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Introduction

Coastal wetland ecosystems are some of the most efficient ecosystems for carbon sequestration (Mcleod et
al., 2011). At the interface of land and ocean, these ecosystems are characterized by mixing of water, nutri-
ents, and sediment from watersheds and nearshore marine waters. Productive plant communities occupy the
continuum from upstream to estuary mouths, despite the dynamic gradients in physicochemical conditions.
Dense vegetation slows water velocity, allowing sediment accretion that further buries organic matter pro-
duced or trapped in coastal wetlands. In addition, soils are often anoxic, slowing the decomposition of buried
organic matter and allowing soil organic matter to accumulate. Land surface models (LSMs) are useful for
examining carbon cycling at ecosystem scales and are critical for estimating carbon cycling in global scale
Earth system model simulations. However, despite the importance of coastal wetlands in carbon storage,
and their vulnerability to sea level rise, LSMs have limited representation of coastal ecosystems (O’Meara
et al., 2021; Ward et al., 2020).

Plant functional types (PFTs) developed for terrestrial vegetation are inadequate for coastal wetlands because
the controls on vegetation productivity differ between these ecosystems (LaFond-Hudson and Sulman, 2023).
Wetland plants are sometimes exposed to soil moisture, pH, and nutrient concentrations rarely experienced
by terrestrial plants, so wetland vegetation traits sometimes stray from the predictable patterns of resource
tradeoffs observed in terrestrial plants (Moor et al. 2017). Models sometimes lack critical for processes in
wetlands if the processes are less influential in terrestrial ecosystems. For example, in the Energy Exascale
Earth System Model (E3SM)’s land surface model (ELM), vegetation productivity is limited by low soil
moisture, but not by saturated soils (Oleson et al. 2013), so the model likely overestimates productivity
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in coastal wetlands. The model also does not represent the impact of salt on soil water potential and
photosynthesis. These missing processes lead to uncertainty in global carbon cycle projections; improving
these processes will open opportunities to explore carbon cycle questions within coastal wetland ecosystems
using LSMs.

Inundation decreases oxygen availability to roots under saturated soil conditions and by covering stems
and leaves under flooded conditions (Colmer and Vosenek 2009). Plant adaptations to flooding can include
aerenchymous tissue that transports oxygen to the root zone, increased vertical growth under flooded condi-
tions, and floating tissues for plants adapted to permanently flooded conditions. Despite the abundant water
in coastal wetlands, salinity affects plants by lowering the soil water potential outside of roots, creating chal-
lenges for water uptake. Plants may respond by limiting water uptake, or by taking up salt along with water
and accumulating salt in tissues (Munns and Tester, 2008). Plants that limit water uptake must conserve
water; this strategy requires lowering stomatal conductance and carbon uptake. Plants that accumulate
salt have adaptations to alleviate ion toxicity within tissues, such as storage in vacuoles and production
of osmolytes to maintain osmotic potential of cells. Although these adaptations are better for chronic salt
exposure, these adaptations are energetically costly.

The distribution of plant communities is tightly coupled to average salinity concentrations and hydroperiod,
but the physicochemical conditions of coastal wetlands are dynamic. Additionally, sea level rise, droughts,
and more frequent, intense storms are likely to further vary water levels and salinity in coastal wetlands. Land
surface models will be more capable of exploring carbon cycling in coastal wetlands if vegetation dynamics
can be accurately simulated at the salinity and hydroperiod for which vegetation is well adapted, as well as
the dynamics when vegetation is exposed to conditions for which it is poorly adapted. For example, much
of the research on salt marshes in the past two decades concerns the fragility of salt marshes in the face of
accelerating sea level rise. Some evidence suggests they are resilient to moderate increases in the duration
of inundation via enhanced vegetation productivity that contributes to elevation gain (Kirwan et al., 2010;
Morris et al., 2002). However, in some locations, marshes are eroding because local sea level rise rates are
outpacing marsh elevation gain (Wasson et al., 2019). At the same time, saltwater intrusion into ecosystems
that are not adapted to saline conditions can cause widespread mortality of vegetation and consequent loss
of carbon stocks. Incorporating vegetation responses to salinity and inundation into LSMs is important for
simulating the impacts of seasonal patterns and long-term trends in water levels and salinity on vegetation
productivity in coastal ecosystems. In this paper, we describe a new capability of the DOE’s Energy Exascale
Earth system model (E3SM) land model (ELM) to represent vegetation responses to salinity and inundation.
We show how the vegetation responses to salinity and inundation improve model accuracy in a salt marsh
ecosystem. Several scenarios are then presented to demonstrate how a salt marsh might respond to systemic
changes in salinity and water level, as might occur in departures from average annual precipitation.

Methods

Default land surface model description

The Exascale Energy Earth System Model (E3SM)’s land model (ELM) represents energy, water, carbon,
and nutrient balances in terrestrial ecosystems, as well as processes that control the movement of energy and
matter between soil layers, vegetation, and the atmosphere (Golaz et al., 2019; Lawrence et al., 2019). In
the model, carbon uptake by plants is closely coupled with water uptake by roots via stomatal conductance;
greater stomatal conductance is associated with both higher water and carbon uptake.

Soil water stress limits stomatal conductance through a transpiration function (Equation 1, Oleson et al.
2013). t , the transpiration factor, is a value between 0 (dry) and 1 (wet). It is calculated by summing the
product of wi, a wilting factor for each soil layer, and ri, the fraction of roots in each layer. t is multiplied
by the minimum conductance to apply soil water stress.

βt =
∑
i wiri (Equation 1)

The current study builds from salt marsh processes that have been recently implemented in ELM, includ-

2
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ing tidal hydrology and parameterization of salt marsh graminoids (O’Meara et al., 2021). Water level is
represented with a two-column approach, with one column representing a tidal channel and the other repre-
senting an adjacent, hydrologically-connected marsh. The water level in the tidal channel varies according
to the tide pattern. When the water level in the tide channel is elevated above the marsh surface, water
is transported laterally to the second column representing a marsh or other vegetated wetland type. In
our simulations, which focus on salt marsh systems, we use the C4 grass PFT previously parameterized for
Spartina patensbased on literature values and measurements from the Global Change Research Wetland in
Chesapeake Bay (O’Meara et al., 2021).

Model changes

While the previous implementation of tidal hydrology for a microtidal marsh used a sinusoidal function to
represent tidal variations, modeling vegetation responses to tidal cycles across a broader range of coastal
systems requires the ability to drive the model with site-specific tidal hydrology and salinity concentrations.
We added the capability to read in an external forcing file containing a time series of water level heights
and salinity concentrations (add github link?). The tide file may be created with measured water levels and
salinity concentrations, water levels calculated from tide constituents, or hypothetical values for scenario
simulations, thereby facilitating flexibility in simulating different site conditions. This approach builds the
groundwork for coupling ELM to water level and salinity boundary conditions determined by ocean and river
components of E3SM in future coupled simulations.

To represent the influence of salinity on vegetation growth, we used a Gaussian function (Equation 2, Li et
al., 2021)

fi(s) = e −(s−µ)2
2y2 Equation 2

In this function, s represents salinity, μ represents the salinity concentration at which maximum growth
occurs (optimal salinity for a PFT), and Y represents the salinity tolerance. The functionfi(s) yields a value
between 0 and 1, andfi(s) is multiplied by wiri for each layer to decreaset proportionately to the salinity
concentration (Fig 1a). ELM does not represent salinity variations with depth in this study; the model is
forced with a single salinity concentration applied to the entire marsh column, assuming that salinity in the
marsh is equal to that in the tidal channel.

To represent the effects of flooding on vegetation growth, we used a linear function that limits carbon uptake
by the proportion of vegetation that is submerged (Equation 3).

fi (z) = {

0, z ≥ H
H−z
H , 0 < z < H

1, z ≤ 0
Equation 3

The inhibition of growth due to inundation,fi(z) , is calculated by the plant height H and the surface water
height z . Water levels above the plant height set fi(z) to zero, while water levels below the marsh surface set
fi(z) to 1. When 0 < z < H , the function inhibits root water uptake in proportion to the fraction of plant
height that is submerged (Fig 1b). As with the salinity response,fi(z) is multiplied by the root water uptake
resistance in each layer to represent the impact on root function. The improved model thus represents the
soil water stress via a transpiration function that includes salinity and flood stress (Equation 4).

βt =
∑
i wi ri fi (s)fi(z)(Equation 4)

Model configuration, parameterization, and evaluation

ELM simulations were conducted for a temperate low marsh at the Plum Island Ecosystems Long Term
Ecological Research site (PIE-LTER). The PIE-LTER low marsh is located in the Plum Island Sound in
northern Massachusetts (42.7345, -70.8382) and has a humid continental climate. The site has a tidal range of
2.5-3 m and the low marsh elevation is approximately 1 m. Spartina alterniflora is the dominant vegetation.

3
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The site is instrumented during the growing season with an eddy covariance tower, water level sensors, and
a conductivity sensor.

Hydrological parameters for ELM (marsh level relative to tidal channel, mean water level height) were
parameterized for the low marsh using observed water level data from PIE-LTER (Giblin 2019, Giblin
2022). Salinity optimum and tolerance (μ and Y ) were parameterized by starting with literature values
for optimal salinity for S. alterniflora (Vasquez et al. 2006, Maricle and Lee, 2006) and tolerance values
used to model other brackish and salt marsh species with a Gaussian function (Li et al. 2021). Parameters
were then adjusted until modeled gross primary production daily values (GPP) showed good agreement with
measured GPP at the low marsh eddy covariance tower (Giblin and Forbrich 2022a, b, c), evaluated using
root mean square error (RMSE) values. The plant functional type was set as a C4 grass and we used PFT
parameters (including leaf traits, photosynthetic capacity, and growth allocation) optimized in a previous
modeling study forS. patens in Chesapeake Bay (O’Meara et al., 2021).

We examined how observed GPP rates correlated with observed water level and salinity concentrations. To
control for phenological patterns in GPP rates, we first obtained a growing season curve by averaging the
noon GPP measured in 2018, 2019, and 2020 on each day followed by calculating a 60-day rolling average
to smooth the three-year average. This growing season curve was then removed from the noon measurement
of each year’s dataset (i.e. 2018 noon GPP – seasonal average noon GPP). Pearson’s correlation was used
to determine the correlation of detrended GPP with water level and salinity.

We drove the model with meteorological data collected at PIE-LTER (Giblin 2019, Giblin 2020, Giblin 2021),
salinity concentrations measured at xx (Giblin and Forbrich 2022a, b, c) and estimated water level using
tide constituents available from NOAA Tides and Currents (https://tidesandcurrents.noaa.gov/). Data was
gapfilled using linear interpolation. We assumed one salinity value for the entire soil column because ELM
does not currently represent salt transport through soil layers. Model simulations were spun up using 100
years of accelerated decomposition followed by 100 years of regular spinup (Koven et al. 2013, Thornton et
al. 2005). In default simulations, plant responses to salinity and inundation were inactive, representing the
previous model vegetation function under site-specific meteorological, hydrological, and salinity conditions.
The second set of simulations used the same meteorological, salinity, and water level forcing while including
vegetation response functions to salinity and flooding. We evaluated model performance by comparing GPP
from the default model simulations, improved model simulations, and measured GPP from the field site. A
third set of scenarios were conducted for systematic changes in salinity by adding or subtracting a constant
value (-5, +5, +10 ppt) from the 2018 salinity measurements used to force the improved model. Finally, the
improved model was used to conduct scenarios for systematic changes in water level by changing the mean
tide water level parameter (-10, +10, +20, +50 cm).

Fig. 1. The functions used to define vegetation response to (a) salinity, and (b) inundation in the model.

4
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The salinity function requires parameterization of the optimal salinity (μ) and the salinity tolerance (Y) of
each PFT. The inundation function responds linearly to the proportion of the plant submerged by surface
water. Also, why didn’t I just apply the same function to flooding? That would solve some problems re:
flooding stimulating growth.

Results

Patterns in measured GPP

Measured carbon uptake at the low marsh shows a negative correlation with observed water level once
seasonal patterns are removed (Fig. 2a,r = -0.40, 2018; Fig 2b, r = -0.30). For water levels above the
marsh surface (1 m NADV88), the detrended GPP rate tended to be negative, indicating lower than average
carbon uptake. Measured salinity ranged from 20-40 ppt, with annual means of 28, 29.3, and 31.1 ppt for
2018, 2019, and 2020 respectively. Salinity fluctuations did not have an obvious correlation with detrended
GPP (r = 0.05, 0.02, 0.05 respectively for 2018, 2019, 2020). The literature is clear that salinity decreases
growth (Munns and Tester 2008, Vasquez et al. 2006, Maricle and Lee, 2006), but the fluctuation in salinity
at the low marsh may not have been wide enough to drive observable variation in GPP rates.

Model-data comparison

Several sets of salinity parameters (optimal salinity, μ, and salinity tolerance, λ, from Equation 1) were tested
with the improved model to see which parameters best represented measured GPP for 2018. The simulation
using (μ = 0, λ = 20) predicted the closest cumulative GPP to measurements (Fig. 3a). Modeled GPP rates
with each set of parameters were compared to measured GPP rates using linear regression (Fig 3b). The
simulation using (μ = 0, λ = 20) had the best agreement with data (RMSE = 5.65).

Simulations without a salinity response overestimated rates of GPP by as much as 3x (Fig. 4, 5). The
inclusion of salinity and flooding functions simulated GPP values very close to measurements (Fig. 4, Fig.
5). At hourly time scales, the improved model shows decreased GPP rates during high tides (Fig. 4). The
modeled water level based on NOAA tide constituents does not always represent high tide at the time it is
measured in the low marsh, but the predicted water level patterns are similar to observed water levels at
the site.

At annual time scales, the improved model represents the cumulative GPP within 20% of measurements (Fig.
5). The default model simulated annual productivity to be between 2700-3000 gC m-2, whereas the improved
model simulated annual productivity between 700-1050 gC m-2. In general, the improved model tends to
overestimate GPP during green-up and senescence and underestimate GPP during the middle of the growing
season. The model overestimated 2018 and 2019 GPP by 10 and 19% respectively, but underestimated GPP
by 21% in 2020, a year in which salinity was higher throughout the growing season, but especially during
the first half.

Simulations of changing salinity and water level

We conducted two scenarios of increasing salinity (+5 ppt, +10 ppt) and one scenario of decreasing salinity
(-5 ppt) to understand how sensitive the model is to changes in average annual salinity. A 5 ppt decrease in
salinity (equivalent to 18% decrease relative to average salinity) over the growing season increased GPP by
39%, whereas a 5 ppt increase in salinity lowered GPP by 46% (Fig. 6). A 10 ppt salinity increase (equivalent
to a 36% increase relative to average salinity) led to a 80% decrease in GPP relative to the observed salinity.
The non-linear shape of the salinity response function dictates that increasing salinity would lead to a lower
proportion of change in GPP (Fig. 1). However, increasing salinity also decreased plant height, which makes
vegetation more susceptible to flooding effects.

We conducted one scenario in which the mean tide level decreased by 10 cm, and three scenarios in which
mean tide level increased by 10 cm, 20 cm, and 50 cm (XX%, XX%, and XX% of mean high tide levels,
respectively) (Fig. 7). Lowering the water level by 10 cm resulted in a 2% increase in cumulative GPP.
Increasing water level by 10 cm, 20cm, and 50 cm resulted in predicted GPP declining by 2.8%, 6.3%, and
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12.4%, respectively. Changing the water level did not substantially change plant height except the scenario
of +50 cm water level, which decreased the maximum plant height by 12%.

Fig. 2. Correlation between water level height (m in NAVD88) and seasonally detrended GPP rate mea-
surements for 2018 (a) and 2019 (b). The color gradient represents the concomitant salinity concentration
(ppt). The vertical dotted line indicates the elevation of the marsh soil surface (approximately 1 m). Both
detrended GPP rates and water level height are from noon each day during the growing season. Positive
GPP rates indicate a higher-than-average GPP rate on that day compared to an average growing season.
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Fig 3. Parameterization of optimal salinity and salinity tolerance in the salinity response function. The
cumulative GPP for 2018 was tested with three sets of parameters (optimal salinity = 0, salinity tolerance
= 18, blue; optimal salinity = 0, salinity tolerance = 20, orange; and optimal salinity = -5, salinity tolerance
= 22, green) and compared to measured GPP (a). The modeled daily noon GPP rates were compared to
the measured daily noon GPP rates using the same three parameter sets (b).

Fig. 4 Comparison of default model, improved model with salinity and flood response function, and measured
gross primary productivity for 2019 (a). The improved model was forced with salinity data from the site
(b). Water level in the improved model was modeled based on tidal constituents (c).

Fig. 5 Three years of model-data comparison for GPP rates and cumulative annual GPP. The bottom

7
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row shows the site salinity measurements used to run the model simulations. This also includes the flood
response.

Fig 6. Scenarios showing the productivity of the low marsh may vary with salinity concentrations. The
model was forced with salinity measurements from 2018 increased by 5 and 10 ppt and lowered by 5 ppt and
is compared to observed (obs.) salinity.

Fig 7. Simulations using the improved model to predict cumulative GPP (a), rates of GPP (b), and plant

8
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height (c) under different water level scenarios (d).

Discussion

We modeled the effect of salinity and flooding on carbon uptake mechanistically by incorporating the rela-
tionship between salinity, flooding, and root water uptake. These modeling updates improved representation
of GPP and were validated by GPP measurements taken at Plum Island Estuary. At hourly to annual time
scales, modeled GPP aligned well with field observations. Incorporating salinity-induced inhibition of root
water uptake brought simulations from 3x too high to near the values observed in the field. Incorporating
flood-induced inhibition of carbon uptake decreased the estimated GPP by a smaller proportion compared
to the salinity function, but it more accurately simulated variations over tidal cycles.

Salt marshes are well known for their strict zonation by elevation; small deviations from salinity concentration
and hydroperiod result in community changes or loss of marsh habitat in lower elevations. S. alterniflora
is a dominant species in salt marshes along North America’s temperate east coast, including at the Plum
Island Estuary site included in this study. Although S. alterniflora grows better at lower salinities, other
plants compete with it in fresh and brackish conditions; S. alterniflora dominates salt marshes because of
its tolerance to salinity concentrations and hydroperiods that kill most other species (Crain et al., 2004;
Hwang and Morris, 1994). We set the optimal salinity parameter at zero to represent maximum growth
in freshwater and tried several tolerance parameters to determine the value that closely simulated GPP
observed in the field. Although our tolerance parameterization resulted in reasonable simulations of GPP,
our model is too sensitive to salinity. Annual average salinity fluctuates by 2-3 ppt due to variation in
evaporation and precipitation. Site measurements of salinity from 2020 were an average of 3 ppt higher than
salinity from 2018 and measured GPP decreased by 6%, whereas the model scenarios showed an average of 5
ppt higher salinity resulted in a 40% decrease in GPP. We think the application of the Gaussian function is
appropriate for mechanistic representation of salinity’s limitation of carbon uptake, but the model currently
lacks representation of multiple plant adaptations to salt exposure. This salinity function targets osmotic
inhibition of root water uptake, but does not yet account for ways vegetation can mitigate salt exposure
after uptake (Munns and Tester, 2008). plants can also take up salt and excrete it or store it in vacuoles
until chronic exposure exceeds a toxicity threshold (Munns and Tester, 2008; Naidoo et al., 1992; Vasquez
et al., 2006). For example, S. alterniflorauses solutes to adjust osmotic pressure in aboveground tissues and
uses salt glands for excretion (Bradley and Morris, 1991; Naidoo et al., 1992; Vasquez et al., 2006). However,
we have improved model simulations considerably from the default, and this approach has been effective in
modeling biomass for other marsh species.

This model does not yet account for several important coastal wetland processes, including sediment trapping,
stimulated growth, and increasing vertical accretion with moderate sea level rise. These processes are critical
for understanding carbon cycling and marsh stability on decadal scales (Kirwan et al., 2010; Morris et al.,
2002). Because this is the first attempt to incorporate salt marsh-specific controls on GPP in ELM, we kept
our representation of flooding simple: the proportion of aboveground tissue underwater did not contribute
to photosynthesis in each time step. However, this approach may be too simplistic to provide meaningful
model simulations, since inundation stimulation of S. alterniflora productivity is a major control on carbon
dynamics in salt marshes (Kirwan et al., 2016; Morris et al., 2013). Currently, ELM estimates plant height
of grasses proportionally to LAI, which may be appropriate for approximating the impact of salinity stress
on plants, but not flooding. We used Li et al.’s Gaussian approach to model vegetation response to salinity
(2021), but they also used this Gaussian approach for vegetation response to flooding. In this approach,
plants have an optimal flooding depth and a flooding tolerance parameter. If we adopt this approach, we
will need to parameterize the salt marsh grass plant functional types for these additional flood parameters,
but this information is available for S. alterniflora(Morris et al., 2013). In either approach, flooding above
the marsh surface is addressed, but the impacts of soil waterlogging are not. Addressing soil waterlogging
will likely require modeling available oxygen and other more detailed soil biogeochemistry; this work is
progressing (Sulman et al. in prep?, O’Meara et al. 2021?).

Our model developments focused on improving representation of GPP in salt marshes, but to fully represent
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coastal wetland carbon cycling, ELM should be able to model vegetation spanning the gradient from saline
to freshwater wetlands. Our approach is flexible to model response curves of vegetation adapted to fresh
or brackish conditions; even upland vegetation could be given a low salinity tolerance to model the carbon
dynamics of saltwater intrusion into upland forests. However, the default model parameterization predicted
GPP values 3x the measured values without the salinity response. Although individual plants may be much
more productive when grown in fresh or brackish water, typically freshwater tidal wetlands are not 3x more
productive than salt marshes (need to cite here). The default model therefore predicts unreasonably high
values for freshwater wetland productivity, likely because the model was originally designed for upland sys-
tems and assumes that vegetation productivity is primarily limited by dry soil conditions. Thus, existing
parameterization of graminoid plants likely overestimates productivity under non-water-limited conditions,
so that when ELM is used to model a wetland, high soil moisture allows plants unrealistically high photosyn-
thesis rates. As mentioned in the previous paragraph, another problem is that ELM doesn’t address anoxic
soil conditions, which decrease root metabolism or incur metabolic costs for flood tolerance traits (Colmer
and Voesenek, 2009; Naidoo et al., 1992). Improvement of vegetation in freshwater saturated environments
will be required before the model can be used to investigate carbon dynamics along a salinity gradient.

A strength of implementing coastal wetlands into ELM and our flexible approach to salinity is the potential to
scale this model from point simulations to global scales. In this study, we used salinity measurements to force
model simulations, combined with water levels modeled using NOAA tide pattern models. Expanding this
model framework to broader scales will require estuary-scale measurements or models of coupled hydrology
and salinity. These could be derived from estuary-scale measurement networks or estuary models. Simulating
coastal wetland vegetation at continental to global scales within a fully coupled earth system model will
require tidal patterns and salinity to be supplied by ocean or hydrological models. Current ocean models
operate at resolutions too coarse to directly simulate coastal wetland tide heights and estuary salinities, but
ongoing developments in high-resolution coastal models are making progress toward coupled coastal process
capabilities.

Conclusion

Here, we implemented vegetation response functions to salinity and inundation to improve representation
of coastal marsh ecosystems in a land surface model. In general, representing the responses of salt marsh
photosynthesis to salinity and flooding via resistance to root water uptake worked well and is consistent
with known plant physiological responses. Incorporating vegetation responses to salinity and inundation
improved the accuracy of simulated GPP, but the updated model still overestimates productivity of freshwater
wetlands. Vegetation responds to salinity and water level via several mechanisms beyond root water uptake,
so our model improvements do not capture the complete vegetation response, but they provide a foundation
to which additional mechanisms can be added. The stimulation of salt marsh productivity under moderate
increases in inundation still needs to be addressed, as does the overestimation of productivity in freshwater
marshes. Nevertheless, this work opens the door for modeling wetland C uptake along estuarine transects that
include saline, brackish, and fresh marshes, or at different latitudes and tidal regimes. Additionally, salinity
and flooding parameters could be applied to upland vegetation occurring at marsh edges that are much
more sensitive to salinity and flooding to simulate carbon dynamics with saltwater intrusion or increasing
hydroperiods.
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