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Abstract

The tropopause aerosol layer (TAL) represents the increase of aerosols in tropopause. It was first discovered over Asia but

was found in this study to also occur over South America and Africa owing to the combined effects of monsoon dynamics and

pollutant emissions. Over Asia, the TAL has the highest altitude and widest spread due to strong deep convection and the

upper troposphere anticyclonic system there. TAL intensity is highest in South America due to heavy pollutant emissions.

Anthropogenic pollution from India and western China produces two Asian TAL centers, whereas widespread wildfires result

in single centers over South America and Africa. TAL radiative forcing induced by carbonaceous aerosols at the top of the

atmosphere has warming effects over Asia (+0.21 W m-2), whereas cooling effects occur over South America (-0.47 W m-2)

and Africa (-0.12 W m-2) owing to the divergent strengths of black-carbon absorption and organic-carbon scattering.
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Key Points: 11 

• TALs occur not only over Asia, but also over South America and Africa owing 12 

to the combined effects of monsoon dynamics and pollutant emissions. 13 

• Strong monsoon dynamics cause the highest altitude and widest coverage of 14 

the TAL over Asia. 15 

• TAL CAs from anthropogenic emissions cause warming effects over Asia and 16 

natural emissions cause cooling effects over South America and Africa. 17 
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Abstract 19 

The tropopause aerosol layer (TAL) represents the increase of aerosols in tropopause. 20 

It was first discovered over Asia but was found in this study to also occur over South 21 

America and Africa owing to the combined effects of monsoon dynamics and 22 

pollutant emissions. Over Asia, the TAL has the highest altitude and widest spread due 23 

to strong deep convection and the upper troposphere anticyclonic system there. TAL 24 

intensity is highest in South America due to heavy pollutant emissions. Anthropogenic 25 

pollution from India and western China produces two Asian TAL centers, whereas 26 

widespread wildfires result in single centers over South America and Africa. TAL 27 

radiative forcing induced by carbonaceous aerosols at the top of the atmosphere has 28 

warming effects over Asia (+0.21 W m−2), whereas cooling effects occur over South 29 

America (−0.47 W m−2) and Africa (−0.12 W m−2) owing to the divergent strengths of 30 

black-carbon absorption and organic-carbon scattering. 31 

 32 

Plain Language Summary 33 

The tropopause aerosol layer (TAL) defines the accumulation of aerosols in the upper 34 

troposphere and lower stratosphere and induces precipitation anomalies, radiation 35 

perturbation, and even stratospheric ozone depletion, through which it may contribute 36 

to the effects of climate change. Previous studies have shown that the TAL is 37 

prevalent over Asia during the summer monsoon period, although it is unclear 38 

whether the phenomenon exists in other areas. This study investigated the occurrence 39 

of TALs worldwide and found that it is not limited to Asia but is also observed in 40 

South America and Africa. The TAL is a result of the combined effects of monsoon 41 

dynamics and pollutant emissions, leading to its unique spatial characteristics and 42 

radiative effects. 43 

  44 
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1 Introduction 45 

The tropopause aerosol layer (TAL) defines the accumulation and concentration of 46 

aerosols in the upper troposphere and lower stratosphere (Bian et al., 2020; Lau et al., 47 

2018), contrasting with the decreasing concentration of aerosols in the lower 48 

troposphere as altitude increases (Liu et al., 2021; Yu et al., 2010). The phenomenon 49 

was first discovered over Asia during the boreal summer through satellite retrieval and 50 

model simulation and was known as the Asian Tropopause Aerosol Layer (ATAL) 51 

(Vernier et al., 2011; Yu et al., 2017). The presence of the ATAL can significantly alter 52 

precipitation (Fadnavis et al., 2017), deplete stratospheric ozone (Salawitch and 53 

McBride, 2022; Solomon et al., 2022), and inhibit surface warming (Fadnavis et al., 54 

2019), resulting in considerable impacts on the environment, hydrology, and even 55 

human life in Asia (Liu et al., 2020; Usha et al., 2022; Yuan et al., 2019b). 56 

The ATAL is formed by the joint effects of monsoon dynamics and surface pollutant 57 

emission (Lau et al., 2018; Lelieveld et al., 2018; Yu et al., 2017). Specifically, local 58 

emissions and long-range transport by prevailing southwesterly winds lead to high 59 

concentrations of surface pollutants over South and East Asia (Neely et al., 2014; Wu 60 

et al., 2022b; Zhang et al., 2019). During the Asian Summer Monsoon (ASM) period, 61 

deep convection and strong updrafts occur, forcing surface pollutants to penetrate into 62 

the stratosphere (Bucci et al., 2020; Lau and Kim, 2022b). ASM anticyclonic 63 

circulation in the upper troposphere acts as a trap, causing the pollutants to 64 

accumulate over the Tibetan Plateau rather than spreading globally (Vernier et al., 65 

2011; Yuan et al., 2019a). In view of this formation mechanism, the TAL may exist 66 

over other areas such as the Australian–Asian, African, and American monsoon 67 

regions (Geen et al., 2020). If so, the spatial features of each TAL may be different 68 

because each regional monsoon sub-system has unique characteristics of intensity, 69 

extent, and prevailing period (Li et al., 2016; Zhisheng et al., 2015). Previous studies 70 

have suggested the possible existence of TALs over North America and Africa, but 71 

considerable uncertainty remains (Vernier et al., 2015; Yu et al., 2015), so it is 72 

necessary to examine the possible existence of TALs worldwide to evaluate their 73 
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potential atmospheric and climatic effects. 74 

Interactions between aerosols and short-wave radiation significantly impact 75 

atmospheric thermodynamic and dynamic states, with notable effects on the radiation 76 

budget and climate system (Zhang et al., 2020). In the ATAL, the aerosols have 77 

considerable radiative effects, with radiation perturbations of +0.15 W m−2 at the top 78 

of the atmosphere and −0.72 W m−2 at the surface (Geo et al., 2023, JGR), despite 79 

their relatively small amounts compared with surface loading. Carbonaceous aerosols 80 

(CAs), are prevalent in the ATAL and are particularly important due to their high 81 

capacity for solar radiation absorption (Ding et al., 2016; Tao et al., 2020). Radiative 82 

forcing (RF) induced by CAs is approximately twice that of mass-equivalent sulfate 83 

aerosol (Liu et al., 2022). Atmospheric warming induced by ATAL CAs causes 84 

increased precipitation over Asia through strengthening the monsoon Hadley 85 

circulation (Fadnavis et al., 2017, ACP). Therefore, it is vital to assess the radiative 86 

effects of TAL globally, with a strong focus on CAs because of their widespread 87 

distribution in the world, particularly in monsoon regions (Figure S1). 88 

This study aimed to provide a global perspective on the TAL phenomenon by 89 

considering its existence in different monsoon regions based on the CAs component. 90 

Data from multiple sources including satellite retrievals, re-analysis, and model 91 

simulations were used to elucidate processes that influence the formation and 92 

evolution of a TAL, particularly the impact of monsoon dynamics and surface 93 

pollutants. Our results provide innovative insights into the interactions between 94 

aerosols and monsoons, thus contributing to a deeper understanding of these complex 95 

phenomena. 96 

2 Data and Methods 97 

2.1 Satellite Retrieval 98 

The Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) aboard the Suomi 99 

National Polar-orbiting Partnership satellite was launched in October 2011, aiming to 100 

retrieve vertical profiles of ozone, aerosol extinction, and cloud-top height (Chen et 101 
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al., 2018, 2020). The instrument measures limb-scattering radiance at six wavelengths 102 

(510, 600, 675, 745, 869, and 997 nm) in the 0–80 km altitude range. The relatively 103 

high vertical and spatial sampling allow detection and tracking of sporadic events 104 

when aerosol particles are injected into the tropopause (Wu et al., 2022a). In studying 105 

the TAL, this work used the Level-2 swath observation product of the OMPS/LP 106 

(Taha et al., 2021). 107 

In addition, aerosol optical depth (AOD) from CALIPSO (Wielicki et al., 2010), land 108 

cover and fire monitoring product from the Moderate Resolution Imaging 109 

Spectroradiometer (MODIS) instrument (Justice et al., 2002), outgoing longwave 110 

radiation (OLR) from US National Oceanic and Atmospheric Administration (NOAA) 111 

satellite observations (Gruber and Krueger, 1984), and Global Precipitation 112 

Climatology Project (GPCP) combined the satellite retrieval and rain gauge 113 

observation (Huffman et al., 1997) were also applied. 114 

2.2 Reanalysis 115 

The Modern Era Retrospective analysis for Research and Applications version 2 116 

(MERRA2) atmospheric reanalysis generated by the US NASA Global Modeling and 117 

Assimilation Office provides traditional atmospheric products and chemical 118 

compositions for aerosols and greenhouse gases (Buchard et al., 2017; Gelaro et al., 119 

2017). MERRA2 modeling and assimilation have allowed many advances in the 120 

understanding of atmospheric chemistry, ozone, and stratosphere processes (Randles 121 

et al., 2017). Aerosol and ozone products have proved very helpful in the study of 122 

global air pollution, from the troposphere to the stratosphere (Che et al., 2019; Wang 123 

et al., 2021), well reproducing the ATAL phenomenon (Lau and Kim, 2022b; Wu et al., 124 

2022b; Yuan et al., 2019a). The aerosol and meteorology-related products were thus 125 

used here to explore monsoon influences on the TAL. 126 

The fifth generation European Re-Analysis (ERA5) was developed by the European 127 

Centre for Medium-Range Weather Forecasts to model data, physics, and core 128 

dynamics to provide a detailed description of the global atmosphere, land surface, and 129 
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ocean waves (Hersbach et al., 2020). ERA5 meteorological data were also used in this 130 

study. 131 

2.3 Model Output 132 

Models of the sixth phase of the Coupled Model Inter-comparison Project (CMIP6) 133 

enable long-term simulations and various experiments in reconstructing the historical 134 

evolution and future projection of climate change and air pollution (Bauer et al., 2020; 135 

Eyring et al., 2016; Zanis et al., 2020). CMPI6 model outputs were used to verify the 136 

occurrence of TALs. 137 

2.4 WMMEM and Quantitative Contributions of Factors 138 

Weighted multi-model ensemble means (WMMEMs) were used in model bias 139 

correction to reduce errors associated with the inter-model spread of CMIP6 data as 140 

follows (Shen et al., 2021): 141 𝑌ሺ𝑡ሻ =  ∑ 𝑊𝑋     (1) 142 

where 𝑋 is the output time series of each model, 𝑊 is the weighting of each model 143 

error relative to a MERRA2 reference, and 𝑌ሺ𝑡ሻ is the corrected CMIP6 output. 144 

Quantitative contributions of influencing factors were based on the 145 

multiple-linear-regression model (Cui et al., 2021; Wu et al., 2021). 146 

2.5 NASA Langley Fu–Liou radiative transfer model 147 

The NASA Langley Fu–Liou radiative transfer model computes broadband solar 148 

shortwave and thermal longwave profiles of down-welling and up-welling flux 149 

accounting for gas absorption, and absorption and scattering by aerosols and clouds 150 

(Balmes et al., 2021; Natarajan et al., 2012). It is a highly modified version of the 151 

original model developed by Fu and Liou (Fu et al., 1993). Atmospheric profiles of 152 

pressure, temperature, water vapor, and ozone, surface albedo and emission, and 153 

aerosol optical depth and vertical profiles were the key input parameters. The Langley 154 

Fu–Liou radiative transfer model was adopted for rough evaluation of RF caused by 155 

TAL CAs. 156 

3 Results 157 
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3.1 TALs Formation in Asia, South America, and Africa 158 

Based on the mechanism of formation of the ATAL, the two primary factors causing 159 

the appearance of a TAL are monsoon dynamics and surface pollutants. 160 

Monsoon-controlled regions characterized by heavy precipitation are shown in Figure 161 

1a, mainly over the land and ocean in the region 30°N–30°S, with South and East 162 

Asia including India and China having the most severe anthropogenic pollution. In 163 

contrast, South America, Africa, and Southeast Asia are covered mainly by forest and 164 

grassland with pollution arising mainly from natural wildfires (Figure 1c, d). There is 165 

relatively little atmospheric pollution over the Caribbean and other ocean areas. The 166 

pollution distribution is portrayed well by that of CAs (Figure 1b), which are usually 167 

used to identify features of the ATAL (Lau and Kim, 2022a; Yuan et al., 2019a). The 168 

presence of tropopause CAs, as indicated by multiple data from OMPS/LP satellite 169 

retrieval, MERRA2 reanalysis, and CMIP6 simulation (Figures 2 and S6–S17), 170 

indicates the occurrence of TALs over Asia, South America, and Africa. Monsoon 171 

dynamics are strong in these areas, and surface pollution levels are high (Figures S2–172 

S5). Caribbean and ocean areas also have strong monsoon dynamics but low surface 173 

pollution, so they do not exhibit clear TALs, nor do other monsoon-free but 174 

high-surface-pollution areas show evidence of TALs, confirming that monsoon 175 

dynamics and surface pollutants are essential for their formation. 176 

The appearance of a TAL has a clear seasonal pattern, as indicated in Figures S6–S17. 177 

In Asia, the TAL usually appears during June–September, peaking in July–August, as 178 

shown earlier (Yuan et al., 2019a). In South America, the TAL appears during 179 

October–December, whereas there are two TAL phenomena in Africa, one in West 180 

Africa during February–April, and another in East Africa during February–May. All 181 

appearances and intensities of TALs correspond to the evolution of monsoon systems 182 

(Figure S5) rather than monthly variations in surface pollution levels (Figures S2–S4). 183 

This highlights the dominant role of monsoon dynamics in determining seasonal 184 

variations in TALs, as found earlier (Wu et al., 2022b). TAL features in West and East 185 

Africa are similar, so only the former region is considered here. 186 
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3.2 Divergent Spatial Features of TALs 187 

Spatial distributions and cross-sections of TALs over Asia, South America, and Africa 188 

are shown in Figure 2 for July–August, October–December, and February–April, 189 

respectively. Here, features of TALs were examined mainly on the basis of MERRA2 190 

and CMIP6 datasets, rather than the OMPS/LP dataset, owing to the low signal/noise 191 

ratio caused by cloud cover in the latter. Corresponding CAs AOD is shown in Figure 192 

1e–m, and OLR, OMEGA, and the 200 hPa atmospheric circulation fields are shown 193 

in Figure 3, indicating features of deep convention, vertical motion, and anticyclones 194 

in the upper troposphere caused by monsoon dynamics. 195 

Among these regions, South America exhibits the most intense surface CAs pollution, 196 

and Africa the least. There are two pollution centers in Asia: in India and China. 197 

During the prevailing monsoon period, upward vertical motion induced by deep 198 

convection carries surface pollutants into the upper troposphere and even the lower 199 

stratosphere. The highest TAL CAs intensity was thus observed in South America, 200 

while intensities were comparable in Asia and Africa. TAL CAs concentrations in 201 

South America were 2–3 times those in Asia and Africa, consistent with patterns of 202 

surface pollution. However, TAL altitude was highest in Asia, centered at ~120 hPa, 203 

followed by South America (~200 hPa), and Africa (~220 hPa). This is due to the 204 

Himalayas and the Tibetan Plateau causing the strongest summer monsoon in South 205 

Asia (Boos and Kuang, 2010; Zhang et al., 2012) with the most intensive deep 206 

convection and upward vertical motion and upwelling velocities exceeding −0.06 Pa 207 

s−1 in the core ascent zone. Monsoon dynamics in the other areas are relatively weak, 208 

even negligible in Africa relative to Asia. It follows that updrafts account for the 209 

suspended height of TALs, and tropopause height alone does not determine the rising 210 

altitude of the TAL (Figure 3g–i). 211 

Another interesting distinction between TALs in different areas is their 212 

three-dimensional shape. The TAL in Asia has the widest spatial coverage, spanning 213 

from the Iranian Plateau to eastern China through an extended upper-tropospheric 214 

anticyclonic circulation spanning >60° of longitude. This circulation is strengthened 215 
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by the heating effect of the Himalayas and the Tibetan Plateau, as documented by Wu 216 

et al. (2015). In contrast, anticyclonic circulation over South America and Africa is 217 

relatively weak, covering only ~30° of longitude. This acts as a barrier, constraining 218 

the TAL to a limited spread, mainly over central South America and West Africa. Of 219 

the two TAL centers in Asia, the stronger is over the Tibetan Plateau and the weaker is 220 

over southwest China, due to anthropogenic pollution (the primary emission source) 221 

being centered over small areas of dense population in India and western China and 222 

producing two narrow vertical transport conduits, consistent with Lau et al. (2018). In 223 

comparison, surface pollutants in South America and Africa are derived mainly from 224 

widespread wildfires across forest and grassland, resulting in one broad vertical 225 

transport conduit and a single peak TAL center. Overall, TALs in Asia, South America, 226 

and Africa thus exhibit divergent spatial features owing to the combined effects of 227 

monsoon dynamics and surface pollutant emissions. 228 

3.3 Divergent Radiative Forcing of TALs  229 

The remarkable features of the TALs result in divergent radiative effects. Based on 230 

MERRA2 reanalysis, we evaluated RFs induced by TAL CAs in Asia, South America, 231 

and Africa utilizing the Langley Fu–Liou radiative transfer model. TAL CAs over 232 

Asia have warming effects on the climate system of +0.21 W m−2 at the top of the 233 

atmosphere (Figure 4), whereas there are cooling effects of −0.47 and −0.12 W m−2 234 

over South America and Africa, respectively. These differences are related to CA 235 

composition, which includes black carbon (BC) and organic carbon (OC); the former 236 

has a high light-absorption capacity and the latter a predominantly light-scattering 237 

capacity. The relative CA contents of BC and OC determine RF magnitude and sign. 238 

The amount of BC in TAL over Asia (AOD 0.0026) was higher than that in the South 239 

American (AOD 0.0016) and African (AOD 0.0008) TALs. The OC content (AOD 240 

0.0034) over Asia was roughly equivalent to the BC content, but it was much higher 241 

over South America (AOD 0.0081) and Africa (AOD 0.0029). Therefore, TAL BC 242 

warming effects over South America and Africa were offset by OC cooling effects. In 243 

contrast to results at the top of the atmosphere, TAL CAs caused negative RFs at the 244 
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surface for all three regions owing to absorption and scattering of sunlight by CA 245 

leading to less shortwave radiation reaching the surface. Among three regions, the 246 

surface RF of TAL CAs was lowest in Africa due to its weaker intensity there. In the 247 

atmosphere, Asian TAL CAs had the strongest warming effect because of their higher 248 

BC contents. Consistent with the results of Gao et al. (2023), our simulation indicated 249 

a positive Asian TAL RF at the top of the atmosphere rather than the negative values 250 

reported by Vernier et al. (2015). We found that CA-induced warming effects were 251 

stronger than those caused by scattering and absorbing aerosols (+0.15 W m−2; Geo 252 

et al., 2023). These results thus reflect the importance of TAL CAs in climate systems 253 

relative to other types of aerosol. Moreover, we note that larger amounts of CAs will 254 

likely be released to the atmosphere by more frequent and intense wildfires caused by 255 

favorable meteorological conditions under global warming (Huang et al., 2023; Pu et 256 

al., 2021; Xie et al., 2022; Zheng et al., 2023). More attention should thus be paid to 257 

CAs or smoke from wildfires to evaluate their source, transport, radiation, and climate 258 

effects. 259 

The intensity of solar shortwave radiation varies with altitude, leading to diverse RFs 260 

of equivalent CA concentrations at different altitudes. To better understand this 261 

phenomenon and highlight the radiative effects of TAL CAs, we examined equivalent 262 

CAs at three altitude levels: upper troposphere (300–100 hPa), middle troposphere 263 

(600–400 hPa), and lower troposphere (900–700 hPa). In Asia, the equivalent CA 264 

levels changed from warming to cooling effects with decreasing altitude, indicating 265 

the relative importance of competitive scattering and absorption of radiation by BC 266 

and OC at different altitudes. In South America and Africa, equivalent CAs at 267 

different altitudes exhibited consistently negative RFs, but with different intensities. 268 

These changes from warming to cooling, and RF intensity, result from competition 269 

between BC absorption and OC scattering. However, when only one type of aerosol 270 

(BC or OC) is considered, RFs increase with altitude because of the stronger solar 271 

shortwave radiation at higher altitudes, thus highlighting the importance of TALs to 272 

the climate system.  273 
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4 Discussion 274 

This study of the TAL phenomenon in South America and Africa followed the 275 

discovery of the ATAL (Vernier et al., 2011) and involved multiple data sources 276 

including OMPS/LP satellite retrieval, MERRA2 reanalysis, and CMIP6 simulations. 277 

Our findings highlight the critical role of monsoon dynamics and surface pollutant 278 

emissions in the formation of TALs, which together cause their divergent spatial 279 

features and drive their evolution across these three areas. We emphasize the 280 

importance of including natural emissions in future TAL studies owing to the 281 

increasing frequency and intensity of wildfires under a global warming scenario 282 

(Abram et al., 2021; Huang et al., 2023; You and Xu, 2022). Although our results are 283 

robust, the inconsistency in TAL seasonality among the OMPS/LP, MERRA2, and 284 

CMIP6 datasets indicates uncertainties due to imperfections in cloud removal in 285 

satellite retrieval and limitations in the modeling of stratospheric processes. Therefore, 286 

further in-situ observations are required for improvement of understanding of TALs. 287 

Overall, this study provides new insights into TALs and should aid further study of 288 

interactions between aerosols and monsoons, especially concerning their impact on 289 

stratospheric chemistry and climate change (Bian et al., 2020; Salawitch and McBride, 290 

2022; Solomon et al., 2022). 291 

5 Conclusions 292 

This study aimed to investigate the TAL phenomenon by analysis of CAs using 293 

multiple data sources including OMPS/LP satellite retrieval, MERRA2 reanalysis, and 294 

CMIP6 model outputs. Results indicate that TALs occur not only in Asia, but also in 295 

South America and Africa during their monsoon periods. Monsoon dynamics and 296 

surface pollutant emissions are the two prime factors involved in TAL formation. The 297 

TAL in Asia has the highest altitude and widest spatial coverage due to the effects of 298 

strong deep convection, updrafts, and a large anticyclonic system in the upper 299 

troposphere, all of which are caused by strong monsoon dynamics. Whereas, TAL 300 

intensity was highest in South America due to heavy surface CAs emissions. In Asia, 301 

anthropogenic pollution is concentrated over small areas of dense population in India 302 

and western China, producing two narrow vertical transport conduits and two TAL 303 
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centers. In contrast, surface pollutants in South America and Africa are derived mainly 304 

from widespread wildfires across forest and grassland, resulting in a broad vertical 305 

transport conduit and single TAL peak centers. The divergent features of TALs among 306 

the three regions cause distinct RFs. Those at the top of the atmosphere cause 307 

warming over Asia (+0.21 W m−2) and cooling over South America (−0.47 W m−2) 308 

and Africa (−0.12 W m−2). These opposing RFs result from the different CA 309 

compositions of anthropogenic and natural emissions, where the relative amounts of 310 

absorbing BC and scattering OC determine the magnitude and sign of the RF. In 311 

addition, equivalent CAs at higher altitudes induce larger RFs. These results indicate 312 

the important divergent climate effects of TALs over Asia, South America, and Africa. 313 

  314 
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Open Research 315 

The aerosol extinction ratio from OMPS/LP aboard the S-NPP can be retrieved from 316 

https://doi.org/10.5067/CX2B9NW6FI27. The MERRA2 reanalysis is available at the 317 

following links: Product inst3_3d_aer_Nv, https://doi.org/10.5067/LTVB4GPCOTK2; 318 

instM_3d_asm_Np, https://doi.org/10.5067/2E096JV59PK7; tavgM_2d_aer_Nx, 319 

https://doi.org/10.5067/FH9A0MLJPC7N; tavgM_2d_rad_Nx, 320 

https://doi.org/10.5067/OU3HJDS973O0. The ERA5 reanalysis is obtained from 321 

https://doi.org/10.24381/cds.6860a573. The CMIP6 models’ outputs can be found at 322 

https://esgf-node.llnl.gov/search/cmip6/. The CALIPSO satellite retrieval (product: 323 

LID_L3_Tropospheric_APro_CloudFree-Standard-V4-20) is available at 324 

https://opendap.larc.nasa.gov/opendap/CALIPSO/LID_L3_Tropospheric_APro_Clou325 

dFree-Standard-V4-20/contents.html. The fire count can be downloaded from the Fire 326 

Information for Resource Management System (FIRMS; 327 

https://firms.modaps.eosdis.nasa.gov/download/create.php), in which the fire sources 328 

from MODIS and VIIRS S-NPP were employed after selecting the file format and 329 

submitting the email address. The land cover (product name: MCD12C1, i.e., 330 

MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG) from 331 

MODIS is available at 332 

https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MCD12C1--6, which can be 333 

retrieved from the above link after selecting the product: MCD12C1. The OLR from 334 

NOAA and precipitation from GPCP can be obtained from 335 

https://psl.noaa.gov/data/gridded/data.olrcdr.interp.html and 336 

https://psl.noaa.gov/data/gridded/data.gpcp.html, respectively. The NASA Langley 337 

Fu-Liou radiative transfer model can be accessed from 338 

https://cloudsgate2.larc.nasa.gov/cgi-bin/fuliou/lflcode/accesslfl.cgi after registration. 339 

All data used in this paper are available at the time of submission. Figures in this 340 

manuscript were made with python version 3.9 and this software is available from 341 

https://www.python.org/. 342 
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Figure 2. The tropopause aerosols layer (TALs) over Asia, South America, and 585 

Africa. (a) Spatial distribution at 80–200 hPa and cross-section over 10°–30°N for the 586 

CAs mixing ratio (ppbm; from MERRA2 and CMIP6) and aerosol extinction ratio 587 

(OMPS) over Asia, during July–August, 2012–2021. (b) Spatial distribution at 150–588 

300 hPa and cross-section over 20°S–0° for the CAs mixing ratio (ppbm; MERRA2 589 

and CMIP6) and aerosol extinction ratio (OMPS) over South America, during 590 

October–December, 2012–2021. (c) Spatial distribution at 150–250 hPa and 591 

cross-section over 10°S–15°N for the CAs mixing ratio (ppbm; MERRA2 and CMIP6) 592 

and aerosol extinction ratio (OMPS) over Africa, during February–April, 2012–2021.593 
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 604 

Figure 4. Radiative forcing induced by TALs. (a) The schematic diagram of 605 

interactions between solar radiation and CAs (BC and OC) in TALs over Asia, South 606 

America, and Africa. (b) The radiative forcing (RF, units: W m−2) at the top of the 607 

atmosphere (TOP), at the surface (SUR), and in the atmosphere (ATM) induced by 608 

TALs over Asia, South America, and Africa. (c) The RF at the top of the atmosphere 609 

induced by equivalent CAs in the upper troposphere (Upper; red bars), middle 610 

troposphere (Middle; green bars), and lower troposphere (Lower; blue bars). TALs 611 

CAs mixing ratio (ppbm; CMPI6) over Asia, South America, and Africa were 612 

processed for the regions of 15°–0°N and 60°–120°E during July–August over Asia; 613 

20°S–5°N and 70°–35°W during October–December over South America; and 15°S–614 

15°N and 0°–40°E during February–April over Africa. 615 


