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Abstract

Lake water clarity, phytoplankton biomass, and hypolimnetic oxygen concentration are metrics of water quality that are highly

degraded in eutrophic systems. Eutrophication is linked to legacy nutrients stored in catchment soils and in lake sediments.

Long lags in water quality improvement under scenarios of nutrient load reduction to lakes indicate an apparent ecosystem

memory tied to the interactions between water biogeochemistry and lake sediment nutrients. To investigate how nutrient legacies

and ecosystem memory control lake water quality dynamics, we coupled nutrient cycling and lake metabolism in a model to

recreate long-term water quality of a eutrophic lake (Lake Mendota, Wisconsin, USA). We modeled long-term recovery of

water quality under scenarios of nutrient load reduction and found that the rates and patterns of water quality improvement

depended on changes in phosphorus (P) and organic carbon storage in the water column and sediments. Through scenarios of

water quality improvement, we showed that water quality variables have distinct phases of change determined by the turnover

rates of storage pools – an initial and rapid water quality improvement due to water column flushing, followed by a much longer

and slower improvement as sediment P pools were slowly reduced. Water clarity, phytoplankton biomass, and hypolimnetic

dissolved oxygen differed in their time responses. Water clarity and algal biomass improved within years of nutrient reductions,

but hypolimnetic oxygen took decades to improve. Even with reduced catchment loading, recovery of Lake Mendota to a

mesotrophic state may require decades due to nutrient legacies and long ecosystem memory.
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Key Points: 10 

• Legacy phosphorus in lake sediments controls long term lake water quality response to 11 
nutrient remediation. 12 

• Coupled cycles of nutrients, physics, and metabolism explain ecosystem memory of lake 13 
phosphorus, water clarity, and oxygen habitat.  14 

• Improvement in lake water quality to pristine levels will require decades of commitment 15 
to nutrient load reductions. 16 

  17 
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Abstract 18 

Lake water clarity, phytoplankton biomass, and hypolimnetic oxygen concentration are metrics 19 
of water quality that are highly degraded in eutrophic systems. Eutrophication is linked to legacy 20 
nutrients stored in catchment soils and in lake sediments. Long lags in water quality 21 
improvement under scenarios of nutrient load reduction to lakes indicate an apparent ecosystem 22 
memory tied to the interactions between water biogeochemistry and lake sediment nutrients. To 23 
investigate how nutrient legacies and ecosystem memory control lake water quality dynamics, 24 
we coupled nutrient cycling and lake metabolism in a model to recreate long-term water quality 25 
of a eutrophic lake (Lake Mendota, Wisconsin, USA). We modeled long-term recovery of water 26 
quality under scenarios of nutrient load reduction and found that the rates and patterns of water 27 
quality improvement depended on changes in phosphorus (P) and organic carbon storage in the 28 
water column and sediments. Through scenarios of water quality improvement, we showed that 29 
water quality variables have distinct phases of change determined by the turnover rates of storage 30 
pools – an initial and rapid water quality improvement due to water column flushing, followed 31 
by a much longer and slower improvement as sediment P pools were slowly reduced. Water 32 
clarity, phytoplankton biomass, and hypolimnetic dissolved oxygen differed in their time 33 
responses. Water clarity and algal biomass improved within years of nutrient reductions, but 34 
hypolimnetic oxygen took decades to improve. Even with reduced catchment loading, recovery 35 
of Lake Mendota to a mesotrophic state may require decades due to nutrient legacies and long 36 
ecosystem memory. 37 

 38 

Plain Language Summary 39 

Lake water quality, as measured by the concentration of algae near the lake surface, the clarity of 40 
the water, and the availability of dissolved oxygen to support organisms, is greatly reduced in 41 
lakes with nutrient pollution from phosphorus. In Lake Mendota, Wisconsin, phosphorus applied 42 
to the surrounding landscape for more than a century has accumulated in catchment soils and in 43 
the lake water column and sediments (i.e., “legacy phosphorus”), leading to poor water quality. 44 
To investigate how water quality in Lake Mendota might respond to nutrient pollution reduction, 45 
we used computer models to simulate the elimination of phosphorus inputs from the catchment 46 
and track water quality change. Phosphorus in the lake water column initially decreased quickly, 47 
due to water column flushing, but then decreased very slowly due to release of legacy 48 
phosphorus from lake sediments. Water quality recovery lagged that of phosphorus, indicating an 49 
inherent “ecosystem memory” for past phosphorus levels. Ecosystem memory was due to 50 
biological activity that remained elevated, even when phosphorus was declining in the water 51 
column. With nutrient inputs to the lake eliminated, recovery of algae concentration and water 52 
clarity to pristine conditions required decades, and a return to a fully oxygenated condition 53 
required a century.    54 

  55 
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1 Introduction 56 

The quality of surface freshwater underpins sustainable futures for the planet (Folke et al., 2020; 57 
Lee & Diop, 2009); however, water quality deterioration has been alarmingly persistent 58 
(Damania et al., 2019; Oliver et al., 2017). Human activities have greatly exacerbated lake 59 
eutrophication, or excess nutrient enrichment, which drives toxic phytoplankton blooms, reduced 60 
water clarity, and bottom water anoxia (Smith & Schindler, 2009). Eutrophication is associated 61 
with nutrient loads to lakes (Schindler et al., 2016), especially watershed nitrogen (N) and 62 
phosphorus (P) export from lake catchments (Carpenter & Bennett, 2011). Water quality in lakes 63 
has shown troubling resistance to improvement, despite recognition of the problem and 64 
management action intended to reduce nutrient loads (Jenny et al., 2016; Søndergaard et al., 65 
2007).  66 

Slow recovery of lake water quality is due, in part, to the legacy of nutrient application in lake 67 
catchments (Chen et al., 2018). Here, we refer to nutrient legacies following (K. Van Meter et 68 
al., 2018), specifically referring to the excess N and P accumulated in catchment terrestrial soils 69 
due to decades of agriculture and other land use (Bennett et al., 1999; Sabo et al., 2021). For 70 
many catchments, the effect of this nutrient legacy is eutrophication in downstream lake 71 
ecosystems (Bennett et al., 1999; Keatley et al., 2011; K. J. Van Meter et al., 2021). Although 72 
catchment-scale nutrient management programs have led to reduced nutrient export to lakes in 73 
some cases (Sharpley et al., 2019), lakes can be slow to recover from eutrophication (McCrackin 74 
et al., 2017), due in part to legacy nutrients accumulated in lake sediments (Jeppesen et al., 75 
2005).   76 

Ecosystem memory in lakes may contribute to slow recovery from eutrophication. Here, we 77 
define ecosystem memory (a la Ogle et al., 2015) as the influence of past ecosystem states on the 78 
rates and patterns of future responses to change. In lakes, many processes may contribute to 79 
ecosystem memory and associated responses to nutrient load reductions, such as slow flushing in 80 
lakes with long hydrologic residence times (Hotchkiss et al., 2018), internal loading of nutrients 81 
from large sediment pools (Carleton & Lee, n.d.; Søndergaard et al., 2007), and biological 82 
feedback mechanisms that promote persistently high algal biomass, despite decreasing nutrient 83 
loads (Scheffer et al., 2001). While specific biophysical processes may be well described, it 84 
remains a challenge to understand how their interactions control water quality metrics that 85 
emerge at the ecosystem scale, such as seasonal patterns of phytoplankton biomass, water clarity, 86 
and formation of deep-water anoxia.  87 

Lake metabolism provides a framework for investigating ecosystem memory by linking changes 88 
in nutrient concentration to biophysical processes that can be expressed as ecosystem-scale water 89 
quality metrics over different time scales. While lake metabolism can be generalized as the 90 
balance of primary production and respiration (Odum, 1956; Staehr et al., 2010), its 91 
implementation in analytical models often includes physical and biological processes that 92 
quantify both metabolic processes and ecosystem states relevant to water quality (Ladwig et al., 93 
2022; Winslow et al., 2016). For example, elevated epilimnetic nutrients stimulate primary 94 
production (i.e., autochthony), which reduces water clarity through phytoplankton-associated 95 
turbidity (Smith, 1982). Autochthonous organic matter supports high microbial respiration, 96 
which leads to consumption of available oxygen in deeper waters of thermally stratified 97 
(Matzinger et al., 2010; Müller et al., 2012). Allochthonous organic matter also contributes to 98 
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lake metabolism (Hanson et al., 2003) and is generally considered a more recalcitrant and 99 
persistent source of organic carbon that contributes to long-term change in water quality metrics 100 
(Kothawala et al., 2014). Metabolism models that consider both autochthonous and 101 
allochthonous organic matter sources and cycling can recreate both short-term and long-term 102 
ecosystem dynamics (Hoellein et al., 2013). By linking physical, nutrient, and organic carbon 103 
cycles, metabolism models may also provide a mechanistic basis for the role of ecosystem 104 
memory in eutrophication recovery.  105 

We investigated how linked cycles of nutrients and lake metabolism control the time scale of 106 
water quality responses to reduced nutrient loads projected for Lake Mendota (Wisconsin, USA). 107 
We used 20 years of observational data to calibrate a physical-biogeochemical model and 108 
recreate annual dynamics of three water quality metrics, which are water column P 109 
concentrations, water clarity (as a function of dissolved and particulate organic carbon), and 110 
hypolimnetic dissolved oxygen (DO) depletion. Through a scenario of long-term nutrient 111 
reduction, we quantified how P legacies in the lake influence the responses of water quality 112 
metrics, highlighting the role of long-term ecosystem memory. While we were interested in 113 
water quality recovery, we were equally interested in the internal feedbacks that alter the time 114 
scales of change for water quality to address the questions: How do P cycles and lake 115 
metabolism interact to determine the time scales of change for water clarity and summer anoxia? 116 
How long is the legacy of historical P loading from the catchment to the lake on future water 117 
quality conditions? 118 

2 Materials and Methods 119 

Our over-arching goal was to link sediment and water column nutrient and organic matter cycles 120 
for the purpose of investigating how seasonal water quality metrics change over decades to 121 
centuries. While there are excellent examples of coupling sediment to water processes (Paraska 122 
et al., 2014), we needed an approach that allowed us to model lake metabolism at the ecosystem 123 
scale and that included general sediment properties, such as area, depth and P and organic carbon 124 
(OC) pool sizes. Following the recent work by Carleton and Lee (2023), who used a relatively 125 
simple model to recreate long-term P change in lakes and their sediments, we focus on simplicity 126 
and flexibility, recognizing that our approach enables future scaling to build additional 127 
complexity and application. We also placed high importance on recreating both seasonal and 128 
long-term dynamics in addressing how a lake responds to nutrient load reduction. Seasonal 129 
dynamics are important because water quality impairment, such as algal blooms and 130 
hypolimnetic anoxia, are generally summer phenomena in north temperate lakes. Long-term 131 
dynamics (decades to centuries) are important because of the persistence of nutrient legacies in 132 
lakes. We relied on high quality long-term data to inform the design of the model and calibrated 133 
it for predicting water quality. We used the calibrated model to run scenarios of water quality 134 
recovery, in which external nutrient loads to the lake were reduced.  135 

2.1 Study system     136 

Our study system was Lake Mendota, which is a eutrophic lake located in south-central 137 
Wisconsin, USA. The lake’s surface area is 39.61 km2, with a maximum and mean depth of 25 m 138 
and 12.8 m, respectively. The lake has a dimictic mixing regime and typically is stratified during 139 
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most of April-October. Lake Mendota is a drainage lake with an average water residence time of 140 
4.3 years (Lathrop & Carpenter, 2014).  141 

Lake Mendota and its catchment have a long history of human use. While people have lived near 142 
Lake Mendota for thousands of years, eutrophication likely occurred over a relatively short time 143 
period during the late 1800s to early 1900s, due to agricultural intensification, followed by 144 
urbanization (Brock, 1985; Lathrop, 2007). For our study, we assumed that Lake Mendota was 145 
either mesotrophic or oligotrophic in its water quality prior to European settlement, based on 146 
sediment cores (Brock, 1985). Currently, the lake is eutrophic and its catchment is predominantly 147 
urban and agricultural, with very high N and P biomass in catchment soils (Bennett et al., 1999; 148 
Lathrop, 2007). As a result of decades of high N export from the catchment to the lake, the lake 149 
tends to be P-limited (Lathrop, 2007), and thus we focused on P dynamics when modeling the 150 
nutrient legacies of the lake.  151 

2.2 Models linking physics, phosphorus, organic carbon, and dissolved oxygen 152 

We used a time-dynamic approach to model lake water quality and linked the three lake water 153 
quality cycles of interest – P, OC, and DO, all within the context of lake hydrodynamics (Fig. 1). 154 
We used this model to generate daily metrics of water quality, which are water column P 155 
concentrations, water clarity (as a function of dissolved and particulate OC), and hypolimnetic 156 
DO depletion. To study long-term changes in water quality, we tracked ecosystem states in both 157 
the water column and sediments. Explicitly linking cycles of P, OC, and DO enabled us to study 158 
how changes in external loads led to changes in major lake pools and subsequent changes in 159 
seasonal water quality metrics.  160 

Model details are provided in supplemental information (Tables S1-S3). The process-based 161 
implementation of thermodynamics was adapted from our previous work on pond thermal 162 
structure (Albright et al., 2022), lake metabolism modeling (Carey et al., 2018), and lake 163 
phosphorus modeling (Hanson et al., 2020). The model is 1-D in the vertical dimension, with 164 
three compartments modeled simultaneously using a box-modeling approach – water column 165 
epilimnion and hypolimnion, and active sediments (Fig. 1). Each compartment is treated as fully 166 
mixed.  167 

The lake physical model solves the energy budget and mixing dynamics on an hourly time step 168 
and produces 1 m vertical resolution temperature output. The lake physical model follows an 169 
integral energy approach for heat transport and solves vertical diffusion using an implicit scheme 170 
(see model formulations in Albright et al., 2022; note that we neglected the effects of 171 
macrophytes on energy attenuation in the current study). Water clarity, updated daily by the 172 
metabolism model, informs attenuation of short-wave radiation in the physical model. Hourly 173 
temperature output by the physical model is averaged to daily values, and sequentially linked to 174 
the water quality calculations. Thermal strata are calculated from the vertical temperature 175 
gradient. Strata volume and areal contact with sediments are calculated daily from the 176 
thermocline depth and lake hypsometry. In our application of the physical model output in the 177 
metabolism model, each thermal layer was considered fully mixed, and mean layer temperature 178 
was calculated from the layer’s volume weighted average.  179 

  180 
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The metabolism model includes pools (i.e., state variables) of total phosphorus (P), organic 195 
carbon (OC), and dissolved oxygen (DO) (Fig. 1; Table SI X). OC pools include particulate 196 
(POC) and dissolved (DOC) fractions and labile (POCL, DOCL) and recalcitrant (POCR, DOCR) 197 
forms. The model information is provided in detail in the SI, and summarized here. Pools are 198 
tracked separately for the epilimnion and the hypolimnion. We assume allochthony is recalcitrant 199 
and autochthony is labile. The model also includes an “active sediment layer,” which has pools 200 
for labile and recalcitrant POC and pools for tightly bound P (PB) and loosely bound (including 201 
organic) P, which we simplified to “unbound” (PU). At a conceptual level, our overall approach 202 
has similarities that of Carleton and Lee (2023) on P cycling in lakes. We highlight in the SI 203 
some key similarities and differences between their work and ours, and we use the findings of 204 
Carleton and Lee (2023) and references therein in evaluating the long-term behavior of our 205 
model.  206 

The lake sediments are divided into an upper active zone above a permanent burial zone. The 207 
active zone has POCR, POCL, PU, and PB, each of which interacts with the water column and is 208 
subject to permanent burial. Sources of sediment POCR,L are settling from the water column. 209 
Sinks for POCR,L include mineralization to inorganic carbon and permanent burial. Sources for 210 
sediment P are settling (PU) and rebinding (PB) from the water column. Sinks for PU,B include 211 
recycling of PU back into the water column, release of PB back into the water column under 212 
anoxic conditions, and permanent burial of PU,B. The details of rates and how they vary by 213 
temperature and oxic condition are provided in the SI. Permanent burial of P and OC is 214 
determined by the accumulation of lake sediments. A sediment accumulation rate of 1.0 mm y-1 215 
is assumed for Lake Mendota, unless otherwise stated in a scenario. Permanent burial of P and 216 
OC is simply the product of the mass of each of the active sediment constituents and the ratio of 217 
the sedimentation rate and active sediment depth. For example, under the above conditions, 218 
permanent burial of POC would be POCSed * 0.001 m y-1 / 0.1 m = POCSed * 0.01 y-1. We 219 
explore some of these assumptions in scenarios described below. See SI for more detailed 220 
justification for sediment extent and dynamics. 221 

2.3 Model calibration and sensitivity analysis 222 

The model was manually calibrated to recreate observed ice cover onset and breakup, Secchi 223 
depth, and volumetrically-weighted mean values for the epilimnion and hypolimnion for water 224 
temperature, dissolved oxygen, total phosphorus, and dissolved organic carbon. Calibration was 225 
based on the ~20 years of observational data from 1995-2015. Free parameters (Table S2) were 226 
manually tuned to achieve visual correspondence between predictions and observations. Root 227 
mean square error (RMSE), Nash–Sutcliffe model efficiency coefficient (NSE), and Kling-Gupta 228 
Efficiency (KGE) are reported for the fit model over the calibration period.  229 

We assumed that the calibrated model must approximate sediment core values of P. As described 230 
previously, it was necessary to run the model for hundreds of years (repeating the 20 years of 231 
driving data) to achieve sediment equilibrium for both P and OC. Because P recycling and 232 
sediment respiration are a function of sediment P and OC pool sizes, a change in equilibrium of 233 
the sediments affects water column predictions, requiring additional calibration. Thus, 234 
calibration was an iterative process of selecting parameter values, running the model for 235 
centuries to long-term equilibrium, and then checking for calibration. Although automated 236 
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optimization would likely yield more accurate predictions, the dominant sensitivities lie more in 237 
our assumptions regarding P pools and loads. 238 

For the legacy scenarios described below, we did not have observational data for the Lake 239 
Mendota prior to western settlement. To test whether our calibrated model could reproduce 240 
oligotrophic and mesotrophic conditions (i.e., water quality conditions prior to western 241 
settlement), we assumed external P loads more typical of oligotrophic and mesotrophic lakes 242 
(Table S3). We ran the model for 300 years, repeating the use of 20 years of driver data, to allow 243 
the full system to reach dynamic equilibrium. We then compared water quality metrics with 244 
published indices for the different trophic states (Table S4).    245 

2.4 Legacy scenarios 246 

We ran three legacy scenarios to investigate the response of Lake Mendota to nutrient load 247 
reductions (Table S3). In our base legacy scenario (Scenario 1), we assumed zero external load 248 
of P for 120 years, repeating the same 20 years of hydrology and meteorology used in 249 
calibration. We also assumed a 50% reduction in allochthonous OC load and a 50% reduction in 250 
inert sediment load that determines P and OC burial rates. In Scenario 2, external P loads were 251 
reduced to values typical of mesotrophic lakes, but other conditions were the same as in the base 252 
scenario. In Scenario 3, permanent burial rate of sediment P was raised to values assumed for the 253 
calibrated model, which provided for a faster water quality recovery than the base scenario.   254 

We tracked all model states and rates through the three scenarios and noted when water quality 255 
variables passed thresholds between trophic states (Table S4). We explored Lake Mendota’s 256 
memory to historical P loads by comparing the relative rates of change of water quality variables 257 
with those of P in the sediments and water column over 120 y. Time series of variables were 258 
smoothed with a forward/backward moving average filter (10 y) to eliminate interannual 259 
variability due to climate and hydrology drivers, and then each time series was normalized to a 260 
range of 0-1, with 1 and 0 representing their values at the beginning and end of a scenario, 261 
respectively. With these normalized values, we calculated first differences for each variable and 262 
divided by, e.g., first differences for epilimnetic P. A value <1 indicated the variable was lagging 263 
(i.e. recovering more slowly than) epilimnetic P change, whereas a value >1 indicated the 264 
variable was leading (i.e., recovering more quickly than) epilimnetic P change. 265 

While we used the model to address several questions, we were most interested in understanding 266 
why lake water quality responds slowly to nutrient reductions and how Lake Mendota, as a test 267 
case, helps us interpret this phenomenon more generally. Thus, a precise estimate of when Lake 268 
Mendota might reach an oligotrophic state in the future is less important than understanding how 269 
lake processes interact to control the patterns of water quality change we might expect in 270 
response to potential nutrient reductions. Through model scenarios, we demonstrate that the 271 
general patterns of water quality change are robust to changes in key assumptions about the 272 
model and about the lake.   273 

3 Limnological data and model driving data 274 

Limnological data for calibration were provided by the North Temperate Lakes Long Term 275 
Ecological Research program and available in the Environmental Data Initiative repository 276 
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(Magnuson, John J et al., 2023). These data have been collected fortnightly or monthly, 277 
depending on the variable, since 1995 (Magnuson et al. 2006). Lake sediment core data were 278 
used to inform the sediment component of the model (Hurley et al., 1992; Walsh et al., 2019).  279 

Data for driving the model included daily discharge, P and organic carbon (OC) loads, as well as 280 
hourly meteorological data. Discharge was taken from Hanson et al. (2020); however, the entire 281 
time series was linearly adjusted so that mean hydrologic residence time over the 20-year 282 
calibration period of the model was 4.3 years (Lathrop & Carpenter, 2014). Meteorological 283 
forcing data were obtained from the second phase of the North American Land Data 284 
Assimilation System (Xia et al., 2012). Meteorological variables used in this study included wind 285 
speed, air temperature, specific humidity, surface pressure, surface downward short- and 286 
longwave radiation, and total precipitation, which were used as boundary data for physical model 287 
and metabolism model. 288 

 289 

4 Results 290 

4.1 Comparison of model predictions with observations  291 

The model reproduced well the time dynamics of observed winter ice cover duration, as well as 292 
ice-off date (Fig. 2). Notable exceptions were 1998 and 2002, when the model over-predicted ice 293 
cover duration and ice-off date. The mean observed ice duration was 86 d (± 26, 1 SEM), and the 294 
mean ice-off day of year 86 (~March 27th), which compared well with the a modeled mean ice 295 
duration of 86 d, and modeled mean ice-off day of year 85 (~March 26th). On average, there was 296 
less variability among years in the model predictions than in the observations. 297 

Physical and chemical dynamics of the epilimnion and hypolimnion compared well with the 298 
observed data (Fig. 3A,B). The RMSE was 1.28 °C and 1.31 °C for the epilimnion and 299 
hypolimnion, respectively (Table S5). For Secchi depth, predictions reproduced the observed 300 
annual dynamics (Fig. 3D), although the RMSE was somewhat high at 2.15 m. Occasional high 301 
Secchi values in the observational data were missed by the model. The annual DO cycle was 302 
well reproduced for the epilimnion and hypolimnion (Fig. 3D,E), and RMSE values were 1.44 303 
mg L-1 and 1.98 mg L-1, respectively. Occasional very high epilimnetic DO values during winter 304 
were missed by the model, and observed values well-below saturation later in summer were 305 
missed. We suspect that low observed epilimnetic DO during summer were due to inclusion of 306 
the upper half of the metalimnion in the calculation of average epilimnetic DO.  307 

Total phosphorus annual dynamics were reproduced by the model (Fig. 4A,B). The RMSE 308 
values for the epilimnion and hypolimnion were 51.6 μg L-1 and 183 μg L-1, respectively. In 309 
general, the model underpredicted annual maxima early in the time series and over-predicted 310 
annual maxima late in the time series. Low summer P values were reproduced well, which was 311 
an outcome particularly relevant to summertime water quality predictions. The hypolimnetic P 312 
predictions matched observations until the end of the stratified period, at which time model 313 
predictions increased dramatically. This was likely a consequence of a relatively low ratio of 314 
hypolimnetic volume to sediment surface area, which results in higher hypolimnetic 315 
concentrations.  316 
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The test of the model using mesotrophic and oligotrophic P load scenarios produced expected 341 
water quality behaviors (Figs. S1,S2). Phosphorus concentrations in the lake decreased to 342 
mesotrophic and oligotrophic levels, with annual epilimnetic P ranging from 5-100 μg L-1 and 1-343 
5 μg L-1, respectively. DOC concentrations in the epilimnion also decreased to mesotrophic and 344 
oligotrophic levels, at approximately 4 mg L-1 and 3 mg L-1, respectively. Minimum summer 345 
Secchi depth increased to about 2.5 m and 5 m for mesotrophic and oligotrophic simulations, 346 
respectively. For the mesotrophic simulation, duration of hypolimnetic anoxia decreased by 347 
about 10 days y-1; whereas, in the oligotrophic simulation, anoxia no longer occurred.  348 

4.2 Annual cycles of temperature, P, OC, and DO 349 

The time dynamics of state variables underlying the water quality of Lake Mendota recreated the 350 
expected annual limnological patterns through four distinct seasons. The winter ice-covered 351 
period (Fig. 5A) had stable physical, chemical and biological conditions relative to other seasons, 352 
with low but continuous P settling and P recycling (Fig. 6D). Winter productivity was low (Fig. 353 
7D), resulting in relatively clear water (Fig. 7A). Cold water temperatures drove high annual DO 354 
concentrations with oxygen at near saturation (Fig. 5A). Spring ice-off was a time of rapid 355 
change, with high NPP and increasing settling of both POC (Fig. 7D,E,F) and P (Fig. 6D,F). 356 
Spring catchment snowmelt and precipitation led to a rise in external P loads (Fig. 6D; Fig. 7D). 357 
Decreasing epilimnetic DO was largely driven by changing temperature (Fig. 5A). Water clarity 358 
generally decreased in the spring, except during a distinct clear-water phase in late spring (Fig. 359 
7A). Thermal stratification began in spring (Fig. 5C), along with a rapid decrease in 360 
hypolimnetic DO (Fig. 5B).  361 

Summer and autumn dynamics had high NPP and POC (algal biomass) (Fig. 7D), leading to 362 
epilimnetic DO near or above saturation (due to high productivity), despite declining DO 363 
solubility as temperatures warmed (Fig. 5A). Hypolimnetic DO decreased rapidly after the onset 364 
of stable thermal stratification, and the hypolimnion became anoxic (Fig. 5B), except for 365 
occasional influxes of DO due to short-term variability in the thermocline depth and entrainment 366 
of DO-rich water from the epilimnion. High algal biomass resulted in low clarity (Fig. 7A). 367 
Epilimnetic P decreased to its lowest annual values due to settling out of the epilimnion. 368 
Hypolimnetic P became very high (Fig. 6A,B), due to recycling of P and release of P from the 369 
sediments (Fig. 6E). Once the hypolimnion became anoxic, mineralization rate of organic P 370 
slowed, and the dominant efflux of P from the sediments switched to release of bound P from the 371 
active sediment layer (Fig. 6E,F). Autumn turnover triggered the mixing of hypolimnetic 372 
nutrients into the entire water column. As P encountered oxic conditions in the surface waters, P 373 
rebinding increased, and P settled into the sediments (Fig. 6D). Elevated nutrient concentrations 374 
supported continued primary production into the autumn (Fig. 7D), although rates decreased 375 
because of cooling temperatures and reduced irradiance prior to the onset of winter ice cover. 376 

 377 
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hypolimnion, (F) sediments. For rates, positive values are sources and negative values are sinks, 393 
with legends above or below zero, respectively. Lines are not stacked for D-F. Inflow and 394 
outflow are total organic carbon, settling is all forms of POC, and respiration includes both labile 395 
and refractory forms combined. Burial is all POC. Grey shaded areas represents thermal 396 
stratification.  397 

 4.3 Major fluxes and storage 398 

On an annual basis, most of the P in the water column originated from internal loading from the 399 
sediment. Internal P loading (Fig. 6D,E) was ~5.5 x that of the external load (0.8 gP m-2 y-1). 400 
Note that in Fig. 6D, the large flux of P from the hypolimnion to the epilimnion during fall mixis 401 
is not shown, but this accounts for the rapid epilimnetic P increase shown during mixis in Fig. 402 
6A. The range of external versus internal loads was relatively narrow across the calibration 403 
period, in part because of our model assumptions for external loading, which did not account for 404 
changing P concentrations as a function of hydrologic flow.  405 

Despite the seasonal variability in water column dynamics, permanent burial of P (Fig. 6F) and 406 
OC (Fig. 7F) in the sediments appeared near constant through the year. This is because sediment 407 
concentrations of these constituents are high relative to water column values and therefore have 408 
low relative variability (Figs. 6C, 7C).  409 

Annual autochthony (i.e., NPP) was much higher than allochthony (Fig. 7D). Although most of 410 
the autochthony was respired (Fig. 7D-F), a substantial proportion was stored long term in the 411 
sediments and buried (Fig. 7C,F), resulting in long term positive net ecosystem production 412 
(NEP) for the lake. 413 

 4.4 Legacy scenarios 414 

Improvement in water quality for Lake Mendota differed depending on the water quality metric 415 
and scenario. For Scenario 1 (Fig. 8), in which external P loads were set to zero and OC and 416 
sediment loads were reduced, epilimnetic P decreased rapidly in the first 20 years due to water 417 
column flushing (Fig. 8A), followed by a long slow decrease that tracked decreasing 418 
hypolimnetic and sediment P (Fig. 8B,C). For OC, the initial rapid decrease occurred for both the 419 
epilimnion and the hypolimnion (Fig. 8D,E), because the autochthonous pool of OC was 420 
produced by epilimnetic NPP. Over the 120 y simulation, sediment OC decreased to roughly half 421 
of its original value (Fig. 8F). Secchi depth continually increased following decreases in OC 422 
(Fig. 8G). Dissolved oxygen was the variable slowest to respond to reduced external loads. 423 
Although sediment oxygen demand decreased linearly (Fig. 8H), the number of anoxic days 424 
decreased slowly for about 50 years, and then decreased rapidly until about year 105, at which 425 
time anoxia no longer occurred (Fig. 8I). The annual range for P and POC decreased with the 426 
decreasing mean value. For Secchi depth, the range decreased with increasing value.  427 
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concentrations (Fig. 9B). At 20 y, POCEpi and sediment oxygen demand led (changed at a higher 461 
relative rate) PEpi. Light extinction and anoxic days changed from lagging PEpi to leading PEpi at 462 
about year 50. When compared to sediment P (Fig. 9C), only sediment O2 demand and anoxic 463 
days lagged PSed changes initially. Other metrics (PEpi, POCEpi, light extinction), which respond 464 
to water column flushing, led PSed until about year 20. All metrics, other than PEpi, lagged PSed 465 
until about years 60-80. PEpi continued to lag PSed through the end of the simulation.  466 

5 Discussion 467 

5.1 Legacies of eutrophication for Lake Mendota 468 

The legacy of more than a century of high nutrient loads to Lake Mendota is degraded water 469 
quality that persists for decades to longer than a century under the most aggressive nutrient 470 
reduction scenario. Fundamentally, a century of water quality degradation requires a century (or 471 
longer) of recovery. Although initial improvement in water clarity and epilimnetic P may occur 472 
in a couple of decades, high internal nutrient loads will continue to fuel elevated primary 473 
production for a century. The long and slow response of water quality to nutrient reduction has 474 
been shown empirically for other lakes (Jeppesen et al., 2005; Søndergaard et al., 2013). For 475 
Lake Mendota, we have demonstrated how nutrient cycling and lake metabolism interact to 476 
control how water quality responds to both the reduction of external loads and the long and slow 477 
depletion of sediment nutrient stocks.   478 

Phosphorus stored in the sediments of Lake Mendota controlled the bottom-up response of water 479 
quality to nutrient load reductions. At approximately 125 g P m-2 of active sediment area, a 480 
typical sediment P density for eutrophic lakes (Carey & Rydin, 2011), the sediment pool has 481 
approximately two orders of magnitude more P than the annual average water column value of 482 
~1.0 g P m-2. Given Lake Mendota’s hydrologic residence time of ~4 years and typical water 483 
column P concentrations, only ~0.25 g P m-2 at most can be flushed annually from the water 484 
column, assuming no additional external loads. Thus, a ~30% reduction in the sediment pool 485 
needed for the lake to return to a mesotrophic state would take about 150 years through the 486 
process of flushing alone. These findings support previous work that eutrophication persists in 487 
lakes long-term, despite P remediation (Søndergaard et al., 2013, 2013). However, deposition of 488 
sediments that may bind P or bury it in sediments (Rothe et al., 2014) accelerates the recovery 489 
process, because permanent burial can be an important sink in the sediment P mass balance 490 
(Carleton & Lee, n.d.) . The high inert sediment load in Scenario 3 (Fig. S6) emphasizes the 491 
importance of burial to sediment P reduction and subsequent water column improvement. 492 

5.2 Ecosystem memory and surprises on the path to trophic state improvement 493 

Ecosystem memory slowed the response of water quality to nutrient load reductions in Lake 494 
Mendota. Water clarity and DO improvement lagged the long, slow decline in sediment P 495 
because of the coupled dynamics of P-cycling, metabolism, and DO. Our expectation was that all 496 
water quality metrics would improve following cessation of external loads in the legacy 497 
scenarios, even if the rate of improvement was slower than that of P in the water column. 498 
However, the rate of change in hypolimnetic anoxia initially remained nearly flat as the annual 499 
duration of hypolimnetic anoxia showed minimal improvement for nearly two decades (Fig. 9). 500 
In Scenario 2 (60% reduction in P load), which arguably would be a more likely “real-world” 501 



manuscript submitted to JGR Biogeosciences 

 

scenario, the duration of anoxia actually became worse for the first two decades. This surprising 502 
outcome was due to changes in the sediment OC mass balance. When allochthony was turned 503 
off, sediment deposition decreased in our model, reducing permanent burial rates for P and OC. 504 
For the first 1-2 decades of recovery, water column P was still at concentrations high enough to 505 
support high production of autochthonous POC (positive NEP), which kept the sediment OC 506 
mass balance near neutral in Scenario 1 and positive (i.e., accumulation of sediment OC) in 507 
Scenario 2. At about year 20 of recovery, sediment P diminished to the point where P recycled to 508 
the water column was lower, and NPP and POC were sufficiently reduced to tip the sediment 509 
mass balance toward a reduction in POC. In general, consumption of hypolimnetic O2 depends 510 
on a number of factors, including lake morphometry (Steinsberger et al., 2020), climate 511 
variability (Ladwig et al., 2021; Snortheim et al., 2017), and water column stability (Ladwig et 512 
al., 2021), but chiefly the OC available as substrate for microbial respiration and the benthic flux 513 
of reduced substances (Müller et al., 2012). Once NEP in the water column became negative 514 
(i.e., lower export of POC to the sediments), sediment O2 demand and anoxic days diminished.   515 

Linked cycles of P, OC, and DO produce nested lags in the response times of water quality 516 
metrics to reduced nutrient loads and provide a mechanistic basis for ecosystem memory. The 517 
recovery to an improved trophic state of some water quality metrics can only occur following 518 
substantial changes in other nutrient or carbon pools. For example, elimination of hypolimnetic 519 
anoxia requires depletion of the OC available for respiration, and depletion of OC lags recovery 520 
of P by several decades because of the influence of P on autochthony and NEP (i.e., lake 521 
metabolism). Lake metabolism is sensitive to long-term lake changes (e.g. Richardson et al. 522 
2017), highlighting its utility for tracking coupled biological and chemical water quality 523 
responses to external loading.  524 

Differing lags of recovery explain why different water quality metrics pass inter-trophic 525 
thresholds at different times (Fig. 9). During recovery in Scenario 1, water clarity, based on POC 526 
concentration (i.e., algal biomass in this model), lags P recovery by about 30 years, and 527 
hypolimnetic oxygen lags water clarity by about 20 years. Thus, transitioning to an oligotrophic 528 
state can vary in time from about 50-100 years, depending on the water quality metric. 529 
Nonetheless, the sequence of responses from decreasing P to improved oxic condition pass 530 
through a set of predictable phases, described below.  531 

 5.3 Phases of water quality improvement 532 

Our scenarios reveal five distinct phases of water quality improvement (Fig. 9). The phases are 533 
identified visually, based on changes in water quality metrics relative to PEpi (Fig. 9B), which is 534 
more easily measured in lakes than sediment P. The first phase is water column flushing, which 535 
corresponds to a rapid decrease in solutes as external loads of P and OC are eliminated and 536 
reduced, respectively. In phase 2, water quality metrics lag changes in PEpi. In phase 3, 537 
improvement in water quality metrics accelerates relative to PEpi and then decelerates in phase 4 538 
as all variables approach a new dynamic equilibrium in the oligotrophic state. In phase 5, water 539 
quality metrics have reached their oligotrophic values.  540 

The long time period needed for transitions across these five phases provides context for 541 
localized ecosystem behavior that otherwise might appear puzzling within the time frame of 542 
short-term monitoring programs. Any initial rapid improvement in water quality will stall 543 
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following water column flushing. Further improvement in water quality will proceed more 544 
slowly than declining PEpi (i.e., values <1 in Fig. 9B) for decades. Eventually, water quality will 545 
improve more rapidly than PEpi (i.e., values >1 in Fig. 9B) until the system reaches its improved 546 
trophic state. In Lake Mendota, these phases would play out over decades and could be observed 547 
only through long-term monitoring. We expect that this behavior likely would be applicable to 548 
other eutrophic lakes with similar external loading history, although this remains unknown and 549 
motivates future work. Altogether, a long view that incorporates ecosystem memory is required 550 
to understand localized ecosystem behavior during remediation of degraded water quality.    551 

 5.4 Caveats 552 

Two assumptions in our model regarding sediment P pools are especially worthy of further 553 
consideration for analyzing Mendota patterns and scaling these results to other lakes. First, the 554 
model sets sediment P binding capacity at 1 mg P per gram dry sediment, based on empirical 555 
measures of sediment total P concentrations in Lake Mendota (Hoffman et al., 2013). Although 556 
this static threshold works well in the model, the reality of sediment P sorption capacity is far 557 
more complex and may depend on factors such as changes in particle size and mineralogy of 558 
deposited sediments (Stone & English, 1993). Along with hypolimnetic dissolved oxygen status, 559 
the binding capacity parameter determines the rate at which P may re-bind to the mineral P pool 560 
in the sediments and influences the balance of sediment P retention versus release. As such, the 561 
model would benefit from further exploration of this parameter, including options for dynamic P 562 
binding capacity over time.  563 

Second, the model focuses solely on redox-sensitive P minerals (iron- and manganese-bound P) 564 
in the bound sediment P pool. This focus is supported by empirical evidence of the importance of 565 
anoxic internal P loading in Lake Mendota (Hoffman et al., 2013). However, mineral sediment P 566 
may be associated with other metals, such as aluminum and calcium, which are generally 567 
considered less mobile than redox-sensitive P forms (Orihel et al., 2017). Conversely, co-568 
precipitation of soluble phosphorus with calcite may be a pathway for P burial in Lake Mendota. 569 
Paleolimnological evidence from Lake Mendota suggests that calcite whiting events and co-570 
precipitation may be an important process for removing soluble P from the water column and 571 
permanently burying it in the sediments (Walsh et al., 2019). The model would benefit from 572 
further exploration of linked calcium and P cycles in Lake Mendota. 573 

Additionally, application of the modeling approach to other waterbodies may require 574 
consideration of legacy N pools and cycling. We focused our assessment of nutrient cycling on P 575 
due to evidence of P limitation in Lake Mendota (Lathrop, 2007) as well as numerous case 576 
studies of P control eliciting desirable water quality responses (Schindler et al., 2016). This 577 
assumption was supported by good model performance compared to the long-term observational 578 
data. However, model application to N-limited waterbodies will require consideration of N 579 
cycling as legacy N loads likely play an important role in long-term lake functioning in these 580 
systems. 581 

6 Conclusions 582 

Repairing ecosystems usually requires more time and effort than damaging them (Jones et al., 583 
2018), in part due to long ecosystem memory. Lake Mendota was eutrophied over a relatively 584 
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short time period – probably less than 100 years and has likely had an anoxic hypolimnion as far 585 
back as the early 1900s (Lathrop, 2007). Our simulations indicate a return to pre-European 586 
settlement conditions using external P reduction alone will take decades, if not centuries. 587 
Interaction of cycles in Lake Mendota underlie that long memory, leading to long delays 588 
between external P load reduction and water quality improvement, because available P must be 589 
reduced sufficiently to tip the ecosystem OC balance toward net mineralization rather than net 590 
accumulation. Only then can microbes begin to consume the organic matter of past decades and 591 
slowly eliminate the substrate that fuels anoxia. This takes time and the will of a society to 592 
undergo a multi-generational remediation of a precious water resource.  593 
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