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Abstract

Urbanization (urban land change) alters local and regional climate through biophysical and biogeochemical processes and has

broader climate impacts through atmospheric feedbacks. Despite its critical climate impacts, urban areas have rarely been

explicitly represented in global-scale Earth system models, and physically-based transient urban representations are missing as

well. The Community Earth System Model (CESM) has a physically based urban land parameterization – Community Land

Model Urban (CLMU) – that is sufficiently detailed to represent the properties and processes in the urban environment. We

improve this model by implementing a dynamic urban scheme to represent transient land use due to urbanization. Leveraging

existing urbanization projection datasets, the new scheme allows urban extent to be updated annually during a climate sim-

ulation while conserving energy and mass balance during the transition. Land-only simulation results confirm the robustness

of the new dynamic urban scheme and demonstrate the direct local climate effects induced by urban land expansion. In the

appendix of this paper, we also document two recent improvements to the building energy scheme of CLMU.
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Abstract: 38 

Urbanization (urban land change) alters local and regional climate through biophysical and 39 

biogeochemical processes and has broader climate impacts through atmospheric feedbacks. 40 

Despite its critical climate impacts, urban areas have rarely been explicitly represented in global-41 

scale Earth system models, and physically-based transient urban representations are missing as 42 

well. The Community Earth System Model (CESM) has a physically based urban land 43 

parameterization – Community Land Model Urban (CLMU) – that is sufficiently detailed to 44 

represent the properties and processes in the urban environment. We improve this model by 45 

implementing a dynamic urban scheme to represent transient land use due to urbanization. 46 

Leveraging existing urbanization projection datasets, the new scheme allows urban extent to be 47 

updated annually during a climate simulation while conserving energy and mass balance during 48 

the transition. Land-only simulation results confirm the robustness of the new dynamic urban 49 

scheme and demonstrate the direct local climate effects induced by urban land expansion. In the 50 

appendix of this paper, we also document two recent improvements to the building energy 51 

scheme of CLMU. 52 

 53 

Plain Language Summary 54 

The Community Land Model Urban (CLMU) is the urban component of the Community Earth 55 

System Model (CESM) for simulating the urban effects on local climate on the global scale. 56 

Although CLMU features a realistic physical representation of cities, a key limitation is that its 57 

urban extent does not change over time, even if urban land change is and will continue occurring 58 

in reality due to rapid urbanization. This paper describes a new transient urban capability in 59 

CLMU where urban extent in the model can change dynamically throughout a simulation, thus 60 
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further enhancing the accuracy of the urban representation. We demonstrate the difference in 61 

local urban climate when the urban area is changed annually according to a projection, compared 62 

to when urban extent stays unchanged. This new model capability provides an essential modeling 63 

infrastructure to investigate the combined effects of future global climate change and 64 

urbanization on local urban climates. In the appendix we also present two improvements to the 65 

CLMU that improve the accuracy of building energy simulation. 66 

 67 

 68 

 69 

 70 

Key points 71 

1. A new transient-urban capability for CESM enabling dynamic urban representation 72 

consistent with climate change scenarios is developed. 73 

2. Urban land time series datasets are developed and model tools are modified to allow for 74 

user-supplied urban projection for CESM simulations. 75 

3. Simulations with the new transient urban feature demonstrates local climate effects 76 

caused by urbanization coupled with climate change. 77 

 78 

 79 

  80 

 81 

 82 
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1. Introduction 83 

Cities are hotspots of climate change hazards, exposure, and vulnerability (Grimm et al., 2008; 84 

IPCC, 2014; Mora et al., 2017; Tuholske et al., 2021; J. Yang et al., 2023; Zhao et al., 2021a). 85 

Global climate change is projected to elevate both persistent stress (such as prolonged heat stress 86 

and water scarcity) (Gray et al., 2023; He et al., 2021; IPCC, 2021; Knutti & Sedlacek, 2013; J. 87 

Li et al., 2018; Patz et al., 2005) and the intensity, frequency, and duration of climate extremes 88 

(such as heatwaves, extreme rainfall, flooding, and droughts) (Fischer et al., 2021; Horton et al., 89 

2016; Meehl & Tebaldi, 2004; Pal & Eltahir, 2016; Zheng et al., 2021; Zscheischler et al., 2018). 90 

Urbanization modifies the land cover and alters local and regional weather and climate through 91 

biophysical and biogeochemical processes (Manoli et al., 2019; Niyogi et al., 2011; Qian et al., 92 

2022; B. Yang et al., 2019; Zhao et al., 2014), further amplifying those climate-driven hazards 93 

(Baklanov et al., 2018; Cao et al., 2016; D. Li & Bou-Zeid, 2013; Zhao et al., 2018). Over half of 94 

the world's population currently lives in urban areas, and because of rapid urbanization, this will 95 

exceed 68% by the middle of this century (UNDESA, 2018). The concentrated population as 96 

well as civil infrastructures (such as energy, water, and transportation infrastructures) put cities 97 

among the most exposed societal sectors to climate threats (Lai et al., 2022; Lai & Dzombak, 98 

2021; Tuholske et al., 2021; J. Yang et al., 2023). In addition, cities are a mix of socioeconomic 99 

and demographic groups. The disadvantaged communities with limited resources for services, 100 

hospitality, and utilities are disproportionately vulnerable to climate hazards (Chakraborty et al., 101 

2019; Hsu et al., 2021; Kaur & Pandey, 2021; Y. Li et al., 2018; Salami et al., 2017; Ye et al., 102 

2021). These risks – intersection of climate hazards, exposure, and vulnerability (IPCC, 2022) – 103 

will likely increase in the future under rapid urbanization coupled with climate change (Huang et 104 

al., 2021; Krayenhoff et al., 2018; Luo & Lau, 2018, 2019; Zhao, 2018). There is a pressing need 105 
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to understand future urban-specific climate change, dynamics, and the associated risks to inform 106 

effective urban mitigation and adaptation strategies (Krayenhoff et al., 2021; Zhao et al., 2017a). 107 

 108 

Despite the critical importance of urban climate impacts, nearly all Earth system models (ESMs) 109 

lack an explicit representation of urban areas compared to natural vegetated or rural surfaces 110 

(Hertwig et al., 2021; Masson, 2006; Zhao et al., 2021b). The omission of physical-based urban 111 

representation across ESMs stems from early versions of global climate models designed for 112 

large-scale dynamics in which urban areas were too small to cause discernible effects. This 113 

shortcoming hinders not only the simulation of urban effects on local to regional climates, but 114 

also the model development addressing coupled human-Earth systems.    115 

 116 

The Community Earth System Model (CESM, Danabasoglu et al., 2020) is one of the very few 117 

ESMs participating in the Coupled Model Intercomparison Project (CMIP) (Eyring et al., 2016; 118 

Taylor et al., 2012) that has a physically based urban representation (Lawrence et al., 2019; 119 

Oleson et al., 2008). In CESM, urban surfaces and their interaction with the lower atmosphere 120 

are represented in the Community Land Model Urban (CLMU) based on the urban canyon 121 

concept (Oleson & Feddema, 2020). As an explicit urban representation embedded in CESM, 122 

CLMU has been extensively evaluated against ground-based and remote sensing observations 123 

over cities across the globe (Cao et al., 2016; Demuzere et al., 2008, 2013, 2017; Fischer et al., 124 

2012; Fitria et al., 2019; Jackson et al., 2010; Karsisto et al., 2016; Oleson, 2012; Oleson et al., 125 

2008; Zhao et al., 2014, 2017). Several other ESM model groups have recently begun to 126 

incorporate an urban representation in their models. For example, the Geophysical Fluid 127 

Dynamics Laboratory (GFDL)’s land model (LM3) deploys an urban canopy model (LM3-UCM) 128 
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to simulate energy, water and carbon exchange between land and atmosphere in urban regions (D. 129 

Li et al., 2016a, 2016b). 130 

 131 

Even for ESMs that have an urban representation, a critical limitation is that they lack the 132 

transient urban capability, that is, the ability to represent changes in urban extent in time during a 133 

transient climate simulation. Although dramatic changes in urban extent are expected in the 134 

future (Bren d’Amour et al., 2017; Seto et al., 2017; William Solecki et al., 2013), these changes 135 

and their effects have not previously been represented in transient climate simulations. We note 136 

that LM3-UCM has an option to set an annual rate at which other landscape transitions into 137 

urban, but this transition is uniform globally and cannot provide the essential geospatial 138 

granularity (D. Li et al., 2016a). This universal lack of a transient urban scheme implies that, 139 

while the anthropogenic greenhouse gas (GHG) emissions that urban land makes a significant 140 

contribution to (Creutzig et al., 2015; Seto et al., 2014) are normally prescribed in future 141 

simulations as climate change scenarios (O’Neill et al., 2016; Taylor et al., 2012), the urban land 142 

cover is not consistent with those scenarios. This creates a critical technical barrier for existing 143 

models to simulate the dynamic interactions between the changing and emerging urban land 144 

patterns and climate systems, specifically, the urban development effects on the radiative, heat, 145 

mass, and momentum fluxes and as a result on the local and regional environments. We argue 146 

that representing urban landcover dynamically is essential for global urban climate modeling. 147 

 148 

Here our work fills this critical modeling gap by implementing a dynamic urban scheme into the 149 

CESM, making it the first ESM to incorporate transient urban land. The new scheme will expand 150 

CESM’s capability in urban modeling through more flexible urbanization representation. This 151 
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work leverages recent advances in CLM development (Lawrence et al., 2019; Oleson & 152 

Feddema, 2020) and urban land projection data. We have compiled two urbanization datasets 153 

based on datasets developed by Beijing Normal University (BNU) (He et al., 2021) and Gao and 154 

O’Neil (2020) that we test in our new scheme. Although only future projected transient urban 155 

land use is demonstrated in this paper, the methods outlined here can easily incorporate historical 156 

transient urban land datasets when the data becomes available. In addition, we have expanded the 157 

capability of an existing Community Terrestrial Systems Model (CTSM) tool that enables users 158 

to supply other urbanization projections for CESM simulations. CTSM is CESM’s land sub-159 

model and includes previous versions of the land model such as CLM5 (Lawrence et al., 2019). 160 

The new dynamic urban scheme will be included in the next CTSM release (CTSM5.2), which 161 

will become the land model component for CESM3. 162 

 163 

This paper documents the implementation of the dynamic urban scheme in CESM version 2 164 

(CESM2). Section 2 provides an overview of CESM, its land component – CTSM, and the urban 165 

parameterization (CLMU). The development of the dynamic urban scheme is introduced in 166 

Section 3, along with the datasets and tools used to produce surface datasets for dynamic urban 167 

simulation. A land-only simulation with the dynamic urban scheme and its results are described 168 

in Section 4. In the Appendix, we also document recent improvements in the building energy 169 

scheme of CLMU that are now available in CTSM. 170 

 171 

2. Urban modeling in CESM 172 

2.1 Brief overview of CESM, CTSM and CLMU 173 
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Figure 1. CESM representation of land heterogeneity and transient land use land cover 190 

change. A: CESM’s nested hierarchy that represents land heterogeneity. Urban: TBD = tall 191 

building district; HD = high density; MD = medium density. Vegetated – PFT: plant function 192 

type. Crop – Unirrig: unirrigated. Irrig: irrigated. B: Box shows hypothetical sub-grid 193 

distribution for a single grid cell. Vegetation: V1 to V4 denote different plant function types. 194 

Crop: C1 to C4 denote different crops or management behaviors (rainfed or irrigated). Red 195 

arrows indicate allowed land unit transitions. Purple arrows indicate allowed lower‐level 196 

transitions. In this existing infrastructure, urban land is not allowed to change. C:  The dynamic 197 

urban scheme. Urban expansion here is represented by increasing the urban land units’ 198 

fractional area in the grid cell. Due to the increase in urban fraction, the grid cell total water 199 

and energy content is altered, which is accounted for by dynamic balance fluxes for water (liquid 200 

and ice runoff to/from river) and heat (sensible heat flux to/from atmosphere), shown as 201 

“Water/energy balance correction”. 202 

 203 

The urban land unit and its interaction with the lower atmosphere are represented in the 204 

Community Land Model Urban (CLMU) as part of CTSM. This urban representation is based on 205 

an urban canyon concept which divides each urban land unit into five facets or columns: roof, 206 

sunlit wall, shaded wall, and pervious and impervious surfaces on the canyon floor (Figure 2). 207 

The urban representation accounts for the surface energy balance (radiation trapping, thermal 208 

conduction, air conditioning and heating), hydrology (roof and canyon floor snowpack, water 209 

ponding and run-off, and evaporation), and exchange of heat, moisture, and momentum with the 210 

atmosphere for each individual facet (Oleson et al., 2008). An existing global urban surface 211 

dataset is embedded in the model (Jackson et al., 2010, hereinafter J2010). This dataset 212 
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After the initial release of CLMU  (Oleson et al., 2008) as part of Community Land Model 223 

version 4 (CLM4), there have been multiple updates to the urban model that continue to enhance 224 

its capabilities (Oleson & Feddema, 2020). First, instead of simulating only one urban land unit 225 

per grid cell, multiple urban density classes are introduced, partitioning the urban tile into three 226 

density types: tall building district (TBD), high density (HD) and medium density (MD), and 227 

each density class demonstrates distinct physical properties. This feature takes full advantage of 228 

the existing urban surface dataset (J2010) and provides more granularity for a realistic urban 229 

representation than the original version. Second, an urban properties tool was developed to create 230 

future urban development scenarios more easily. Third, the CLMU’s building energy model 231 

(BEM) was modified to improve its performance in modeling anthropogenic heat fluxes 232 

associated with space heating and air conditioning. Lastly, CLMU is now able to generate 233 

various heat stress indices that describe the comfort level of urban residents. Details of these 234 

model advances are documented in Oleson & Feddema (2020). Two additional updates have 235 

been made to the BEM since that time. Building width in the BEM is now explicitly derived 236 

from data in J2010 instead of being assumed to be equal to street width. Second, the ventilation 237 

flux from building interior to urban canopy air was not being accounted for, and this has now 238 

been remedied. Details about these updates, including results from a simulation designed to test 239 

the impact on urban canopy air temperature and anthropogenic heat fluxes, can be found in the 240 

Appendix. 241 

 242 

3. Implementation of dynamic urban capability 243 

The current urban representation in CLMU is static, which means that the urban extent and 244 

property data initialized at the start of a simulation are time-invariant throughout the simulation 245 
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To add the transient land use capability for urban land units, our new dynamic urban scheme 259 

reads a land use time series dataset that prescribes the percent cover of the three urban land units 260 

each year and updates the urban land units throughout the simulation accordingly. The changes 261 

in urban area extent in time are integrated with changes in other land units in the model (Figure 262 

1C). The following sections describe the implementation of the dynamic urban scheme in more 263 

detail. 264 

 265 

3.1 Dynamic urban land data 266 

In the default configuration of CLMU, a global dataset (J2010) provides present-day (circa-2000) 267 

information on urban spatial extent (i.e., percent cover within a grid cell), urban morphological 268 

(e.g., building height, street width, building height-to-street width ratio. roof areal fraction, and 269 

pervious canyon floor fraction), thermal (e.g., material heat capacity and thermal conductivity), 270 

and radiative (e.g., albedo and emissivity) properties. The spatial extent of urban areas is derived 271 

from a population density dataset at 1-km resolution, and the relative weights of different urban 272 

density types are based on population and satellite imagery. The dataset defines 33 unique 273 

regions globally, grouped according to similar urban surface properties. The urban property data 274 

are compiled by synthesizing a variety of datasets, including satellite products, a global database 275 

of tall buildings, local building codes data and other municipal documentation, and validated 276 

against Google Earth imagery (Jackson et al., 2010). These properties have been updated 277 

somewhat as described in Oleson and Feddema (2020).   278 

 279 

The new dynamic urban scheme requires future urban land projection datasets under different 280 
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scenarios. Recent efforts in global-scale spatial projections of urban land change provide the 281 

necessary source data. These time series of global urban land projections use remote sensing and 282 

population density data and leverage existing regional/zonal modeling methods (G. Chen et al., 283 

2020; Gao & O’Neill, 2020; He et al., 2021; Z. Liu et al., 2019) to better captures the regional 284 

heterogeneity in urban development trajectory. Here we generated two CESM-compatible 285 

transient urban land use time series data based on two urban land cover projection datasets – Gao 286 

and O’Neill (2020) (hereinafter GO2020) and He et al. (2021) (Supplementary Information; 287 

hereinafter BNU), aiming to demonstrate the validity of our new dynamic urban scheme. The 288 

BNU and GO2020 datasets provide the global urban land cover between 2020 - 2070 and 2010 - 289 

2100, respectively, in decadal intervals under five CMIP6 ScenarioMIP (O’Neill et al., 2016) 290 

Shared Socioeconomic Pathways (SSPs) at a 1-km resolution. The historical urban land cover in 291 

the year 2000 is also available in the GO2020 dataset.  292 

 293 

CESM provides the infrastructure for users to process input data, which includes the THESIS 294 

(Toolbox for Human-Earth System Integration and Scaling) tool to create the raw urban extent 295 

and urban properties datasets and the CTSM mksurfdata_esmf tool to create surface datasets and 296 

land use time series datasets at the desired spatial resolution for model simulation (Oleson and 297 

Feddema, 2020). Here we use the THESIS tool to combine the 1-km urban land cover data with 298 

urban properties and then aggregate the urban extent to 0.05° resolution (Figure 4). The original 299 

THESIS tool described in Oleson and Feddema (2020) only accepts binary urban land cover 300 

input but has been modified in this work to accept generic data format. It assumes that the input 301 

urban land cover data is urban fraction with respect to the grid cell area (e.g., as provided by the 302 

GO2020 dataset). At this point, all urban areas are assumed to be MD. The land use time series 303 
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file compatible with CLMU’s configuration requires three urban density types (TBD, HD, and 304 

MD). Thus, the 0.05° urban land cover files need to be further divided into these three density 305 

classes. The partitioning we use here references the J2010 urban dataset and is based on the 306 

following rules and assumptions.  307 

 308 

At the beginning of the time series, the urban area in each grid cell is partitioned according to the 309 

ratio of the density types in that grid cell in the J2010 dataset. If an urban land unit later grows or 310 

shrinks, the area of each urban density type increases or decreases proportionally. If a new urban 311 

land unit appears at any point in time (either at the start of the time series or later) in a grid cell 312 

where urban does not previously exist in the J2010 dataset, the percentages of the three density 313 

types are assigned to the average value in the “region” that the grid cell belongs to. Here the 314 

“region” refers to the 33 physically and socially unique zones defined in J2010. These rules 315 

essentially assume that the morphology of an emerging urban area will resemble other cities in 316 

its vicinity.  317 

 318 

Then, the decadal 0.05° urban data were linearly interpolated to generate annual urban data files 319 

from 2020 to 2070 for the BNU dataset and from 2015 to 2100 for the GO2020 dataset. The 320 

historical annual urban data from 2000 to 2015 is also created for the GO2020 dataset. In this 321 

process, the average urban fraction of the five SSP scenarios was calculated in 2010 and 2015, 322 

respectively, which is used as the historical urban land cover for those two years. Then the 323 

annual urban fraction from 2000 to 2015 were interpolated based on historical urban fraction in 324 

2000, 2010, and 2015. 325 
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 326 

Finally, the 0.05° urban data from 2000 to 2100 and data files of other land cover types are 327 

ingested by the mksurfdata_esmf tool to create a surface dataset in the year 2000 and a land use 328 

time series dataset for the period of 2000 – 2100 at the desired spatial resolution for model 329 

simulation (Oleson and Feddema, 2020). Since the BNU datasets only provide urban data from 330 

2020 to 2070, the urban land cover from 2000 to 2019 takes the values of 2020 and the urban 331 

land cover after 2070 is fixed at the 2070 level. Here the mksurfdata_esmf tool has been 332 

modified to include annual urban fractions in the land use time series files. To reconcile the area 333 

change of urban with other land use types, we make the following informed assumption. In the 334 

case of a decrease in the urban area, the urban area would transform into natural vegetation and 335 

bare soil (i.e., vegetated land unit). As for urban expansion, cities will first replace natural 336 

vegetation and bare soil, and then cropland. Cropland is assigned higher priority based on our 337 

view that food security will continue to be a priority given the growing population (J. Chen et al., 338 

2017; Gregory et al., 2005; Vermeulen et al., 2012). Note that in the original BNU dataset, urban 339 

area can shrink at certain future time points as the projected urban population decreases. Here we 340 

make a "non-decreasing" urban area assumption that the urban fraction will be kept at the 341 

previous decadal level if the BNU data predicts it to shrink. This is a reasonable assumption 342 

because in reality, the physical urban landscape would not necessarily be converted back to 343 

vegetated landscapes even if the urban population decreases. The GO2020 dataset does not have 344 

shrinking urban areas. 345 

 346 

To summarize, the process to generate a land use timeseries dataset with transient urban land is 347 

as follows: First, we use the THESIS tool to combine the decadal 1-km resolution urbanization 348 
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projections with urban properties and upscale it into an urban fraction dataset at 0.05° resolution. 349 

Then we classify the urban area further into three density types and interpolate the decadal urban 350 

fraction datasets to annual data. Finally, we use the annual urban data as the input to the 351 

mksurfdata_esmf tool to generate the surface dataset in 2000 and the land use time series dataset 352 

for the period of 2000 – 2100. The surface datasets and land use time series datasets based on the 353 

GO2020 data under five SSPs scenarios are made available for users at 0.9° × 1.25° resolution, 354 

however, datasets at other resolutions can be created using the mksurfdata_esmf tool. This 355 

workflow (Figure 4) has been incorporated in the modified THESIS and mksurfdata_esmf tools 356 

which are published open-source (see Data and Code Availability statement) along with this 357 

paper. With these tools users can also convert an urbanization projection of their preference into 358 

datasets compatible with CESM and thus dynamically simulate the climate effects of 359 

urbanization according to that projection.  360 

 361 

 362 

Figure 4. Illustration of the process and tools for urban transient land use dataset 363 

processing.  364 

 365 

The resulting urban cover in the surface dataset and the land use time series are expressed in the 366 

form of each urban density type’s fractional areal weights relative to the land fraction of the grid 367 

cell. Figure 5 demonstrates the urban land change from the land use timeseries dataset at 1 368 

degree resolution, based on BNU projection. The total urban area increases by 82% from 2015 to 369 

Temporal 
linear 
interpolation
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2070 (from 8.9 × 105 km2 to 1.6 × 106 km2), with TBD, HD and MD increasing by 8.7%, 48% 370 

and 91% respectively. There are 3,657 and 4,291 grid cells with urban areas in 2015 and 2070, 371 

respectively. 4,245 grid cells see expansion in urban areas from 2015 to 2070. 372 

 373 

Figure 5. Global urban expansion, according to BNU projection, SSP5 scenario. A: Urban 374 

area change from 2015 to 2070. Right: Projected global total urban area (B) and areas of each 375 

urban density class (C), in 106 km2. Projection starts from 2020. 376 

 377 

3.2 Dynamic urban module 378 

In the dynamic urban scheme, the model updates the extent of urban areas each year from the 379 

new land use time series file described above. We modified the model input/output (I/O) 380 

interface to supply the urban extent information from urbanization land use time series, rather 381 

than from a static surface dataset in the current version of CLMU. The dynamic urban module 382 

updates the urban extents at the beginning of each model year (Figure 3B). As a special 383 

consideration, if the timespan of a simulation is longer (at beginning or end) than that of the 384 

urbanization time series, the first time slice in the data is used to define the urban extent for all 385 

model years prior to that year, and similarly the last time slice in the data applies to all model 386 

A
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years after that year. 387 

  388 

Urbanization can be realized through either the expansion of existing urban areas or the 389 

emergence of new urban areas from formerly rural or unmanaged land. In the former scenario, 390 

urban growth is represented as growth in urban extent in the same grid cell, or more specifically, 391 

as an increase in the urban land unit weight within the grid cell. The newly developed urban area 392 

maintains the same state variables as the existing urban area and therefore forms a smooth 393 

transition. The latter situation, however, involves establishing a new urban land unit in a grid cell, 394 

and consequently poses an initialization problem. Like other land use types, the urban 395 

representation in CTSM involves biophysical processes that require interactions with the 396 

atmospheric forcing. After the simulation has started, it is not feasible to initiate new urban land 397 

units with the proper initial state, and an urban land unit with a “cold start” state would not be in 398 

equilibrium with past atmospheric forcing. One possible solution is to initialize all three urban 399 

land units virtually in grid cells where there is no urban landscape at the start of the simulation, 400 

calculate all the urban processes along the way, and set urban to zero area weight if no new 401 

urban land emerges in later years so that they don’t influence the surface fluxes sent to the 402 

atmosphere. This solves the initialization problem but is computationally inefficient. To improve 403 

the computing efficiency, we only initialize urban land units where urban areas already exist or 404 

will emerge later in the simulation. This is done by pre-examining the transient urban land use 405 

time series to determine the maximum fraction of urban area at each grid cell across the entire 406 

timespan. The model then reads this maximum urban percentage information and initializes and 407 

runs urban columns only where necessary. A grid cell with zero maximum indicates that an 408 

urban land unit will never emerge in this grid cell throughout the simulation period and therefore 409 
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the urban initialization will not be invoked. Our testing results indicate this procedure leads to 410 

more than 10% improvement in model efficiency compared to the all-active zero-weight urban 411 

method. 412 

 413 

Similar to other dynamic land units, this dynamic urban feature can be switched off in the case 414 

configuration phase when a simulation with static urban extent is desired. 415 

 416 

3.3 Energy and water conservation in land conversion 417 

Urbanization – land use conversion from natural vegetated or crop to urban land unit – can cause 418 

failures of mass and energy conservation in the model. CTSM has an existing mechanism to 419 

handle the energy and mass (water, carbon, and nitrogen) conservation for certain types of land 420 

use transitions (conversion between vegetation, crop, and glacier land units). We leverage the 421 

existing mechanism and, with several necessary modifications, extend it to handle urban land 422 

changes.  423 

  424 

For energy conservation, the model assumes that when land unit areas change, the state variables 425 

remain constant on a per-area basis, which may lead to changes in total grid cell energy content. 426 

For example, if an urban land unit has a higher value in heat content (expressed in 𝐽 ⋅ 𝑚ିଶ) than 427 

another landunit, and when the former expands and replaces part of the latter, they each retain 428 

their heat content values, leading to a net increase energy in the grid cell. This artificial change 429 

will violate the surface energy balance in the model if not accounted for. To account for such 430 

discrepancy caused by land use conversion, a fictional “balancing flux” has been introduced to 431 
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balance any change. The flux is distributed evenly throughout the whole year following the land 432 

use change to avoid any large or abrupt changes. 433 

  434 

For water, we treat liquid water and ice separately and use a similar approach as energy. 435 

Specifically, the model keeps the pre-conversion per-area water contents for different land use 436 

types at the same level, and we account for the water content differences due to the conversion 437 

with “water balancing fluxes”. For example, if urbanization leads to water loss, we create an 438 

outgoing flux (represented as runoff) to fix the discrepancy. Note that the energy transfer 439 

associated with the water or ice balancing fluxes are also considered in the energy balance.  440 

 441 

Testing results demonstrate that both water and energy are properly conserved with this 442 

treatment. After the balancing fluxes are accounted for, the remaining imbalances are below the 443 

specific energy and water balance thresholds used in the model and are thus considered 444 

negligible. An example of the residual in water and energy balance after correction for year 2020 445 

is shown in Figure 6 and Table 1 (for the simulation described in section 4). After urban extents 446 

change at the beginning of the year, there is change in global average liquid water content of 447 

0.034 mm at the beginning of the year due to urban land cover change. An adjustment of 448 1.1 × 10ିଽ 𝑚𝑚 ⋅ 𝑠ିଵ (global average; the actual adjustment is applied individually to each grid 449 

cell) to the global runoff throughout the following year balances the liquid water content to 450 3.0 × 10ି଻ 𝑚𝑚 (Figure 6B). Similarly, there is a change in the global average heat content at the 451 

beginning of the year of −46 𝑘𝐽 ⋅ 𝑚ିଶ , consisting of a change in heat content of 21 𝑘𝐽 ⋅ 𝑚ିଶ 452 

and a change in heat content contained in the runoff (−67 𝑘𝐽 ⋅ 𝑚ିଶ). An adjustment to the global 453 

sensible heat flux of 3.3 × 10ିସ 𝑊 ⋅ 𝑚ିଶ throughout the following year correct corrects this to 454 
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−1.8 𝑘𝐽 ⋅ 𝑚ିଶ (Figure 6A), a value that is much smaller compared to the average global heat 455 

content of 3.1 × 10ହ 𝑘𝐽 ⋅ 𝑚ିଶ. We have checked every grid cell in our simulation and confirmed 456 

that the errors after correction meet our balance criteria. 457 

 458 

Table 1. Global average of imbalance before and after “balancing flux” correction at the 459 

beginning of year 2020. 460 

Quantity 
Global average discrepancy 

Balancing flux 
Before correction After correction 

Liquid content 3.4 × 10-2 mm 3.0 × 10-7 mm 1.1 × 10-9 mm⋅s-1 
Ice content 6.6 × 10-5 mm -1.6 × 10-8 mm 2.1 × 10-12 mm⋅s-1 

Heat content -46 kJ/m2 -1.8 kJ/m2 3.3 × 10-4 W⋅m-2 

 461 
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We note that the urban land unit does not model carbon and nitrogen in the current version of the 466 

model and therefore we only account for changes in energy and water. Our new scheme does 467 

track the carbon and nitrogen change associated with urban land change for mass conservation 468 

purpose in the model. The carbon and nitrogen will be stored when urban land unit replacing 469 

vegetated or crop land and will be released when vegetated or crop replaces urban. The stored 470 

carbon and nitrogen are treated as inert pools and can be properly conserved in the model with 471 

this method. 472 

 473 

4. Dynamic-urban simulation results and discussion 474 

Using a standard test suite available as part of CTSM, the new dynamic-urban scheme has passed 475 

the tests that check for proper operation under a large range of possible CESM model setups and 476 

conditions, including evaluation of performance (speed), memory, and I/O. To further illustrate 477 

the application and function of the new scheme, we conducted a pair of land-only simulations. 478 

These simulations are for the purpose of demonstrating the validity of the dynamic-urban scheme, 479 

rather than projecting future urban climates under climate change and urbanization, because 480 

land-atmosphere interactions and feedbacks are not represented in these uncoupled runs. 481 

 482 

The two simulations were run from 2015 to 2070 at a spatial resolution of 0.9o latitude x 1.25o 483 

longitude, one with constant urban land cover (StaticUrban) and the other with the dynamic 484 

urban scheme (DynamicUrban). The atmospheric forcing data is taken from atmospheric output 485 

from a fully coupled simulation under a very high-emission Shared Socioeconomic Pathway-486 

Representative Concentration Pathway scenario, SSP5-8.5. Except active river model, other 487 
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model components of CESM are in their data modes (stub ice, ocean, wave, and glacier (land 488 

ice)). For illustrative purpose, only the DynamicUrban simulation with the BNU projection data 489 

is shown here. 490 

 491 

The simulation results confirm that our new dynamic urban scheme functions properly in the 492 

CESM modeling framework and demonstrate the direct local climate effects of urban expansion 493 

(Figure 7). These effects are shown as grid-cell level differences between DynamicUrban and 494 

StaticUrban runs, averaged during 2061-2070. Because there are no feedbacks from land to the 495 

atmosphere in the land-only simulations, the grid-cell mean differences between the two runs are 496 

essentially caused by the changes in area weights of urban land units in the model (i.e., 497 

urbanization). The urban subgrid climate outputs (state and flux variables) do not differ when the 498 

urban extent changes under the identical climate forcings between the two runs.  Urban 499 

expansion is shown to cause an almost consistently higher 2-m temperature (Ta) in the grid cells 500 

with expanding urban landscape, with an average difference of 0.0124 ± 0.008 K (mean ± 95% 501 

confidence intervals (CI)) compared to the static urban case (Figure 7A). This is essentially 502 

because the temperature of emerging urban area is higher than that of the landscape being 503 

replaced (urban heat island effect, Zhao et al., 2014). Our results also show a near-universal 504 

decrease in 2-m relative humidity (RH) in grid cells with expanded urban area, with an average 505 

absolute difference of -0.0762 ± 0.0046% (Figure 7B). This is largely due to the large fraction of 506 

impervious surfaces in urban areas replacing the original permeable landscapes (such as bare soil, 507 

vegetated, or crop land) which reduces the surface evapotranspiration. Empirical observational 508 

evidence exists for such an urbanization-induced decrease in local RH in recent decades (W. Liu 509 

et al., 2009; Luo & Lau, 2019; Meili et al., 2022). The loss of pervious surfaces during urban 510 
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2020, and urban extent is kept at present-day level between 2015 and 2020. 545 

 546 

5. Conclusion 547 

We develop and implement a new dynamic urban scheme in CESM, making it the first Earth 548 

system model that has a transient representation of future urbanization. The new dynamic urban 549 

feature not only makes the urban land use change in the model consistent with the greenhouse gas 550 

emission trajectories, but also extends the modeling capability to dynamically simulate the 551 

climate effects induced by both urbanization and global climate change. Urban areas are often 552 

converted from natural vegetation or cropland. The consequential changes in surface properties 553 

including addition of impervious surfaces and loss of natural vegetation or cropland, would pose 554 

significant influence on local and regional climates. These landscape modifications also alter the 555 

land-atmosphere interactions and deliver indirect climate impacts across scales. The 556 

implementation of the dynamic urban feature is the first step moving forward. The new dynamic-557 

urban CESM out of this study provides critical opportunities to advance understanding of how 558 

global-scale greenhouse gas warming coupled with urbanization affects local- and regional-scale 559 

climates, a critical question shaping the Earth’s sustainable future. The new dynamic urban 560 

scheme has been released in the latest development version of CTSM 561 

(https://github.com/ESCOMP/CTSM).  562 

 563 

Fully coupled simulations with our new dynamic CESM could offer more insights towards 564 

mechanistical understanding of the hydroclimatological impacts of urbanization and climate 565 

change. As the next steps in future work, further improvements will be made to the input data of 566 
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this dynamic CESM/CTSM. Specifically, the dynamic urban land time series will be extended 567 

back to cover the full historical period (since 1850). Besides, proportions of the three urban 568 

density types (TBD, HD and MD) in future projected urban land could be refined using 569 

additional data (e.g., future population distribution data), instead of simply being inherited from 570 

J2010.   571 

 572 

Code and Data Availability 573 

The code of the new dynamic urban scheme is publicly available in the latest development 574 

version of the Community Terrestrial System Model (CTSM) via its git repository 575 

(https://github.com/ESCOMP/CTSM). The modified THESIS urban properties tool and 576 

mksurfdata_esmf tool are available at https://figshare.com/s/4a890655b34498c1d082 (DOI: 577 

10.6084/m9.figshare.22680331). The two CESM-compatible transient urban land use time series 578 

datasets (i.e., GO2020- and BNU-based) are available from the CESM input data repository on 579 

NCAR’s Cheyenne cluster as an optional surface data input for CTSM/CLMU. 580 
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Appendix 589 

Supplemental Material 590 
 591 

In the derivation of the building energy model (BEM) in Oleson and Feddema (2019) an 592 

assumption was made that the building width is equal to the street width.  Here however, this 593 

assumption has been relaxed and building width is now derived from the data in the Jackson et al. 594 

(2010) morphology dataset.  Specifically, the BEM equations which use SH W  (building height 595 

to street width ratio) now use BH W  (building height to building width ratio). Building width is 596 

( )1B S roof roofW W W W= −  where roofW  is roof fraction. 597 

 598 

The BEM equations are modified as follows.  Following the derivation in Oleson and Feddema 599 

(2020) (Eqs. 1-6), an energy balance is constructed for each interior surface and indoor air as 600 

 , , , 0rd roof cv roof cd roofF F F+ + =  (1) 601 

 , , , 0rd sunw cv sunw cd sunwF F F+ + =  (2) 602 

 , , , 0rd shdw cv shdw cd shdwF F F+ + =  (3) 603 

 , , , 0rd floor cv floor cd floorF F F+ + =  (4) 604 

 ( ) ( ), , 0iB
B p sfc cv sfc ig sfc iB vent p ac iB

sfc

TV C A h T T V C T T
t

ρ ρ∂ − − − − =
∂    (5) 605 

where rdF  is the net longwave radiation (W m-2), cvF  is the convection flux (sensible heat flux), 606 

and cdF  is the heat conduction flux (W m-2) for each surface.  In Eq. (5), BV  is the volume of 607 

building air (m3), ρ  is the density of dry air at standard pressure stdP  and indoor air 608 
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temperature iBT  ( std da iBP R Tρ =  where 101325stdP =  Pa and 287.04daR =  J K-1 kg-1 is the dry 609 

air gas constant), 31.00464 10pC = ×  is the specific heat of dry air (J kg-1 K-1), sfcA  is the area 610 

(m2), ,cv sfch  is the convective heat transfer coefficient (W m-2 K-1), and ,ig sfcT  is the interior 611 

surface temperature of each surface (subscript sfc is roof, sunw, shdw, or floor).  The last term in 612 

Eq. (5) represents exchange of indoor air and outdoor air in the urban canyon where ventV  is the 613 

ventilation air flow rate (m3 s-1) and acT  is the urban canopy layer air temperature (K). 614 

 615 

Since B BV W LH=  (m3), roof floor BA A W L= =  (m2), and sunw shdwA A HL= =  (m2), where BW  is 616 

building width (m), H  is building height (m), and L  is building length or depth (m), Eq. (5) 617 

can be rewritten as 618 

 
( ) ( ) ( )

( ) ( )

, , , , , ,

, , 0
3600

iB
p cv roof ig roof iB cv floor ig floor iB cv sunw ig sunw iB

B

cv shdw ig shdw iB p ac iB
B

T HH C h T T h T T h T T
t W

H ACHh T T H C T T
W

ρ

ρ

∂ − − − − − −
∂

 − − − − = 
 

  (6) 619 

where ventilation is represented by ACH , the number of air exchanges between indoor and 620 

outdoor volume of air per hour. 621 

 622 

The view factors between surfaces used in determining the net longwave radiation for each 623 

interior surface as described in Text S1 in Oleson and Feddema (2019) are also modified as 624 

2

1floor roof
B B

H H
W W−

 
Ψ = + − 

 
 (7) 625 
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( )1 1
2wall floor roof floor− −Ψ = − Ψ  (8) 626 

wall floor
floor wall

BH W
−

−

Ψ
Ψ =  (9) 627 

roof wall floor wall− −Ψ = Ψ  (10) 628 

wall roof wall floor− −Ψ = Ψ  (11) 629 

1wall wall roof wall floor wall− − −Ψ = −Ψ −Ψ . (12) 630 

Note that for 0.5roofW = , B SW W= , the assumption in the original version of the model. 631 

 632 

Second, the effects of ventilation (exchange of building air with canopy air) as described in 633 

Oleson and Feddema (2020) are accounted for in the energy budget inside the building as shown 634 

in Eq. (5) where ventV  is the ventilation air flow rate (m3 s-1).  However, the opposite and equal 635 

flux to the urban canyon was not accounted for. The following remedies that omission and the 636 

sensible heat flux into the urban canyon due to ventilation ( ventH ) is added to the canyon floor 637 

similar to the sensible heat due to wasteheat and the heat removed by air conditioning.  638 

Following equation 4.26 in  (Oleson et al., 2010), the sensible flux into each urban surface h is 639 

now 640 

 , , ,gg g g wasteheat g aircond g vent gh S L H E H H Hλ= − − − + + +
 

  (13) 641 

where gS


 is the absorbed solar radiation, gL


 is the net longwave radiation, and gH  and gEλ  are 642 

the sensible and latent heat fluxes, all in W m-2.  The terms ,wasteheat gH , ,aircond gH , and ,vent gH  are 643 
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the wasteheat from space heating/air conditioning, the heat removed by air conditioning, and the 644 

ventilation heat flux, respectively, applied only to the pervious (prvrd) and impervious canyon 645 

floor (imprvrd) 646 

 

, ,

, , ,

, ,

, , ,

1
0

1

wasteheat
wasteheat prvrd wasteheat imprvrd

roof

wasteheat sunwall wasteheat shdwall wasteheat roof

aircond
aircond prvrd aircond imprvrd

roof

aircond sunwall aircond shdwall aircond ro

HH H
W

H H H
HH H

W
H H H

= =
−

= = =

= =
−

= =

, ,

, , ,

0

1
0

of

vent
vent prvrd vent imprvrd

roof

vent sunwall vent shdwall vent roof

HH H
W
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  (14) 647 

where wasteheatH  and aircondH  are the total waste heat and heat removed by air conditioning.  648 

ventH  is the total ventilation heat flux (see Eq. (6)) 649 

 ( )
3600vent roof p iB ac
ACHH W H C T Tρ = − 

 
.  (15) 650 

 651 

Oleson and Feddema (2020) reported on results using the BEM from a global land-only (with 652 

CLM uncoupled from an active atmospheric model) simulation (CLM5_UPV2_BEMV2).  Here, 653 

a new historical simulation (CLM5_UPV2_BEMV3) that includes the two modifications 654 

described above was conducted for 1850-2005 using CLM5 655 

(https://github.com/ESCOMP/CTSM/releases/tag/clm5.0.dev010).  The results for 1986-2005 656 

are compared to the original simulation to assess the combined effects of the modifications on 657 

urban canopy air temperature and anthropogenic heat flux (AHF). 658 

 659 
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Following the analysis in Oleson and Feddema (2020), the spatial pattern of differences in mean 660 

(Tmean), daily maximum (Tmax) and minimum (Tmin) urban canopy air temperature and AHF 661 

components for CLMU_UPV2_BEMV3 compared to CLM5_UPV2_BEMV2 are shown in 662 

Figure S1, with a summary of global average AHF components in Table S1.  These results 663 

reflect the weighted (by area) average of the three urban density types [tall building district 664 

(TBD), high density (HD), and medium density (MD)].   In general, the modification to use the 665 

derived BW  decreases Tmean over most regions while the ventH  modification increases Tmean 666 

(not shown).  The increase in Tmean is larger than the decrease such that the combined change in 667 

Tmean is about 0.02 °C averaged globally (Figure S1).  The largest increases are associated with 668 

the TBD density type which has the largest building air volume (differences are 0.0°C to 0.35°C 669 

depending on region; not shown).  Changes for Tmin are larger than for Tmax mainly because 670 

the building interior is warmer than canopy air at night, particularly in winter, and there is a 671 

positive sensible heat flux into the urban canyon due to the ventH  modification. 672 

 673 

Figure S1 and Table S1 indicates there is an increase in AHF released into the climate system 674 

from the modifications.  Global AHF for 1986-2005 increases slightly from 3.47 TW to 3.56 TW 675 

(~3%).  Most of this is due to an increase in space heating due to the use of the derived BW .  In 676 

regions that require space heating in winter, heating increases for 0.5roofW <  (primarily the 677 

medium density type which has the largest area) and decreases for 0.5roofW >  (primarily the 678 

TBD density type which has the smallest area). 679 

 680 
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Figure S2 indicates that the simulated AHF still compares well with an estimate from Flanner 681 

(2009) over the U.S. with a slight degradation in the pattern correlation.  On the other hand, the 682 

positive bias in the model over Europe (Figure S3) increases from about 0.08 TW to 0.20 TW 683 

indicating that the building properties may need to be revisited in this region (e.g., an increase in 684 

roof and/or wall insulation would reduce space heating demand). 685 

 686 

In summary, the changes in urban canopy air temperature and anthropogenic heat flux due to 687 

these modifications are generally relatively small, although they can be significant depending on 688 

certain combinations of density type, urban morphology, season, and climate. 689 

 690 
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