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Abstract

The effective climate sensitivity in the Department of Energy’s Energy Exascale Earth System Model (E3SM) has decreased

from 5.3 K in version 1 to 4.0 K in version 2. This reduction is mainly due to a weaker positive cloud feedback that leads to

a stronger negative radiative feedback. Present-day atmosphere-only experiments with uniform 4 K sea surface temperature

warming are used to separate the contributions of individual model modifications to the reduced cloud feedback. We find that

the reduced cloud feedback is mostly driven by changes over the tropical marine low cloud regime, mainly related to a new

trigger function for the deep convection scheme and modifications in the cloud microphysics scheme. The new trigger function

helps weaken the low cloud reduction by increasing the cloud water detrainment at low levels from deep convection under

warming. Changes to the formula of autoconversion rate from liquid to rain and an introduced minimum cloud droplet number

concentration threshold in cloud microphysical calculations help sustain clouds against dissipation by suppressing precipitation

generation with warming. In the midlatitudes, the increased Wegener-Bergeron-Findeisen (WBF) efficiency strongly reduces

present-day liquid water and leads to a stronger negative cloud optical depth feedback. The reduced trade cumulus cloud

feedback in v2 is closer to estimates from recent observational and large-eddy modeling studies but might not be due to the

right physical reasons. The reduced mid-latitude cloud feedback may be more plausible because more realistic present-day

mixed-phase clouds are produced through the change in the WBF efficiency.
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Key Points: 13 

• E3SM’s effective climate sensitivity is lower in version 2 mainly due to the reduced 14 
positive cloud feedback over marine low cloud regions 15 

• The feedback reduction is primarily due to altered cloud microphysical parameters and a 16 
new deep convection trigger function 17 

• Process-level analysis is conducted to understand the impact of these model 18 
modifications on cloud feedbacks. 19 

 20 
  21 
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Abstract 22 

The effective climate sensitivity in the Department of Energy's Energy Exascale Earth 23 

System Model (E3SM) has decreased from 5.3 K in version 1 to 4.0 K in version 2. This 24 

reduction is mainly due to a weaker positive cloud feedback that leads to a stronger negative 25 

radiative feedback. Present-day atmosphere-only experiments with uniform 4 K sea surface 26 

temperature warming are used to separate the contributions of individual model modifications to 27 

the reduced cloud feedback. We find that the reduced cloud feedback is mostly driven by 28 

changes over the tropical marine low cloud regime, mainly related to a new trigger function for 29 

the deep convection scheme and modifications in the cloud microphysics scheme. The new 30 

trigger function helps weaken the low cloud reduction by increasing the cloud water detrainment 31 

at low levels from deep convection under warming. Changes to the formula of autoconversion 32 

rate from liquid to rain and an introduced minimum cloud droplet number concentration 33 

threshold in cloud microphysical calculations help sustain clouds against dissipation by 34 

suppressing precipitation generation with warming. In the midlatitudes, the increased Wegener-35 

Bergeron-Findeisen (WBF) efficiency strongly reduces present-day liquid water and leads to a 36 

stronger negative cloud optical depth feedback. The reduced trade cumulus cloud feedback in v2 37 

is closer to estimates from recent observational and large-eddy modeling studies but might not be 38 

due to the right physical reasons. The reduced mid-latitude cloud feedback may be more 39 

plausible because more realistic present-day mixed-phase clouds are produced through the 40 

change in the WBF efficiency.  41 

 42 

Plain Language Summary 43 

Understanding how the Earth responds to greenhouse gas increases is important for 44 

climate change research. In the Department of Energy's Energy Exascale Earth System Model, 45 

the global temperature response to an abrupt quadrupling of atmospheric carbon dioxide has 46 

decreased from 5.3 K in version 1 to 4.0 K in version 2. This reduction is mainly because low-47 

level clouds over the tropical oceans decrease less as the planet warms in version 2: a weaker 48 

amplifying cloud feedback. To understand the reasons behind this reduction, warming 49 

simulations were conducted to separate the contributions of individual model changes. We find 50 

that the reduced cloud feedback is primarily due to changes in the representation of the vertical 51 

movement of air through the depth of the lower atmosphere and of the microscopic properties of 52 
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clouds. The findings highlight some unexpected impacts on cloud feedback resulting from 53 

modifications to the model's physics and emphasize the importance of monitoring and 54 

understanding changes in cloud feedback during model development. 55 

 56 

1 Introduction 57 

Equilibrium climate sensitivity (ECS), the global mean surface air temperature response 58 

(ΔT) to doubling atmospheric carbon dioxide concentration, is an important measure of climate 59 

change but has large uncertainties. Effective climate sensitivity (EffCS) is closely related to 60 

ECS, and represents the ΔT in response to doubling carbon dioxide concentration assuming a 61 

time-invariant radiative feedback parameter. The Coupled Model Intercomparison Project Phase 62 

6 (CMIP6) models exhibit a larger multi-model average and inter-model spread in EffCS 63 

compared to CMIP5 models (M. D. Zelinka et al., 2020). In particular, 23 out of 53 models have 64 

EffCS greater than 4 K (M. Zelinka, 2022), the upper bound of the likely ECS range as 65 

determined by the sixth Assessment Report of the Intergovernmental Panel on Climate Change 66 

(IPCC) (Forster et al., 2021). Zelinka et al. (2020) indicated that the large spread of the cloud 67 

feedback is the main contributor to the broader EffCS range and higher average EffCS in 68 

CMIP6. Therefore, understanding the cloud feedback in each model is crucial for understanding 69 

the uncertainties of EffCS.  70 

Version one of the Department of Energy's Energy Exascale Earth System Model 71 

(E3SMv1), with an EffCS of 5.3 K, is one of the CMIP6 models lying above the IPCC likely 72 

range. This is mainly because of its strong positive cloud feedback (J. Golaz et al., 2019; M. D. 73 

Zelinka et al., 2022). The recently released E3SM version 2 (E3SMv2) shows a reduced EffCS 74 

(4.0 K) with improved mean-state clouds and precipitation (J. Golaz et al., 2022). Here, we 75 

conduct targeted experiments with the two versions of E3SM to establish what leads to the 76 

reduced EffCS in E3SMv2 and whether it is related to the improved process-level representation, 77 

as has been done in previous studies (Bodas‐Salcedo et al., 2019; Gettelman et al., 2012, 2019; 78 

Webb et al., 2006). We will describe and analyze the reasons for E3SM’s reduced EffCS, 79 

especially its reduced cloud feedbacks, and their relationship to modifications of physical 80 

parameterizations from E3SMv1 to E3SMv2.  81 
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The paper is organized as follows. Section 2 describes the model, experimental setup, and 82 

diagnostic methods. Atmosphere-only experiments with uniform 4 K sea surface temperature 83 

(SST) warming have been shown to provide a good estimate of the cloud feedback in the fully 84 

coupled experiment (Qin et al., 2022; Ringer et al., 2014), and are mainly used to diagnose the 85 

impacts of model modifications on the cloud feedback changes. In Section 3, we first investigate 86 

the reasons for the reduced EffCS by examining the individual radiative feedbacks and forcings, 87 

demonstrating the dominant role of cloud feedback change. Next, we revert parameterization 88 

settings or configurations in E3SMv2 to those used in E3SMv1 to identify the impact of 89 

individual modifications on the present-day mean climate and its response to warming. In 90 

Section 4, we explore the physical processes that explain how the individual model modifications 91 

affect the cloud feedback and its evolution from E3SMv1 to E3SMv2. We summarize our main 92 

findings and provide further discussion in Section 5.  93 

2 Methods 94 

2.1 Model and simulations 95 

E3SM is a state-of-the-art climate model, which includes atmosphere, land, ocean, sea ice 96 

and river routing components. Its version 1 (E3SMv1) (J. Golaz et al., 2019) has an EffCS of 5.3 97 

K. Its version 2 (E3SMv2) has a lower EffCS (4.0 K) with improved present-day climate in 98 

simulated clouds and precipitation. Specific improvements include a reduced double ITCZ bias, 99 

reduced dry Amazon bias, and improved stratocumulus clouds, among others. Detailed 100 

comparison between these two versions was documented in Golaz et al. (2022).  101 

To understand the reduced cloud feedback of E3SMv2, we constructed a series of 102 

“intermediate” versions by taking E3SMv2 and reverting individual modifications that were 103 

made in going from E3SMv1 to E3SMv2. We start from E3SMv2 and revert pieces instead of 104 

implementing modifications in E3SMv1 because E3SMv2 is computationally nearly twice as fast 105 

as E3SMv1, facilitating the sensitivity experiments listed below. All major atmospheric physics 106 

modifications from E3SMv1 to E3SMv2 are first organized at the physical parameterization 107 

level, following Ma et al. (2022): Cloud Layers Unified By Binormals (CLUBB) (J.-C. Golaz et 108 

al., 2002; Larson, 2017), cloud microphysics (MG) (Gettelman & Morrison, 2015; Morrison & 109 

Gettelman, 2008), Zhang-McFarlane deep convection (ZM) (G. J. Zhang & McFarlane, 1995), 110 

surface wind gustiness (gust) affecting the calculation of surface fluxes(Harrop et al., 2018; Ma 111 
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et al., 2022; Redelsperger et al., 2000), gravity wave (gw) (Richter et al., 2019), and others 112 

including tuning factors related to sea salt, dust, ozone and the ice nucleation SO2 size threshold 113 

for the Aitken mode.  114 

A brief description of the major parameterization changes between E3SMv1 and 115 

E3SMv2 helps to understand differences seen below. Parameters in CLUBB and MG were 116 

modified to better represent transitions between stratocumulus and trade cumulus clouds and 117 

represent precipitation in subtropical marine low cloud regions (Ma et al., 2022). The scaling 118 

factor of the Wegener-Bergeron-Findeisen (WBF) process is increased in E3SMv2 for ice and 119 

mixed-phase clouds, enhancing ice crystal growth at the expense of liquid droplets, and reducing 120 

an apparent over-prediction of supercooled liquid found in E3SMv1. The modifications in ZM 121 

include a new trigger function (Xie et al., 2019) based on dynamic Convective Available 122 

Potential Energy (dCAPE) (Xie & Zhang, 2000) with an Unrestricted air parcel Launch Level 123 

(ULL) (Wang et al., 2015) which replaces the original CAPE trigger function. Other ZM 124 

parameters were re-tuned, such as the autoconversion coefficient for convective clouds. The new 125 

trigger function reduces the occurrence of deep convection over most regions and improves the 126 

precipitation simulation, particularly the diurnal cycle (Xie et al., 2019). More details about the 127 

tuning strategy and their impacts on the present-day simulation can be found in Golaz et al. 128 

(2022) and Ma et al. (2022).  129 

For those dominant physical parameterizations (i.e., ZM and MG), we further conducted 130 

subgroup experiments to isolate the impact of individual modifications. We separate 131 

modifications in ZM into two groups: trigger function (ZMtrig) and other modifications except 132 

for the trigger function (ZMother). In addition, the impact of the changes to each tuning 133 

parameter in MG is evaluated separately. All grouped and subgrouped modifications are 134 

summarized in Table 1 and further discussed below. 135 

 136 

Table 1. Modifications from E3SMv1 to E3SMv2.  137 
 Description v1 v2 Subgroups  

CLUBB (clubb)     

clubb_c14 Coefficient for 𝑢′  and 𝑣′  damping  1.06 2.5  
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clubb_c_k10 Ratio of eddy diffusivity of momentum to eddy 
diffusivity of scalars  0.3 0.35  

clubb_c_k10h  Ratio of eddy diffusivity of thermodynamic variables to 
eddy diffusivity of scalars  0.3 0.35  

clubb_wpxp_l_thresh Eddy length scale threshold for Newtonian and buoyancy 
damping of 𝑤′𝑞 ′ and 𝑤′𝜃 ′ (m) 60 100  

clubb_c1 Coefficient for 𝑤′  damping at low Skw 1.335 2.4  

clubb_c1b Coefficient for 𝑤′   damping at high Skw 1.335 2.8  

clubb_c1c Coefficient for Skw dependency of clubb_c1  1 0.75  

clubb_c6rtb Coefficient for water flux (𝑤′𝑞 ′) damping at high Skw 6 7.5  

clubb_c6thlb Coefficient for temperature flux (𝑤′𝜃 ′) damping at high 
Skw 6 7.5  

clubb_c6rtc Coefficient for Skw dependency of clubb_c6rt  1.0 0.5  

clubb_c6thlc Coefficient for Skw dependency of clubb_c6thl  1.0 0.5  

clubb_c11 Coefficient for 𝑤′  damping at low Skw 0.8 0.7  

clubb_c11b Coefficient for 𝑤′  damping at high Skw 0.35 0.2  

clubb_c11c Coefficient for Skw dependency of clubb_c11  0.5 0.85  

clubb_gamma_coef The width of the Gaussian distribution at low Skw  0.32 0.12  

clubb_gamma_coefb The width of the Gaussian distribution at high Skw 0.32 0.28  

clubb_gamma_coefc Coefficient for Skw dependency of the Gaussian 
distribution width  N/A 1.2  

clubb_c8 Coefficient for 𝑤′  damping 4.3 5.2  

clubb_mu Fractional parcel entrainment rate per unit height (1/m) 1.0E-03 5.0E-4  

clubb_ice_deep Assumed ice condensate radius detrained from ZM (m) 1.6E-05 1.4E-5  

clubb_ipdf_call_placement 

Select the placement of the call to CLUBB's PDF: 1) Call 
before advancing predictive fields; 2) Call after 
advancing predictive fields; 3) Call both before and after 
advancing predictive fields  

1 2  

Microphysics (MG)      

micro_mg_berg_eff_factor Efficiency factor for the Wegener-Bergeron-Findeisen 
(WBF) process 0.1 0.7 MG_WBF  

micro_mincdnc Minimum droplet number conc (#/m3) imposed when 
micro_mincdnc > 0  N/A 10.E6 MG_mincdnc  
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microp_aero_wsubmin Minimum subgrid vertical velocity for liquid droplet 
nucleation (m/s) 0.2 0.1 MG_wsub 

micro_mg_accre_enhan_fac Coefficient for liquid cloud accretion rate formula  1.5 1.75 MG_accre  

prc_exp1 Exponent of liquid droplet number concentration in 
autoconversion rate formula  -1.2 -1.4 MG_auto  

ZM deep convection except 
trigger function (ZMother)      

zmconv_alfa Downdraft mass flux fraction adjustment  0.1 0.14  

zmconv_c0_lnd Autoconversion coefficient over land in ZM 0.007 0.002  

zmconv_c0_ocn Autoconversion coefficient over ocean in ZM 0.007 0.002  

zmconv_mx_bot_1yr_adj Number of lowest layers skipped for computing 
maximum moist static energy  2 1  

zmconv_tp_fac Temperature perturbation scale factor  0 2  

cldfrc_dp1 Parameter for deep convection cloud fraction 0.045 0.018  

Trigger (ZMtrig)     

zmconv_trigdcape_ull Use of dCAPE trigger along with ULL  .false.  .true.  

Gravity wave (gw)      

effgw_beres Efficiency associated with convective gravity waves from 
the Beres scheme (Beres et al., 2004) 0.4 0.35  

effgw_oro Efficiency associated with orographic gravity waves 0.25 0.375  

gw_convect_hcf Heating rate conversion factor associated with convective 
gravity waves 20 10  

Gustiness (gust)     

clubb_use_sgv Enable subgrid wind and temperature variances in the 
surface flux .false. .true.  

Others     

seasalt_emis_scale Sea salt aerosol emission tuning factor 0.85 0.6  

dust_emis_fact Tuning parameter for dust emissions 2.05 1.5  

linoz_psc_t Tunable Linoz PSC ozone loss temperature (K) threshold 193 197.5  

so4_sz_thresh_icenuc Aitken mode sulfate aerosol size threshold for 
homogeneous ice nucleation (m)  5.0E-8 8.0E-8  

 138 

We use fixed SST experiments (Hansen et al., 2005) to investigate the impact of 139 

modifications on feedback changes between E3SMv1 and E3SMv2. The control experiment 140 

(CTL) is an atmosphere-only experiment with prescribed observed climatological (2005-2014) 141 
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monthly sea surface temperature (SST) and forcing agents. The warming experiment (P4K) is 142 

conducted by prescribing a uniform SST 4 K warming to the control experiment. For all 143 

sensitivity experiments, control and warming simulations are run for 6 years and the last 5 years 144 

are used in the analysis. Note that all simulations were not re-tuned to get a good top of the 145 

atmosphere balance.  146 

2.2 Analysis method 147 

For the coupled experiments of E3SMv1 and E3SMv2, the radiative feedback and 148 

effective radiative forcing are computed by regressing annual mean top-of-atmosphere (TOA) 149 

net radiation anomalies onto global- and annual-mean surface air temperature anomalies (ΔTs) 150 

over the 150-year abrupt-4xCO2 experiments. Anomalies are computed with respect to the 151 

contemporaneous piControl experiments. The radiative feedback is the regression slope and the 152 

effective radiative forcing is the y intercept divided by 2 (Gregory et al., 2004). For the 153 

atmosphere-only experiments of both E3SMv1 and E3SMv2 and the sensitivity experiments, the 154 

radiative feedback is computed as the global TOA net radiation anomaly divided by the global-155 

mean Ts anomaly, where the anomalies are computed as the differences between P4K and CTL 156 

climatologies. 157 

We estimate radiative feedbacks using radiative kernels, which quantify the impact on 158 

TOA radiation from small changes in climate fields (∂R/∂xi where xi includes surface and 159 

atmospheric temperature, water vapor, and surface albedo). These are multiplied by component 160 

changes mediated by the global- and annual-mean surface temperature (dxi/dTs). In Figure 1, we 161 

show the feedbacks decomposed into components advocated by Held & Shell (2012): the Planck 162 

and lapse rate feedbacks at constant relative humidity, the feedback from changes in relative 163 

humidity, the surface albedo feedback, and the cloud feedback. The cloud feedback is computed 164 

by adjusting the temperature-mediated change in cloud radiative effect for cloud masking effects 165 

(Shell et al., 2008; Soden et al., 2008). The small residual term is due to the assumptions and 166 

approximations in the radiative kernel method. Additionally, we also estimate the cloud feedback 167 

due to cloud amount, altitude and optical depth changes using cloud radiative kernels and ISCCP 168 

simulator cloud output (Zelinka et al., 2012, 2016).  169 

To better understand which regimes lead to the cloud feedback reduction from E3SMv1 170 

to E3SMv2, we average results within five regimes. Regimes are first defined by latitude bands 171 
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residual term is the difference between the total radiative feedback and the sum of kernel derived 190 
components. ERFs are derived using the full 150 yr coupled experiments. 191 

 192 

Because the reduced EffCS of E3SMv2 relative to E3SMv1 could be the result of 193 

changes in effective radiative forcing (ERF) or changes in radiative feedback, we first compare 194 

the 4xCO2 ERF and feedbacks between E3SMv1 and E3SMv2 in both coupled and atmosphere-195 

only experiments (Figure 1). In 150 yr abrupt-4xCO2 experiments, ERF in E3SMv2 is 12% 196 

smaller than that in E3SMv1 (2.95 vs 3.34 W/m2), and the total radiative feedback is 17% larger 197 

in magnitude than that in E3SMv1 (-0.74 vs -0.63 W/m2/K). To determine the relative 198 

importance of changes in ERF from changes in feedback in driving reduced EffCS in v2, we 199 

follow the procedure described in Zelinka et al (2020). Briefly, we estimate the impact on EffCS 200 

from the v1-to-v2 change in ERF holding the feedback fixed at its v1 value, and the impact on 201 

EffCS from the change in feedback holding ERF fixed at its v1 value. Unlike in Zelinka et al 202 

(2020), we do this calculation using ERF values derived from amip-4xCO2 simulations and 203 

feedback values derived from amip-p4K simulations (Table S1). Doing so ensures that ERF and 204 

feedback are derived independently, which is not the case when both are estimated as the 205 

regression slope and intercept from the abrupt-4xCO2 experiment. These ERF and feedback 206 

values closely capture the EffCS change seen in the coupled experiments, and we find that the 207 

feedback reduction contributes 82% to the reduced EffCS from E3SMv1 to E3SMv2, with the 208 

ERF reduction contributing the remaining 18%. Therefore, the reduced EffCS in v2 is largely 209 

caused by the reduced feedback, and we will focus on the feedback change in the remaining 210 

analyses.  211 

The more negative total feedback in E3SMv2 mainly results from the weakened total 212 

cloud feedback (0.72 vs 0.93 W/m2/K) with partial compensation from increased albedo and 213 

lapse rate feedbacks. The atmosphere-only experiments largely reproduce the total cloud 214 

feedback reduction from E3SMv1 to E3SMv2 – a reduction of 0.19 W/m2/K for the atmosphere-215 

only experiment vs 0.21 W/m2/K for coupled experiment – although they underestimate the 216 

coupled total cloud feedback for both E3SMv1 and E3SMv2. This underestimate can be 217 

alleviated by prescribing an SST warming pattern derived from the corresponding 150yr fully-218 

coupled experiment to the atmosphere-only experiment rather than using the spatially uniform 219 

4K warming (not shown).  220 
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v1 (Figure S3) with a spatial correlation of 0.80. Results for v2.v1(All) are not identical to those 241 

of v1 because v2.v1(All) does not include the modifications related to dynamics, such as the new 242 

dynamical core, semi-Lagrangian tracer transport, and physics grid (Golaz et al., 2022), which 243 

lack a direct physical connection to the cloud feedback changes. In the tropical marine low cloud 244 

regime (Figure 3), the difference between v2.v1(All) and v1 appears to be non-negligible and 245 

comparable to the difference of other modifications. For this regime, further understanding of the 246 

impact of other non-physical related modifications would be useful. Considering the good 247 

correspondence between v2.v1(All) and v1, we therefore conclude that v2.v1(All) includes the 248 

main modifications contributing to the cloud feedback reduction from v1 to v2. We will focus on 249 

the difference between v2 and v2.v1(All) in subsequent analyses.  250 

Table 2. Description of progressively reverted simulations from v2 to v1. In the description, the 251 
bold italicized text denotes the base experiment and the non-italicized text denotes the added 252 
configuration relative to the base experiment.  253 

Short Name Description   

v2 E3SMv2 

v2.v1(clubb) v2 +CLUBB related parameters changed from the settings in 
v2 to those of v1  

v2.v1(clubb.MG) v2.v1(clubb) + MG related parameters changed from the 
settings in v2 to those of v1  

v2.v1(clubb.MG.ZMother) v2.v1(clubb.MG) + ZM related parameters, except for trigger 
function, changed from the settings in v2 to those of v1 

v2.v1(clubb.MG.ZMother.gust) v2.v1(clubb.MG.ZMother) + Turn off gustiness 
parameterization 

v2.v1(clubb.MG.ZMother.gust.ZMtrig) v2.v1(clubb.MG.ZMother.gust) + Turn off the new trigger 
function  

v2.v1(clubb.MG.ZMother.gust.ZMtrig.gw) v2.v1(clubb.MG.ZMother.gust.ZMtrig) + Gravity wave 
related parameters changed from the settings in v2 to those of 
v1  

v2.v1(All) v2.v1(clubb.MG.ZMother.gust.ZMtrig.gw) + so4_sz_thresh 
(ice nucleation SO2 size threshold for Aitken mode), sea salt 
and dust emission factors, linoz_psc_t (ozone related)  

v1 E3SMv1  

 254 
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Table 3. Description of singly reverted simulations for ZMtrig, MG, CLUBB and ZMother. In 255 
the description, the bold italicized text denotes the base experiment and the non-italicized text 256 
denotes the added configuration relative to the base experiment. Subgroup experiments for 257 
ZMtrig and MG are used to isolate the impact of ULL setting and each MG parameter on cloud 258 
feedback changes, respectively.  259 

Short Name Description   Subgroup experiments  

v2.v1(ZMtrig) v2 + ZM trigger function from v1 v2 + v1.ZMtrig_ULL (only turn off the ULL 
setting in the new trigger function)  

v2.v1(MG) v2 + all MG parameters from v1 v2 + v1.MG_WBF (WBF efficiency)  
v2 + v1.MG_mincdnc (minimum CDNC) 
v2 + v1.MG_accre (accretion factor)  
v2 + v1.MG_auto (autoconversion CDNC 
exponent) 
v2 + v1.MG_wsub (subgrid velocity) 

v2.v1(clubb) v2 + CLUBB parameters from v1 
(same as the ‘v2.v1(clubb)’ in Table 2)  

 

v2.v1(ZMother) v2 + ZM other parameters from v1  

 260 

To test the impact of individual modifications listed in Table 1 on cloud feedback 261 

reduction in v2, we first progressively revert each modification from their v2 values to their v1 262 

values (Table 2) and evaluate their impacts on cloud feedback in each regime as described in 263 

Section 2 Methods (Figure 3a). The decreased total cloud feedback from E3SMv1 to E3SMv2 264 

mainly results from the tropical marine low cloud regime, consistent with Figure 2. In the 265 

tropical marine low cloud regime, modifications from ZMtrig (not including ZMtrig_ULL), 266 

ZMother, MG, and CLUBB all contribute to the reduced total cloud feedback in v2 with a slight 267 

compensation from gust. The progressively reverted strategy also reveals the compensating 268 

effects between different modifications and regimes. For example, over the midlatitudes, the 269 

modifications in MG decrease the cloud feedback and the modifications in ZMtrig increase the 270 

cloud feedback. The increase of midlatitude cloud feedback from ZMtrig counteracts its impact 271 

on the tropical marine low cloud regime leading to a negligible impact of ZMtrig on the global 272 

net cloud feedback change. 273 

 274 
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cause the largest reduction of global-mean total cloud feedback. The impact of individual 291 

modifications on cloud feedback from singly-reverted simulations is overall larger than that from 292 

progressively reverted simulations in the tropical ascent and marine low cloud regimes (Figure 293 

3). The MG modifications still make an important contribution to the cloud feedback reduction 294 

in the tropical marine low cloud regime, and modifications in ZMtrig lead to a larger reduction 295 

of cloud feedback.  296 

For subsequent detailed analysis of the mechanisms relating individual parameterization 297 

changes to changes in cloud feedback, we focus on those parameterization changes that cause 298 

large feedback changes in both the progressively and singly reverted simulations shown in 299 

Figure 3. Henceforth, we will examine the ZMtrig related modifications (Section 4.1) due to 300 

their largest impact on tropical marine low cloud feedback, and the MG-related modifications 301 

(Section 4.2) due to their largest impact on global mean cloud feedback and important role in the 302 

tropical marine low cloud regime.  303 

Separately, parameter changes in ZMother contribute to the reduced cloud feedback in 304 

the tropical ascent cloud regime, which is balanced by the increased cloud feedback due to 305 

modifications in MG and CLUBB. Also, the new ZM trigger function leads to a stronger positive 306 

cloud feedback over the midlatitudes, which balances out the weakened cloud feedback caused 307 

by MG there. Impact of these parameterizations change over these two regimes requires further 308 

understanding. However, this paper focuses on understanding those changes that most strongly 309 

impact the global mean cloud feedback change from v1 to v2, so these are not analyzed in detail. 310 

4 Physical processes contributing to evolution of cloud feedback from E3SMv1 to E3SMv2 311 

4.1 Deep convection trigger function  312 

 313 
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(ZM Frequency), and the vertically-integrated (surface to 700 hPa) ZM detrainment when ZM is 369 
activated from v2 and v2.v1(ZMtrig) over the defined marine low cloud region.  370 

 371 

The differing response of ZM detrainment may come either from changes in the 372 

frequency that the ZM scheme is active or the amount of cloud water that is detrained when the 373 

ZM scheme is active. We examine the relative contributions from changes in the ZM frequency 374 

and changes in ZM detrainment when ZM is activated in v2 and v2.v1(ZMtrig) in Figure 6. Over 375 

the defined tropical marine low cloud region, the mean-state ZM frequency is about 16% in v2 376 

and 35% in v2.v1(ZMtrig) respectively (not shown), which is consistent with the finding that the 377 

more restrictive conditions of the dCAPE-based trigger function tend to reduce the convective-378 

to-total precipitation ratios in the subtropics (Xie et al., 2019). Whereas the average ZM 379 

detrainment for the ZM-activated period increases with warming by roughly the same amount in 380 

v2 and v2.v1(ZMtrig), the ZM frequency increases by roughly 30% in v2 but decreases by 381 

roughly 20% in v2.v1(ZMtrig). Therefore, we conclude that, under warming, the increased cloud 382 

water detrainment due to increased ZM frequency is the main contributor to the cloud water 383 

increase, leading to a weaker cloud feedback in v2 compared to v2.v1(ZMtrig).  384 

The activation of ZM convection in v2 relies on the presence of positive values for both 385 

CAPE and dCAPE (Xie et al., 2019). In our analysis of one-year simulations with hourly output 386 

for v2 over the defined marine low cloud region, we find that dCAPE values greater than zero 387 

are always accompanied by CAPE values greater than zero in both the CTL and P4K 388 

experiments (Table S2). This implies that changes in dCAPE have a greater influence on the 389 

change of ZM frequency with warming than do changes in CAPE. Indeed, the occurrence of 390 

dCAPE values greater than zero increases with warming, indicating that the large-scale 391 

environment is more favorable for convection in a warmer climate. Additional investigation is 392 

required to understand why the occurrence of dCAPE values greater than zero increases with 393 

warming. In v2.v1(ZMtrig), the reduced frequency of convection is primarily due to weakened 394 

CAPE values with warming. Specifically, values less than 70 J/kg become more frequent (Table 395 

S3). This is likely caused by the increased lower tropospheric stability (Chen et al., 2020; Qu et 396 

al., 2015), which inhibits the generation of CAPE.  397 

 398 
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As shown by v2.v1(MG), the total effect of all MG modifications reduces the global net 422 

cloud feedback by 0.23 W/m2/K with the main contributions coming from the tropical marine 423 

low cloud regime and midlatitudes. In the tropical marine low cloud regime, all individual 424 

modifications except MG_wsub contribute to the reduced net cloud feedback (Figure 7). Note 425 

that the slightly weakened positive cloud feedback due to the increased WBF factor in this 426 

regime mainly results from the high cloud changes, because the definition of the tropical marine 427 

low cloud regime here uses the climatological vertical velocity at 700 hPa and some high clouds 428 

infrequently occur. Over midlatitudes, the reduced net cloud feedback mainly results from the 429 

increased WBF factor, which increases the conversion efficiency from cloud liquid to ice.  430 

In the tropical marine low cloud regime, interestingly, all modifications except the tuned 431 

accretion factor and autoconversion CDNC exponent have negligible effects on the mean-state 432 

cloud profiles. Their warming responses, however, are quite different. Each modification except 433 

MG_wsub contributes to the reduced net cloud feedback by suppressing the cloud fraction 434 

reduction and enhancing the cloud liquid water increase mainly between 800 and 900 hPa 435 

(Figure 8 and Figure S5). The minimum CDNC threshold and more negative autoconversion 436 

CDNC exponent have slightly larger impacts than others (Figure 7 and Figure 8d-e). We focus 437 

now on explaining why these two changes reduce the cloud feedback in this regime.  438 
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autoconversion from liquid water to rain and cloud water accretion by rain. The tendency from 457 

accretion by rain and autoconversion dominates the total tendency of cloud water to precipitation 458 

(Figure 9a). In v2, the reduced autoconversion causes a weakened cloud water removal 459 

(precipitation suppression) by MG cloud microphysics, mainly balanced by the weakened cloud 460 

water production from CLUBB (Figure 9b-c). The suppressed cloud water to precipitation is 461 

mainly induced by the weakened accretion by rain and autoconversion from cloud water to rain. 462 

The weaker precipitation production due to the reduced autoconversion is consistent with the 463 

larger mean-state cloud water in v2 relative to v2.v1(MG_auto) (Figure 8b).  464 

Under warming, the cloud water removal by MG is stronger, which is balanced by the 465 

stronger cloud water source from ZM detrainment and weakened cloud water source from 466 

CLUBB (Figure 9c). The stronger cloud water source from ZM detrainment is associated with 467 

the increased frequency of ZM deep convection with the new dCAPE-based trigger function as 468 

discussed in Section 4.1. The reduced autoconversion in v2 weakens the autoconversion and 469 

accretion, leading to weaker cloud water removal by precipitation under warming. Indeed for the 470 

difference between v2 and v2.v1(MG_auto) in the change in microphysics tendencies with 471 

warming (Figure 9d), the autoconversion term is of positive sign meaning that cloud water 472 

relatively increases with warming due to the reduced autoconversion. Therefore, the reduced 473 

autoconversion (more negative autoconversion CDNC exponent) in v2 suppresses the mean-state 474 

precipitation, and this suppression effect gets stronger in a warmer climate, helping sustain the 475 

cloud, and leading to a less positive cloud feedback in the tropical marine low cloud regime.  476 
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warming. Implicit in this hypothesis is the notion that increasing CDNC to 10 cm-3 right before 495 

microphysics is calculated reduces the generation of precipitation via autoconversion and hence 496 

supports greater cloud liquid. To examine this, we calculate the frequency of CDNC lower than 497 

10 cm-3 (FREQ_MINCDNC), which is assigned a value of 1 when the minimum CDNC 498 

threshold is applied and 0 when it is not applied for each time step. The frequency is determined 499 

only when clouds are present to exclude the impact of cloud fraction response to warming on the 500 

frequency estimate. In the tropical marine low cloud regime, FREQ_MINCDNC is mostly above 501 

60%. This large value may be because CDNC lower than 10 cm-3 happens preferentially when 502 

cloud fraction is smaller than 10% (not shown), which is very common in marine low cloud 503 

regions. Under warming, FREQ_MINCDNC increases by 1-2%/K below 800 hPa. This suggests 504 

that more clouds are forced to increase their CDNC from <10 cm-3 to 10 cm-3, likely resulting in 505 

weaker cloud reduction in a warmer climate. We also examine the precipitation efficiency index 506 

defined as the ratio of surface precipitation to the liquid water path (Li et al., 2022) and find the 507 

mean-state precipitation efficiency index in v2 is slightly smaller than that in 508 

v2.v1(MG_mincdnc) in the tropical marine low cloud regime. Under warming, the precipitation 509 

efficiency index is indeed reduced in v2 but almost unchanged in v2.v1(MG_mincdnc) (not 510 

shown). Therefore, under warming, the increased occurrence frequency of CDNC lower than 10 511 

cm-3 likely leads to a reduced precipitation efficiency (precipitation suppression), weaker cloud 512 

reduction, and hence a weaker positive cloud feedback.  513 

Turning to the large impact of the increased WBF factor on the midlatitude cloud 514 

feedback (Figure 7), this has partly been explained via a cloud phase feedback in which warming 515 

favors the occurrence of more reflective liquid clouds rather than less-reflective ice clouds 516 

(Ceppi et al., 2016; McCoy et al., 2015; Mitchell et al., 1989; Mülmenstädt et al., 2021). To 517 

investigate whether this mechanism could explain the varying midlatitude cloud feedback 518 

strength among these MG sensitivity experiments, the relation between T5050 (the temperature 519 

at which the Liquid Condensate Fraction (LCF) equals 0.5) (McCoy et al., 2015) and net cloud 520 

feedback over the midlatitudes (30°N-60°N and 30°S-60°S) is examined in Figure 10. Notably, 521 

the T5050 increases from 248 K in v2.v1(MG) to 258 K in v2, primarily due to the increased 522 

WBF factor in v2. The increased T5050 indicates the mean-state liquid fraction is reduced in v2, 523 

which can be confirmed by v2’s reduced mean-state cloud water in the mixed-phase temperature 524 

region (0 ~ -40°C) relative to v2.v1(MG_Berg) (Figure 11c). Midlatitude cloud water reduces 525 
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primarily due to a weaker positive cloud feedback, especially over the tropical marine low cloud 550 

regime. We further examine the impact of modifications in each physical parameterization on 551 

cloud feedbacks by conducting a series of atmosphere-only perturbed SST experiments, and find 552 

the modified parameters in MG microphysics and the incorporation of a new trigger function in 553 

the ZM deep convection scheme are key to reducing the cloud feedback in E3SMv2 relative to 554 

that in E3SMv1.  555 

The dilute CAPE trigger function in the ZM deep convection scheme in E3SMv1 is 556 

replaced by the dilute dCAPE based trigger function in E3SMv2, which effectively reduces the 557 

mean-state occurrence frequency of ZM deep convection in the tropical marine low cloud 558 

regime. Under warming, simulations with the new trigger function tend to have more cloud water 559 

detrainment from ZM deep convection in the tropical marine low cloud regime, which helps to 560 

sustain the clouds and thus leads to less positive marine cloud feedback. The reason for this is a 561 

warming-induced increase in the occurrence frequency of ZM deep convection rather than an 562 

increase in the mass of condensate detrained when ZM is activated. Further investigation is 563 

required to determine the meteorological conditions driving the increased occurrence frequency 564 

of dCAPE larger than zero with warming in the new trigger function. For v2, the introduced 565 

minimum cloud droplet number concentration (CDNC) threshold and more negative 566 

autoconversion CDNC exponent in MG both lead to a less positive marine low cloud feedback. 567 

These two modifications help sustain clouds by suppressing precipitation from MG in the mean 568 

state, and enhancing the precipitation suppression under warming in the tropical marine low 569 

cloud regime. Lastly, the increased scaling factor of the Wegener-Bergeron-Findeisen (WBF) 570 

process from E3SMv1 to E3SMv2 converts the liquid to ice more efficiently, leading to less 571 

supercooled liquid cloud water in the mean state and a weaker cloud water reduction under 572 

warming. This is the dominant reason that the positive midlatitude cloud feedback weakens in 573 

v2. This is consistent with the previous finding that models with less present-day supercooled 574 

water tend to produce a more negative cloud phase feedback.  575 

How well do individual cloud feedbacks simulated by E3SMv2 match those determined 576 

through expert judgment informed by multiple lines of evidence, and is there any improvement 577 

with respect to E3SMv1? Following Zelinka et al (2022), we further compare the cloud feedback 578 

components from E3SMv1 and E3SMv2 with the expert assessment of cloud feedback 579 

components of Sherwood et al (2020). The reduced total cloud feedback in v2 mainly results 580 
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from the tropical marine low cloud regime, and the tropical marine low cloud feedback in 581 

E3SMv2 appears to be too weak compared to the expert assessment (Figure S6). However, 582 

recent studies using large eddy simulations (LES) and satellite and in-situ observations suggest 583 

smaller trade cumulus cloud feedbacks than reported in the expert assessment (Cesana & Del 584 

Genio, 2021; Myers et al., 2021; Radtke et al., 2021; Vogel et al., 2022), suggesting that the 585 

tropical marine low cloud feedback in v2 may be more reasonable than that of v1. Indeed, 586 

following the regime definitions of Myers et al (2021), we find that v2 produces a trade cumulus 587 

cloud feedback around 0.05 W/m2/K, much closer to the observationally-constrained estimates of 588 

Myers et al. (2021) than those produced in v1 (0.17 W/m2/K). The stratocumulus cloud feedback 589 

is also reduced in v2 compared with v1, yet it deviates further from the estimate derived from 590 

observational constraints. This suggests that further process-oriented evaluation of cloud 591 

feedback and its components during the model development is needed. 592 

With regard to the physical mechanisms explaining the trade cumulus cloud feedback, 593 

recent studies have revealed that, unlike many climate models, the trade cumulus cloud amount 594 

at the cloud base remains unchanged in a warmer world (Blossey et al., 2016; Vogel et al., 2016). 595 

The climate models with too strong trade cumulus cloud feedback (Cesana & Del Genio, 2021; 596 

Sherwood et al., 2014) tend to show unrealistically decreased cloudiness near the cloud base 597 

(Vial et al., 2017) through an increase in convective mixing with warming. The enhanced 598 

convective mixing lowers the relative humidity and cloudiness near the cloud base (‘mixing-599 

desiccation’ mechanism in Vogel et al., 2022). However, mesoscale circulations (absent in 600 

climate models) might counteract this drying, leading to a stabilization of clouds near the cloud 601 

base (‘mesoscale motion control’ in Vogel et al., 2022), and thus a weak trade cumulus cloud 602 

feedback. E3SM (either v1 or v2), in contrast, does not seem to have the 'mixing-desiccation' 603 

issue present in some climate models. Both cloud fraction and cloud water at the cloud base 604 

slightly increase with warming (Figure 4 and Figure 8), and reductions in cloud fraction and 605 

relative humidity tend to happen in the upper part of the cloud layer, and not at the cloud base. 606 

The shoaling cloud layer occurs in all E3SM sensitivity experiments, not revealed in LES and 607 

observations, is likely related to the shallower boundary layer and weakened turbulent mixing 608 

under warming due to the CLUBB scheme. Zhang et al. (2018) also found the turbulent mixing 609 

tends to decrease under warming in CAM5-CLUBB, and the weakened turbulent mixing is 610 

mainly caused by the reduced buoyancy flux near the cloud base. Furthermore, the frequency of 611 
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ZM deep convection increases with warming, but it leads to more, not less clouds, through 612 

increased convective detrainment in v2. Therefore, while the value of v2's weaker trade cumulus 613 

feedback is more consistent with observation evidence and LES, we cannot say that this change 614 

results from an improved simulation of how physical processes respond to climate warming. 615 

Nonetheless, some of the process changes between v1 and v2 (such as the ZM trigger function or 616 

the WBF process factor) improve the agreement with present-day observations of process-related 617 

variables (such as the diurnal cycle of precipitation or the amount of supercooled liquid, 618 

respectively), and on this basis one might have greater confidence that the reduced cloud 619 

feedback exhibited under climate warming in v2 is more realistic. Overall, continued research 620 

and analysis are needed to better understand the complex interactions among model physics and 621 

to refine parameterizations in climate models for more accurate representation of these processes 622 

in future climate projections.  623 
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In this Supporting Information, we provide additional tables and figures that support the 
results in the main text (Table S1-S4; Figure S1-S6).  
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Figure S1. Partitioned global cloud regimes using latitude bands, land and ocean mask, 
and ensemble-mean vertical velocity at 700 hPa. Percentages indicate the area of the 
planet covered by each regime. Details are in the text.   
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Figure S2. Same as Figure 2, but for coupled experiments of v1 and v2. 
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Figure S3. Spatial distribution of total cloud feedback from (a) v1, (b) v2.v1(All), (c) v2 
and the difference between (d) v2 and v1, (e) v2 and v2.v1(All) and (f) v2.v1(All) and v1. 
The global mean values are labeled in brackets.  
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Figure S4. Same as Figure 2, but for v2 and v2.v1(ZMtrig). The black boxes in panels (a) - 
(c) denote the region for investigating the impact of trigger function, ranging from 10°S 
to 30°S, 80°W to 120°W. 
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Figure S5. Same as Figure 8 but for v2.v1(MG_WBF), v2.v1(MG_accre) and 
v2.v1(MG_wsub).  
 
  



 
 

7 
 

 
 
Figure S6. Cloud feedback components estimated from E3SM atmosphere-only v1 (blue 
dot), atmosphere-only v2 (blue asterisk), 150 yr coupled v1 (v1 [abrupt4xCO2]) (orange 
dot), and 150 yr coupled v2 (v2 [abrupt4xCO2]) (orange asterisk) simulations, from 
ensemble mean of CMIP5 and CMIP6 models (bars), and from Sherwood et al. (2020) 
(black error bars). The multi-model means are indicated with green and purple bars for 
AMIP and CMIP experiments, respectively. The expert-assessed likely and very likely 
confidence intervals are indicated with black error bars. For more details about the cloud 
feedback decomposition and the code see Zelinka et al. (2022) and Zelinka et al. (2021a).  
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Table S1. ERF for 2xCO2 and feedback in v1 and v2 experiments. The different 
experiments for ERF and feedback are denoted in the bracket [‘ERF’/’feedback’].   
 

 ERF [W/m2] Feedback [W/m2/K] 

v1  
[150yr abrupt-4xCO2/  
150yr abrupt-4xCO2] 

3.34 -0.63 

v2  
[150yr abrupt-4xCO2/  
150yr abrupt-4xCO2] 

2.95 -0.74 

v1  
[amip-4xCO2/  
amip-p4K] 

4.24 -1.34 

v2  
[amip-4xCO2/  
amip-p4K] 

4.04 -1.53 
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Table S2. Number of samples in four categories based on CAPE and dCAPE values from 
hourly output of 1 yr simulations over the defined marine low cloud region (30°S-10°S, 
120°W-80°W) in v2. Their ratio to the total samples (=3188640) are denoted in the 
bracket. 
 

 CAPE>0,dCAPE>0 
(ZM is active) 

CAPE<=0,dCAPE>0 CAPE<=0,dCAPE<=0 CAPE>0,dCAPE<=0 

CTL 520907 [0.16] 127 [0.0] 1362006 [0.43] 1305600 [0.41] 

P4K 727535 [0.23] 49 [0.0] 901749 [0.28] 1559307 [0.49] 
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Table S3. Number of samples in three categories based on CAPE values from hourly 
output of 1 yr simulations over the defined marine low cloud region (30°S-10°S, 120°W-
80°W) in v2.v1(ZMtrig). Their ratio to the total samples (=3188640) are denoted in the 
bracket. 
 
 CAPE<=0 0<CAPE<=70 CAPE>70 

(ZM is active) 

CTL 20822 [0.01] 933739 [0.29] 2234079 [0.70] 

P4K 58519 [0.02] 1272604 [0.40] 1857517 [0.58] 
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Table S4. Cloud feedbacks (W/m2/K) in each regime from all simulations in Table 2 and 
Table 3.  
 

 Short name  Marine
Low 

Trop 
Ascent 

Trop 
Land 

MidLat HiLat Global 

 v1 0.19 0.15 0.10 0.21 0.01 0.65 

 v2.v1(All) 0.14 0.14 0.10 0.22 0.01 0.61 

Progressivel
y reverted 
simulations 

v2.v1(clubb.MG.ZMother.gust.ZMtrig.gw) 0.11 0.14 0.11 0.18 0.01 0.55 

v2.v1(clubb.MG.ZMother.gust.ZMtrig) 0.11 0.14 0.10 0.21 0.00 0.56 

v2.v1(clubb.MG.ZMother.gust) 0.08 0.13 0.11 0.31 0.02 0.65 

v2.v1(clubb.MG.ZMother) 0.10 0.13 0.13 0.28 0.01 0.65 

v2.v1(clubb.MG) 0.07 0.18 0.16 0.26 0.00 0.68 

Singly 
reverted 
simulations 

v2.v1(clubb) 0.03 0.17 0.15 0.18 -0.03 0.50 

v2.v1(ZMtrig) 0.08 0.13 0.15 0.11 -0.04 0.43 

v2.v1(ZMtrig_ULL) 0.01 0.15 0.12 0.20 -0.02 0.46 

v2.v1(MG) 0.07 0.18 0.15 0.29 0.01 0.69 

v2.v1(ZMother) 0.05 0.09 0.12 0.21 -0.03 0.43 

v2.v1(clubb) 0.03 0.17 0.15 0.18 -0.03 0.50 

 v2 0.01 0.15 0.12 0.20 -0.02 0.46 

 

 


