea ice (Hurrell et al. 194 

2008), and carbon dioxide concentrations from the World Data Centre for Greenhouse Gases 195 

(WDCGG) operated by the Japan Meteorological Agency (JMA) for 1979–2021. Climatological 196 

values are specified for other greenhouse gases, aerosols, solar, and volcanic aerosols. A 100-197 

member ensemble of AMIP simulations is maintained at NOAA’s CPC. Each member in the 198 

ensemble has identical external forcing but differs only by its initial atmospheric condition. The 199 

forced response to external forcings is derived from the statistics of 100-member simulations, e.g., 200 

ensemble average. 201 

      202 
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To assess the robustness of key features in replicating observed climate variability and trends by 203 

FV3 GFS, we also diagnose the AMIP simulations from a 30-member ensemble of the GFSv2 204 

model that spans the same period. As the atmospheric component of the NCEP CFSv2 (Saha et al. 205 

2014), the GFSv2 model is the previous version of CPC AMIP simulations and is run at spectral 206 

T126 horizontal resolution with 64 vertical levels. 207 

  208 

b. Methods 209 

In the present study, we follow the methodology of Zhang et al. (2016) to obtain the observed 210 

leading structures of the Northern Hemisphere (NH) wintertime circulation variability by applying 211 

empirical orthogonal function (EOF) analysis to DJF seasonally averaged 200-hPa heights for the 212 

42 years of data during 1979-2021 period. The EOF analysis is based on the covariance matrix for 213 

20oN-90oN latitude band and the EOF patterns are presented as regressions against the principal 214 

component (PC) time series. Note that unrotated EOFs utilized here are constructed to be both 215 

spatially and temporally uncorrelated with each other.  216 

 217 

Leading EOF modes of observational variability have contributions both from the atmospheric 218 

internal and forced variability. We complement this analysis with the EOF mode analysis of 219 

ensemble mean AMIP data to isolate the forced signals. We then provide a comparison of the first 220 

three leading modes of variability of the observed and FV3 GFS simulated DJF 200-hPa 221 

geopotential heights from the individual members of AMIP simulations, which demonstrates that 222 

the model can well capture the observed three leading modes of interannual variability. 223 

 224 
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Based on a 100-member ensemble of FV3 GFS AMIP simulations, probability density function 225 

(PDF) is analyzed to reveal the statistics of US climate trends by examining the frequency 226 

distributions of surface climate conditions over two different periods. We also plot the PDF of 227 

California rainfall from the large ensemble of FV3 GFS to explore the possible cause of observed 228 

failed California rains during the strong 2016 El Niño winter. 229 

 230 

Finally, climate predictability in our analysis is further assessed by examining the signal-to-noise 231 

ratio (SNR) which quantifies predictable (signal) and unpredictable (noise) components. The 232 

signal component in the SNR is the variance of ensemble mean while the noise component is the 233 

variance of departure in the individual members from the ensemble mean (Kumar and Hoerling 234 

1995). Higher SNR values indicate larger predictability. The anomaly correlation (AC), defined 235 

as the correlation of anomalies between AMIP ensemble means and observations, is calculated to 236 

complement SNR analysis. It is expected that larger SNR would correspond to larger AC (Kumar 237 

and Hoerling 2000). Anomalies are computed relative to a 1991-2020 reference period for AMIP 238 

simulations and observations. 239 

 240 

 3. Results 241 

a. Assessment of the climatology 242 

Instead of a direct comparison of the climatology between model and observations, we focus on 243 

the assessment of the seasonal cycle of climatology because observed estimates of quantities like 244 

surface air temperature and rainfall can be problematic (Fan and van den Dool 2008; Xie and Arkin 245 

1997).  246 

 247 
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Figure 1 shows the difference in climatology between JJA and DJF (JJA minus DJF) for 248 

observations (left panel) and FV3 GFS AMIP ensemble mean (right panel). The largest difference 249 

in eddy (zonal mean removed) 200-hPa height is in the Northern Hemisphere (NH) middle latitude. 250 

The observed positive centers over the Asia and North American Continent and negative centers 251 

over the North Pacific and North Atlantic are well captured in the model, with a high pattern 252 

correlation of 0.94. 253 

  254 

Observed precipitation difference shows that there is increased precipitation in the north of the 255 

equator and decreased precipitation in the south of the equator. This feature is realistically 256 

reproduced in the model. Surface air temperature difference pattern is also similar between model 257 

and observation, with warming in the northern hemisphere land and cooling in the southern 258 

hemisphere land. The pattern correlation is 0.98. 259 

 260 

The global mean values of the differences in climatology between summer and winter for eddy 261 

200-hPa, precipitation and surface air temperature are also comparable in the model and 262 

observations (see the first value in the titles of maps). The results suggest that FV3 GFS can 263 

realistically capture the observed seasonal cycle of climatology. Table 1 lists the global mean 264 

values of the difference in climatology (JJA minus DJF) for GFSv2 and FV3 GFS and the 265 

respective global pattern correlations with observations. For eddy 200-hPa, the global mean values 266 

of climatology differences in two models and the pattern correlations with observations are 267 

comparable. Compared to GFSv2, the pattern correlation with observations for precipitation and 268 

the global mean value for surface air temperature are improved in FV3 GFS model to some extent.  269 

 270 
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We further use Taylor diagram (Taylor 2001) to provide a summary of the relative skill with which 271 

two models simulate the spatial pattern of annual mean precipitation and surface air temperature 272 

over different regions (Figure 2). Two models generally demonstrated a similar ability to simulate 273 

the annual mean surface air temperature and precipitation, featuring the largest pattern correlation 274 

(greater than 0.98) and the lowest normalized root-mean-square (RMS) error (less than 0.2) for 275 

global temperature, and the smallest pattern correlation (about 0.81) and largest RMS error (about 276 

0.65) for tropical precipitation. The standard deviation of global and tropical precipitation is 277 

somewhat overestimated, and the standard deviation of tropical temperature is slightly 278 

underestimated in the models. Over the contiguous US, the pattern correlations for both 279 

temperature and precipitation are greater than 0.90 in two models, while the standard deviations 280 

of these two fields are closer to observations in FV3 GFS relative to GFSv2. The simulation of 281 

observed trends and climate variability are discussed in the following sections. 282 

  283 

b. Simulation of observed trends 284 

Human activities, especially emissions of greenhouse gases, are extremely likely to be the 285 

dominant cause of the observed warming trends of global land temperature since the mid-20th 286 

century (Wuebbles et al. 2017). A large fraction of these changes is communicated to the 287 

atmosphere via the indirect influence of trends in SSTs (Hoerling et al. 2006; Compo and 288 

Sardeshmukh 2009; Fahad and Burls 2022). Because the oceans also continuously interact with 289 

the atmosphere, SSTs can have considerable effects on global climate variability on different time 290 

scales. In addition to the effect of warming oceans on continental temperature trends, increases in 291 

SST have also led to an increase in the amount of atmospheric water vapor over the oceans (Yang 292 

and Tung 1998). The increased water vapor can enhance the amplitude of climate feedback in 293 
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response to anthropogenic activities through positive feedback (Held and Soden 2000; Soden et al. 294 

2005).  295 

 296 

Because trends contribute to seasonal anomalies especially for temperature-related variables, 297 

attribution analysis includes the influence of anthropogenic forcings (either through their direct 298 

influence via the radiative forcing or indirect influence via changes in SST that are specified in the 299 

AMIP simulations). We therefore document the ability of the AMIP runs to simulate observed 300 

trends, particularly in temperature where the influence is most prominent. 301 

 302 

Figure 3 shows the time series of DJF (top) and JJA (bottom) surface air temperature anomalies 303 

averaged over global land for 1979-2021. The red line indicates observations, and the blue line 304 

and black line show the ensemble means of GFSv2 and FV3 GFS AMIP runs, respectively. To 305 

compare observations against the individual runs, and to see if the observed variability is within 306 

the envelope of model solutions, the time-series of land temperature in the 100 individual runs 307 

from FV3 GFS are also shown (gray lines). It is clear that observations have an upward trend of 308 

about 1o C since 1979 for both winter and summer. The FV3 GFS model ensemble mean agrees 309 

well with the observed trends. In most cases, the observed value is within the envelope of ensemble 310 

spread (gray lines) (that, as expected, has larger variability during winter compared to summer). 311 

The previous version GFSv2 ensemble mean has a similar temporal correlation with observed 312 

trend as FV3 GFS for winter, but the correlation is somewhat smaller in GFSv2 for summer. 313 

  314 

To explore whether FV3 GFS model can capture the observed trends, Figure 4 shows the frequency 315 

distributions [also called probability density functions (PDF)] of wintertime surface air 316 
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temperature (top left) and precipitation (top right) from AMIP runs for the first 5-yr period (blue 317 

curve) and last 5-yr period (red curve) of the simulations over the contiguous United States. These 318 

two curves, which are significantly different according to the Kolmogorov-Smirnov test, are based 319 

on 1500 (100 members multiply by 15 months for 5-yr period) model samples. Short tick marks 320 

across the bottom indicate 15 observed values during the corresponding 5-yr period. 321 

  322 

 For the two periods the observed values are located within the spread of model samples for both 323 

wintertime temperature and precipitation. A feature to note is that the red curve is shifted toward 324 

warmer and drier conditions compared to the blue curve. This indicates that the latter period is 325 

warmer and drier than the earlier period for spatial average over the contiguous US. In other words, 326 

there is a US warming and drying trend during the winter (Weaver et al. 2014). 327 

  328 

The results for summer shown in Figure 4 bottom are similar to those for winter, and two curves 329 

are also significantly different through the Kolmogorov-Smirnov test, confirming a US warming 330 

and drying trend during the summer as well. Also, as expected, the variability is smaller in summer 331 

compared to winter, which is a common feature both in the model and the observation. The US 332 

warming trend is also found for both DJF and JJA seasons based on GFSv2 AMIP 30-member 333 

ensemble. However, there is no consensus on the precipitation trend for these two seasons in 334 

GFSv2 (Fig. S1 in the supplementary material). 335 

 336 

c. Simulation of Northern Hemisphere wintertime height variability 337 

The long-lasting climate anomalies are usually related to the leading modes of climate variability 338 

(e.g., Hartmann 2015; Zhang et al. 2016). Atmospheric teleconnections associated with ENSO are 339 
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known to be the underpinnings for North American seasonal climate predictability (Horel and 340 

Wallace 1981; Trenberth et al. 1998). Further, understanding the atmospheric response patterns 341 

beyond the canonical response to ENSO is also an outstanding problem in quantifying the sources 342 

of predictability and attribution of climate variations, and further, may result in improvements in 343 

our understanding of seasonal predictability (Hoerling and Kumar 2002; Barnston et al. 2005; 344 

Kumar et al. 2005; Zhang et al. 2016). It is thus important to assess the capability of FV3 GFS in 345 

reproducing the leading modes of climate variability. 346 

  347 

Figure 5 shows wintertime (DJF) 200-hPa height structures based on the leading three EOFs of 348 

the reanalysis data, which explain a combined 56.6% of the height variability poleward of 20oN. 349 

Contours in the left panels and shaded values in the right panels are the observed 200-hPa heights 350 

and SSTs regressed against each eigenvector’s PC time series shown in the middle panels for 1979-351 

2021, respectively. 352 

      353 

The structure of the first leading mode of the observed variability consists of positive height 354 

anomalies in the NH middle latitudes and negative anomalies in the polar regions while the time 355 

series for this mode is uncorrelated  (the value is -0.026) with Niño-3.4 SST variability. This 356 

pattern explains 26.1% of extratropical NH wintertime height variability. Zhang et al. (2016) found 357 

a similar mode of observed height variability, though ranked second in its EOF decomposition and 358 

explaining a somewhat small fraction of height variance for 1979-2014 period. They further noted 359 

that this mode can also be reproduced in a climate simulation having no interannual variability in 360 

boundary SSTs or external radiative forcing. It is clear that the observed first mode, therefore, is 361 

mainly due to internal atmospheric variability. SST regression map (top right) confirms that this 362 
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mode, resembling Arctic Oscillation (AO) pattern (Thompson and Wallace 1998), is not related to 363 

tropical SST forcing. 364 

 365 

Explaining 17.1% of the NH extratropical height variability, the observed second EOF pattern 366 

consists of a prominent wave train over the Pacific-North American (PNA) region, resembling the 367 

tropical/Northern Hemisphere (TNH) pattern (Mo and Livezey 1986). The time series for the 368 

second mode has a moderate correlation (0.58) with Niño-3.4 SST variability. The corresponding 369 

SST regression map (middle right) reveals a feature of El Niño SST warming pattern, indicating 370 

that the second mode describes the canonical atmospheric teleconnection response associated with 371 

ENSO. 372 

 373 

The third EOF of the observed variability explains 13.4% of the variance in height variability, 374 

whose pattern, temporal variability and the corresponding SST regression (bottom panels) suggest 375 

a possible connection with global warming. The EOF3 pattern largely features a same sign 376 

hemisphere-wide pattern and the PC3 times series has a distinct upward trend associated with a 377 

dominance of SST warming over the global oceans, suggesting a tendency for NH heights 378 

(corresponding to a tropospheric warming) to rise since 1979. This observed EOF3 is very similar 379 

to the dominant EOF mode in a large ensemble of CMIP simulations in which the only forcing is 380 

anthropogenic greenhouse gases (Zhang et al. 2016), supporting the argument that this mode is 381 

related to the anthropogenically forced climate change. 382 

  383 

We evaluate the model’s ability to replicate the leading modes of observed variability. For model 384 

simulations, however, the leading EOFs can be computed for each of the 100 individual members. 385 



18 
 

Further, because of sampling, the spatial pattern and the corresponding PC time series has 386 

variations from one ensemble member to another. To quantify the fidelity of leading modes of 387 

model variability against observations, one approach is to compute pattern correlations between 388 

model and observed EOFs and repeat this process for all 100 individual members. These 389 

correlations are shown in Fig. 6 (right panels). 390 

 391 

The EOF1 pattern correlation between individual members of the AMIP simulations and 392 

observations based on 42 winters ranges from 0.038 to 0.80, and the EOF2 pattern correlation 393 

ranges from 0.0076 to 0.72. The corresponding mean value of EOF1 pattern correlations with 394 

observation from 100 individual AMIP members is 0.61, much larger than the mean value (0.28) 395 

of 100 EOF2 pattern correlations. The range of EOF3 pattern correlation is more scattered, with 396 

values ranging from 0.0035 to 0.86, and the corresponding mean value of 0.47. In general, due to 397 

sampling variability, there is large uncertainty in the spatial details of EOF structures from one 398 

ensemble member to another leading to a similar variability in spatial correlations, especially for 399 

the last two modes. 400 

  401 

 FV3 GFS can reproduce the pattern of observed first three leading modes with moderate to high 402 

correlations (see figure captions for correlation values), as is evident from the results of a single 403 

member (Figure 6 left) for which the mean correlation for the first three modes with observations 404 

is largest. The explained variance for each mode from this run is also very close to observed values. 405 

But the correlation of the PC1 time series from this member with the observed PC1 time series is 406 

0.21, much smaller than the PC2 counterpart (0.55). The correlation of PC3 time series between 407 

this member and observations (0.44) is roughly double the corresponding value for PC1. We note 408 
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that the amplitude of these correlations depends on to what extent these modes are a result of 409 

atmospheric internal variability and to what extent they are constrained by the evolution of SSTs. 410 

If a mode is dominated by the atmospheric internal variability, then even though the spatial pattern 411 

of the EOF between observations and model simulation may be the similar, the corresponding 412 

time-series could still be uncorrelated.  413 

 414 

Since one of the applications of AMIP simulations is to understand the forced response to SSTs, 415 

our analysis further explores the forced atmospheric variability during 1979-2021 by using the 416 

100-member ensemble mean of AMIP simulations (Figure 7). The three leading EOFs of the 417 

ensemble mean AMIP simulations together explain 84.8% of the total boundary forced ensemble 418 

mean height variance. 419 

  420 

The height pattern associated with the first mode of forced AMIP response describes a prominent 421 

wave train over the PNA region that resembles the TNH pattern. The time series for this leading 422 

mode shows a high correlation (0.93) with Niño-3.4 SST variability, featuring positive polarity 423 

during warm events (e.g. 1982/83, 1991/92, 1997/98, 2002/03, 2009/10, 2015/16) and negative 424 

polarity during cold events (e.g. 1988/89, 1998/99, 1999/2000, 2007/08, 2011/12, 2020/21). The 425 

corresponding SST regression against PC1 time series confirms that this mode is clearly related to 426 

ENSO, similar to the observed second mode shown in the middle of Figure 5. This forced pattern 427 

alone explains 41.5% of the total boundary forced component of extratropical NH wintertime 428 

model simulated ensemble mean height response. 429 

  430 
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Associated with a ubiquitous warming over the global oceans, the second mode of forced AMIP 431 

solutions is characterized by a hemisphere-wide increase in heights. This forced mode resembles 432 

the observed third mode shown in the bottom of Figure 5 that is strongly related to climate change 433 

discussed earlier. The explained variance by this forced mode is 28.0%. 434 

  435 

Explaining 15.3% of the total boundary forced height variability over the NH extratropics, the 436 

height pattern associated with the third mode of forced AMIP response describes a wave train 437 

resembling the classic PNA pattern. Its action centers are in spatial quadrature with the leading 438 

forced solution, similar to the second EOF pattern in Zhang et al. (2016). The larger amplitudes in 439 

the corresponding PC3 time series tend to occur during ENSO events (e.g. 1982/83, 1997/98, 440 

2015/16 warm events, and 1988/89, 1998/99, 1999/2000, 2007/08, 2011/12 cold events), large 441 

projections also occur during several ENSO-neutral years (e.g. 1985/86, 1996/97, 2013/14). Zhang 442 

et al. (2016) found that there is a high correlation between PC time series for this forced mode and 443 

trans-Niño (TNI) SST index, which measures the evolution of ENSO during its transition phase 444 

(Trenberth and Stepaniak 2001). The SST regression map (Figure 7 bottom right) is very close to 445 

the SST asymmetry between El Niño and La Niña events (Zhang et al. 2016). Stronger El Niños 446 

have larger SST magnitudes in the eastern equatorial Pacific while stronger La Niñas have larger 447 

magnitudes in the western equatorial Pacific, causing a positive skew in the Niño-3 index 448 

indicative of nonlinearity in SST forcings (Burgers and Stephenson 1999; An and Jin 2004; Zhang 449 

et al. 2009; Zhang and Sun 2014). Therefore, the positive phase of the forced third mode is linked 450 

to the asymmetry in ENSO teleconnections between their extreme opposite warm and cold phases. 451 

Zhang et al. (2016) also argued that for the negative phase of this mode, the SST pattern is 452 

analogous to a pattern that is the precursor to El Niño development (e.g., Penland and Sardeshmukh, 453 
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1995), featuring warmth in the far western Pacific and coolness in the far eastern Pacific. This may 454 

indicate that the negative phase of third mode is shown to be an expression of atmospheric response 455 

to a tropical precursor SST for ENSO development that occurs mostly during ENSO-neutral 456 

winters. 457 

 458 

To assess the robustness of key features of the forced atmospheric variability, we repeat the 459 

analysis of Figure 7 by using the 30-member ensemble mean of GFSv2 AMIP simulations (Fig. 460 

S2 in the supplementary material). The results are found to be similar, including the EOF ranking 461 

and explained variance of three leading forced modes. 462 

 463 

The observed leading mode, i.e., the AO pattern is absent among the first three leading modes of 464 

AMIP forced solutions. The results lend further support to the previous argument that the observed 465 

first mode is very likely attributed to unforced variability. 466 

   467 

d. Simulation of US climate response to ENSO 468 

ENSO is the largest source of atmospheric predictability and an important aspect of climate 469 

attribution (e.g., Kumar and Hoerling 1998; Goddard and Dilley 2005; Quan et al. 2006), and 470 

therefore, it is essential to quantify the fidelity of ENSO response in AMIP simulations. 471 

  472 

Figure 8 compares the spatial pattern of the regressions of wintertime 200-hPa height, precipitation 473 

and surface air temperature anomalies on the observed Niño-3.4 SST index between FV3 GFS 474 

AMIP simulations (right panel) and observations (left panel). The regressions for the model are 475 
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obtained by first calculating the regressions for individual runs and then averaging 100 regression 476 

estimates.  477 

 478 

In response to El Niño warming, the observed upper-tropospheric circulation anomaly shows the 479 

classic El Niño-related teleconnection pattern consisting of anomalous tropical anticyclones, 480 

cyclonic anomalies over the North Pacific and anticyclonic anomalies over the North American 481 

continent. The observed precipitation is characterized by reduced convection over the tropical 482 

western Pacific and enhanced convection over the tropical Indian Ocean and tropical central and 483 

eastern Pacific. The temperature response reveals warming (cooling) over the northern (southern) 484 

United States, similar to the observed surface temperature composite during Eastern Pacific (EP) 485 

El Niño (Zhang et al. 2020). Appreciable warmth is also observed over Eurasia in the middle 486 

latitude. 487 

 488 

FV3 GFS AMIP results reproduce the observed key features associated with ENSO. The 489 

magnitude of the negative surface temperature anomalies, however, is overestimated over the 490 

Southern United States, where the simulated cyclonic anomalies are also stronger. We also note 491 

that the magnitude of observed warmth is somewhat underestimated over Eurasia, South Africa, 492 

and Australia and overestimated over the Northern South American continent. It should be noted 493 

that while the ENSO response in the model simulations is the average of 100 estimates, and 494 

therefore, has a higher statistical significance, the observed estimate could be influenced by 495 

sampling variability. 496 

  497 
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Next, we compare the seasonal climate variability for extreme El Niño events, and further, discuss 498 

the role of internal variability in shaping the observed anomalies. We also evaluate how well the 499 

FV3 GFS model simulates the US climate response to ENSO compared to the previous GFSv2 500 

model that has been used for attribution studies. 501 

  502 

Figure 9 shows the wintertime surface air temperature anomalies for three strong El Niño events 503 

from observations (left), GFSv2 simulated ensemble mean (middle) and FV3 GFS simulated 504 

ensemble mean (right). During the 1982/83 El Niño, maximum warm temperature anomalies are 505 

located over the northern United States, but the surface temperature is colder than normal over the 506 

southern United States. The above normal anomalies shift gradually from north to south in recent 507 

two strong El Niño (1997/98 and 2015/16) events. 508 

   509 

Similar to observations, there is a clear southward shift of warm anomalies from 1982/83 El Niño 510 

to 2015/16 El Niño for two model ensemble mean results. This is consistent with the US warming 511 

trends documented using PDFs (Fig. 4). The models have a moderate (0.4~0.5) pattern correlation 512 

with observations in 1982/83 El Niño and a higher pattern correlation (above 0.7) with 513 

observations in recent two strong El Niño events. Despite the comparable pattern correlations with 514 

observation for two models, there is an improvement in FV3 GFS model relative to GFSv2 in the 515 

south-eastern coastal regions of the U.S. where the GFSv2 has too strong cold anomalies but the 516 

simulations from FV3 GFS are closer to observations. 517 

  518 

Figure 10 shows the corresponding precipitation anomalies for three strong El Niño events from 519 

observations and simulations from two models. The observed precipitation patterns for both 520 
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1982/83 and 1997/98 are very similar, with wetter anomalies in the west and central US and 521 

southern coast. However, negative rainfall anomalies over southern California are observed for 522 

2015/16 winter. It can be seen that the 1997/98 El Niño has the largest wetness in the southwest. 523 

  524 

In contrast to the observed anomalies, the ensemble mean precipitation response in two models 525 

has a very similar pattern for all three strong El Niño events, characterized by a wetness across the 526 

west, central US and southern coast that resembles the observed precipitation responses to 1982/83 527 

and 1997/98 El Niño events. Further, opposite to the observed dryness in Southern California, the 528 

model ensemble mean response shows that the Southern California has wet conditions in 2015/16 529 

El Niño, consistent with previous studies (e.g., Chen and Kumar 2018; Zhang et al. 2018). 530 

Compared to GFSv2, FV3 GFS model has an increased (more than double) precipitation pattern 531 

correlation (0.32 vs. 0.14) with observation during 2015/16 El Niño. Generally, the precipitation 532 

response in the models has a high pattern correlation with observations during 1997/98 El Niño. 533 

These results indicate that during 2015/16 the observed rainfall anomalies may have been 534 

influenced by the atmospheric internal variability.  535 

  536 

To explore the role of internal variability in determining the seasonal mean rainfall over California, 537 

Figure 11 shows probability density functions (PDFs, estimated as nonparametric fits to the 538 

histograms of the raw data) of California winter precipitation during three strong El Niño events 539 

based on FV3 GFS AMIP simulations. The long tick marks indicate the corresponding observed 540 

values for the three winters. The black PDF, drawn from 100-member ensemble FV3 GFS AMIP 541 

simulations of 2015/16, is statistically indistinguishable from the blue PDF drawn from 100-542 

member ensemble FV3 GFS AMIP simulations of 1982/83, and for both, the mean of the PDF is 543 



25 
 

shifted to the right. The results indicate that the most likely California winter precipitation 544 

condition is one for wetness in the presence of strong El Niño, with a statistical mode of +42% in 545 

2015/16 runs and +52% in 1982/83 runs. The PDFs also illustrate the fact that even during strong 546 

El Niño events, there is also an appreciable probability for California seasonal mean rainfall to be 547 

negative. Further, for each PDF since all model simulations that went into its estimation have the 548 

same SST forcing, the spread in the PDF is due to atmospheric internal variability. The PDF of 549 

California winter precipitation for 1997/98 runs is significantly different from the PDFs for 550 

2015/16 and 1982/83 runs, with a statistical mode of +70%. This is consistent with the observations 551 

for which the strongest California rains are for the 1997/98 winter among three extreme El Niño 552 

events. The observed California 2015/16 dryness was almost certainly an articulation of unforced 553 

variability and is supported by the fact that the observed condition resides within the dry tail of the 554 

forced PDF (black curve). 555 

  556 

To further understand the cause for observed Southern California failed rains, we calculate the 557 

2015/16 winter precipitation pattern correlation with observation from 100 individual members 558 

and make composites for the four runs that had the best or the worst correlation among the sample 559 

of 100 (Figure 12). The analysis approach follows that of Kumar et al. (2013). 560 

  561 

The analysis based on individual model simulations indicates that on an individual run basis the 562 

observed dryness over Southern California can be replicated. This is evident from the composite 563 

of best four runs for which the anomaly correlation is the largest positive (left panels). For the 564 

composite of four runs that have the largest negative anomaly correlation, the simulated rainfall 565 

anomaly is opposite to the observed rainfall over California, and further, the wet condition over 566 
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Southern California is similar to that in SST forced signal in ensemble mean results (top right 567 

panel). Thus, the internal atmospheric variability, rather than a boundary-forced signal, was the 568 

likely cause for the failed Southern California rains in 2016 even in the presence of one of the 569 

largest El Niño. In summary, the FV3 GFS model can realistically capture the observed US climate 570 

variability associated with ENSO. 571 

 572 

e. Assessment of climate predictability 573 

Predictability of seasonal atmospheric climate variability depends on the fraction of total 574 

variability that is related to boundary conditions (referred to as the external, or potentially 575 

predictable variability) and the fraction of variability unrelated to external forcings (referred to as 576 

the internal, or unpredictable variability). Extensive efforts have been made in the past several 577 

decades to quantify potential predictability of seasonal mean climate variability by using either 578 

AMIP simulations or initialized coupled forecast systems (Kumar and Hoerling 1995; Kumar et 579 

al. 2007; Jha et al. 2019). The purpose of the analysis in this section is to assess the climate 580 

predictability based on a large ensemble FV3 GFS AMIP simulations and to quantify how the 581 

predictability measured by signal-to-noise ratio (SNR) is changing as the modeling systems are 582 

being improved. 583 

  584 

 We start our analysis by comparing the total variance of observed and FV3 GFS simulated DJF 585 

200-hPa height anomalies over 1979-2021 period (Figure 13 right panel). It is evident that the 586 

model can realistically reproduce the observed total variance of upper-tropospheric circulation 587 

anomaly during winter that is characterized by the small variability in the tropical regions and a 588 

larger variability in the extratropical regions. The observed maximum centers of variability over 589 
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Aleutian and Greenland in the northern hemisphere and those over the southern higher latitude are 590 

also well captured in the model.  591 

 592 

Shown in the left panel of Figure 13 is the two components of the simulated total variance, 593 

predictable (top) and unpredictable (bottom), which are derived from the variance of ensemble 594 

mean and the variance of departure in the individual members from the ensemble mean, 595 

respectively (Kumar and Hoerling 1995). The external variance for DJF 200-hPa height simulated 596 

by FV3 GFS is mainly located in the tropical eastern Pacific, the North Pacific and North American 597 

continent, similar to previous findings based on different periods (Kumar et al. 2007; Jha et al. 598 

2019). This is to be expected since the ensemble mean variance is dominated by SST-forced 599 

atmospheric variability and its spatial structure is in agreement with the atmospheric response to 600 

ENSO (Trenberth et al. 1998; see also Fig. 7 and associated discussion). The simulated internal 601 

variance is largest in the middle and high latitudes, especially in the North American continent and 602 

the northern Asia and is similar to the best estimate of the internal variance of observed winter 603 

200-hPa height using multiple models as noted in previous studies (Kumar et al. 2007; Jha et al. 604 

2019). 605 

 606 

 Next, we calculate the ratio of the external and the internal variance in dimensionless units as 607 

signal-to-noise ratio to assess potential predictability, the results of which is given in Figure 14 608 

that shows FV3 GFS simulated winter (left) and summer (right) SNR pattern for 200-hPa height 609 

(top), precipitation (middle) and surface air temperature (bottom). It is found that the largest SNR 610 

values for DJF 200-hPa height reside in the tropics and decrease gradually polewards due to an 611 

increase in atmospheric internal variability from tropics to extratropics (Figure 13), consistent with 612 
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the previous findings that the predictability is larger in the tropics than the extratropics (e.g., Quan 613 

et al. 2004). The summer SNR pattern is very similar to the winter pattern, while the SNR values 614 

of heights are somewhat stronger in the tropical Atlantic. This difference is likely associated with 615 

the stronger height trend in the model over the tropical Atlantic for the summer compared to the 616 

winter. The analysis of previous GFSv2 AMIP runs also indicates that there is a somewhat larger 617 

height trend over the tropical Atlantic during summer relative to winter (not shown).  618 

 619 

It should be noted that there is little consensus in the scientific community on the difference of 620 

seasonal predictability of 200-hPa height between winter and summer. Based on the NMME 621 

coupled forecast system, Jha et al. (2019) showed that SNR values for summer are lower than SNR 622 

for winter because of the weaker SST forcing during summer. However, Kumar et al. (2003) 623 

argued that due to a reduction in the internal variability, the magnitude of seasonal predictability 624 

for winter and summer are quite similar by using two atmospheric general circulation model 625 

(AGCM) simulations. A close examination of their results also reveals that the seasonal 626 

predictability is slightly stronger over the tropical Atlantic for summer than for winter, consistent 627 

with our findings. 628 

  629 

SNR pattern for precipitation is also quite similar for two seasons, with larger values located in 630 

the tropical oceans. By comparing the results with those in the coupled forecast system (Jha et al. 631 

2019), we notice that the improvement of seasonal predictability of precipitation is evident in the 632 

tropical Indian Ocean and tropical Atlantic. Similar to the spatial structure of SNR for 200-hPa 633 

height, the precipitation SNR also shows a large decline from the tropics to the extratropics and 634 

the relatively larger values over the tropical Atlantic in summer than in winter. 635 
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 636 

Consistent with SNR for 200-hPa height and precipitation, SNR of surface air temperature is also 637 

confined within the tropical land for both seasons, having larger values over North Africa, the 638 

Middle East, Asia, Northern Mexico and South America. Except for Northern Mexico, SNR values 639 

are larger over other regions in summer than in winter. The larger SNR value for winter over 640 

Northern Mexico could be related to the amplitude of ENSO SST variability. Consistent with 641 

increased SNR for precipitation over the northern Indian Ocean, SNR for surface air temperature 642 

is higher over North Africa, the Middle East, and Asia in summer compared to winter. 643 

  644 

If the SNR estimates based on the AMIP simulations are correct estimates of corresponding 645 

predictability in observations, then generally larger SNR values imply a higher skill for seasonal 646 

prediction (Kumar and Hoerling 2000). To assess this, the corresponding maps of anomaly 647 

correlation (AC) (Figure 15), the value of which at each grid point is computed between AMIP 648 

ensemble mean and observed anomaly over the analysis period, confirms this relationship and is 649 

consistent with the theoretical analysis and model results in previous studies (Kumar et al. 2007; 650 

Jha et al. 2019). The stronger AC values for 200-hPa height over the tropical Atlantic extend 651 

northward in summer compared to winter, in agreement with larger SNR values there. The increase 652 

in AC values for surface air temperature over the Middle East and Asia in summer relative to 653 

winter is also in line with the increase of AC for precipitation over the Northern Indian Ocean. 654 

  655 

A close look of the wintertime US prediction skill reveals that the stronger AC values for 656 

precipitation in FV3 GFS are located in the northwest, western coast and southern coast, where 657 

the 200-hPa AC values are higher (Figure 16 left). The surface air temperature AC pattern is 658 
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characterized by maximum values in the west and the east and minimum values in the central US, 659 

largely consistent with the 200-hPa AC distribution. 660 

 661 

We also calculated the AC values in GFSv2 and made the difference in the AC for two models to 662 

examine the changes in prediction skill. Some US regions experience an increase of prediction 663 

skill, as indicated by the shaded regions shown in Figure 16 right. Compared to GFSv2, FV3 GFS 664 

shows an increase of precipitation AC values over the north and the southeast, where the increase 665 

of 200-hPa AC values is also visible. The obvious improvement of surface air temperature 666 

prediction skill is located in the east, consistent with the improvement of surface air temperature 667 

response to three strong El Niño events over these regions as seen in Figure 9. 668 

 669 

f. Simulation of extreme events—2022 summer South Asia flooding 670 

In this section, we will evaluate the model’s capability in simulating the extreme events by 671 

considering a case study for a specific extreme event in 2022. Most regions of Pakistan experienced 672 

record-breaking monsoonal rainfall from mid-June until the end of August 2022 that resulted in 673 

considerable losses of human lives and the economy of Pakistan 674 

(https://www.worldweatherattribution.org/analysis/rainfall/). Observed SST anomaly for 2022 675 

summer had a La Niña condition in tropical Pacific and warm condition in the eastern Indian Ocean 676 

and coastal regions (not shown). How well does the FV3 GFS model simulate the observed South 677 

Asia flooding for 2022 summer compared to previous GFSv2 model? 678 

  679 

Figure 17 shows the spatial map of precipitation anomalies for JJA 2022 from observations (top), 680 

FV3 GFS (middle) and GFSv2 (bottom) ensemble mean AMIP simulations. Observations show a 681 
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large increase in south Asia flooding shown in black box region which includes Pakistan and 682 

northwest India. The ensemble mean results from FV3 GFS can reproduce the observed wet 683 

condition in South Asia, but the magnitude is somewhat weaker. This is to be expected when 684 

comparing ensemble mean anomalies with observations that are equivalent to a single model 685 

realization. Opposite to observations and FV3 GFS simulations, the previous version GFSv2 did 686 

not replicate the observed wet condition but indicates dry conditions. It is clear that the FV3 GFS 687 

model has a better simulation of South Asian flooding compared to old version GFSv2. 688 

  689 

We also examined the FV3 GFS individual members to better understand the ensemble mean 690 

results. The top panel of Figure 18 shows the precipitation anomaly averaged over the box region 691 

from 100 individual members. The black line is the observed value, and the green line is the model 692 

ensemble mean value. Among 100 members, only 5 members produce the dry condition. This 693 

suggests that the observed SSTs specified as the forcing favor wet conditions over South Asia for 694 

2022 summer. It can be seen from the bar plot that the magnitude of a single member (member 695 

100) is very close to observations. Examining the spatial map of this member (bottom right panel) 696 

confirms that the model is capable of realistically simulating both the magnitude and spatial 697 

structure of observed wet conditions over South Asia for 2022 summer (bottom left panel). The 698 

results suggest that the FV3 GFS model can serve as a suitable tool to examine the causality of the 699 

extreme events. 700 

 701 

4. Summary and discussion 702 

The intent of this paper is to document an update in infrastructure of AMIP simulations that are 703 

used for real-time attribution of seasonal climate anomalies at CPC, i.e., based on the FV3 GFS. 704 
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These simulations are updated in real-time as SST observations become available. We evaluated 705 

the performance of these simulations in reproducing observed climate trends and variability and 706 

assessed climate predictability and the model’s capability in capturing the extreme events. 707 

  708 

We demonstrated that the FV3 GFS model can realistically capture the observed temperature trend 709 

over global land that has an upward trend of about 1o C since 1979 for both winter and summer. 710 

Associated with the warming trend over the global land, there is also a US warming and drying 711 

climate trend for DJF and JJA seasons as demonstrated by the frequency distributions of a large 712 

ensemble of model samples. The observed feature of the larger variability during winter compared 713 

to summer is also replicated in the model. 714 

  715 

Observed three leading modes of variability for the period of 1979-2021 were identified based on 716 

the EOF analysis of wintertime extratropical Northern Hemisphere 200-hPa heights. The observed 717 

leading mode describes the extratropical atmospheric circulation pattern associated with Arctic 718 

Oscillation (AO) variability and is found to be independent of tropical SST variability. The 719 

observed second mode describes the canonical atmospheric teleconnection associated with ENSO 720 

resembling the tropical/Northern Hemisphere (TNH) pattern and the third mode features a 721 

hemisphere-scale increasing trend in heights associated with global warming. The FV3 GFS model 722 

is able to replicate the three primary modes of observed variability but there is an appreciable 723 

variability in the detailed EOF structures among individual members associated with sampling 724 

resulting in a large scatter in the spatial correlation with observations, especially for the last two 725 

modes.  726 

 727 
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Forced atmospheric teleconnections during 1979-2021 were examined using the 100-member 728 

ensemble mean of AMIP simulations. The leading mode of the forced variability is similar to the 729 

observed second mode that describes the TNH pattern associated with ENSO. The second forced 730 

mode resembles the observed third mode which is related to anthropogenically forced climate 731 

change. The forced third mode describes a wave train resembling the PNA pattern resulting from 732 

atmospheric sensitivity to ENSO asymmetry and from sensitivity to a tropical precursor SST for 733 

ENSO development. Our results are similar to the three primary forced modes of Zhang et al. 734 

(2016) except for a different EOF ranking for the latter two modes, implying that the forced 735 

primary modes do not depend on the selection of a particular model but are more determined by 736 

the nature of boundary forcing used. 737 

 738 

FV3 GFS AMIP simulations realistically captured the observed key features including US climate 739 

variability associated with ENSO. Consistent with the US warming trend, a gradual southward 740 

shift of stronger warm anomalies from early strong El Niño (1982/83) to recent strong El Niño 741 

(2015/16) was evident in both observations and model ensemble mean results. There was an 742 

improvement in FV3 GFS relative to previous GFSv2 in simulating the surface temperature 743 

response to extreme El Niño events over the US southeastern coastal regions. The observed US 744 

precipitation pattern featured wetness in the west and central US and southern coast for both 745 

1982/83 and 1997/98 El Niño events but had dry conditions over Southern California for 2015/16 746 

winter. The ensemble mean precipitation response in the model was similar for three strong El 747 

Niño events, having a wetness across the west and central US and southern coast. We explored the 748 

role of internal variability in determining the seasonal mean rainfall in California based on a large 749 

ensemble of FV3 GFS AMIP simulations. The results indicate that the observed California 750 
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2015/16 dryness was likely an articulation of unforced variability (the internal atmospheric noise), 751 

rather than a boundary-forced signal, in agreement with previous findings (Zhang et al. 2018; 752 

Kumar and Chen 2020). 753 

  754 

The climate predictability measured by SNR was also assessed based on FV3 GFS AMIP 755 

simulations. The SNR pattern, in general, was similar to each other between winter and summer, 756 

with largest values in the tropical regions and a decrease in the SNR towards high latitudes. The 757 

SNR values for 200-hPa heights and precipitation over the tropical Atlantic and those for surface 758 

air temperature over North Africa, the Middle East, Asia and South America were larger in summer 759 

than in winter. It is noted that there was an improvement of seasonal predictability of precipitation 760 

over the tropical Indian Ocean and tropical Atlantic, compared to the results in the initialized 761 

forecast system (Jha et al. 2019). The seasonal prediction skill measured by AC generally follows 762 

the SNR pattern, supporting previous theoretical analysis and model results (Kumar et al. 2007; 763 

Jha et al. 2019). The comparison of the wintertime AC pattern of US surface climate between FV3 764 

GFS and GFSv2 reveals that the prediction skill of precipitation over the Northern and 765 

Southeastern US, and that of surface air temperature over the eastern US are somewhat improved 766 

in the new model relative to the old version. 767 

 768 

The model’s capability in simulating the extreme events was evaluated for a case study for the 769 

2022 summer South Asia record-breaking flooding. The ensemble mean results from FV3 GFS 770 

reproduced the observed wet conditions but those from previous GFSv2 indicated dry conditions 771 

in South Asia, suggesting a better simulation of extreme events in the new model relative to the 772 

old model. Analysis of FV3 GFS individual runs further confirmed that the model could replicate 773 
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the magnitude and spatial pattern of South Asian flooding and indicates that the 2022 summer 774 

flooding over that region could have been driven by the observed SST forcing. 775 

  776 

In summary, the FV3 GFS model can realistically replicate the observed climate variability and 777 

trends as well as extreme events. We also plan to use the same infrastructure for other sensitivity 778 

studies to understand various aspects of climate variability, e.g., atmospheric responses to Central 779 

Pacific (CP) vs. Eastern Pacific (EP) events, role of SST anomalies in different ocean basins etc. 780 

In future, counterfactual simulations in which an estimate of the observed long-term changes in 781 

the SST due to anthropogenic forcing is removed will also be conducted in parallel with the current 782 

AMIP simulations to understand the influence of climate change on extreme events. 783 
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 970 
Table 1. The global mean values of the difference in climatology between JJA and DJF (JJA minus 971 
DJF) for eddy 200-hPa height (m), precipitation (mm/day) and land surface air temperature (oC) 972 
from observation, GFSv2 and FV3 GFS ensemble mean AMIP simulations, and the global pattern 973 
correlations between models and observation for the corresponding climatology difference. 974 
 975 
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Table 1. The global mean values of the difference in climatology between JJA and DJF (JJA minus 
DJF) for eddy 200-hPa height (m), precipitation (mm/day)  and land surface air temperature (oC) 
from observation, GFSv2 and FV3 GFS ensemble mean AMIP simulations, and the global pattern 
correlations between models and observation for the corresponding climatology difference. 
 

 
Variables 

 

Global mean values 
 

Global pattern correlations 
with observation 

Observation 
 

GFSv2 FV3GFS GFSv2 FV3GFS 

Eddy Z200 
  

0.17 
 

0.079 0.056 0.96 0.94 

Precip 
  

0.076 
 

0.11 0.17 0.72 0.82 

T2m 
  

12.95 
 

10.73 12.09 0.98 0.98 
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Figure 1. Differences in climatology between JJA and DJF (JJA minus DJF) for (top) eddy 
200-hPa height, (middle) precipitation and (bottom) surface air temperature from (left) 
observations and (right) FV3 GFS simulated 100-member AMIP ensemble mean results. The 
observed and simulated global mean values (the first number) and the pattern correlation 
values (the second number) are listed in the titles of the plots. 
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Figure 2. Taylor diagram displaying changes in normalized pattern statistics between 
GFSv2 and FV3 GFS model estimates for the (red dots) global, (brown dots) tropical, 
and (blue dots) contiguous US pattern of annual mean climatology of precipitation and 
land surface air temperature. The standard deviations have been normalized by the 
observed standard deviation of each field. 
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Figure 3. Time series of surface air temperature anomalies for (top) DJF and (bottom) 
JJA averaged over global land regions from (red line) observations, (blue line) GFSv2 
simulated 30-member ensemble mean and (black line) FV3 GFS simulated 100-member 
ensemble mean of AMIP simulations. The gray lines show the spread of individual 
members of FV3 GFS model. The temporal correlations of the global mean land surface 
air temperature anomalies between model ensemble mean and observations are listed in 
the plot. 
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Figure 4. PDFs of contiguous U.S. (top) DJF and (bottom) JJA (left) surface air temperature 
anomalies (oC) and (right) precipitation anomalies (percent departure) for the first (blue curves) 
and last (red curves) 5-yr periods of 1979-2021. Results are based on 100-member FV3 GFS 
AMIP simulations. Large tick marks at the bottom show observed values for 15 months of the 
first (blue) and last (red) 5-yr periods of 1979-2021. 



49 
 

 1046 

 1047 
 1048 
 1049 
 1050 
 1051 
 1052 
 1053 
 1054 
 1055 
 1056 
 1057 
 1058 
 1059 
 1060 
 1061 
 1062 
 1063 

Figure 5: (left) The spatial pattern and (middle) standardized PC time series of the leading 
three EOFs of DJF 200-hPa heights from observations. (right) Regressions of observed 
DJF SST on the PC time series of the leading three EOFs of observed DJF 200-hPa 
heights. The EOF analysis is computed over the 20o–90oN domain for 1979/80–2020/21. 
The EOF patterns are shown as the regressions of the heights onto the standardized PC 
time series and drawn at the interval of 5m for a 1 standardized departure of PC index. 
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Figure 6: (left) The spatial pattern and (middle) standardized PC time series of the leading 
three EOFs of DJF 200-hPa heights from a single member (member 26) of FV3 GFS 
AMIP simulations. (right) The respective EOF pattern correlation values of the leading 
three EOFs of DJF 200-hPa heights with observations from 100 individual members of 
FV3 GFS AMIP simulations. This single member is selected among members that 
resemble observations, subject to the largest mean value of three leading EOF pattern 
correlations of DJF 200-hPa heights with observations, with EOF1 pattern correlation of 
0.79, EOF2 pattern correlation of 0.61, and EOF3 pattern correlation of 0.78. The EOF 
analysis is computed over the 20o–90oN domain for 1979/80–2020/21. The EOF patterns 
are shown as the regressions of the heights onto the standardized PC time series and 
drawn at the interval of 5m for a 1 standardized departure of PC index. 



51 
 

 1083 

 1084 
 1085 
 1086 
 1087 
 1088 
 1089 
 1090 
 1091 
 1092 
 1093 
 1094 
 1095 
 1096 
 1097 
 1098 
 1099 
 1100 

Figure 7: (left) The spatial pattern and (middle) standardized PC time series of the leading 
three EOFs of FV3 GFS simulated 100-member ensemble mean DJF 200-hPa heights. 
(right) Regressions of observed DJF SST on the PC time series of the leading three EOFs 
of FV3 GFS simulated 100-member ensemble mean DJF 200-hPa heights. The EOF 
analysis is computed over the 20o–90oN domain for 1979/80–2020/21. The EOF patterns 
are shown as the regressions of the heights onto the standardized PC time series and drawn 
at the interval of 5m for a 1 standardized departure of PC index. 
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Figure 8: The spatial pattern of regressions of DJF (top) 200-hPa height, (middle) 
precipitation and (bottom) surface air temperature anomalies on the observed Niño3.4 
SST index from (left) observations and (right) FV3 GFS AMIP simulations. We first 
calculate the regressions from individual runs and then average 100 regression estimates 
as the regressions for the model. 
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Figure 9. Surface air temperature anomalies for (top) 1982/83 DJF, (middle) 1997/98 DJF 
and (bottom) 2015/16 DJF from (left) observations, (middle) GFSv2 simulated 30-member 
ensemble mean, and (right) FV3 GFS simulated 100-member ensemble mean. The pattern 
correlations between models and observations are listed in the titles of the plots. 
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Figure 10. Precipitation anomalies (percent departures) for (top) 1982/83 DJF, (middle) 
1997/98 DJF and (bottom) 2015/16 DJF from (left) observations, (middle) GFSv2 
simulated 30-member ensemble mean, and (right) FV3 GFS simulated 100-member 
ensemble mean. The pattern correlations between models and observations are listed in 
the titles of the plots. 
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Figure 11. PDFs of California state precipitation anomalies (percent departure) for 1982/83 
DJF (blue curve), 1997/98 DJF (red curve) and 2015/16 DJF (black curve). Results are based 
on 100-member FV3 GFS AMIP simulations. Large tick marks at the bottom show 
corresponding observed values. 
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Figure 12. Precipitation anomalies (percent departures) for 2015/16 DJF from (top left) 
observations, (top right) FV3 GFS simulated 100-member ensemble mean, (bottom left) the 
composite of 4 best runs, and (bottom right) the composite of 4 worst runs among 100-member 
FV3 GFS AMIP simulations. The pattern correlations between the model and observation are 
listed in the titles of the plots. 



57 
 

 1193 

 1194 
 1195 
 1196 
 1197 
 1198 
 1199 
 1200 
 1201 
 1202 
 1203 
 1204 
 1205 
 1206 
 1207 
 1208 
 1209 
 1210 
 1211 
 1212 
 1213 
 1214 
 1215 
 1216 
 1217 

Figure 13: The spatial pattern of FV3 GFS simulated (top left) external variance, (bottom 
left) internal variance, (top right) observed total variance and (bottom right) FV3 GFS 
simulated total variance of DJF 200-hPa height anomaly. Model results are based on 100-
member FV3 GFS AMIP simulations. 
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Figure 14: The spatial pattern of (left) DJF and (right) JJA signal-to-noise ratio (SNR) 
estimate of (top) 200-hPa height, (middle) precipitation and (bottom) surface air 
temperature anomalies computed as the ratio of external-to-internal variance in 100-
member FV3 GFS AMIP simulations. 
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Figure 15: The spatial pattern of (left) DJF and (right) JJA anomaly correlation of (top) 
200-hPa height, (middle) precipitation and (bottom) surface air temperature between 
observations and FV3 GFS simulated 100-member ensemble mean. 
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Figure 16: The spatial pattern of DJF anomaly correlation with observations of (top) 200-
hPa height, (middle) precipitation and (bottom) surface air temperature from (left) FV3 
GFS AMIP ensemble mean and (right) the difference in anomaly correlation with 
observations between FV3 GFS and GFSv2 AMIP ensemble mean. 
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Figure 17. Precipitation anomalies for 2022 JJA from (top) observations, (middle) 
FV3 GFS simulated 100-member ensemble mean, and (bottom) GFSv2 simulated 
30-member ensemble mean. The outlined box shows the South Asia region 
bounded by 58o-80oE, 20o-38oN. 
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Figure 18. (top) precipitation anomalies for 2022 JJA averaged over the South Asia region 
(58o-80oE, 20o-38oN) from observations (black line), FV3 GFS simulated 100 individual 
members (red and blue bars) and 100-member ensemble mean (green line), and (bottom) the 
comparison of the spatial pattern of precipitation anomalies for 2022 JJA between (left) 
observations and (right) a single member (100th member) from FV3 GFS AMIP simulations. 
The outlined box shows the South Asia region bounded by 58o-80oE, 20o-38oN. 
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Text S1 24 

Text S1 describes the results of the probability density functions (PDF) of surface air 25 

temperature and precipitation from GFSv2 AMIP runs over the contiguous United States. 26 

Fig. S1 top in the supplementary material shows the frequency distributions of wintertime 27 

surface air temperature (top left) and precipitation (top right) from GFSv2 AMIP runs for 28 

the first 5-yr period (blue curve) and last 5-yr period (red curve) of the simulations based 29 

on 450 (30 members multiply by 15 months for 5-yr period) model samples. The two 30 

curves of surface air temperature are significantly different while those of precipitation 31 

are statistically indistinguishable according to the Kolmogorov-Smirnov test. It is clear 32 

that the red curve is shifted toward warmer conditions compared to the blue curve, 33 

indicating the latter period is warmer than the earlier period and there is a US warming 34 

trend during the winter. 35 

 36 

During summer, the two curves for both surface air temperature and precipitation are 37 

significantly different based on the Kolmogorov-Smirnov test (Fig. S1 bottom). The red 38 

curve is shifted toward warmer and wetter conditions compared to the blue curve. GFSv2 39 

results suggest that there is a US warming trend for both DJF and JJA seasons but there is 40 

no consensus on the precipitation trend. 41 

 42 

Text S2 43 

Text S2 describes the forced atmospheric variability during 1979-2021 wintertime by 44 

using the 30-member ensemble mean of GFSv2 AMIP simulations (Fig. S2). The three 45 
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leading EOFs of the ensemble mean GFSv2 AMIP simulations together explain 84.4% of 46 

the total boundary forced ensemble mean height variance. 47 

  48 

The leading mode of the forced variability describes the TNH pattern associated with 49 

ENSO, explaining 44.2% of the total boundary forced component of extratropical NH 50 

wintertime model simulated ensemble mean height response variability. The temporal 51 

correlation of the time series for this leading mode with Nino-3.4 SST variability is 0.84. 52 

The corresponding SST regression against PC1 time series confirms that this mode is 53 

clearly related to ENSO. 54 

 55 

The second forced mode is related to anthropogenically forced climate change and the 56 

explained variance by this forced mode is 28.8%. The structure of this mode features a 57 

same sign hemisphere-wide pattern and the PC2 times series has a distinct upward trend. 58 

The corresponding SST regression against PC2 time series shows a dominant SST 59 

warming pattern over the global oceans except for the cold tongue region. 60 

 61 

Explaining 11.4% of the total boundary forced height variability over the NH 62 

extratropics, the forced third mode describes a wave train resembling the PNA pattern 63 

resulting from atmospheric sensitivity to ENSO asymmetry and from sensitivity to a 64 

tropical precursor SST for ENSO development. For a detailed physical explanation for 65 

this mode see the discussion of Figure 7 in the manuscript. 66 

 67 
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